1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "qemu/cutils.h" 34 #include "qapi/error.h" 35 #include "qemu/error-report.h" 36 #include "qemu/main-loop.h" 37 #include "sysemu/replay.h" 38 39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 41 42 static void bdrv_parent_cb_resize(BlockDriverState *bs); 43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 44 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 45 46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 47 bool ignore_bds_parents) 48 { 49 BdrvChild *c, *next; 50 51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 52 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 53 continue; 54 } 55 bdrv_parent_drained_begin_single(c, false); 56 } 57 } 58 59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 60 int *drained_end_counter) 61 { 62 assert(c->parent_quiesce_counter > 0); 63 c->parent_quiesce_counter--; 64 if (c->klass->drained_end) { 65 c->klass->drained_end(c, drained_end_counter); 66 } 67 } 68 69 void bdrv_parent_drained_end_single(BdrvChild *c) 70 { 71 int drained_end_counter = 0; 72 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 73 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 74 } 75 76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 77 bool ignore_bds_parents, 78 int *drained_end_counter) 79 { 80 BdrvChild *c; 81 82 QLIST_FOREACH(c, &bs->parents, next_parent) { 83 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 84 continue; 85 } 86 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 87 } 88 } 89 90 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 91 { 92 if (c->klass->drained_poll) { 93 return c->klass->drained_poll(c); 94 } 95 return false; 96 } 97 98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 99 bool ignore_bds_parents) 100 { 101 BdrvChild *c, *next; 102 bool busy = false; 103 104 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 105 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 106 continue; 107 } 108 busy |= bdrv_parent_drained_poll_single(c); 109 } 110 111 return busy; 112 } 113 114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 115 { 116 c->parent_quiesce_counter++; 117 if (c->klass->drained_begin) { 118 c->klass->drained_begin(c); 119 } 120 if (poll) { 121 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 122 } 123 } 124 125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 126 { 127 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 128 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 } 135 136 typedef struct BdrvRefreshLimitsState { 137 BlockDriverState *bs; 138 BlockLimits old_bl; 139 } BdrvRefreshLimitsState; 140 141 static void bdrv_refresh_limits_abort(void *opaque) 142 { 143 BdrvRefreshLimitsState *s = opaque; 144 145 s->bs->bl = s->old_bl; 146 } 147 148 static TransactionActionDrv bdrv_refresh_limits_drv = { 149 .abort = bdrv_refresh_limits_abort, 150 .clean = g_free, 151 }; 152 153 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 154 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 155 { 156 ERRP_GUARD(); 157 BlockDriver *drv = bs->drv; 158 BdrvChild *c; 159 bool have_limits; 160 161 if (tran) { 162 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 163 *s = (BdrvRefreshLimitsState) { 164 .bs = bs, 165 .old_bl = bs->bl, 166 }; 167 tran_add(tran, &bdrv_refresh_limits_drv, s); 168 } 169 170 memset(&bs->bl, 0, sizeof(bs->bl)); 171 172 if (!drv) { 173 return; 174 } 175 176 /* Default alignment based on whether driver has byte interface */ 177 bs->bl.request_alignment = (drv->bdrv_co_preadv || 178 drv->bdrv_aio_preadv || 179 drv->bdrv_co_preadv_part) ? 1 : 512; 180 181 /* Take some limits from the children as a default */ 182 have_limits = false; 183 QLIST_FOREACH(c, &bs->children, next) { 184 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 185 { 186 bdrv_refresh_limits(c->bs, tran, errp); 187 if (*errp) { 188 return; 189 } 190 bdrv_merge_limits(&bs->bl, &c->bs->bl); 191 have_limits = true; 192 } 193 } 194 195 if (!have_limits) { 196 bs->bl.min_mem_alignment = 512; 197 bs->bl.opt_mem_alignment = qemu_real_host_page_size; 198 199 /* Safe default since most protocols use readv()/writev()/etc */ 200 bs->bl.max_iov = IOV_MAX; 201 } 202 203 /* Then let the driver override it */ 204 if (drv->bdrv_refresh_limits) { 205 drv->bdrv_refresh_limits(bs, errp); 206 if (*errp) { 207 return; 208 } 209 } 210 211 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 212 error_setg(errp, "Driver requires too large request alignment"); 213 } 214 } 215 216 /** 217 * The copy-on-read flag is actually a reference count so multiple users may 218 * use the feature without worrying about clobbering its previous state. 219 * Copy-on-read stays enabled until all users have called to disable it. 220 */ 221 void bdrv_enable_copy_on_read(BlockDriverState *bs) 222 { 223 qatomic_inc(&bs->copy_on_read); 224 } 225 226 void bdrv_disable_copy_on_read(BlockDriverState *bs) 227 { 228 int old = qatomic_fetch_dec(&bs->copy_on_read); 229 assert(old >= 1); 230 } 231 232 typedef struct { 233 Coroutine *co; 234 BlockDriverState *bs; 235 bool done; 236 bool begin; 237 bool recursive; 238 bool poll; 239 BdrvChild *parent; 240 bool ignore_bds_parents; 241 int *drained_end_counter; 242 } BdrvCoDrainData; 243 244 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 245 { 246 BdrvCoDrainData *data = opaque; 247 BlockDriverState *bs = data->bs; 248 249 if (data->begin) { 250 bs->drv->bdrv_co_drain_begin(bs); 251 } else { 252 bs->drv->bdrv_co_drain_end(bs); 253 } 254 255 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 256 qatomic_mb_set(&data->done, true); 257 if (!data->begin) { 258 qatomic_dec(data->drained_end_counter); 259 } 260 bdrv_dec_in_flight(bs); 261 262 g_free(data); 263 } 264 265 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 266 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 267 int *drained_end_counter) 268 { 269 BdrvCoDrainData *data; 270 271 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 272 (!begin && !bs->drv->bdrv_co_drain_end)) { 273 return; 274 } 275 276 data = g_new(BdrvCoDrainData, 1); 277 *data = (BdrvCoDrainData) { 278 .bs = bs, 279 .done = false, 280 .begin = begin, 281 .drained_end_counter = drained_end_counter, 282 }; 283 284 if (!begin) { 285 qatomic_inc(drained_end_counter); 286 } 287 288 /* Make sure the driver callback completes during the polling phase for 289 * drain_begin. */ 290 bdrv_inc_in_flight(bs); 291 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 292 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 293 } 294 295 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 296 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 297 BdrvChild *ignore_parent, bool ignore_bds_parents) 298 { 299 BdrvChild *child, *next; 300 301 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 302 return true; 303 } 304 305 if (qatomic_read(&bs->in_flight)) { 306 return true; 307 } 308 309 if (recursive) { 310 assert(!ignore_bds_parents); 311 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 312 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 313 return true; 314 } 315 } 316 } 317 318 return false; 319 } 320 321 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 322 BdrvChild *ignore_parent) 323 { 324 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 325 } 326 327 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 328 BdrvChild *parent, bool ignore_bds_parents, 329 bool poll); 330 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 331 BdrvChild *parent, bool ignore_bds_parents, 332 int *drained_end_counter); 333 334 static void bdrv_co_drain_bh_cb(void *opaque) 335 { 336 