xref: /openbmc/qemu/block/io.c (revision 19f4ed36)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "qemu/cutils.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/main-loop.h"
37 #include "sysemu/replay.h"
38 
39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
41 
42 static void bdrv_parent_cb_resize(BlockDriverState *bs);
43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
44     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
45 
46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
47                                       bool ignore_bds_parents)
48 {
49     BdrvChild *c, *next;
50 
51     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
52         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
53             continue;
54         }
55         bdrv_parent_drained_begin_single(c, false);
56     }
57 }
58 
59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
60                                                    int *drained_end_counter)
61 {
62     assert(c->parent_quiesce_counter > 0);
63     c->parent_quiesce_counter--;
64     if (c->klass->drained_end) {
65         c->klass->drained_end(c, drained_end_counter);
66     }
67 }
68 
69 void bdrv_parent_drained_end_single(BdrvChild *c)
70 {
71     int drained_end_counter = 0;
72     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
73     BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
74 }
75 
76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
77                                     bool ignore_bds_parents,
78                                     int *drained_end_counter)
79 {
80     BdrvChild *c;
81 
82     QLIST_FOREACH(c, &bs->parents, next_parent) {
83         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
84             continue;
85         }
86         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
87     }
88 }
89 
90 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
91 {
92     if (c->klass->drained_poll) {
93         return c->klass->drained_poll(c);
94     }
95     return false;
96 }
97 
98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
99                                      bool ignore_bds_parents)
100 {
101     BdrvChild *c, *next;
102     bool busy = false;
103 
104     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
105         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
106             continue;
107         }
108         busy |= bdrv_parent_drained_poll_single(c);
109     }
110 
111     return busy;
112 }
113 
114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
115 {
116     c->parent_quiesce_counter++;
117     if (c->klass->drained_begin) {
118         c->klass->drained_begin(c);
119     }
120     if (poll) {
121         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
122     }
123 }
124 
125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
126 {
127     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
128     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
129     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130                                  src->opt_mem_alignment);
131     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132                                  src->min_mem_alignment);
133     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 }
135 
136 typedef struct BdrvRefreshLimitsState {
137     BlockDriverState *bs;
138     BlockLimits old_bl;
139 } BdrvRefreshLimitsState;
140 
141 static void bdrv_refresh_limits_abort(void *opaque)
142 {
143     BdrvRefreshLimitsState *s = opaque;
144 
145     s->bs->bl = s->old_bl;
146 }
147 
148 static TransactionActionDrv bdrv_refresh_limits_drv = {
149     .abort = bdrv_refresh_limits_abort,
150     .clean = g_free,
151 };
152 
153 /* @tran is allowed to be NULL, in this case no rollback is possible. */
154 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
155 {
156     ERRP_GUARD();
157     BlockDriver *drv = bs->drv;
158     BdrvChild *c;
159     bool have_limits;
160 
161     if (tran) {
162         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
163         *s = (BdrvRefreshLimitsState) {
164             .bs = bs,
165             .old_bl = bs->bl,
166         };
167         tran_add(tran, &bdrv_refresh_limits_drv, s);
168     }
169 
170     memset(&bs->bl, 0, sizeof(bs->bl));
171 
172     if (!drv) {
173         return;
174     }
175 
176     /* Default alignment based on whether driver has byte interface */
177     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
178                                 drv->bdrv_aio_preadv ||
179                                 drv->bdrv_co_preadv_part) ? 1 : 512;
180 
181     /* Take some limits from the children as a default */
182     have_limits = false;
183     QLIST_FOREACH(c, &bs->children, next) {
184         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
185         {
186             bdrv_refresh_limits(c->bs, tran, errp);
187             if (*errp) {
188                 return;
189             }
190             bdrv_merge_limits(&bs->bl, &c->bs->bl);
191             have_limits = true;
192         }
193     }
194 
195     if (!have_limits) {
196         bs->bl.min_mem_alignment = 512;
197         bs->bl.opt_mem_alignment = qemu_real_host_page_size;
198 
199         /* Safe default since most protocols use readv()/writev()/etc */
200         bs->bl.max_iov = IOV_MAX;
201     }
202 
203     /* Then let the driver override it */
204     if (drv->bdrv_refresh_limits) {
205         drv->bdrv_refresh_limits(bs, errp);
206         if (*errp) {
207             return;
208         }
209     }
210 
211     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
212         error_setg(errp, "Driver requires too large request alignment");
213     }
214 }
215 
216 /**
217  * The copy-on-read flag is actually a reference count so multiple users may
218  * use the feature without worrying about clobbering its previous state.
219  * Copy-on-read stays enabled until all users have called to disable it.
220  */
221 void bdrv_enable_copy_on_read(BlockDriverState *bs)
222 {
223     qatomic_inc(&bs->copy_on_read);
224 }
225 
226 void bdrv_disable_copy_on_read(BlockDriverState *bs)
227 {
228     int old = qatomic_fetch_dec(&bs->copy_on_read);
229     assert(old >= 1);
230 }
231 
232 typedef struct {
233     Coroutine *co;
234     BlockDriverState *bs;
235     bool done;
236     bool begin;
237     bool recursive;
238     bool poll;
239     BdrvChild *parent;
240     bool ignore_bds_parents;
241     int *drained_end_counter;
242 } BdrvCoDrainData;
243 
244 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
245 {
246     BdrvCoDrainData *data = opaque;
247     BlockDriverState *bs = data->bs;
248 
249     if (data->begin) {
250         bs->drv->bdrv_co_drain_begin(bs);
251     } else {
252         bs->drv->bdrv_co_drain_end(bs);
253     }
254 
255     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
256     qatomic_mb_set(&data->done, true);
257     if (!data->begin) {
258         qatomic_dec(data->drained_end_counter);
259     }
260     bdrv_dec_in_flight(bs);
261 
262     g_free(data);
263 }
264 
265 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
266 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
267                               int *drained_end_counter)
268 {
269     BdrvCoDrainData *data;
270 
271     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
272             (!begin && !bs->drv->bdrv_co_drain_end)) {
273         return;
274     }
275 
276     data = g_new(BdrvCoDrainData, 1);
277     *data = (BdrvCoDrainData) {
278         .bs = bs,
279         .done = false,
280         .begin = begin,
281         .drained_end_counter = drained_end_counter,
282     };
283 
284     if (!begin) {
285         qatomic_inc(drained_end_counter);
286     }
287 
288     /* Make sure the driver callback completes during the polling phase for
289      * drain_begin. */
290     bdrv_inc_in_flight(bs);
291     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
292     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
293 }
294 
295 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
296 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
297                      BdrvChild *ignore_parent, bool ignore_bds_parents)
298 {
299     BdrvChild *child, *next;
300 
301     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
302         return true;
303     }
304 
305     if (qatomic_read(&bs->in_flight)) {
306         return true;
307     }
308 
309     if (recursive) {
310         assert(!ignore_bds_parents);
311         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
312             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
313                 return true;
314             }
315         }
316     }
317 
318     return false;
319 }
320 
321 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
322                                       BdrvChild *ignore_parent)
323 {
324     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
325 }
326 
327 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
328                                   BdrvChild *parent, bool ignore_bds_parents,
329                                   bool poll);
330 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
331                                 BdrvChild *parent, bool ignore_bds_parents,
332                                 int *drained_end_counter);
333 
334 static void bdrv_co_drain_bh_cb(void *opaque)
335 {
336     BdrvCoDrainData *data = opaque;
337     Coroutine *co = data->co;
338     BlockDriverState *bs = data->bs;
339 
340     if (bs) {
341         AioContext *ctx = bdrv_get_aio_context(bs);
342         aio_context_acquire(ctx);
343         bdrv_dec_in_flight(bs);
344         if (data->begin) {
345             assert(!data->drained_end_counter);
346             bdrv_do_drained_begin(bs, data->recursive, data->parent,
347                                   data->ignore_bds_parents, data->poll);
348         } else {
349             assert(!data->poll);
350             bdrv_do_drained_end(bs, data->recursive, data->parent,
351                                 data->ignore_bds_parents,
352                                 data->drained_end_counter);
353         }
354         aio_context_release(ctx);
355     } else {
356         assert(data->begin);
357         bdrv_drain_all_begin();
358     }
359 
360     data->done = true;
361     aio_co_wake(co);
362 }
363 
364 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
365                                                 bool begin, bool recursive,
366                                                 BdrvChild *parent,
367                                                 bool ignore_bds_parents,
368                                                 bool poll,
369                                                 int *drained_end_counter)
370 {
371     BdrvCoDrainData data;
372     Coroutine *self = qemu_coroutine_self();
373     AioContext *ctx = bdrv_get_aio_context(bs);
374     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
375 
376     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
377      * other coroutines run if they were queued by aio_co_enter(). */
378 
379     assert(qemu_in_coroutine());
380     data = (BdrvCoDrainData) {
381         .co = self,
382         .bs = bs,
383         .done = false,
384         .begin = begin,
385         .recursive = recursive,
386         .parent = parent,
387         .ignore_bds_parents = ignore_bds_parents,
388         .poll = poll,
389         .drained_end_counter = drained_end_counter,
390     };
391 
392     if (bs) {
393         bdrv_inc_in_flight(bs);
394     }
395 
396     /*
397      * Temporarily drop the lock across yield or we would get deadlocks.
398      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
399      *
400      * When we yield below, the lock for the current context will be
401      * released, so if this is actually the lock that protects bs, don't drop
402      * it a second time.
403      */
404     if (ctx != co_ctx) {
405         aio_context_release(ctx);
406     }
407     replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
408 
409     qemu_coroutine_yield();
410     /* If we are resumed from some other event (such as an aio completion or a
411      * timer callback), it is a bug in the caller that should be fixed. */
412     assert(data.done);
413 
414     /* Reaquire the AioContext of bs if we dropped it */
415     if (ctx != co_ctx) {
416         aio_context_acquire(ctx);
417     }
418 }
419 
420 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
421                                    BdrvChild *parent, bool ignore_bds_parents)
422 {
423     assert(!qemu_in_coroutine());
424 
425     /* Stop things in parent-to-child order */
426     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
427         aio_disable_external(bdrv_get_aio_context(bs));
428     }
429 
430     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
431     bdrv_drain_invoke(bs, true, NULL);
432 }
433 
434 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
435                                   BdrvChild *parent, bool ignore_bds_parents,
436                                   bool poll)
437 {
438     BdrvChild *child, *next;
439 
440     if (qemu_in_coroutine()) {
441         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
442                                poll, NULL);
443         return;
444     }
445 
446     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
447 
448     if (recursive) {
449         assert(!ignore_bds_parents);
450         bs->recursive_quiesce_counter++;
451         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
452             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
453                                   false);
454         }
455     }
456 
457     /*
458      * Wait for drained requests to finish.
459      *
460      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
461      * call is needed so things in this AioContext can make progress even
462      * though we don't return to the main AioContext loop - this automatically
463      * includes other nodes in the same AioContext and therefore all child
464      * nodes.
465      */
466     if (poll) {
467         assert(!ignore_bds_parents);
468         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
469     }
470 }
471 
472 void bdrv_drained_begin(BlockDriverState *bs)
473 {
474     bdrv_do_drained_begin(bs, false, NULL, false, true);
475 }
476 
477 void bdrv_subtree_drained_begin(BlockDriverState *bs)
478 {
479     bdrv_do_drained_begin(bs, true, NULL, false, true);
480 }
481 
482 /**
483  * This function does not poll, nor must any of its recursively called
484  * functions.  The *drained_end_counter pointee will be incremented
485  * once for every background operation scheduled, and decremented once
486  * the operation settles.  Therefore, the pointer must remain valid
487  * until the pointee reaches 0.  That implies that whoever sets up the
488  * pointee has to poll until it is 0.
489  *
490  * We use atomic operations to access *drained_end_counter, because
491  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
492  *     @bs may contain nodes in different AioContexts,
493  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
494  *     regardless of which AioContext they are in.