BdrvCoDrainData *data = opaque; 337 Coroutine *co = data->co; 338 BlockDriverState *bs = data->bs; 339 340 if (bs) { 341 AioContext *ctx = bdrv_get_aio_context(bs); 342 aio_context_acquire(ctx); 343 bdrv_dec_in_flight(bs); 344 if (data->begin) { 345 assert(!data->drained_end_counter); 346 bdrv_do_drained_begin(bs, data->recursive, data->parent, 347 data->ignore_bds_parents, data->poll); 348 } else { 349 assert(!data->poll); 350 bdrv_do_drained_end(bs, data->recursive, data->parent, 351 data->ignore_bds_parents, 352 data->drained_end_counter); 353 } 354 aio_context_release(ctx); 355 } else { 356 assert(data->begin); 357 bdrv_drain_all_begin(); 358 } 359 360 data->done = true; 361 aio_co_wake(co); 362 } 363 364 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 365 bool begin, bool recursive, 366 BdrvChild *parent, 367 bool ignore_bds_parents, 368 bool poll, 369 int *drained_end_counter) 370 { 371 BdrvCoDrainData data; 372 Coroutine *self = qemu_coroutine_self(); 373 AioContext *ctx = bdrv_get_aio_context(bs); 374 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 375 376 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 377 * other coroutines run if they were queued by aio_co_enter(). */ 378 379 assert(qemu_in_coroutine()); 380 data = (BdrvCoDrainData) { 381 .co = self, 382 .bs = bs, 383 .done = false, 384 .begin = begin, 385 .recursive = recursive, 386 .parent = parent, 387 .ignore_bds_parents = ignore_bds_parents, 388 .poll = poll, 389 .drained_end_counter = drained_end_counter, 390 }; 391 392 if (bs) { 393 bdrv_inc_in_flight(bs); 394 } 395 396 /* 397 * Temporarily drop the lock across yield or we would get deadlocks. 398 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 399 * 400 * When we yield below, the lock for the current context will be 401 * released, so if this is actually the lock that protects bs, don't drop 402 * it a second time. 403 */ 404 if (ctx != co_ctx) { 405 aio_context_release(ctx); 406 } 407 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 408 409 qemu_coroutine_yield(); 410 /* If we are resumed from some other event (such as an aio completion or a 411 * timer callback), it is a bug in the caller that should be fixed. */ 412 assert(data.done); 413 414 /* Reaquire the AioContext of bs if we dropped it */ 415 if (ctx != co_ctx) { 416 aio_context_acquire(ctx); 417 } 418 } 419 420 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 421 BdrvChild *parent, bool ignore_bds_parents) 422 { 423 assert(!qemu_in_coroutine()); 424 425 /* Stop things in parent-to-child order */ 426 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 427 aio_disable_external(bdrv_get_aio_context(bs)); 428 } 429 430 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 431 bdrv_drain_invoke(bs, true, NULL); 432 } 433 434 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 435 BdrvChild *parent, bool ignore_bds_parents, 436 bool poll) 437 { 438 BdrvChild *child, *next; 439 440 if (qemu_in_coroutine()) { 441 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 442 poll, NULL); 443 return; 444 } 445 446 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 447 448 if (recursive) { 449 assert(!ignore_bds_parents); 450 bs->recursive_quiesce_counter++; 451 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 452 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 453 false); 454 } 455 } 456 457 /* 458 * Wait for drained requests to finish. 459 * 460 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 461 * call is needed so things in this AioContext can make progress even 462 * though we don't return to the main AioContext loop - this automatically 463 * includes other nodes in the same AioContext and therefore all child 464 * nodes. 465 */ 466 if (poll) { 467 assert(!ignore_bds_parents); 468 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 469 } 470 } 471 472 void bdrv_drained_begin(BlockDriverState *bs) 473 { 474 bdrv_do_drained_begin(bs, false, NULL, false, true); 475 } 476 477 void bdrv_subtree_drained_begin(BlockDriverState *bs) 478 { 479 bdrv_do_drained_begin(bs, true, NULL, false, true); 480 } 481 482 /** 483 * This function does not poll, nor must any of its recursively called 484 * functions. The *drained_end_counter pointee will be incremented 485 * once for every background operation scheduled, and decremented once 486 * the operation settles. Therefore, the pointer must remain valid 487 * until the pointee reaches 0. That implies that whoever sets up the 488 * pointee has to poll until it is 0. 489 * 490 * We use atomic operations to access *drained_end_counter, because 491 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 492 * @bs may contain nodes in different AioContexts, 493 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 494 * regardless of which AioContext they are in. 495 */ 496 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 497 BdrvChild *parent, bool ignore_bds_parents, 498 int *drained_end_counter) 499 { 500 BdrvChild *child; 501 int old_quiesce_counter; 502 503 assert(drained_end_counter != NULL); 504 505 if (qemu_in_coroutine()) { 506 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 507 false, drained_end_counter); 508 return; 509 } 510 assert(bs->quiesce_counter > 0); 511 512 /* Re-enable things in child-to-parent order */ 513 bdrv_drain_invoke(bs, false, drained_end_counter); 514 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 515 drained_end_counter); 516 517 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 518 if (old_quiesce_counter == 1) { 519 aio_enable_external(bdrv_get_aio_context(bs)); 520 } 521 522 if (recursive) { 523 assert(!ignore_bds_parents); 524 bs->recursive_quiesce_counter--; 525 QLIST_FOREACH(child, &bs->children, next) { 526 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 527 drained_end_counter); 528 } 529 } 530 } 531 532 void bdrv_drained_end(BlockDriverState *bs) 533 { 534 int drained_end_counter = 0; 535 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 536 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 537 } 538 539 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 540 { 541 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 542 } 543 544 void bdrv_subtree_drained_end(BlockDriverState *bs) 545 { 546 int drained_end_counter = 0; 547 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 548 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 549 } 550 551 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 552 { 553 int i; 554 555 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 556 bdrv_do_drained_begin(child->bs, true, child, false, true); 557 } 558 } 559 560 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 561 { 562 int drained_end_counter = 0; 563 int i; 564 565 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 566 bdrv_do_drained_end(child->bs, true, child, false, 567 &drained_end_counter); 568 } 569 570 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 571 } 572 573 /* 574 * Wait for pending requests to complete on a single BlockDriverState subtree, 575 * and suspend block driver's internal I/O until next request arrives. 576 * 577 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 578 * AioContext. 579 */ 580 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 581 { 582 assert(qemu_in_coroutine()); 583 bdrv_drained_begin(bs); 584 bdrv_drained_end(bs); 585 } 586 587 void bdrv_drain(BlockDriverState *bs) 588 { 589 bdrv_drained_begin(bs); 590 bdrv_drained_end(bs); 591 } 592 593 static void bdrv_drain_assert_idle(BlockDriverState *bs) 594 { 595 BdrvChild *child, *next; 596 597 assert(qatomic_read(&bs->in_flight) == 0); 598 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 599 bdrv_drain_assert_idle(child->bs); 600 } 601 } 602 603 unsigned int bdrv_drain_all_count = 0; 604 605 static bool bdrv_drain_all_poll(void) 606 { 607 BlockDriverState *bs = NULL; 608 bool result = false; 609 610 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 611 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 612 while ((bs = bdrv_next_all_states(bs))) { 613 AioContext *aio_context = bdrv_get_aio_context(bs); 614 aio_context_acquire(aio_context); 615 result |= bdrv_drain_poll(bs, false, NULL, true); 616 aio_context_release(aio_context); 617 } 618 619 return result; 620 } 621 622 /* 623 * Wait for pending requests to complete across all BlockDriverStates 624 * 625 * This function does not flush data to disk, use bdrv_flush_all() for that 626 * after calling this function. 627 * 628 * This pauses all block jobs and disables external clients. It must 629 * be paired with bdrv_drain_all_end(). 630 * 631 * NOTE: no new block jobs or BlockDriverStates can be created between 632 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 633 */ 634 void bdrv_drain_all_begin(void) 635 { 636 BlockDriverState *bs = NULL; 637 638 if (qemu_in_coroutine()) { 639 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 640 return; 641 } 642 643 /* 644 * bdrv queue is managed by record/replay, 645 * waiting for finishing the I/O requests may 646 * be infinite 647 */ 648 if (replay_events_enabled()) { 649 return; 650 } 651 652 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 653 * loop AioContext, so make sure we're in the main context. */ 654 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 655 assert(bdrv_drain_all_count < INT_MAX); 656 bdrv_drain_all_count++; 657 658 /* Quiesce all nodes, without polling in-flight requests yet. The graph 659 * cannot change during this loop. */ 660 while ((bs = bdrv_next_all_states(bs))) { 661 AioContext *aio_context = bdrv_get_aio_context(bs); 662 663 aio_context_acquire(aio_context); 664 bdrv_do_drained_begin(bs, false, NULL, true, false); 665 aio_context_release(aio_context); 666 } 667 668 /* Now poll the in-flight requests */ 669 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 670 671 while ((bs = bdrv_next_all_states(bs))) { 672 bdrv_drain_assert_idle(bs); 673 } 674 } 675 676 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 677 { 678 int drained_end_counter = 0; 679 680 g_assert(bs->quiesce_counter > 0); 681 g_assert(!bs->refcnt); 682 683 while (bs->quiesce_counter) { 684 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 685 } 686 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 687 } 688 689 void bdrv_drain_all_end(void) 690 { 691 BlockDriverState *bs = NULL; 692 int drained_end_counter = 0; 693 694 /* 695 * bdrv queue is managed by record/replay, 696 * waiting for finishing the I/O requests may 697 * be endless 698 */ 699 if (replay_events_enabled()) { 700 return; 701 } 702 703 while ((bs = bdrv_next_all_states(bs))) { 704 AioContext *aio_context = bdrv_get_aio_context(bs); 705 706 aio_context_acquire(aio_context); 707 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 708 aio_context_release(aio_context); 709 } 710 711 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 712 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 713 714 assert(bdrv_drain_all_count > 0); 715 bdrv_drain_all_count--; 716 } 717 718 void bdrv_drain_all(void) 719 { 720 bdrv_drain_all_begin(); 721 bdrv_drain_all_end(); 722 } 723 724 /** 725 * Remove an active request from the tracked requests list 726 * 727 * This function should be called when a tracked request is completing. 728 */ 729 static void tracked_request_end(BdrvTrackedRequest *req) 730 { 731 if (req->serialising) { 732 qatomic_dec(&req->bs->serialising_in_flight); 733 } 734 735 qemu_co_mutex_lock(&req->bs->reqs_lock); 736 QLIST_REMOVE(req, list); 737 qemu_co_queue_restart_all(&req->wait_queue); 738 qemu_co_mutex_unlock(&req->bs->reqs_lock); 739 } 740 741 /** 742 * Add an active request to the tracked requests list 743 */ 744 static void tracked_request_begin(BdrvTrackedRequest *req, 745 BlockDriverState *bs, 746 int64_t offset, 747 int64_t bytes, 748 enum BdrvTrackedRequestType type) 749 { 750 bdrv_check_request(offset, bytes, &error_abort); 751 752 *req = (BdrvTrackedRequest){ 753 .bs = bs, 754 .offset = offset, 755 .bytes = bytes, 756 .type = type, 757 .co = qemu_coroutine_self(), 758 .serialising = false, 759 .overlap_offset = offset, 760 .overlap_bytes = bytes, 761 }; 762 763 qemu_co_queue_init(&req->wait_queue); 764 765 qemu_co_mutex_lock(&bs->reqs_lock); 766 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 767 qemu_co_mutex_unlock(&bs->reqs_lock); 768 } 769 770 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 771 int64_t offset, int64_t bytes) 772 { 773 bdrv_check_request(offset, bytes, &error_abort); 774 775 /* aaaa bbbb */ 776 if (offset >= req->overlap_offset + req->overlap_bytes) { 777 return false; 778 } 779 /* bbbb aaaa */ 780 if (req->overlap_offset >= offset + bytes) { 781 return false; 782 } 783 return true; 784 } 785 786 /* Called with self->bs->reqs_lock held */ 787 static BdrvTrackedRequest * 788 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 789 { 790 BdrvTrackedRequest *req; 791 792 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 793 if (req == self || (!req->serialising && !self->serialising)) { 794 continue; 795 } 796 if (tracked_request_overlaps(req, self->overlap_offset, 797 self->overlap_bytes)) 798 { 799 /* 800 * Hitting this means there was a reentrant request, for 801 * example, a block driver issuing nested requests. This must 802 * never happen since it means deadlock. 803 */ 804 assert(qemu_coroutine_self() != req->co); 805 806 /* 807 * If the request is already (indirectly) waiting for us, or 808 * will wait for us as soon as it wakes up, then just go on 809 * (instead of producing a deadlock in the former case). 810 */ 811 if (!req->waiting_for) { 812 return req; 813 } 814 } 815 } 816 817 return NULL; 818 } 819 820 /* Called with self->bs->reqs_lock held */ 821 static bool coroutine_fn 822 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 823 { 824 BdrvTrackedRequest *req; 825 bool waited = false; 826 827 while ((req = bdrv_find_conflicting_request(self))) { 828 self->waiting_for = req; 829 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 830 self->waiting_for = NULL; 831 waited = true; 832 } 833 834 return waited; 835 } 836 837 /* Called with req->bs->reqs_lock held */ 838 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 839 uint64_t align) 840 { 841 int64_t overlap_offset = req->offset & ~(align - 1); 842 int64_t overlap_bytes = 843 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 844 845 bdrv_check_request(req->offset, req->bytes, &error_abort); 846 847 if (!req->serialising) { 848 qatomic_inc(&req->bs->serialising_in_flight); 849 req->serialising = true; 850 } 851 852 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 853 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 854 } 855 856 /** 857 * Return the tracked request on @bs for the current coroutine, or 858 * NULL if there is none. 859 */ 860 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 861 { 862 BdrvTrackedRequest *req; 863 Coroutine *self = qemu_coroutine_self(); 864 865 QLIST_FOREACH(req, &bs->tracked_requests, list) { 866 if (req->co == self) { 867 return req; 868 } 869 } 870 871 return NULL; 872 } 873 874 /** 875 * Round a region to cluster boundaries 876 */ 877 void bdrv_round_to_clusters(BlockDriverState *bs, 878 int64_t offset, int64_t bytes, 879 int64_t *cluster_offset, 880 int64_t *cluster_bytes) 