495  */
496 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
497                                 BdrvChild *parent, bool ignore_bds_parents,
498                                 int *drained_end_counter)
499 {
500     BdrvChild *child;
501     int old_quiesce_counter;
502 
503     assert(drained_end_counter != NULL);
504 
505     if (qemu_in_coroutine()) {
506         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
507                                false, drained_end_counter);
508         return;
509     }
510     assert(bs->quiesce_counter > 0);
511 
512     /* Re-enable things in child-to-parent order */
513     bdrv_drain_invoke(bs, false, drained_end_counter);
514     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
515                             drained_end_counter);
516 
517     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
518     if (old_quiesce_counter == 1) {
519         aio_enable_external(bdrv_get_aio_context(bs));
520     }
521 
522     if (recursive) {
523         assert(!ignore_bds_parents);
524         bs->recursive_quiesce_counter--;
525         QLIST_FOREACH(child, &bs->children, next) {
526             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
527                                 drained_end_counter);
528         }
529     }
530 }
531 
532 void bdrv_drained_end(BlockDriverState *bs)
533 {
534     int drained_end_counter = 0;
535     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
536     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
537 }
538 
539 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
540 {
541     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
542 }
543 
544 void bdrv_subtree_drained_end(BlockDriverState *bs)
545 {
546     int drained_end_counter = 0;
547     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
548     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
549 }
550 
551 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
552 {
553     int i;
554 
555     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
556         bdrv_do_drained_begin(child->bs, true, child, false, true);
557     }
558 }
559 
560 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
561 {
562     int drained_end_counter = 0;
563     int i;
564 
565     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
566         bdrv_do_drained_end(child->bs, true, child, false,
567                             &drained_end_counter);
568     }
569 
570     BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
571 }
572 
573 /*
574  * Wait for pending requests to complete on a single BlockDriverState subtree,
575  * and suspend block driver's internal I/O until next request arrives.
576  *
577  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
578  * AioContext.
579  */
580 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
581 {
582     assert(qemu_in_coroutine());
583     bdrv_drained_begin(bs);
584     bdrv_drained_end(bs);
585 }
586 
587 void bdrv_drain(BlockDriverState *bs)
588 {
589     bdrv_drained_begin(bs);
590     bdrv_drained_end(bs);
591 }
592 
593 static void bdrv_drain_assert_idle(BlockDriverState *bs)
594 {
595     BdrvChild *child, *next;
596 
597     assert(qatomic_read(&bs->in_flight) == 0);
598     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
599         bdrv_drain_assert_idle(child->bs);
600     }
601 }
602 
603 unsigned int bdrv_drain_all_count = 0;
604 
605 static bool bdrv_drain_all_poll(void)
606 {
607     BlockDriverState *bs = NULL;
608     bool result = false;
609 
610     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
611      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
612     while ((bs = bdrv_next_all_states(bs))) {
613         AioContext *aio_context = bdrv_get_aio_context(bs);
614         aio_context_acquire(aio_context);
615         result |= bdrv_drain_poll(bs, false, NULL, true);
616         aio_context_release(aio_context);
617     }
618 
619     return result;
620 }
621 
622 /*
623  * Wait for pending requests to complete across all BlockDriverStates
624  *
625  * This function does not flush data to disk, use bdrv_flush_all() for that
626  * after calling this function.
627  *
628  * This pauses all block jobs and disables external clients. It must
629  * be paired with bdrv_drain_all_end().
630  *
631  * NOTE: no new block jobs or BlockDriverStates can be created between
632  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
633  */
634 void bdrv_drain_all_begin(void)
635 {
636     BlockDriverState *bs = NULL;
637 
638     if (qemu_in_coroutine()) {
639         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
640         return;
641     }
642 
643     /*
644      * bdrv queue is managed by record/replay,
645      * waiting for finishing the I/O requests may
646      * be infinite
647      */
648     if (replay_events_enabled()) {
649         return;
650     }
651 
652     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
653      * loop AioContext, so make sure we're in the main context. */
654     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
655     assert(bdrv_drain_all_count < INT_MAX);
656     bdrv_drain_all_count++;
657 
658     /* Quiesce all nodes, without polling in-flight requests yet. The graph
659      * cannot change during this loop. */
660     while ((bs = bdrv_next_all_states(bs))) {
661         AioContext *aio_context = bdrv_get_aio_context(bs);
662 
663         aio_context_acquire(aio_context);
664         bdrv_do_drained_begin(bs, false, NULL, true, false);
665         aio_context_release(aio_context);
666     }
667 
668     /* Now poll the in-flight requests */
669     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
670 
671     while ((bs = bdrv_next_all_states(bs))) {
672         bdrv_drain_assert_idle(bs);
673     }
674 }
675 
676 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
677 {
678     int drained_end_counter = 0;
679 
680     g_assert(bs->quiesce_counter > 0);
681     g_assert(!bs->refcnt);
682 
683     while (bs->quiesce_counter) {
684         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
685     }
686     BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
687 }
688 
689 void bdrv_drain_all_end(void)
690 {
691     BlockDriverState *bs = NULL;
692     int drained_end_counter = 0;
693 
694     /*
695      * bdrv queue is managed by record/replay,
696      * waiting for finishing the I/O requests may
697      * be endless
698      */
699     if (replay_events_enabled()) {
700         return;
701     }
702 
703     while ((bs = bdrv_next_all_states(bs))) {
704         AioContext *aio_context = bdrv_get_aio_context(bs);
705 
706         aio_context_acquire(aio_context);
707         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
708         aio_context_release(aio_context);
709     }
710 
711     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
712     AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
713 
714     assert(bdrv_drain_all_count > 0);
715     bdrv_drain_all_count--;
716 }
717 
718 void bdrv_drain_all(void)
719 {
720     bdrv_drain_all_begin();
721     bdrv_drain_all_end();
722 }
723 
724 /**
725  * Remove an active request from the tracked requests list
726  *
727  * This function should be called when a tracked request is completing.
728  */
729 static void tracked_request_end(BdrvTrackedRequest *req)
730 {
731     if (req->serialising) {
732         qatomic_dec(&req->bs->serialising_in_flight);
733     }
734 
735     qemu_co_mutex_lock(&req->bs->reqs_lock);
736     QLIST_REMOVE(req, list);
737     qemu_co_queue_restart_all(&req->wait_queue);
738     qemu_co_mutex_unlock(&req->bs->reqs_lock);
739 }
740 
741 /**
742  * Add an active request to the tracked requests list
743  */
744 static void tracked_request_begin(BdrvTrackedRequest *req,
745                                   BlockDriverState *bs,
746                                   int64_t offset,
747                                   int64_t bytes,
748                                   enum BdrvTrackedRequestType type)
749 {
750     bdrv_check_request(offset, bytes, &error_abort);
751 
752     *req = (BdrvTrackedRequest){
753         .bs = bs,
754         .offset         = offset,
755         .bytes          = bytes,
756         .type           = type,
757         .co             = qemu_coroutine_self(),
758         .serialising    = false,
759         .overlap_offset = offset,
760         .overlap_bytes  = bytes,
761     };
762 
763     qemu_co_queue_init(&req->wait_queue);
764 
765     qemu_co_mutex_lock(&bs->reqs_lock);
766     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
767     qemu_co_mutex_unlock(&bs->reqs_lock);
768 }
769 
770 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
771                                      int64_t offset, int64_t bytes)
772 {
773     bdrv_check_request(offset, bytes, &error_abort);
774 
775     /*        aaaa   bbbb */
776     if (offset >= req->overlap_offset + req->overlap_bytes) {
777         return false;
778     }
779     /* bbbb   aaaa        */
780     if (req->overlap_offset >= offset + bytes) {
781         return false;
782     }
783     return true;
784 }
785 
786 /* Called with self->bs->reqs_lock held */
787 static BdrvTrackedRequest *
788 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
789 {
790     BdrvTrackedRequest *req;
791 
792     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
793         if (req == self || (!req->serialising && !self->serialising)) {
794             continue;
795         }
796         if (tracked_request_overlaps(req, self->overlap_offset,
797                                      self->overlap_bytes))
798         {
799             /*
800              * Hitting this means there was a reentrant request, for
801              * example, a block driver issuing nested requests.  This must
802              * never happen since it means deadlock.
803              */
804             assert(qemu_coroutine_self() != req->co);
805 
806             /*
807              * If the request is already (indirectly) waiting for us, or
808              * will wait for us as soon as it wakes up, then just go on
809              * (instead of producing a deadlock in the former case).
810              */
811             if (!req->waiting_for) {
812                 return req;
813             }
814         }
815     }
816 
817     return NULL;
818 }
819 
820 /* Called with self->bs->reqs_lock held */
821 static bool coroutine_fn
822 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
823 {
824     BdrvTrackedRequest *req;
825     bool waited = false;
826 
827     while ((req = bdrv_find_conflicting_request(self))) {
828         self->waiting_for = req;
829         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
830         self->waiting_for = NULL;
831         waited = true;
832     }
833 
834     return waited;
835 }
836 
837 /* Called with req->bs->reqs_lock held */
838 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
839                                             uint64_t align)
840 {
841     int64_t overlap_offset = req->offset & ~(align - 1);
842     int64_t overlap_bytes =
843         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
844 
845     bdrv_check_request(req->offset, req->bytes, &error_abort);
846 
847     if (!req->serialising) {
848         qatomic_inc(&req->bs->serialising_in_flight);
849         req->serialising = true;
850     }
851 
852     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
853     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
854 }
855 
856 /**
857  * Return the tracked request on @bs for the current coroutine, or
858  * NULL if there is none.