881 { 882 BlockDriverInfo bdi; 883 884 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 885 *cluster_offset = offset; 886 *cluster_bytes = bytes; 887 } else { 888 int64_t c = bdi.cluster_size; 889 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 890 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 891 } 892 } 893 894 static int bdrv_get_cluster_size(BlockDriverState *bs) 895 { 896 BlockDriverInfo bdi; 897 int ret; 898 899 ret = bdrv_get_info(bs, &bdi); 900 if (ret < 0 || bdi.cluster_size == 0) { 901 return bs->bl.request_alignment; 902 } else { 903 return bdi.cluster_size; 904 } 905 } 906 907 void bdrv_inc_in_flight(BlockDriverState *bs) 908 { 909 qatomic_inc(&bs->in_flight); 910 } 911 912 void bdrv_wakeup(BlockDriverState *bs) 913 { 914 aio_wait_kick(); 915 } 916 917 void bdrv_dec_in_flight(BlockDriverState *bs) 918 { 919 qatomic_dec(&bs->in_flight); 920 bdrv_wakeup(bs); 921 } 922 923 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 924 { 925 BlockDriverState *bs = self->bs; 926 bool waited = false; 927 928 if (!qatomic_read(&bs->serialising_in_flight)) { 929 return false; 930 } 931 932 qemu_co_mutex_lock(&bs->reqs_lock); 933 waited = bdrv_wait_serialising_requests_locked(self); 934 qemu_co_mutex_unlock(&bs->reqs_lock); 935 936 return waited; 937 } 938 939 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 940 uint64_t align) 941 { 942 bool waited; 943 944 qemu_co_mutex_lock(&req->bs->reqs_lock); 945 946 tracked_request_set_serialising(req, align); 947 waited = bdrv_wait_serialising_requests_locked(req); 948 949 qemu_co_mutex_unlock(&req->bs->reqs_lock); 950 951 return waited; 952 } 953 954 static int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 955 QEMUIOVector *qiov, size_t qiov_offset, 956 Error **errp) 957 { 958 /* 959 * Check generic offset/bytes correctness 960 */ 961 962 if (offset < 0) { 963 error_setg(errp, "offset is negative: %" PRIi64, offset); 964 return -EIO; 965 } 966 967 if (bytes < 0) { 968 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 969 return -EIO; 970 } 971 972 if (bytes > BDRV_MAX_LENGTH) { 973 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 974 bytes, BDRV_MAX_LENGTH); 975 return -EIO; 976 } 977 978 if (offset > BDRV_MAX_LENGTH) { 979 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 980 offset, BDRV_MAX_LENGTH); 981 return -EIO; 982 } 983 984 if (offset > BDRV_MAX_LENGTH - bytes) { 985 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 986 "exceeds maximum(%" PRIi64 ")", offset, bytes, 987 BDRV_MAX_LENGTH); 988 return -EIO; 989 } 990 991 if (!qiov) { 992 return 0; 993 } 994 995 /* 996 * Check qiov and qiov_offset 997 */ 998 999 if (qiov_offset > qiov->size) { 1000 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 1001 qiov_offset, qiov->size); 1002 return -EIO; 1003 } 1004 1005 if (bytes > qiov->size - qiov_offset) { 1006 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 1007 "vector size(%zu)", bytes, qiov_offset, qiov->size); 1008 return -EIO; 1009 } 1010 1011 return 0; 1012 } 1013 1014 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 1015 { 1016 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 1017 } 1018 1019 static int bdrv_check_request32(int64_t offset, int64_t bytes, 1020 QEMUIOVector *qiov, size_t qiov_offset) 1021 { 1022 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 1023 if (ret < 0) { 1024 return ret; 1025 } 1026 1027 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1028 return -EIO; 1029 } 1030 1031 return 0; 1032 } 1033 1034 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 1035 int64_t bytes, BdrvRequestFlags flags) 1036 { 1037 return bdrv_pwritev(child, offset, bytes, NULL, 1038 BDRV_REQ_ZERO_WRITE | flags); 1039 } 1040 1041 /* 1042 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1043 * The operation is sped up by checking the block status and only writing 1044 * zeroes to the device if they currently do not return zeroes. Optional 1045 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1046 * BDRV_REQ_FUA). 1047 * 1048 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1049 */ 1050 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1051 { 1052 int ret; 1053 int64_t target_size, bytes, offset = 0; 1054 BlockDriverState *bs = child->bs; 1055 1056 target_size = bdrv_getlength(bs); 1057 if (target_size < 0) { 1058 return target_size; 1059 } 1060 1061 for (;;) { 1062 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1063 if (bytes <= 0) { 1064 return 0; 1065 } 1066 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1067 if (ret < 0) { 1068 return ret; 1069 } 1070 if (ret & BDRV_BLOCK_ZERO) { 1071 offset += bytes; 1072 continue; 1073 } 1074 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1075 if (ret < 0) { 1076 return ret; 1077 } 1078 offset += bytes; 1079 } 1080 } 1081 1082 /* See bdrv_pwrite() for the return codes */ 1083 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes) 1084 { 1085 int ret; 1086 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1087 1088 if (bytes < 0) { 1089 return -EINVAL; 1090 } 1091 1092 ret = bdrv_preadv(child, offset, bytes, &qiov, 0); 1093 1094 return ret < 0 ? ret : bytes; 1095 } 1096 1097 /* Return no. of bytes on success or < 0 on error. Important errors are: 1098 -EIO generic I/O error (may happen for all errors) 1099 -ENOMEDIUM No media inserted. 1100 -EINVAL Invalid offset or number of bytes 1101 -EACCES Trying to write a read-only device 1102 */ 1103 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, 1104 int64_t bytes) 1105 { 1106 int ret; 1107 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1108 1109 if (bytes < 0) { 1110 return -EINVAL; 1111 } 1112 1113 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0); 1114 1115 return ret < 0 ? ret : bytes; 1116 } 1117 1118 /* 1119 * Writes to the file and ensures that no writes are reordered across this 1120 * request (acts as a barrier) 1121 * 1122 * Returns 0 on success, -errno in error cases. 1123 */ 1124 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1125 const void *buf, int64_t count) 1126 { 1127 int ret; 1128 1129 ret = bdrv_pwrite(child, offset, buf, count); 1130 if (ret < 0) { 1131 return ret; 1132 } 1133 1134 ret = bdrv_flush(child->bs); 1135 if (ret < 0) { 1136 return ret; 1137 } 1138 1139 return 0; 1140 } 1141 1142 typedef struct CoroutineIOCompletion { 1143 Coroutine *coroutine; 1144 int ret; 1145 } CoroutineIOCompletion; 1146 1147 static void bdrv_co_io_em_complete(void *opaque, int ret) 1148 { 1149 CoroutineIOCompletion *co = opaque; 1150 1151 co->ret = ret; 1152 aio_co_wake(co->coroutine); 1153 } 1154 1155 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1156 int64_t offset, int64_t bytes, 1157 QEMUIOVector *qiov, 1158 size_t qiov_offset, int flags) 1159 { 1160 BlockDriver *drv = bs->drv; 1161 int64_t sector_num; 1162 unsigned int nb_sectors; 1163 QEMUIOVector local_qiov; 1164 int ret; 1165 1166 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1167 assert(!(flags & ~BDRV_REQ_MASK)); 1168 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1169 1170 if (!drv) { 1171 return -ENOMEDIUM; 1172 } 1173 1174 if (drv->bdrv_co_preadv_part) { 1175 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1176 flags); 1177 } 1178 1179 if (qiov_offset > 0 || bytes != qiov->size) { 1180 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1181 qiov = &local_qiov; 1182 } 1183 1184 if (drv->bdrv_co_preadv) { 1185 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1186 goto out; 1187 } 1188 1189 if (drv->bdrv_aio_preadv) { 1190 BlockAIOCB *acb; 1191 CoroutineIOCompletion co = { 1192 .coroutine = qemu_coroutine_self(), 1193 }; 1194 1195 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1196 bdrv_co_io_em_complete, &co); 1197 if (acb == NULL) { 1198 ret = -EIO; 1199 goto out; 1200 } else { 1201 qemu_coroutine_yield(); 1202 ret = co.ret; 1203 goto out; 1204 } 1205 } 1206 1207 sector_num = offset >> BDRV_SECTOR_BITS; 1208 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1209 1210 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1211 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1212 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1213 assert(drv->bdrv_co_readv); 1214 1215 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1216 1217 out: 1218 if (qiov == &local_qiov) { 1219 qemu_iovec_destroy(&local_qiov); 1220 } 1221 1222 return ret; 1223 } 1224 1225 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1226 int64_t offset, int64_t bytes, 1227 QEMUIOVector *qiov, 1228 size_t qiov_offset, int flags) 1229 { 1230 BlockDriver *drv = bs->drv; 1231 int64_t sector_num; 1232 unsigned int nb_sectors; 1233 QEMUIOVector local_qiov; 1234 int ret; 1235 1236 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1237 assert(!(flags & ~BDRV_REQ_MASK)); 1238 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1239 1240 if (!drv) { 1241 return -ENOMEDIUM; 1242 } 1243 1244 if (drv->bdrv_co_pwritev_part) { 1245 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1246 flags & bs->supported_write_flags); 1247 flags &= ~bs->supported_write_flags; 1248 goto emulate_flags; 1249 } 1250 1251 if (qiov_offset > 0 || bytes != qiov->size) { 1252 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1253 qiov = &local_qiov; 1254 } 1255 1256 if (drv->bdrv_co_pwritev) { 1257 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1258 flags & bs->supported_write_flags); 1259 flags &= ~bs->supported_write_flags; 1260 goto emulate_flags; 1261 } 1262 1263 if (drv->bdrv_aio_pwritev) { 1264 BlockAIOCB *acb; 1265 CoroutineIOCompletion co = { 1266 .coroutine = qemu_coroutine_self(), 1267 }; 1268 1269 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1270 flags & bs->supported_write_flags, 1271 bdrv_co_io_em_complete, &co); 1272 flags &= ~bs->supported_write_flags; 1273 if (acb == NULL) { 1274 ret = -EIO; 1275 } else { 1276 qemu_coroutine_yield(); 1277 ret = co.ret; 1278 } 1279 goto emulate_flags; 1280 } 1281 1282 sector_num = offset >> BDRV_SECTOR_BITS; 1283 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1284 1285 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1286 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1287 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1288 1289 assert(drv->bdrv_co_writev); 1290 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1291 flags & bs->supported_write_flags); 1292 flags &= ~bs->supported_write_flags; 1293 1294 emulate_flags: 1295 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1296 ret = bdrv_co_flush(bs); 1297 } 1298 1299 if (qiov == &local_qiov) { 1300 qemu_iovec_destroy(&local_qiov); 1301 } 1302 1303 return ret; 1304 } 1305 1306 static int coroutine_fn 1307 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1308 int64_t bytes, QEMUIOVector *qiov, 1309 size_t qiov_offset) 1310 { 1311 BlockDriver *drv = bs->drv; 1312 QEMUIOVector local_qiov; 1313 int ret; 1314 1315 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1316 1317 if (!drv) { 1318 return -ENOMEDIUM; 1319 } 1320 1321 if (!block_driver_can_compress(drv)) { 1322 return -ENOTSUP; 1323 } 1324 1325 if (drv->bdrv_co_pwritev_compressed_part) { 1326 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1327 qiov, qiov_offset); 1328 } 1329 1330 if (qiov_offset == 0) { 1331 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1332 } 1333 1334 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1335 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1336 qemu_iovec_destroy(&local_qiov); 1337 1338 return ret; 1339 } 1340 1341 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1342 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1343 size_t qiov_offset, int flags) 1344 { 1345 BlockDriverState *bs = child->bs; 1346 1347 /* Perform I/O through a temporary buffer so that users who scribble over 1348 * their read buffer while the operation is in progress do not end up 1349 * modifying the image file. This is critical for zero-copy guest I/O 1350 * where anything might happen inside guest memory. 1351 */ 1352 void *bounce_buffer = NULL; 1353 1354 BlockDriver *drv = bs->drv; 1355 int64_t cluster_offset; 1356 int64_t cluster_bytes; 1357 int64_t skip_bytes; 1358 int ret; 1359 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1360 BDRV_REQUEST_MAX_BYTES); 1361 int64_t progress = 0; 1362 bool skip_write; 1363 1364 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1365 1366 if (!drv) { 1367 return -ENOMEDIUM; 1368 } 1369 1370 /* 1371 * Do not write anything when the BDS is inactive. That is not 1372 * allowed, and it would not help. 1373 */ 1374 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1375 1376 /* FIXME We cannot require callers to have write permissions when all they 1377 * are doing is a read request. If we did things right, write permissions 1378 * would be obtained anyway, but internally by the copy-on-read code. As 1379 * long as it is implemented here rather than in a separate filter driver, 1380 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1381 * it could request permissions. Therefore we have to bypass the permission 1382 * system for the moment. */ 1383 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1384 1385 /* Cover entire cluster so no additional backing file I/O is required when 1386 * allocating cluster in the image file. Note that this value may exceed 1387 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1388 * is one reason we loop rather than doing it all at once. 1389 */ 1390 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1391 skip_bytes = offset - cluster_offset; 1392 1393 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1394 cluster_offset, cluster_bytes); 1395 1396 while (cluster_bytes) { 1397 int64_t pnum; 1398 1399 if (skip_write) { 1400 ret = 1; /* "already allocated", so nothing will be copied */ 1401 pnum = MIN(cluster_bytes, max_transfer); 1402 } else { 1403 ret = bdrv_is_allocated(bs, cluster_offset, 1404 MIN(cluster_bytes, max_transfer), &pnum); 1405 if (ret < 0) { 1406 /* 1407 * Safe to treat errors in querying allocation as if 1408 * unallocated; we'll probably fail again soon on the 1409 * read, but at least that will set a decent errno. 1410 */ 1411 pnum = MIN(cluster_bytes, max_transfer); 1412 } 1413 1414 /* Stop at EOF if the image ends in the middle of the cluster */ 1415 if (ret == 0 && pnum == 0) { 1416 assert(progress >= bytes); 1417 break; 1418 } 1419 1420 assert(skip_bytes < pnum); 1421 } 1422 1423 if (ret <= 0) { 1424 QEMUIOVector local_qiov; 1425 1426 /* Must copy-on-read; use the bounce buffer */ 1427 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1428 if (!bounce_buffer) { 1429 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1430 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1431 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1432 1433 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1434 if (!bounce_buffer) { 1435 ret = -ENOMEM; 1436 goto err; 1437 } 1438 } 1439 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1440 1441 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1442 &local_qiov, 0, 0); 1443 if (ret < 0) { 1444 goto err; 1445 } 1446 1447 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1448 if (drv->bdrv_co_pwrite_zeroes && 1449 buffer_is_zero(bounce_buffer, pnum)) { 1450 /* FIXME: Should we (perhaps conditionally) be setting 1451 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1452 * that still correctly reads as zero? */ 1453 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1454 BDRV_REQ_WRITE_UNCHANGED); 1455 } else { 1456 /* This does not change the data on the disk, it is not 1457 * necessary to flush even in cache=writethrough mode. 1458 */ 1459 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1460 &local_qiov, 0, 1461 BDRV_REQ_WRITE_UNCHANGED); 1462 } 1463 1464 if (ret < 0) { 1465 /* It might be okay to ignore write errors for guest 1466 * requests. If this is a deliberate copy-on-read 1467 * then we don't want to ignore the error. Simply 1468 * report it in all cases. 