859  */
860 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
861 {
862     BdrvTrackedRequest *req;
863     Coroutine *self = qemu_coroutine_self();
864 
865     QLIST_FOREACH(req, &bs->tracked_requests, list) {
866         if (req->co == self) {
867             return req;
868         }
869     }
870 
871     return NULL;
872 }
873 
874 /**
875  * Round a region to cluster boundaries
876  */
877 void bdrv_round_to_clusters(BlockDriverState *bs,
878                             int64_t offset, int64_t bytes,
879                             int64_t *cluster_offset,
880                             int64_t *cluster_bytes)
881 {
882     BlockDriverInfo bdi;
883 
884     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
885         *cluster_offset = offset;
886         *cluster_bytes = bytes;
887     } else {
888         int64_t c = bdi.cluster_size;
889         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
890         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
891     }
892 }
893 
894 static int bdrv_get_cluster_size(BlockDriverState *bs)
895 {
896     BlockDriverInfo bdi;
897     int ret;
898 
899     ret = bdrv_get_info(bs, &bdi);
900     if (ret < 0 || bdi.cluster_size == 0) {
901         return bs->bl.request_alignment;
902     } else {
903         return bdi.cluster_size;
904     }
905 }
906 
907 void bdrv_inc_in_flight(BlockDriverState *bs)
908 {
909     qatomic_inc(&bs->in_flight);
910 }
911 
912 void bdrv_wakeup(BlockDriverState *bs)
913 {
914     aio_wait_kick();
915 }
916 
917 void bdrv_dec_in_flight(BlockDriverState *bs)
918 {
919     qatomic_dec(&bs->in_flight);
920     bdrv_wakeup(bs);
921 }
922 
923 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
924 {
925     BlockDriverState *bs = self->bs;
926     bool waited = false;
927 
928     if (!qatomic_read(&bs->serialising_in_flight)) {
929         return false;
930     }
931 
932     qemu_co_mutex_lock(&bs->reqs_lock);
933     waited = bdrv_wait_serialising_requests_locked(self);
934     qemu_co_mutex_unlock(&bs->reqs_lock);
935 
936     return waited;
937 }
938 
939 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
940                                                 uint64_t align)
941 {
942     bool waited;
943 
944     qemu_co_mutex_lock(&req->bs->reqs_lock);
945 
946     tracked_request_set_serialising(req, align);
947     waited = bdrv_wait_serialising_requests_locked(req);
948 
949     qemu_co_mutex_unlock(&req->bs->reqs_lock);
950 
951     return waited;
952 }
953 
954 static int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
955                                    QEMUIOVector *qiov, size_t qiov_offset,
956                                    Error **errp)
957 {
958     /*
959      * Check generic offset/bytes correctness
960      */
961 
962     if (offset < 0) {
963         error_setg(errp, "offset is negative: %" PRIi64, offset);
964         return -EIO;
965     }
966 
967     if (bytes < 0) {
968         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
969         return -EIO;
970     }
971 
972     if (bytes > BDRV_MAX_LENGTH) {
973         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
974                    bytes, BDRV_MAX_LENGTH);
975         return -EIO;
976     }
977 
978     if (offset > BDRV_MAX_LENGTH) {
979         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
980                    offset, BDRV_MAX_LENGTH);
981         return -EIO;
982     }
983 
984     if (offset > BDRV_MAX_LENGTH - bytes) {
985         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
986                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
987                    BDRV_MAX_LENGTH);
988         return -EIO;
989     }
990 
991     if (!qiov) {
992         return 0;
993     }
994 
995     /*
996      * Check qiov and qiov_offset
997      */
998 
999     if (qiov_offset > qiov->size) {
1000         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1001                    qiov_offset, qiov->size);
1002         return -EIO;
1003     }
1004 
1005     if (bytes > qiov->size - qiov_offset) {
1006         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1007                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
1008         return -EIO;
1009     }
1010 
1011     return 0;
1012 }
1013 
1014 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1015 {
1016     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1017 }
1018 
1019 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1020                                 QEMUIOVector *qiov, size_t qiov_offset)
1021 {
1022     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1023     if (ret < 0) {
1024         return ret;
1025     }
1026 
1027     if (bytes > BDRV_REQUEST_MAX_BYTES) {
1028         return -EIO;
1029     }
1030 
1031     return 0;
1032 }
1033 
1034 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1035                        int64_t bytes, BdrvRequestFlags flags)
1036 {
1037     return bdrv_pwritev(child, offset, bytes, NULL,
1038                         BDRV_REQ_ZERO_WRITE | flags);
1039 }
1040 
1041 /*
1042  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1043  * The operation is sped up by checking the block status and only writing
1044  * zeroes to the device if they currently do not return zeroes. Optional
1045  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1046  * BDRV_REQ_FUA).
1047  *
1048  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1049  */
1050 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1051 {
1052     int ret;
1053     int64_t target_size, bytes, offset = 0;
1054     BlockDriverState *bs = child->bs;
1055 
1056     target_size = bdrv_getlength(bs);
1057     if (target_size < 0) {
1058         return target_size;
1059     }
1060 
1061     for (;;) {
1062         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1063         if (bytes <= 0) {
1064             return 0;
1065         }
1066         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1067         if (ret < 0) {
1068             return ret;
1069         }
1070         if (ret & BDRV_BLOCK_ZERO) {
1071             offset += bytes;
1072             continue;
1073         }
1074         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1075         if (ret < 0) {
1076             return ret;
1077         }
1078         offset += bytes;
1079     }
1080 }
1081 
1082 /* See bdrv_pwrite() for the return codes */
1083 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1084 {
1085     int ret;
1086     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1087 
1088     if (bytes < 0) {
1089         return -EINVAL;
1090     }
1091 
1092     ret = bdrv_preadv(child, offset, bytes, &qiov,  0);
1093 
1094     return ret < 0 ? ret : bytes;
1095 }
1096 
1097 /* Return no. of bytes on success or < 0 on error. Important errors are:
1098   -EIO         generic I/O error (may happen for all errors)
1099   -ENOMEDIUM   No media inserted.
1100   -EINVAL      Invalid offset or number of bytes
1101   -EACCES      Trying to write a read-only device
1102 */
1103 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1104                 int64_t bytes)
1105 {
1106     int ret;
1107     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1108 
1109     if (bytes < 0) {
1110         return -EINVAL;
1111     }
1112 
1113     ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1114 
1115     return ret < 0 ? ret : bytes;
1116 }
1117 
1118 /*
1119  * Writes to the file and ensures that no writes are reordered across this
1120  * request (acts as a barrier)
1121  *
1122  * Returns 0 on success, -errno in error cases.
1123  */
1124 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1125                      const void *buf, int64_t count)
1126 {
1127     int ret;
1128 
1129     ret = bdrv_pwrite(child, offset, buf, count);
1130     if (ret < 0) {
1131         return ret;
1132     }
1133 
1134     ret = bdrv_flush(child->bs);
1135     if (ret < 0) {
1136         return ret;
1137     }
1138 
1139     return 0;
1140 }
1141 
1142 typedef struct CoroutineIOCompletion {
1143     Coroutine *coroutine;
1144     int ret;
1145 } CoroutineIOCompletion;
1146 
1147 static void bdrv_co_io_em_complete(void *opaque, int ret)
1148 {
1149     CoroutineIOCompletion *co = opaque;
1150 
1151     co->ret = ret;
1152     aio_co_wake(co->coroutine);
1153 }
1154 
1155 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1156                                            int64_t offset, int64_t bytes,
1157                                            QEMUIOVector *qiov,
1158                                            size_t qiov_offset, int flags)
1159 {
1160     BlockDriver *drv = bs->drv;
1161     int64_t sector_num;
1162     unsigned int nb_sectors;
1163     QEMUIOVector local_qiov;
1164     int ret;
1165 
1166     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1167     assert(!(flags & ~BDRV_REQ_MASK));
1168     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1169 
1170     if (!drv) {
1171         return -ENOMEDIUM;
1172     }
1173 
1174     if (drv->bdrv_co_preadv_part) {
1175         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1176                                         flags);
1177     }
1178 
1179     if (qiov_offset > 0 || bytes != qiov->size) {
1180         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1181         qiov = &local_qiov;
1182     }
1183 
1184     if (drv->bdrv_co_preadv) {
1185         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1186         goto out;
1187     }
1188 
1189     if (drv->bdrv_aio_preadv) {
1190         BlockAIOCB *acb;
1191         CoroutineIOCompletion co = {
1192             .coroutine = qemu_coroutine_self(),
1193         };
1194 
1195         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1196                                    bdrv_co_io_em_complete, &co);
1197         if (acb == NULL) {
1198             ret = -EIO;
1199             goto out;
1200         } else {
1201             qemu_coroutine_yield();
1202             ret = co.ret;
1203             goto out;
1204         }
1205     }
1206 
1207     sector_num = offset >> BDRV_SECTOR_BITS;
1208     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1209 
1210     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1211     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1212     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1213     assert(drv->bdrv_co_readv);
1214 
1215     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1216 
1217 out:
1218     if (qiov == &local_qiov) {
1219         qemu_iovec_destroy(&local_qiov);
1220     }
1221 
1222     return ret;
1223 }
1224 
1225 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1226                                             int64_t offset, int64_t bytes,
1227                                             QEMUIOVector *qiov,
1228                                             size_t qiov_offset, int flags)
1229 {
1230     BlockDriver *drv = bs->drv;
1231     int64_t sector_num;
1232     unsigned int nb_sectors;
1233     QEMUIOVector local_qiov;
1234     int ret;
1235 
1236     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1237     assert(!(flags & ~BDRV_REQ_MASK));
1238     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1239 
1240     if (!drv) {
1241         return -ENOMEDIUM;
1242     }
1243 
1244     if (drv->bdrv_co_pwritev_part) {
1245         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1246                                         flags & bs->supported_write_flags);
1247         flags &= ~bs->supported_write_flags;
1248         goto emulate_flags;
1249     }
1250 
1251     if (qiov_offset > 0 || bytes != qiov->size) {
1252         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1253         qiov = &local_qiov;
1254     }
1255 
1256     if (drv->bdrv_co_pwritev) {
1257         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1258                                    flags & bs->supported_write_flags);
1259         flags &= ~bs->supported_write_flags;
1260         goto emulate_flags;
1261     }
1262 
1263     if (drv->bdrv_aio_pwritev) {
1264         BlockAIOCB *acb;
1265         CoroutineIOCompletion co = {
1266             .coroutine = qemu_coroutine_self(),
1267         };
1268 
1269         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1270                                     flags & bs->supported_write_flags,
1271                                     bdrv_co_io_em_complete, &co);
1272         flags &= ~bs->supported_write_flags;
1273         if (acb == NULL) {
1274             ret = -EIO;
1275         } else {
1276             qemu_coroutine_yield();
1277             ret = co.ret;
1278         }
1279         goto emulate_flags;
1280     }
1281 
1282     sector_num = offset >> BDRV_SECTOR_BITS;
1283     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1284 
1285     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1286     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1287     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1288 
1289     assert(drv->bdrv_co_writev);
1290     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1291                               flags & bs->supported_write_flags);
1292     flags &= ~bs->supported_write_flags;
1293 
1294 emulate_flags:
1295     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1296         ret = bdrv_co_flush(bs);
1297     }
1298 
1299     if (qiov == &local_qiov) {
1300         qemu_iovec_destroy(&local_qiov);
1301     }
1302 
1303     return ret;
1304 }
1305 
1306 static int coroutine_fn
1307 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1308                                int64_t bytes, QEMUIOVector *qiov,
1309                                size_t qiov_offset)
1310 {
1311     BlockDriver *drv = bs->drv;
1312     QEMUIOVector local_qiov;
1313     int ret;
1314 
1315     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1316 
1317     if (!drv) {
1318         return -ENOMEDIUM;
1319     }
1320 
1321     if (!block_driver_can_compress(drv)) {
1322         return -ENOTSUP;
1323     }
1324 
1325     if (drv->bdrv_co_pwritev_compressed_part) {
1326         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1327                                                     qiov, qiov_offset);
1328     }
1329 
1330     if (qiov_offset == 0) {
1331         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1332     }
1333 
1334     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1335     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1336     qemu_iovec_destroy(&local_qiov);
1337 
1338     return ret;
1339 }
1340 
1341 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1342         int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1343         size_t qiov_offset, int flags)
1344 {
1345     BlockDriverState *bs = child->bs;
1346 
1347     /* Perform I/O through a temporary buffer so that users who scribble over
1348      * their read buffer while the operation is in progress do not end up
1349      * modifying the image file.  This is critical for zero-copy guest I/O
1350      * where anything might happen inside guest memory.
1351      */
1352     void *bounce_buffer = NULL;
1353 
1354     BlockDriver *drv = bs->drv;
1355     int64_t cluster_offset;
1356     int64_t cluster_bytes;
1357     int64_t skip_bytes;
1358     int ret;
1359     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1360                                     BDRV_REQUEST_MAX_BYTES);
1361     int64_t progress = 0;
1362     bool skip_write;
1363 
1364     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1365 
1366     if (!drv) {
1367         return -ENOMEDIUM;
1368     }
1369 
1370     /*
1371      * Do not write anything when the BDS is inactive.  That is not
1372      * allowed, and it would not help.
1373      */
1374     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1375 
1376     /* FIXME We cannot require callers to have write permissions when all they
1377      * are doing is a read request. If we did things right, write permissions
1378      * would be obtained anyway, but internally by the copy-on-read code. As
1379      * long as it is implemented here rather than in a separate filter driver,
1380      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1381      * it could request permissions. Therefore we have to bypass the permission
1382      * system for the moment. */
1383     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1384 
1385     /* Cover entire cluster so no additional backing file I/O is required when
1386      * allocating cluster in the image file.  Note that this value may exceed
1387      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1388      * is one reason we loop rather than doing it all at once.
1389      */
1390     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1391     skip_bytes = offset - cluster_offset;
1392 
1393     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1394                                    cluster_offset, cluster_bytes);
1395 
1396     while (cluster_bytes) {
1397         int64_t pnum;
1398 
1399         if (skip_write) {
1400             ret = 1; /* "already allocated", so nothing will be copied */
1401             pnum = MIN(cluster_bytes, max_transfer);
1402         } else {
1403             ret = bdrv_is_allocated(bs, cluster_offset,
1404                                     MIN(cluster_bytes, max_transfer), &pnum);
1405             if (ret < 0) {
1406                 /*
1407                  * Safe to treat errors in querying allocation as if
1408                  * unallocated; we'll probably fail again soon on the
1409                  * read, but at least that will set a decent errno.
1410                  */
1411                 pnum = MIN(cluster_bytes, max_transfer);
1412             }
1413 
1414             /* Stop at EOF if the image ends in the middle of the cluster */
1415             if (ret == 0 && pnum == 0) {
1416                 assert(progress >= bytes);
1417                 break;
1418             }
1419 
1420             assert(skip_bytes < pnum);
1421         }
1422 
1423         if (ret <= 0) {
1424             QEMUIOVector local_qiov;
1425 
1426             /* Must copy-on-read; use the bounce buffer */
1427             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1428             if (!bounce_buffer) {
1429                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1430                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1431                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1432 
1433                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1434                 if (!bounce_buffer) {
1435                     ret = -ENOMEM;
1436                     goto err;
1437                 }
1438             }
1439             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1440 
1441             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1442                                      &local_qiov, 0, 0);
1443             if (ret < 0) {
1444                 goto err;
1445             }
1446 
1447             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1448             if (drv->bdrv_co_pwrite_zeroes &&
1449                 buffer_is_zero(bounce_buffer, pnum)) {
1450                 /* FIXME: Should we (perhaps conditionally) be setting
1451                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1452                  * that still correctly reads as zero? */
1453                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1454                                                BDRV_REQ_WRITE_UNCHANGED);
1455             } else {
1456                 /* This does not change the data on the disk, it is not
1457                  * necessary to flush even in cache=writethrough mode.
1458                  */
1459                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1460                                           &local_qiov, 0,
1461                                           BDRV_REQ_WRITE_UNCHANGED);
1462             }
1463 
1464             if (ret < 0) {
1465                 /* It might be okay to ignore write errors for guest
1466                  * requests.  If this is a deliberate copy-on-read
1467                  * then we don't want to ignore the error.  Simply
1468                  * report it in all cases.
1469                  */
1470                 goto err;
1471             }
1472 
1473             if (!(flags & BDRV_REQ_PREFETCH)) {
1474                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1475                                     bounce_buffer + skip_bytes,
1476                                     MIN(pnum - skip_bytes, bytes - progress));
1477             }
1478         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1479             /* Read directly into the destination */
1480             ret = bdrv_driver_preadv(bs, offset + progress,
1481                                      MIN(pnum - skip_bytes, bytes - progress),
1482                                      qiov, qiov_offset + progress, 0);
1483             if (ret < 0) {
1484                 goto err;
1485             }
1486         }
1487 
1488         cluster_offset += pnum;
1489         cluster_bytes -= pnum;
1490         progress += pnum - skip_bytes;
1491         skip_bytes = 0;
1492     }
1493     ret = 0;
1494 
1495 err:
1496     qemu_vfree(bounce_buffer);
1497     return ret;
1498 }
1499 
1500 /*
1501  * Forwards an already correctly aligned request to the BlockDriver. This
1502  * handles copy on read, zeroing after EOF, and fragmentation of large
1503  * reads; any other features must be implemented by the caller.
1504  */
1505 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1506     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1507     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1508 {
1509     BlockDriverState *bs = child->bs;
1510     int64_t total_bytes, max_bytes;
1511     int ret = 0;
1512     int64_t bytes_remaining = bytes;
1513     int max_transfer;
1514 
1515     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1516     assert(is_power_of_2(align));
1517     assert((offset & (align - 1)) == 0);
1518     assert((bytes & (align - 1)) == 0);
1519     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1520     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1521                                    align);
1522 
1523     /* TODO: We would need a per-BDS .supported_read_flags and
1524      * potential fallback support, if we ever implement any read flags
1525      * to pass through to drivers.  For now, there aren't any
1526      * passthrough flags.  */
1527     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1528 
1529     /* Handle Copy on Read and associated serialisation */
1530     if (flags & BDRV_REQ_COPY_ON_READ) {
1531         /* If we touch the same cluster it counts as an overlap.  This
1532          * guarantees that allocating writes will be serialized and not race
1533          * with each other for the same cluster.  For example, in copy-on-read
1534          * it ensures that the CoR read and write operations are atomic and
1535          * guest writes cannot interleave between them. */
1536         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1537     } else {
1538         bdrv_wait_serialising_requests(req);
1539     }
1540 
1541     if (flags & BDRV_REQ_COPY_ON_READ) {
1542         int64_t pnum;
1543 
1544         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1545         flags &= ~BDRV_REQ_COPY_ON_READ;
1546 
1547         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1548         if (ret < 0) {
1549             goto out;
1550         }
1551 
1552         if (!ret || pnum != bytes) {
1553             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1554                                            qiov, qiov_offset, flags);
1555             goto out;
1556         } else if (flags & BDRV_REQ_PREFETCH) {
1557             goto out;
1558         }
1559     }
1560 
1561     /* Forward the request to the BlockDriver, possibly fragmenting it */
1562     total_bytes = bdrv_getlength(bs);
1563     if (total_bytes < 0) {
1564         ret = total_bytes;
1565         goto out;
1566     }
1567 
1568     assert(!(flags & ~bs->supported_read_flags));
1569 
1570     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1571     if (bytes <= max_bytes && bytes <= max_transfer) {
1572         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1573         goto out;
1574     }
1575 
1576     while (bytes_remaining) {
1577         int64_t num;
1578 
1579         if (max_bytes) {
1580             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1581             assert(num);
1582 
1583             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1584                                      num, qiov,
1585                                      qiov_offset + bytes - bytes_remaining,
1586                                      flags);
1587             max_bytes -= num;
1588         } else {
1589             num = bytes_remaining;
1590             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1591                                     0, bytes_remaining);
1592         }
1593         if (ret < 0) {
1594             goto out;
1595         }
1596         bytes_remaining -= num;
1597     }
1598 
1599 out:
1600     return ret < 0 ? ret : 0;
1601 }
1602 
1603 /*
1604  * Request padding
1605  *
1606  *  |<---- align ----->|                     |<----- align ---->|
1607  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1608  *  |          |       |                     |     |            |
1609  * -*----------$-------*-------- ... --------*-----$------------*---
1610  *  |          |       |                     |     |            |
1611  *  |          offset  |                     |     end          |
1612  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1613  *  [buf   ... )                             [tail_buf          )
1614  *
1615  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1616  * is placed at the beginning of @buf and @tail at the @end.
1617  *
1618  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1619  * around tail, if tail exists.
1620  *
1621  * @merge_reads is true for small requests,
1622  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1623  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1624  */
1625 typedef struct BdrvRequestPadding {
1626     uint8_t *buf;
1627     size_t buf_len;
1628     uint8_t *tail_buf;
1629     size_t head;
1630     size_t tail;
1631     bool merge_reads;
1632     QEMUIOVector local_qiov;
1633 } BdrvRequestPadding;
1634 
1635 static bool bdrv_init_padding(BlockDriverState *bs,
1636                               int64_t offset, int64_t bytes,
1637                               BdrvRequestPadding *pad)
1638 {
1639     int64_t align = bs->bl.request_alignment;
1640     int64_t sum;
1641 
1642     bdrv_check_request(offset, bytes, &error_abort);
1643     assert(align <= INT_MAX); /* documented in block/block_int.h */
1644     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1645 
1646     memset(pad, 0, sizeof(*pad));
1647 
1648     pad->head = offset & (align - 1);
1649     pad->tail = ((offset + bytes) & (align - 1));
1650     if (pad->tail) {
1651         pad->tail = align - pad->tail;
1652     }
1653 
1654     if (!pad->head && !pad->tail) {
1655         return false;
1656     }
1657 
1658     assert(bytes); /* Nothing good in aligning zero-length requests */
1659 
1660     sum = pad->head + bytes + pad->tail;
1661     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1662     pad->buf = qemu_blockalign(bs, pad->buf_len);
1663     pad->merge_reads = sum == pad->buf_len;
1664     if (pad->tail) {
1665         pad->tail_buf = pad->buf + pad->buf_len - align;
1666     }
1667 
1668     return true;
1669 }
1670 
1671 static int bdrv_padding_rmw_read(BdrvChild *child,
1672                                  BdrvTrackedRequest *req,
1673                                  BdrvRequestPadding *pad,
1674                                  bool zero_middle)
1675 {
1676     QEMUIOVector local_qiov;
1677     BlockDriverState *bs = child->bs;
1678     uint64_t align = bs->bl.request_alignment;
1679     int ret;
1680 
1681     assert(req->serialising && pad->buf);
1682 
1683     if (pad->head || pad->merge_reads) {
1684         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1685 
1686         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1687 
1688         if (pad->head) {
1689             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1690         }
1691         if (pad->merge_reads && pad->tail) {
1692             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1693         }
1694         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1695                                   align, &local_qiov, 0, 0);
1696         if (ret < 0) {
1697             return ret;
1698         }
1699         if (pad->head) {
1700             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1701         }
1702         if (pad->merge_reads && pad->tail) {
1703             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1704         }
1705 
1706         if (pad->merge_reads) {
1707             goto zero_mem;
1708         }
1709     }
1710 
1711     if (pad->tail) {
1712         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1713 
1714         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1715         ret = bdrv_aligned_preadv(
1716                 child, req,
1717                 req->overlap_offset + req->overlap_bytes - align,
1718                 align, align, &local_qiov, 0, 0);
1719         if (ret < 0) {
1720             return ret;
1721         }
1722         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1723     }
1724 
1725 zero_mem:
1726     if (zero_middle) {
1727         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1728     }
1729 
1730     return 0;
1731 }
1732 
1733 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1734 {
1735     if (pad->buf) {
1736         qemu_vfree(pad->buf);
1737         qemu_iovec_destroy(&pad->local_qiov);
1738     }
1739     memset(pad, 0, sizeof(*pad));
1740 }
1741 
1742 /*
1743  * bdrv_pad_request
1744  *
1745  * Exchange request parameters with padded request if needed. Don't include RMW
1746  * read of padding, bdrv_padding_rmw_read() should be called separately if
1747  * needed.
1748  *
1749  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1750  *  - on function start they represent original request
1751  *  - on failure or when padding is not needed they are unchanged
1752  *  - on success when padding is needed they represent padded request
1753  */
1754 static int bdrv_pad_request(BlockDriverState *bs,
1755                             QEMUIOVector **qiov, size_t *qiov_offset,
1756                             int64_t *offset, int64_t *bytes,
1757                             BdrvRequestPadding *pad, bool *padded)
1758 {
1759     int ret;
1760 
1761     bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1762 
1763     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1764         if (padded) {
1765             *padded = false;
1766         }
1767         return 0;
1768     }
1769 
1770     ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1771                                    *qiov, *qiov_offset, *bytes,
1772                                    pad->buf + pad->buf_len - pad->tail,
1773                                    pad->tail);
1774     if (ret < 0) {
1775         bdrv_padding_destroy(pad);
1776         return ret;
1777     }
1778     *bytes += pad->head + pad->tail;
1779     *offset -= pad->head;
1780     *qiov = &pad->local_qiov;
1781     *qiov_offset = 0;
1782     if (padded) {
1783         *padded = true;
1784     }
1785 
1786     return 0;
1787 }
1788 
1789 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1790     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1791     BdrvRequestFlags flags)
1792 {
1793     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1794 }
1795 
1796 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1797     int64_t offset, int64_t bytes,
1798     QEMUIOVector *qiov, size_t qiov_offset,
1799     BdrvRequestFlags flags)
1800 {
1801     BlockDriverState *bs = child->bs;
1802     BdrvTrackedRequest req;
1803     BdrvRequestPadding pad;
1804     int ret;
1805 
1806     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1807 
1808     if (!bdrv_is_inserted(bs)) {
1809         return -ENOMEDIUM;
1810     }
1811 
1812     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1813     if (ret < 0) {
1814         return ret;
1815     }
1816 
1817     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1818         /*
1819          * Aligning zero request is nonsense. Even if driver has special meaning
1820          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1821          * it to driver due to request_alignment.