1469 */ 1470 goto err; 1471 } 1472 1473 if (!(flags & BDRV_REQ_PREFETCH)) { 1474 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1475 bounce_buffer + skip_bytes, 1476 MIN(pnum - skip_bytes, bytes - progress)); 1477 } 1478 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1479 /* Read directly into the destination */ 1480 ret = bdrv_driver_preadv(bs, offset + progress, 1481 MIN(pnum - skip_bytes, bytes - progress), 1482 qiov, qiov_offset + progress, 0); 1483 if (ret < 0) { 1484 goto err; 1485 } 1486 } 1487 1488 cluster_offset += pnum; 1489 cluster_bytes -= pnum; 1490 progress += pnum - skip_bytes; 1491 skip_bytes = 0; 1492 } 1493 ret = 0; 1494 1495 err: 1496 qemu_vfree(bounce_buffer); 1497 return ret; 1498 } 1499 1500 /* 1501 * Forwards an already correctly aligned request to the BlockDriver. This 1502 * handles copy on read, zeroing after EOF, and fragmentation of large 1503 * reads; any other features must be implemented by the caller. 1504 */ 1505 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1506 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1507 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1508 { 1509 BlockDriverState *bs = child->bs; 1510 int64_t total_bytes, max_bytes; 1511 int ret = 0; 1512 int64_t bytes_remaining = bytes; 1513 int max_transfer; 1514 1515 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1516 assert(is_power_of_2(align)); 1517 assert((offset & (align - 1)) == 0); 1518 assert((bytes & (align - 1)) == 0); 1519 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1520 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1521 align); 1522 1523 /* TODO: We would need a per-BDS .supported_read_flags and 1524 * potential fallback support, if we ever implement any read flags 1525 * to pass through to drivers. For now, there aren't any 1526 * passthrough flags. */ 1527 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1528 1529 /* Handle Copy on Read and associated serialisation */ 1530 if (flags & BDRV_REQ_COPY_ON_READ) { 1531 /* If we touch the same cluster it counts as an overlap. This 1532 * guarantees that allocating writes will be serialized and not race 1533 * with each other for the same cluster. For example, in copy-on-read 1534 * it ensures that the CoR read and write operations are atomic and 1535 * guest writes cannot interleave between them. */ 1536 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1537 } else { 1538 bdrv_wait_serialising_requests(req); 1539 } 1540 1541 if (flags & BDRV_REQ_COPY_ON_READ) { 1542 int64_t pnum; 1543 1544 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1545 flags &= ~BDRV_REQ_COPY_ON_READ; 1546 1547 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1548 if (ret < 0) { 1549 goto out; 1550 } 1551 1552 if (!ret || pnum != bytes) { 1553 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1554 qiov, qiov_offset, flags); 1555 goto out; 1556 } else if (flags & BDRV_REQ_PREFETCH) { 1557 goto out; 1558 } 1559 } 1560 1561 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1562 total_bytes = bdrv_getlength(bs); 1563 if (total_bytes < 0) { 1564 ret = total_bytes; 1565 goto out; 1566 } 1567 1568 assert(!(flags & ~bs->supported_read_flags)); 1569 1570 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1571 if (bytes <= max_bytes && bytes <= max_transfer) { 1572 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1573 goto out; 1574 } 1575 1576 while (bytes_remaining) { 1577 int64_t num; 1578 1579 if (max_bytes) { 1580 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1581 assert(num); 1582 1583 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1584 num, qiov, 1585 qiov_offset + bytes - bytes_remaining, 1586 flags); 1587 max_bytes -= num; 1588 } else { 1589 num = bytes_remaining; 1590 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1591 0, bytes_remaining); 1592 } 1593 if (ret < 0) { 1594 goto out; 1595 } 1596 bytes_remaining -= num; 1597 } 1598 1599 out: 1600 return ret < 0 ? ret : 0; 1601 } 1602 1603 /* 1604 * Request padding 1605 * 1606 * |<---- align ----->| |<----- align ---->| 1607 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1608 * | | | | | | 1609 * -*----------$-------*-------- ... --------*-----$------------*--- 1610 * | | | | | | 1611 * | offset | | end | 1612 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1613 * [buf ... ) [tail_buf ) 1614 * 1615 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1616 * is placed at the beginning of @buf and @tail at the @end. 1617 * 1618 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1619 * around tail, if tail exists. 1620 * 1621 * @merge_reads is true for small requests, 1622 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1623 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1624 */ 1625 typedef struct BdrvRequestPadding { 1626 uint8_t *buf; 1627 size_t buf_len; 1628 uint8_t *tail_buf; 1629 size_t head; 1630 size_t tail; 1631 bool merge_reads; 1632 QEMUIOVector local_qiov; 1633 } BdrvRequestPadding; 1634 1635 static bool bdrv_init_padding(BlockDriverState *bs, 1636 int64_t offset, int64_t bytes, 1637 BdrvRequestPadding *pad) 1638 { 1639 int64_t align = bs->bl.request_alignment; 1640 int64_t sum; 1641 1642 bdrv_check_request(offset, bytes, &error_abort); 1643 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1644 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1645 1646 memset(pad, 0, sizeof(*pad)); 1647 1648 pad->head = offset & (align - 1); 1649 pad->tail = ((offset + bytes) & (align - 1)); 1650 if (pad->tail) { 1651 pad->tail = align - pad->tail; 1652 } 1653 1654 if (!pad->head && !pad->tail) { 1655 return false; 1656 } 1657 1658 assert(bytes); /* Nothing good in aligning zero-length requests */ 1659 1660 sum = pad->head + bytes + pad->tail; 1661 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1662 pad->buf = qemu_blockalign(bs, pad->buf_len); 1663 pad->merge_reads = sum == pad->buf_len; 1664 if (pad->tail) { 1665 pad->tail_buf = pad->buf + pad->buf_len - align; 1666 } 1667 1668 return true; 1669 } 1670 1671 static int bdrv_padding_rmw_read(BdrvChild *child, 1672 BdrvTrackedRequest *req, 1673 BdrvRequestPadding *pad, 1674 bool zero_middle) 1675 { 1676 QEMUIOVector local_qiov; 1677 BlockDriverState *bs = child->bs; 1678 uint64_t align = bs->bl.request_alignment; 1679 int ret; 1680 1681 assert(req->serialising && pad->buf); 1682 1683 if (pad->head || pad->merge_reads) { 1684 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1685 1686 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1687 1688 if (pad->head) { 1689 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1690 } 1691 if (pad->merge_reads && pad->tail) { 1692 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1693 } 1694 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1695 align, &local_qiov, 0, 0); 1696 if (ret < 0) { 1697 return ret; 1698 } 1699 if (pad->head) { 1700 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1701 } 1702 if (pad->merge_reads && pad->tail) { 1703 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1704 } 1705 1706 if (pad->merge_reads) { 1707 goto zero_mem; 1708 } 1709 } 1710 1711 if (pad->tail) { 1712 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1713 1714 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1715 ret = bdrv_aligned_preadv( 1716 child, req, 1717 req->overlap_offset + req->overlap_bytes - align, 1718 align, align, &local_qiov, 0, 0); 1719 if (ret < 0) { 1720 return ret; 1721 } 1722 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1723 } 1724 1725 zero_mem: 1726 if (zero_middle) { 1727 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1728 } 1729 1730 return 0; 1731 } 1732 1733 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1734 { 1735 if (pad->buf) { 1736 qemu_vfree(pad->buf); 1737 qemu_iovec_destroy(&pad->local_qiov); 1738 } 1739 memset(pad, 0, sizeof(*pad)); 1740 } 1741 1742 /* 1743 * bdrv_pad_request 1744 * 1745 * Exchange request parameters with padded request if needed. Don't include RMW 1746 * read of padding, bdrv_padding_rmw_read() should be called separately if 1747 * needed. 