1822          *
1823          * Still, no reason to return an error if someone do unaligned
1824          * zero-length read occasionally.
1825          */
1826         return 0;
1827     }
1828 
1829     bdrv_inc_in_flight(bs);
1830 
1831     /* Don't do copy-on-read if we read data before write operation */
1832     if (qatomic_read(&bs->copy_on_read)) {
1833         flags |= BDRV_REQ_COPY_ON_READ;
1834     }
1835 
1836     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1837                            NULL);
1838     if (ret < 0) {
1839         return ret;
1840     }
1841 
1842     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1843     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1844                               bs->bl.request_alignment,
1845                               qiov, qiov_offset, flags);
1846     tracked_request_end(&req);
1847     bdrv_dec_in_flight(bs);
1848 
1849     bdrv_padding_destroy(&pad);
1850 
1851     return ret;
1852 }
1853 
1854 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1855     int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1856 {
1857     BlockDriver *drv = bs->drv;
1858     QEMUIOVector qiov;
1859     void *buf = NULL;
1860     int ret = 0;
1861     bool need_flush = false;
1862     int head = 0;
1863     int tail = 0;
1864 
1865     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1866     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1867                         bs->bl.request_alignment);
1868     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1869 
1870     bdrv_check_request(offset, bytes, &error_abort);
1871 
1872     if (!drv) {
1873         return -ENOMEDIUM;
1874     }
1875 
1876     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1877         return -ENOTSUP;
1878     }
1879 
1880     assert(alignment % bs->bl.request_alignment == 0);
1881     head = offset % alignment;
1882     tail = (offset + bytes) % alignment;
1883     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1884     assert(max_write_zeroes >= bs->bl.request_alignment);
1885 
1886     while (bytes > 0 && !ret) {
1887         int64_t num = bytes;
1888 
1889         /* Align request.  Block drivers can expect the "bulk" of the request
1890          * to be aligned, and that unaligned requests do not cross cluster
1891          * boundaries.
1892          */
1893         if (head) {
1894             /* Make a small request up to the first aligned sector. For
1895              * convenience, limit this request to max_transfer even if
1896              * we don't need to fall back to writes.  */
1897             num = MIN(MIN(bytes, max_transfer), alignment - head);
1898             head = (head + num) % alignment;
1899             assert(num < max_write_zeroes);
1900         } else if (tail && num > alignment) {
1901             /* Shorten the request to the last aligned sector.  */
1902             num -= tail;
1903         }
1904 
1905         /* limit request size */
1906         if (num > max_write_zeroes) {
1907             num = max_write_zeroes;
1908         }
1909 
1910         ret = -ENOTSUP;
1911         /* First try the efficient write zeroes operation */
1912         if (drv->bdrv_co_pwrite_zeroes) {
1913             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1914                                              flags & bs->supported_zero_flags);
1915             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1916                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1917                 need_flush = true;
1918             }
1919         } else {
1920             assert(!bs->supported_zero_flags);
1921         }
1922 
1923         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1924             /* Fall back to bounce buffer if write zeroes is unsupported */
1925             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1926 
1927             if ((flags & BDRV_REQ_FUA) &&
1928                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1929                 /* No need for bdrv_driver_pwrite() to do a fallback
1930                  * flush on each chunk; use just one at the end */
1931                 write_flags &= ~BDRV_REQ_FUA;
1932                 need_flush = true;
1933             }
1934             num = MIN(num, max_transfer);
1935             if (buf == NULL) {
1936                 buf = qemu_try_blockalign0(bs, num);
1937                 if (buf == NULL) {
1938                     ret = -ENOMEM;
1939                     goto fail;
1940                 }
1941             }
1942             qemu_iovec_init_buf(&qiov, buf, num);
1943 
1944             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1945 
1946             /* Keep bounce buffer around if it is big enough for all
1947              * all future requests.
1948              */
1949             if (num < max_transfer) {
1950                 qemu_vfree(buf);
1951                 buf = NULL;
1952             }
1953         }
1954 
1955         offset += num;
1956         bytes -= num;
1957     }
1958 
1959 fail:
1960     if (ret == 0 && need_flush) {
1961         ret = bdrv_co_flush(bs);
1962     }
1963     qemu_vfree(buf);
1964     return ret;
1965 }
1966 
1967 static inline int coroutine_fn
1968 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1969                           BdrvTrackedRequest *req, int flags)
1970 {
1971     BlockDriverState *bs = child->bs;
1972 
1973     bdrv_check_request(offset, bytes, &error_abort);
1974 
1975     if (bs->read_only) {
1976         return -EPERM;
1977     }
1978 
1979     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1980     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1981     assert(!(flags & ~BDRV_REQ_MASK));
1982     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1983 
1984     if (flags & BDRV_REQ_SERIALISING) {
1985         QEMU_LOCK_GUARD(&bs->reqs_lock);
1986 
1987         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1988 
1989         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1990             return -EBUSY;
1991         }
1992 
1993         bdrv_wait_serialising_requests_locked(req);
1994     } else {
1995         bdrv_wait_serialising_requests(req);
1996     }
1997 
1998     assert(req->overlap_offset <= offset);
1999     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2000     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2001            child->perm & BLK_PERM_RESIZE);
2002 
2003     switch (req->type) {
2004     case BDRV_TRACKED_WRITE:
2005     case BDRV_TRACKED_DISCARD:
2006         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2007             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2008         } else {
2009             assert(child->perm & BLK_PERM_WRITE);
2010         }
2011         return notifier_with_return_list_notify(&bs->before_write_notifiers,
2012                                                 req);
2013     case BDRV_TRACKED_TRUNCATE:
2014         assert(child->perm & BLK_PERM_RESIZE);
2015         return 0;
2016     default:
2017         abort();
2018     }
2019 }
2020 
2021 static inline void coroutine_fn
2022 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2023                          BdrvTrackedRequest *req, int ret)
2024 {
2025     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2026     BlockDriverState *bs = child->bs;
2027 
2028     bdrv_check_request(offset, bytes, &error_abort);
2029 
2030     qatomic_inc(&bs->write_gen);
2031 
2032     /*
2033      * Discard cannot extend the image, but in error handling cases, such as
2034      * when reverting a qcow2 cluster allocation, the discarded range can pass
2035      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2036      * here. Instead, just skip it, since semantically a discard request
2037      * beyond EOF cannot expand the image anyway.
2038      */
2039     if (ret == 0 &&
2040         (req->type == BDRV_TRACKED_TRUNCATE ||
2041          end_sector > bs->total_sectors) &&
2042         req->type != BDRV_TRACKED_DISCARD) {
2043         bs->total_sectors = end_sector;
2044         bdrv_parent_cb_resize(bs);
2045         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2046     }
2047     if (req->bytes) {
2048         switch (req->type) {
2049         case BDRV_TRACKED_WRITE:
2050             stat64_max(&bs->wr_highest_offset, offset + bytes);
2051             /* fall through, to set dirty bits */
2052         case BDRV_TRACKED_DISCARD:
2053             bdrv_set_dirty(bs, offset, bytes);
2054             break;
2055         default:
2056             break;
2057         }
2058     }
2059 }
2060 
2061 /*
2062  * Forwards an already correctly aligned write request to the BlockDriver,
2063  * after possibly fragmenting it.
2064  */
2065 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2066     BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2067     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
2068 {
2069     BlockDriverState *bs = child->bs;
2070     BlockDriver *drv = bs->drv;
2071     int ret;
2072 
2073     int64_t bytes_remaining = bytes;
2074     int max_transfer;
2075 
2076     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2077 
2078     if (!drv) {
2079         return -ENOMEDIUM;
2080     }
2081 
2082     if (bdrv_has_readonly_bitmaps(bs)) {
2083         return -EPERM;
2084     }
2085 
2086     assert(is_power_of_2(align));
2087     assert((offset & (align - 1)) == 0);
2088     assert((bytes & (align - 1)) == 0);
2089     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2090                                    align);
2091 
2092     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2093 
2094     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2095         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2096         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2097         flags |= BDRV_REQ_ZERO_WRITE;
2098         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2099             flags |= BDRV_REQ_MAY_UNMAP;
2100         }
2101     }
2102 
2103     if (ret < 0) {
2104         /* Do nothing, write notifier decided to fail this request */
2105     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2106         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2107         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2108     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2109         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2110                                              qiov, qiov_offset);
2111     } else if (bytes <= max_transfer) {
2112         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2113         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2114     } else {
2115         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2116         while (bytes_remaining) {
2117             int num = MIN(bytes_remaining, max_transfer);
2118             int local_flags = flags;
2119 
2120             assert(num);
2121             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2122                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2123                 /* If FUA is going to be emulated by flush, we only
2124                  * need to flush on the last iteration */
2125                 local_flags &= ~BDRV_REQ_FUA;
2126             }
2127 
2128             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2129                                       num, qiov,
2130                                       qiov_offset + bytes - bytes_remaining,
2131                                       local_flags);
2132             if (ret < 0) {
2133                 break;
2134             }
2135             bytes_remaining -= num;
2136         }
2137     }
2138     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2139 
2140     if (ret >= 0) {
2141         ret = 0;
2142     }
2143     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2144 
2145     return ret;
2146 }
2147 
2148 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2149                                                 int64_t offset,
2150                                                 int64_t bytes,
2151                                                 BdrvRequestFlags flags,
2152                                                 BdrvTrackedRequest *req)
2153 {
2154     BlockDriverState *bs = child->bs;
2155     QEMUIOVector local_qiov;
2156     uint64_t align = bs->bl.request_alignment;
2157     int ret = 0;
2158     bool padding;
2159     BdrvRequestPadding pad;
2160 
2161     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2162     if (padding) {
2163         bdrv_make_request_serialising(req, align);
2164 
2165         bdrv_padding_rmw_read(child, req, &pad, true);
2166 
2167         if (pad.head || pad.merge_reads) {
2168             int64_t aligned_offset = offset & ~(align - 1);
2169             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2170 
2171             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2172             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2173                                        align, &local_qiov, 0,
2174                                        flags & ~BDRV_REQ_ZERO_WRITE);
2175             if (ret < 0 || pad.merge_reads) {
2176                 /* Error or all work is done */
2177                 goto out;
2178             }
2179             offset += write_bytes - pad.head;
2180             bytes -= write_bytes - pad.head;
2181         }
2182     }
2183 
2184     assert(!bytes || (offset & (align - 1)) == 0);
2185     if (bytes >= align) {
2186         /* Write the aligned part in the middle. */
2187         int64_t aligned_bytes = bytes & ~(align - 1);
2188         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2189                                    NULL, 0, flags);
2190         if (ret < 0) {
2191             goto out;
2192         }
2193         bytes -= aligned_bytes;
2194         offset += aligned_bytes;
2195     }
2196 
2197     assert(!bytes || (offset & (align - 1)) == 0);
2198     if (bytes) {
2199         assert(align == pad.tail + bytes);
2200 
2201         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2202         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2203                                    &local_qiov, 0,
2204                                    flags & ~BDRV_REQ_ZERO_WRITE);
2205     }
2206 
2207 out:
2208     bdrv_padding_destroy(&pad);
2209 
2210     return ret;
2211 }
2212 
2213 /*
2214  * Handle a write request in coroutine context
2215  */
2216 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2217     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2218     BdrvRequestFlags flags)
2219 {
2220     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2221 }
2222 
2223 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2224     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2225     BdrvRequestFlags flags)
2226 {
2227     BlockDriverState *bs = child->bs;
2228     BdrvTrackedRequest req;
2229     uint64_t align = bs->bl.request_alignment;
2230     BdrvRequestPadding pad;
2231     int ret;
2232     bool padded = false;
2233 
2234     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2235 
2236     if (!bdrv_is_inserted(bs)) {
2237         return -ENOMEDIUM;
2238     }
2239 
2240     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2241     if (ret < 0) {
2242         return ret;
2243     }
2244 
2245     /* If the request is misaligned then we can't make it efficient */
2246     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2247         !QEMU_IS_ALIGNED(offset | bytes, align))
2248     {
2249         return -ENOTSUP;
2250     }
2251 
2252     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2253         /*
2254          * Aligning zero request is nonsense. Even if driver has special meaning
2255          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2256          * it to driver due to request_alignment.