1748 * 1749 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1750 * - on function start they represent original request 1751 * - on failure or when padding is not needed they are unchanged 1752 * - on success when padding is needed they represent padded request 1753 */ 1754 static int bdrv_pad_request(BlockDriverState *bs, 1755 QEMUIOVector **qiov, size_t *qiov_offset, 1756 int64_t *offset, int64_t *bytes, 1757 BdrvRequestPadding *pad, bool *padded) 1758 { 1759 int ret; 1760 1761 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1762 1763 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1764 if (padded) { 1765 *padded = false; 1766 } 1767 return 0; 1768 } 1769 1770 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1771 *qiov, *qiov_offset, *bytes, 1772 pad->buf + pad->buf_len - pad->tail, 1773 pad->tail); 1774 if (ret < 0) { 1775 bdrv_padding_destroy(pad); 1776 return ret; 1777 } 1778 *bytes += pad->head + pad->tail; 1779 *offset -= pad->head; 1780 *qiov = &pad->local_qiov; 1781 *qiov_offset = 0; 1782 if (padded) { 1783 *padded = true; 1784 } 1785 1786 return 0; 1787 } 1788 1789 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1790 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1791 BdrvRequestFlags flags) 1792 { 1793 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1794 } 1795 1796 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1797 int64_t offset, int64_t bytes, 1798 QEMUIOVector *qiov, size_t qiov_offset, 1799 BdrvRequestFlags flags) 1800 { 1801 BlockDriverState *bs = child->bs; 1802 BdrvTrackedRequest req; 1803 BdrvRequestPadding pad; 1804 int ret; 1805 1806 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1807 1808 if (!bdrv_is_inserted(bs)) { 1809 return -ENOMEDIUM; 1810 } 1811 1812 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1813 if (ret < 0) { 1814 return ret; 1815 } 1816 1817 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1818 /* 1819 * Aligning zero request is nonsense. Even if driver has special meaning 1820 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1821 * it to driver due to request_alignment. 1822 * 1823 * Still, no reason to return an error if someone do unaligned 1824 * zero-length read occasionally. 1825 */ 1826 return 0; 1827 } 1828 1829 bdrv_inc_in_flight(bs); 1830 1831 /* Don't do copy-on-read if we read data before write operation */ 1832 if (qatomic_read(&bs->copy_on_read)) { 1833 flags |= BDRV_REQ_COPY_ON_READ; 1834 } 1835 1836 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1837 NULL); 1838 if (ret < 0) { 1839 return ret; 1840 } 1841 1842 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1843 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1844 bs->bl.request_alignment, 1845 qiov, qiov_offset, flags); 1846 tracked_request_end(&req); 1847 bdrv_dec_in_flight(bs); 1848 1849 bdrv_padding_destroy(&pad); 1850 1851 return ret; 1852 } 1853 1854 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1855 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1856 { 1857 BlockDriver *drv = bs->drv; 1858 QEMUIOVector qiov; 1859 void *buf = NULL; 1860 int ret = 0; 1861 bool need_flush = false; 1862 int head = 0; 1863 int tail = 0; 1864 1865 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1866 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1867 bs->bl.request_alignment); 1868 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1869 1870 bdrv_check_request(offset, bytes, &error_abort); 1871 1872 if (!drv) { 1873 return -ENOMEDIUM; 1874 } 1875 1876 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1877 return -ENOTSUP; 1878 } 1879 1880 assert(alignment % bs->bl.request_alignment == 0); 1881 head = offset % alignment; 1882 tail = (offset + bytes) % alignment; 1883 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1884 assert(max_write_zeroes >= bs->bl.request_alignment); 1885 1886 while (bytes > 0 && !ret) { 1887 int64_t num = bytes; 1888 1889 /* Align request. Block drivers can expect the "bulk" of the request 1890 * to be aligned, and that unaligned requests do not cross cluster 1891 * boundaries. 1892 */ 1893 if (head) { 1894 /* Make a small request up to the first aligned sector. For 1895 * convenience, limit this request to max_transfer even if 1896 * we don't need to fall back to writes. */ 1897 num = MIN(MIN(bytes, max_transfer), alignment - head); 1898 head = (head + num) % alignment; 1899 assert(num < max_write_zeroes); 1900 } else if (tail && num > alignment) { 1901 /* Shorten the request to the last aligned sector. */ 1902 num -= tail; 1903 } 1904 1905 /* limit request size */ 1906 if (num > max_write_zeroes) { 1907 num = max_write_zeroes; 1908 } 1909 1910 ret = -ENOTSUP; 1911 /* First try the efficient write zeroes operation */ 1912 if (drv->bdrv_co_pwrite_zeroes) { 1913 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1914 flags & bs->supported_zero_flags); 1915 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1916 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1917 need_flush = true; 1918 } 1919 } else { 1920 assert(!bs->supported_zero_flags); 1921 } 1922 1923 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1924 /* Fall back to bounce buffer if write zeroes is unsupported */ 1925 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1926 1927 if ((flags & BDRV_REQ_FUA) && 1928 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1929 /* No need for bdrv_driver_pwrite() to do a fallback 1930 * flush on each chunk; use just one at the end */ 1931 write_flags &= ~BDRV_REQ_FUA; 1932 need_flush = true; 1933 } 1934 num = MIN(num, max_transfer); 1935 if (buf == NULL) { 1936 buf = qemu_try_blockalign0(bs, num); 1937 if (buf == NULL) { 1938 ret = -ENOMEM; 1939 goto fail; 1940 } 1941 } 1942 qemu_iovec_init_buf(&qiov, buf, num); 1943 1944 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1945 1946 /* Keep bounce buffer around if it is big enough for all 1947 * all future requests. 1948 */ 1949 if (num < max_transfer) { 1950 qemu_vfree(buf); 1951 buf = NULL; 1952 } 1953 } 1954 1955 offset += num; 1956 bytes -= num; 1957 } 1958 1959 fail: 1960 if (ret == 0 && need_flush) { 1961 ret = bdrv_co_flush(bs); 1962 } 1963 qemu_vfree(buf); 1964 return ret; 1965 } 1966 1967 static inline int coroutine_fn 1968 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1969 BdrvTrackedRequest *req, int flags) 1970 { 1971 BlockDriverState *bs = child->bs; 1972 1973 bdrv_check_request(offset, bytes, &error_abort); 1974 1975 if (bs->read_only) { 1976 return -EPERM; 1977 } 1978 1979 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1980 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1981 assert(!