2257          *
2258          * Still, no reason to return an error if someone do unaligned
2259          * zero-length write occasionally.
2260          */
2261         return 0;
2262     }
2263 
2264     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2265         /*
2266          * Pad request for following read-modify-write cycle.
2267          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2268          * alignment only if there is no ZERO flag.
2269          */
2270         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2271                                &padded);
2272         if (ret < 0) {
2273             return ret;
2274         }
2275     }
2276 
2277     bdrv_inc_in_flight(bs);
2278     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2279 
2280     if (flags & BDRV_REQ_ZERO_WRITE) {
2281         assert(!padded);
2282         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2283         goto out;
2284     }
2285 
2286     if (padded) {
2287         /*
2288          * Request was unaligned to request_alignment and therefore
2289          * padded.  We are going to do read-modify-write, and must
2290          * serialize the request to prevent interactions of the
2291          * widened region with other transactions.
2292          */
2293         bdrv_make_request_serialising(&req, align);
2294         bdrv_padding_rmw_read(child, &req, &pad, false);
2295     }
2296 
2297     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2298                                qiov, qiov_offset, flags);
2299 
2300     bdrv_padding_destroy(&pad);
2301 
2302 out:
2303     tracked_request_end(&req);
2304     bdrv_dec_in_flight(bs);
2305 
2306     return ret;
2307 }
2308 
2309 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2310                                        int64_t bytes, BdrvRequestFlags flags)
2311 {
2312     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2313 
2314     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2315         flags &= ~BDRV_REQ_MAY_UNMAP;
2316     }
2317 
2318     return bdrv_co_pwritev(child, offset, bytes, NULL,
2319                            BDRV_REQ_ZERO_WRITE | flags);
2320 }
2321 
2322 /*
2323  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2324  */
2325 int bdrv_flush_all(void)
2326 {
2327     BdrvNextIterator it;
2328     BlockDriverState *bs = NULL;
2329     int result = 0;
2330 
2331     /*
2332      * bdrv queue is managed by record/replay,
2333      * creating new flush request for stopping
2334      * the VM may break the determinism
2335      */
2336     if (replay_events_enabled()) {
2337         return result;
2338     }
2339 
2340     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2341         AioContext *aio_context = bdrv_get_aio_context(bs);
2342         int ret;
2343 
2344         aio_context_acquire(aio_context);
2345         ret = bdrv_flush(bs);
2346         if (ret < 0 && !result) {
2347             result = ret;
2348         }
2349         aio_context_release(aio_context);
2350     }
2351 
2352     return result;
2353 }
2354 
2355 /*
2356  * Returns the allocation status of the specified sectors.
2357  * Drivers not implementing the functionality are assumed to not support
2358  * backing files, hence all their sectors are reported as allocated.
2359  *
2360  * If 'want_zero' is true, the caller is querying for mapping
2361  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2362  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2363  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2364  *
2365  * If 'offset' is beyond the end of the disk image the return value is
2366  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2367  *
2368  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2369  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2370  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2371  *
2372  * 'pnum' is set to the number of bytes (including and immediately
2373  * following the specified offset) that are easily known to be in the
2374  * same allocated/unallocated state.  Note that a second call starting
2375  * at the original offset plus returned pnum may have the same status.
2376  * The returned value is non-zero on success except at end-of-file.
2377  *
2378  * Returns negative errno on failure.  Otherwise, if the
2379  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2380  * set to the host mapping and BDS corresponding to the guest offset.
2381  */
2382 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2383                                              bool want_zero,
2384                                              int64_t offset, int64_t bytes,
2385                                              int64_t *pnum, int64_t *map,
2386                                              BlockDriverState **file)
2387 {
2388     int64_t total_size;
2389     int64_t n; /* bytes */
2390     int ret;
2391     int64_t local_map = 0;
2392     BlockDriverState *local_file = NULL;
2393     int64_t aligned_offset, aligned_bytes;
2394     uint32_t align;
2395     bool has_filtered_child;
2396 
2397     assert(pnum);
2398     *pnum = 0;
2399     total_size = bdrv_getlength(bs);
2400     if (total_size < 0) {
2401         ret = total_size;
2402         goto early_out;
2403     }
2404 
2405     if (offset >= total_size) {
2406         ret = BDRV_BLOCK_EOF;
2407         goto early_out;
2408     }
2409     if (!bytes) {
2410         ret = 0;
2411         goto early_out;
2412     }
2413 
2414     n = total_size - offset;
2415     if (n < bytes) {
2416         bytes = n;
2417     }
2418 
2419     /* Must be non-NULL or bdrv_getlength() would have failed */
2420     assert(bs->drv);
2421     has_filtered_child = bdrv_filter_child(bs);
2422     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2423         *pnum = bytes;
2424         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2425         if (offset + bytes == total_size) {
2426             ret |= BDRV_BLOCK_EOF;
2427         }
2428         if (bs->drv->protocol_name) {
2429             ret |= BDRV_BLOCK_OFFSET_VALID;
2430             local_map = offset;
2431             local_file = bs;
2432         }
2433         goto early_out;
2434     }
2435 
2436     bdrv_inc_in_flight(bs);
2437 
2438     /* Round out to request_alignment boundaries */
2439     align = bs->bl.request_alignment;
2440     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2441     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2442 
2443     if (bs->drv->bdrv_co_block_status) {
2444         ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2445                                             aligned_bytes, pnum, &local_map,
2446                                             &local_file);
2447     } else {
2448         /* Default code for filters */
2449 
2450         local_file = bdrv_filter_bs(bs);
2451         assert(local_file);
2452 
2453         *pnum = aligned_bytes;
2454         local_map = aligned_offset;
2455         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2456     }
2457     if (ret < 0) {
2458         *pnum = 0;
2459         goto out;
2460     }
2461 
2462     /*
2463      * The driver's result must be a non-zero multiple of request_alignment.
2464      * Clamp pnum and adjust map to original request.
2465      */
2466     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2467            align > offset - aligned_offset);
2468     if (ret & BDRV_BLOCK_RECURSE) {
2469         assert(ret & BDRV_BLOCK_DATA);
2470         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2471         assert(!(ret & BDRV_BLOCK_ZERO));
2472     }
2473 
2474     *pnum -= offset - aligned_offset;
2475     if (*pnum > bytes) {
2476         *pnum = bytes;
2477     }
2478     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2479         local_map += offset - aligned_offset;
2480     }
2481 
2482     if (ret & BDRV_BLOCK_RAW) {
2483         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2484         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2485                                    *pnum, pnum, &local_map, &local_file);
2486         goto out;
2487     }
2488 
2489     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2490         ret |= BDRV_BLOCK_ALLOCATED;
2491     } else if (bs->drv->supports_backing) {
2492         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2493 
2494         if (!cow_bs) {
2495             ret |= BDRV_BLOCK_ZERO;
2496         } else if (want_zero) {
2497             int64_t size2 = bdrv_getlength(cow_bs);
2498 
2499             if (size2 >= 0 && offset >= size2) {
2500                 ret |= BDRV_BLOCK_ZERO;
2501             }
2502         }
2503     }
2504 
2505     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2506         local_file && local_file != bs &&
2507         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2508         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2509         int64_t file_pnum;
2510         int ret2;
2511 
2512         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2513                                     *pnum, &file_pnum, NULL, NULL);
2514         if (ret2 >= 0) {
2515             /* Ignore errors.  This is just providing extra information, it
2516              * is useful but not necessary.
2517              */
2518             if (ret2 & BDRV_BLOCK_EOF &&
2519                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2520                 /*
2521                  * It is valid for the format block driver to read
2522                  * beyond the end of the underlying file's current
2523                  * size; such areas read as zero.
2524                  */
2525                 ret |= BDRV_BLOCK_ZERO;
2526             } else {
2527                 /* Limit request to the range reported by the protocol driver */
2528                 *pnum = file_pnum;
2529                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2530             }
2531         }
2532     }
2533 
2534 out:
2535     bdrv_dec_in_flight(bs);
2536     if (ret >= 0 && offset + *pnum == total_size) {
2537         ret |= BDRV_BLOCK_EOF;
2538     }
2539 early_out:
2540     if (file) {
2541         *file = local_file;
2542     }
2543     if (map) {
2544         *map = local_map;
2545     }
2546     return ret;
2547 }
2548 
2549 int coroutine_fn
2550 bdrv_co_common_block_status_above(BlockDriverState *bs,
2551                                   BlockDriverState *base,
2552                                   bool include_base,
2553                                   bool want_zero,
2554                                   int64_t offset,
2555                                   int64_t bytes,
2556                                   int64_t *pnum,
2557                                   int64_t *map,
2558                                   BlockDriverState **file,
2559                                   int *depth)
2560 {
2561     int ret;
2562     BlockDriverState *p;
2563     int64_t eof = 0;
2564     int dummy;
2565 
2566     assert(!include_base || base); /* Can't include NULL base */
2567 
2568     if (!depth) {
2569         depth = &dummy;
2570     }
2571     *depth = 0;
2572 
2573     if (!include_base && bs == base) {
2574         *pnum = bytes;
2575         return 0;
2576     }
2577 
2578     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2579     ++*depth;
2580     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2581         return ret;
2582     }
2583 
2584     if (ret & BDRV_BLOCK_EOF) {
2585         eof = offset + *pnum;
2586     }
2587 
2588     assert(*pnum <= bytes);
2589     bytes = *pnum;
2590 
2591     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2592          p = bdrv_filter_or_cow_bs(p))
2593     {
2594         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2595                                    file);
2596         ++*depth;
2597         if (ret < 0) {
2598             return ret;
2599         }
2600         if (*pnum == 0) {
2601             /*
2602              * The top layer deferred to this layer, and because this layer is
2603              * short, any zeroes that we synthesize beyond EOF behave as if they
2604              * were allocated at this layer.
2605              *
2606              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2607              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2608              * below.
2609              */
2610             assert(ret & BDRV_BLOCK_EOF);
2611             *pnum = bytes;
2612             if (file) {
2613                 *file = p;
2614             }
2615             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2616             break;
2617         }
2618         if (ret & BDRV_BLOCK_ALLOCATED) {
2619             /*
2620              * We've found the node and the status, we must break.
2621              *
2622              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2623              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2624              * below.
2625              */
2626             ret &= ~BDRV_BLOCK_EOF;
2627             break;
2628         }
2629 
2630         if (p == base) {
2631             assert(include_base);
2632             break;
2633         }
2634 
2635         /*
2636          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2637          * let's continue the diving.
2638          */
2639         assert(*pnum <= bytes);
2640         bytes = *pnum;
2641     }
2642 
2643     if (offset + *pnum == eof) {
2644         ret |= BDRV_BLOCK_EOF;
2645     }
2646 
2647     return ret;
2648 }
2649 
2650 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2651                             int64_t offset, int64_t bytes, int64_t *pnum,
2652                             int64_t *map, BlockDriverState **file)
2653 {
2654     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2655                                           pnum, map, file, NULL);
2656 }
2657 
2658 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2659                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2660 {
2661     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2662                                    offset, bytes, pnum, map, file);
2663 }
2664 
2665 /*
2666  * Check @bs (and its backing chain) to see if the range defined
2667  * by @offset and @bytes is known to read as zeroes.
2668  * Return 1 if that is the case, 0 otherwise and -errno on error.
2669  * This test is meant to be fast rather than accurate so returning 0
2670  * does not guarantee non-zero data.
2671  */
2672 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2673                                       int64_t bytes)
2674 {
2675     int ret;
2676     int64_t pnum = bytes;
2677 
2678     if (!bytes) {
2679         return 1;
2680     }
2681 
2682     ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2683                                          bytes, &pnum, NULL, NULL, NULL);
2684 
2685     if (ret < 0) {
2686         return ret;
2687     }
2688 
2689     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2690 }
2691 
2692 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2693                                    int64_t bytes, int64_t *pnum)
2694 {
2695     int ret;
2696     int64_t dummy;
2697 
2698     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2699                                          bytes, pnum ? pnum : &dummy, NULL,
2700                                          NULL, NULL);
2701     if (ret < 0) {
2702         return ret;
2703     }
2704     return !!(ret & BDRV_BLOCK_ALLOCATED);
2705 }
2706 
2707 /*
2708  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2709  *
2710  * Return a positive depth if (a prefix of) the given range is allocated
2711  * in any image between BASE and TOP (BASE is only included if include_base
2712  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2713  * BASE can be NULL to check if the given offset is allocated in any
2714  * image of the chain.  Return 0 otherwise, or negative errno on
2715  * failure.
2716  *
2717  * 'pnum' is set to the number of bytes (including and immediately
2718  * following the specified offset) that are known to be in the same
2719  * allocated/unallocated state.  Note that a subsequent call starting
2720  * at 'offset + *pnum' may return the same allocation status (in other
2721  * words, the result is not necessarily the maximum possible range);
2722  * but 'pnum' will only be 0 when end of file is reached.
2723  */
2724 int bdrv_is_allocated_above(BlockDriverState *top,
2725                             BlockDriverState *base,
2726                             bool include_base, int64_t offset,
2727                             int64_t bytes, int64_t *pnum)
2728 {
2729     int depth;
2730     int ret = bdrv_common_block_status_above(top, base, include_base, false,
2731                                              offset, bytes, pnum, NULL, NULL,
2732                                              &depth);
2733     if (ret < 0) {
2734         return ret;
2735     }
2736 
2737     if (ret & BDRV_BLOCK_ALLOCATED) {
2738         return depth;
2739     }
2740     return 0;
2741 }
2742 
2743 int coroutine_fn
2744 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2745 {
2746     BlockDriver *drv = bs->drv;
2747     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2748     int ret = -ENOTSUP;
2749 
2750     if (!drv) {
2751         return -ENOMEDIUM;
2752     }
2753 
2754     bdrv_inc_in_flight(bs);
2755 
2756     if (drv->bdrv_load_vmstate) {
2757         ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2758     } else if (child_bs) {
2759         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2760     }
2761 
2762     bdrv_dec_in_flight(bs);
2763 
2764     return ret;
2765 }
2766 
2767 int coroutine_fn
2768 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2769 {
2770     BlockDriver *drv = bs->drv;
2771     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2772     int ret = -ENOTSUP;
2773 
2774     if (!drv) {
2775         return -ENOMEDIUM;
2776     }
2777 
2778     bdrv_inc_in_flight(bs);
2779 
2780     if (drv->bdrv_save_vmstate) {
2781         ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2782     } else if (child_bs) {
2783         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2784     }
2785 
2786     bdrv_dec_in_flight(bs);
2787 
2788     return ret;
2789 }
2790 
2791 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2792                       int64_t pos, int size)
2793 {
2794     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2795     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2796 
2797     return ret < 0 ? ret : size;
2798 }
2799 
2800 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2801                       int64_t pos, int size)
2802 {
2803     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2804     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2805 
2806     return ret < 0 ? ret : size;
2807 }
2808 
2809 /**************************************************************/
2810 /* async I/Os */
2811 
2812 void bdrv_aio_cancel(BlockAIOCB *acb)
2813 {
2814     qemu_aio_ref(acb);
2815     bdrv_aio_cancel_async(acb);
2816     while (acb->refcnt > 1) {
2817         if (acb->aiocb_info->get_aio_context) {
2818             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2819         } else if (acb->bs) {
2820             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2821              * assert that we're not using an I/O thread.  Thread-safe
2822              * code should use bdrv_aio_cancel_async exclusively.
2823              */
2824             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2825             aio_poll(bdrv_get_aio_context(acb->bs), true);
2826         } else {
2827             abort();
2828         }
2829     }
2830     qemu_aio_unref(acb);
2831 }
2832 
2833 /* Async version of aio cancel. The caller is not blocked if the acb implements
2834  * cancel_async, otherwise we do nothing and let the request normally complete.
2835  * In either case the completion callback must be called. */
2836 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2837 {
2838     if (acb->aiocb_info->cancel_async) {
2839         acb->aiocb_info->cancel_async(acb);
2840     }
2841 }
2842 
2843 /**************************************************************/
2844 /* Coroutine block device emulation */
2845 
2846 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2847 {
2848     BdrvChild *primary_child = bdrv_primary_child(bs);
2849     BdrvChild *child;
2850     int current_gen;
2851     int ret = 0;
2852 
2853     bdrv_inc_in_flight(bs);
2854 
2855     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2856         bdrv_is_sg(bs)) {
2857         goto early_exit;
2858     }
2859 
2860     qemu_co_mutex_lock(&bs->reqs_lock);
2861     current_gen = qatomic_read(&bs->write_gen);
2862 
2863     /* Wait until any previous flushes are completed */
2864     while (bs->active_flush_req) {
2865         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2866     }
2867 
2868     /* Flushes reach this point in nondecreasing current_gen order.  */
2869     bs->active_flush_req = true;
2870     qemu_co_mutex_unlock(&bs->reqs_lock);
2871 
2872     /* Write back all layers by calling one driver function */
2873     if (bs->drv->bdrv_co_flush) {
2874         ret = bs->drv->bdrv_co_flush(bs);
2875         goto out;
2876     }
2877 
2878     /* Write back cached data to the OS even with cache=unsafe */
2879     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2880     if (bs->drv->bdrv_co_flush_to_os) {
2881         ret = bs->drv->bdrv_co_flush_to_os(bs);
2882         if (ret < 0) {
2883             goto out;
2884         }
2885     }
2886 
2887     /* But don't actually force it to the disk with cache=unsafe */
2888     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2889         goto flush_children;
2890     }
2891 
2892     /* Check if we really need to flush anything */
2893     if (bs->flushed_gen == current_gen) {
2894         goto flush_children;
2895     }
2896 
2897     BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2898     if (!bs->drv) {
2899         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2900          * (even in case of apparent success) */
2901         ret = -ENOMEDIUM;
2902         goto out;
2903     }
2904     if (bs->drv->bdrv_co_flush_to_disk) {
2905         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2906     } else if (bs->drv->bdrv_aio_flush) {
2907         BlockAIOCB *acb;
2908         CoroutineIOCompletion co = {
2909             .coroutine = qemu_coroutine_self(),
2910         };
2911 
2912         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2913         if (acb == NULL) {
2914             ret = -EIO;
2915         } else {
2916             qemu_coroutine_yield();
2917             ret = co.ret;
2918         }
2919     } else {
2920         /*
2921          * Some block drivers always operate in either writethrough or unsafe
2922          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2923          * know how the server works (because the behaviour is hardcoded or
2924          * depends on server-side configuration), so we can't ensure that
2925          * everything is safe on disk. Returning an error doesn't work because
2926          * that would break guests even if the server operates in writethrough
2927          * mode.
2928          *
2929          * Let's hope the user knows what he's doing.
2930          */
2931         ret = 0;
2932     }
2933 
2934     if (ret < 0) {
2935         goto out;
2936     }
2937 
2938     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2939      * in the case of cache=unsafe, so there are no useless flushes.
2940      */
2941 flush_children:
2942     ret = 0;
2943     QLIST_FOREACH(child, &bs->children, next) {
2944         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2945             int this_child_ret = bdrv_co_flush(child->bs);
2946             if (!ret) {
2947                 ret = this_child_ret;
2948             }
2949         }
2950     }
2951 
2952 out:
2953     /* Notify any pending flushes that we have completed */
2954     if (ret == 0) {
2955         bs->flushed_gen = current_gen;
2956     }
2957 
2958     qemu_co_mutex_lock(&bs->reqs_lock);
2959     bs->active_flush_req = false;
2960     /* Return value is ignored - it's ok if wait queue is empty */
2961     qemu_co_queue_next(&bs->flush_queue);
2962     qemu_co_mutex_unlock(&bs->reqs_lock);
2963 
2964 early_exit:
2965     bdrv_dec_in_flight(bs);
2966     return ret;
2967 }
2968 
2969 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2970                                   int64_t bytes)
2971 {
2972     BdrvTrackedRequest req;
2973     int max_pdiscard, ret;
2974     int head, tail, align;
2975     BlockDriverState *bs = child->bs;
2976 
2977     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2978         return -ENOMEDIUM;
2979     }
2980 
2981     if (bdrv_has_readonly_bitmaps(bs)) {
2982         return -EPERM;
2983     }
2984 
2985     ret = bdrv_check_request(offset, bytes, NULL);
2986     if (ret < 0) {
2987         return ret;
2988     }
2989 
2990     /* Do nothing if disabled.  */
2991     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2992         return 0;
2993     }
2994 
2995     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2996         return 0;
2997     }
2998 
2999     /* Discard is advisory, but some devices track and coalesce
3000      * unaligned requests, so we must pass everything down rather than
3001      * round here.  Still, most devices will just silently ignore
3002      * unaligned requests (by returning -ENOTSUP), so we must fragment
3003      * the request accordingly.  */
3004     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3005     assert(align % bs->bl.request_alignment == 0);
3006     head = offset % align;
3007     tail = (offset + bytes) % align;
3008 
3009     bdrv_inc_in_flight(bs);
3010     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3011 
3012     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3013     if (ret < 0) {
3014         goto out;
3015     }
3016 
3017     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
3018                                    align);
3019     assert(max_pdiscard >= bs->bl.request_alignment);
3020 
3021     while (bytes > 0) {
3022         int64_t num = bytes;
3023 
3024         if (head) {
3025             /* Make small requests to get to alignment boundaries. */
3026             num = MIN(bytes, align - head);
3027             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3028                 num %= bs->bl.request_alignment;
3029             }
3030             head = (head + num) % align;
3031             assert(num < max_pdiscard);
3032         } else if (tail) {
3033             if (num > align) {
3034                 /* Shorten the request to the last aligned cluster.  */
3035                 num -= tail;
3036             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3037                        tail > bs->bl.request_alignment) {
3038                 tail %= bs->bl.request_alignment;
3039                 num -= tail;
3040             }
3041         }
3042         /* limit request size */
3043         if (num > max_pdiscard) {
3044             num = max_pdiscard;
3045         }
3046 
3047         if (!bs->drv) {
3048             ret = -ENOMEDIUM;
3049             goto out;
3050         }
3051         if (bs->drv->bdrv_co_pdiscard) {
3052             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3053         } else {
3054             BlockAIOCB *acb;
3055             CoroutineIOCompletion co = {
3056                 .coroutine = qemu_coroutine_self(),
3057             };
3058 
3059             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3060                                              bdrv_co_io_em_complete, &co);
3061             if (acb == NULL) {
3062                 ret = -EIO;
3063                 goto out;
3064             } else {
3065                 qemu_coroutine_yield();
3066                 ret = co.ret;
3067             }
3068         }
3069         if (ret && ret != -ENOTSUP) {
3070             goto out;
3071         }
3072 
3073         offset += num;
3074         bytes -= num;
3075     }
3076     ret = 0;
3077 out:
3078     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3079     tracked_request_end(&req);
3080     bdrv_dec_in_flight(bs);
3081     return ret;
3082 }
3083 
3084 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3085 {
3086     BlockDriver *drv = bs->drv;
3087     CoroutineIOCompletion co = {
3088         .coroutine = qemu_coroutine_self(),
3089     };
3090     BlockAIOCB *acb;
3091 
3092     bdrv_inc_in_flight(bs);
3093     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3094         co.ret = -ENOTSUP;
3095         goto out;
3096     }
3097 
3098     if (drv->bdrv_co_ioctl) {
3099         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3100     } else {
3101         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3102         if (!acb) {
3103             co.ret = -ENOTSUP;
3104             goto out;
3105         }
3106         qemu_coroutine_yield();
3107     }
3108 out:
3109     bdrv_dec_in_flight(bs);
3110     return co.ret;
3111 }
3112 
3113 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3114 {
3115     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3116 }
3117 
3118 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3119 {
3120     return memset(qemu_blockalign(bs, size), 0, size);
3121 }
3122 
3123 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3124 {
3125     size_t align = bdrv_opt_mem_align(bs);
3126 
3127     /* Ensure that NULL is never returned on success */
3128     assert(align > 0);
3129     if (size == 0) {
3130         size = align;
3131     }
3132 
3133     return qemu_try_memalign(align, size);
3134 }
3135 
3136 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3137 {
3138     void *mem = qemu_try_blockalign(bs, size);
3139 
3140     if (mem) {
3141         memset(mem, 0, size);
3142     }
3143 
3144     return mem;
3145 }
3146 
3147 /*
3148  * Check if all memory in this vector is sector aligned.
3149  */
3150 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3151 {
3152     int i;
3153     size_t alignment = bdrv_min_mem_align(bs);
3154 
3155     for (i = 0; i < qiov->niov; i++) {
3156         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3157             return false;
3158         }
3159         if (qiov->iov[i].iov_len % alignment) {
3160             return false;
3161         }
3162     }
3163 
3164     return true;
3165 }
3166 
3167 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3168                                     NotifierWithReturn *notifier)
3169 {
3170     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3171 }
3172 
3173 void bdrv_io_plug(BlockDriverState *bs)
3174 {
3175     BdrvChild *child;
3176 
3177     QLIST_FOREACH(child, &bs->children, next) {
3178         bdrv_io_plug(child->bs);
3179     }
3180 
3181     if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3182         BlockDriver *drv = bs->drv;
3183         if (drv && drv->bdrv_io_plug) {
3184             drv->bdrv_io_plug(bs);
3185         }
3186     }
3187 }
3188 
3189 void bdrv_io_unplug(BlockDriverState *bs)
3190 {
3191     BdrvChild *child;
3192 
3193     assert(bs->io_plugged);
3194     if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3195         BlockDriver *drv = bs->drv;
3196         if (drv && drv->bdrv_io_unplug) {
3197             drv->bdrv_io_unplug(bs);
3198         }
3199     }
3200 
3201     QLIST_FOREACH(child, &bs->children, next) {
3202         bdrv_io_unplug(child->bs);
3203     }
3204 }
3205 
3206 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3207 {
3208     BdrvChild *child;
3209 
3210     if (bs->drv && bs->drv->bdrv_register_buf) {
3211         bs->drv->bdrv_register_buf(bs, host, size);
3212     }
3213     QLIST_FOREACH(child, &bs->children, next) {
3214         bdrv_register_buf(child->bs, host, size);
3215     }
3216 }
3217 
3218 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3219 {
3220     BdrvChild *child;
3221 
3222     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3223         bs->drv->bdrv_unregister_buf(bs, host);
3224     }
3225     QLIST_FOREACH(child, &bs->children, next) {
3226         bdrv_unregister_buf(child->bs, host);
3227     }
3228 }
3229 
3230 static int coroutine_fn bdrv_co_copy_range_internal(
3231         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3232         int64_t dst_offset, int64_t bytes,
3233         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3234         bool recurse_src)
3235 {
3236     BdrvTrackedRequest req;
3237     int ret;
3238 
3239     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3240     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3241     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3242 
3243     if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3244         return -ENOMEDIUM;
3245     }
3246     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3247     if (ret) {
3248         return ret;
3249     }
3250     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3251         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3252     }
3253 
3254     if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3255         return -ENOMEDIUM;
3256     }
3257     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3258     if (ret) {
3259         return ret;
3260     }
3261 
3262     if (!src->bs->drv->bdrv_co_copy_range_from
3263         || !dst->bs->drv->bdrv_co_copy_range_to
3264         || src->bs->encrypted || dst->bs->encrypted) {
3265         return -ENOTSUP;
3266     }
3267 
3268     if (recurse_src) {
3269         bdrv_inc_in_flight(src->bs);
3270         tracked_request_begin(&req, src->bs, src_offset, bytes,
3271                               BDRV_TRACKED_READ);
3272 
3273         /* BDRV_REQ_SERIALISING is only for write operation */
3274         assert(!(read_flags & BDRV_REQ_SERIALISING));
3275         bdrv_wait_serialising_requests(&req);
3276 
3277         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3278                                                     src, src_offset,
3279                                                     dst, dst_offset,
3280                                                     bytes,
3281                                                     read_flags, write_flags);
3282 
3283         tracked_request_end(&req);
3284         bdrv_dec_in_flight(src->bs);
3285     } else {
3286         bdrv_inc_in_flight(dst->bs);
3287         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3288                               BDRV_TRACKED_WRITE);
3289         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3290                                         write_flags);
3291         if (!ret) {
3292             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3293                                                       src, src_offset,
3294                                                       dst, dst_offset,
3295                                                       bytes,
3296                                                       read_flags, write_flags);
3297         }
3298         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3299         tracked_request_end(&req);
3300         bdrv_dec_in_flight(dst->bs);
3301     }
3302 
3303     return ret;
3304 }
3305 
3306 /* Copy range from @src to @dst.
3307  *
3308  * See the comment of bdrv_co_copy_range for the parameter and return value
3309  * semantics. */
3310 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3311                                          BdrvChild *dst, int64_t dst_offset,
3312                                          int64_t bytes,
3313                                          BdrvRequestFlags read_flags,
3314                                          BdrvRequestFlags write_flags)
3315 {
3316     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3317                                   read_flags, write_flags);
3318     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3319                                        bytes, read_flags, write_flags, true);
3320 }
3321 
3322 /* Copy range from @src to @dst.
3323  *
3324  * See the comment of bdrv_co_copy_range for the parameter and return value
3325  * semantics. */
3326 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3327                                        BdrvChild *dst, int64_t dst_offset,
3328                                        int64_t bytes,
3329                                        BdrvRequestFlags read_flags,
3330                                        BdrvRequestFlags write_flags)
3331 {
3332     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3333                                 read_flags, write_flags);
3334     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3335                                        bytes, read_flags, write_flags, false);
3336 }
3337 
3338 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3339                                     BdrvChild *dst, int64_t dst_offset,
3340                                     int64_t bytes, BdrvRequestFlags read_flags,
3341                                     BdrvRequestFlags write_flags)
3342 {
3343     return bdrv_co_copy_range_from(src, src_offset,
3344                                    dst, dst_offset,
3345                                    bytes, read_flags, write_flags);
3346 }
3347 
3348 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3349 {
3350     BdrvChild *c;
3351     QLIST_FOREACH(c, &bs->parents, next_parent) {
3352         if (c->klass->resize) {
3353             c->klass->resize(c);
3354         }
3355     }
3356 }
3357 
3358 /**
3359  * Truncate file to 'offset' bytes (needed only for file protocols)
3360  *
3361  * If 'exact' is true, the file must be resized to exactly the given
3362  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3363  * 'offset' bytes in length.
3364  */
3365 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3366                                   PreallocMode prealloc, BdrvRequestFlags flags,
3367                                   Error **errp)
3368 {
3369     BlockDriverState *bs = child->bs;
3370     BdrvChild *filtered, *backing;
3371     BlockDriver *drv = bs->drv;
3372     BdrvTrackedRequest req;
3373     int64_t old_size, new_bytes;
3374     int ret;
3375 
3376 
3377     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3378     if (!drv) {
3379         error_setg(errp, "No medium inserted");
3380         return -ENOMEDIUM;
3381     }
3382     if (offset < 0) {
3383         error_setg(errp, "Image size cannot be negative");
3384         return -EINVAL;
3385     }
3386 
3387     ret = bdrv_check_request(offset, 0, errp);
3388     if (ret < 0) {
3389         return ret;
3390     }
3391 
3392     old_size = bdrv_getlength(bs);
3393     if (old_size < 0) {
3394         error_setg_errno(errp, -old_size, "Failed to get old image size");
3395         return old_size;
3396     }
3397 
3398     if (offset > old_size) {
3399         new_bytes = offset - old_size;
3400     } else {
3401         new_bytes = 0;
3402     }
3403 
3404     bdrv_inc_in_flight(bs);
3405     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3406                           BDRV_TRACKED_TRUNCATE);
3407 
3408     /* If we are growing the image and potentially using preallocation for the
3409      * new area, we need to make sure that no write requests are made to it
3410      * concurrently or they might be overwritten by preallocation. */
3411     if (new_bytes) {
3412         bdrv_make_request_serialising(&req, 1);
3413     }
3414     if (bs->read_only) {
3415         error_setg(errp, "Image is read-only");
3416         ret = -EACCES;
3417         goto out;
3418     }
3419     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3420                                     0);
3421     if (ret < 0) {
3422         error_setg_errno(errp, -ret,
3423                          "Failed to prepare request for truncation");
3424         goto out;
3425     }
3426 
3427     filtered = bdrv_filter_child(bs);
3428     backing = bdrv_cow_child(bs);
3429 
3430     /*
3431      * If the image has a backing file that is large enough that it would
3432      * provide data for the new area, we cannot leave it unallocated because
3433      * then the backing file content would become visible. Instead, zero-fill
3434      * the new area.
3435      *
3436      * Note that if the image has a backing file, but was opened without the
3437      * backing file, taking care of keeping things consistent with that backing
3438      * file is the user's responsibility.
3439      */
3440     if (new_bytes && backing) {
3441         int64_t backing_len;
3442 
3443         backing_len = bdrv_getlength(backing->bs);
3444         if (backing_len < 0) {
3445             ret = backing_len;
3446             error_setg_errno(errp, -ret, "Could not get backing file size");
3447             goto out;
3448         }
3449 
3450         if (backing_len > old_size) {
3451             flags |= BDRV_REQ_ZERO_WRITE;
3452         }
3453     }
3454 
3455     if (drv->bdrv_co_truncate) {
3456         if (flags & ~bs->supported_truncate_flags) {
3457             error_setg(errp, "Block driver does not support requested flags");
3458             ret = -ENOTSUP;
3459             goto out;
3460         }
3461         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3462     } else if (filtered) {
3463         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3464     } else {
3465         error_setg(errp, "Image format driver does not support resize");
3466         ret = -ENOTSUP;
3467         goto out;
3468     }
3469     if (ret < 0) {
3470         goto out;
3471     }
3472 
3473     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3474     if (ret < 0) {
3475         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3476     } else {
3477         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3478     }
3479     /* It's possible that truncation succeeded but refresh_total_sectors
3480      * failed, but the latter doesn't affect how we should finish the request.
3481      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3482     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3483 
3484 out:
3485     tracked_request_end(&req);
3486     bdrv_dec_in_flight(bs);
3487 
3488     return ret;
3489 }
3490 
3491 void bdrv_cancel_in_flight(BlockDriverState *bs)
3492 {
3493     if (!bs || !bs->drv) {
3494         return;
3495     }
3496 
3497     if (bs->drv->bdrv_cancel_in_flight) {
3498         bs->drv->bdrv_cancel_in_flight(bs);
3499     }
3500 }
3501