(flags & ~BDRV_REQ_MASK)); 1982 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1983 1984 if (flags & BDRV_REQ_SERIALISING) { 1985 QEMU_LOCK_GUARD(&bs->reqs_lock); 1986 1987 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1988 1989 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1990 return -EBUSY; 1991 } 1992 1993 bdrv_wait_serialising_requests_locked(req); 1994 } else { 1995 bdrv_wait_serialising_requests(req); 1996 } 1997 1998 assert(req->overlap_offset <= offset); 1999 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 2000 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 2001 child->perm & BLK_PERM_RESIZE); 2002 2003 switch (req->type) { 2004 case BDRV_TRACKED_WRITE: 2005 case BDRV_TRACKED_DISCARD: 2006 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2007 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2008 } else { 2009 assert(child->perm & BLK_PERM_WRITE); 2010 } 2011 return notifier_with_return_list_notify(&bs->before_write_notifiers, 2012 req); 2013 case BDRV_TRACKED_TRUNCATE: 2014 assert(child->perm & BLK_PERM_RESIZE); 2015 return 0; 2016 default: 2017 abort(); 2018 } 2019 } 2020 2021 static inline void coroutine_fn 2022 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2023 BdrvTrackedRequest *req, int ret) 2024 { 2025 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2026 BlockDriverState *bs = child->bs; 2027 2028 bdrv_check_request(offset, bytes, &error_abort); 2029 2030 qatomic_inc(&bs->write_gen); 2031 2032 /* 2033 * Discard cannot extend the image, but in error handling cases, such as 2034 * when reverting a qcow2 cluster allocation, the discarded range can pass 2035 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2036 * here. Instead, just skip it, since semantically a discard request 2037 * beyond EOF cannot expand the image anyway. 2038 */ 2039 if (ret == 0 && 2040 (req->type == BDRV_TRACKED_TRUNCATE || 2041 end_sector > bs->total_sectors) && 2042 req->type != BDRV_TRACKED_DISCARD) { 2043 bs->total_sectors = end_sector; 2044 bdrv_parent_cb_resize(bs); 2045 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2046 } 2047 if (req->bytes) { 2048 switch (req->type) { 2049 case BDRV_TRACKED_WRITE: 2050 stat64_max(&bs->wr_highest_offset, offset + bytes); 2051 /* fall through, to set dirty bits */ 2052 case BDRV_TRACKED_DISCARD: 2053 bdrv_set_dirty(bs, offset, bytes); 2054 break; 2055 default: 2056 break; 2057 } 2058 } 2059 } 2060 2061 /* 2062 * Forwards an already correctly aligned write request to the BlockDriver, 2063 * after possibly fragmenting it. 2064 */ 2065 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2066 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2067 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 2068 { 2069 BlockDriverState *bs = child->bs; 2070 BlockDriver *drv = bs->drv; 2071 int ret; 2072 2073 int64_t bytes_remaining = bytes; 2074 int max_transfer; 2075 2076 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2077 2078 if (!drv) { 2079 return -ENOMEDIUM; 2080 } 2081 2082 if (bdrv_has_readonly_bitmaps(bs)) { 2083 return -EPERM; 2084 } 2085 2086 assert(is_power_of_2(align)); 2087 assert((offset & (align - 1)) == 0); 2088 assert((bytes & (align - 1)) == 0); 2089 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2090 align); 2091 2092 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2093 2094 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2095 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2096 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2097 flags |= BDRV_REQ_ZERO_WRITE; 2098 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2099 flags |= BDRV_REQ_MAY_UNMAP; 2100 } 2101 } 2102 2103 if (ret < 0) { 2104 /* Do nothing, write notifier decided to fail this request */ 2105 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2106 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2107 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2108 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2109 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2110 qiov, qiov_offset); 2111 } else if (bytes <= max_transfer) { 2112 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2113 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2114 } else { 2115 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2116 while (bytes_remaining) { 2117 int num = MIN(bytes_remaining, max_transfer); 2118 int local_flags = flags; 2119 2120 assert(num); 2121 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2122 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2123 /* If FUA is going to be emulated by flush, we only 2124 * need to flush on the last iteration */ 2125 local_flags &= ~BDRV_REQ_FUA; 2126 } 2127 2128 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2129 num, qiov, 2130 qiov_offset + bytes - bytes_remaining, 2131 local_flags); 2132 if (ret < 0) { 2133 break; 2134 } 2135 bytes_remaining -= num; 2136 } 2137 } 2138 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2139 2140 if (ret >= 0) { 2141 ret = 0; 2142 } 2143 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2144 2145 return ret; 2146 } 2147 2148 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2149 int64_t offset, 2150 int64_t bytes, 2151 BdrvRequestFlags flags, 2152 BdrvTrackedRequest *req) 2153 { 2154 BlockDriverState *bs = child->bs; 2155 QEMUIOVector local_qiov; 2156 uint64_t align = bs->bl.request_alignment; 2157 int ret = 0; 2158 bool padding; 2159 BdrvRequestPadding pad; 2160 2161 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2162 if (padding) { 2163 bdrv_make_request_serialising(req, align); 2164 2165 bdrv_padding_rmw_read(child, req, &pad, true); 2166 2167 if (pad.head || pad.merge_reads) { 2168 int64_t aligned_offset = offset & ~(align - 1); 2169 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2170 2171 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2172 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2173 align, &local_qiov, 0, 2174 flags & ~BDRV_REQ_ZERO_WRITE); 2175 if (ret < 0 || pad.merge_reads) { 2176 /* Error or all work is done */ 2177 goto out; 2178 } 2179 offset += write_bytes - pad.head; 2180 bytes -= write_bytes - pad.head; 2181 } 2182 } 2183 2184 assert(!bytes || (offset & (align - 1)) == 0); 2185 if (bytes >= align) { 2186 /* Write the aligned part in the middle. */ 2187 int64_t aligned_bytes = bytes & ~(align - 1); 2188 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2189 NULL, 0, flags); 2190 if (ret < 0) { 2191 goto out; 2192 } 2193 bytes -= aligned_bytes; 2194 offset += aligned_bytes; 2195 } 2196 2197 assert(!bytes || (offset & (align - 1)) == 0); 2198 if (bytes) { 2199 assert(align == pad.tail + bytes); 2200 2201 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2202 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2203 &local_qiov, 0, 2204 flags & ~BDRV_REQ_ZERO_WRITE); 2205 } 2206 2207 out: 2208 bdrv_padding_destroy(&pad); 2209 2210 return ret; 2211 } 2212 2213 /* 2214 * Handle a write request in coroutine context 2215 */ 2216 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2217 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2218 BdrvRequestFlags flags) 2219 { 2220 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2221 } 2222 2223 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2224 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2225 BdrvRequestFlags flags) 2226 { 2227 BlockDriverState *bs = child->bs; 2228 BdrvTrackedRequest req; 2229 uint64_t align = bs->bl.request_alignment; 2230 BdrvRequestPadding pad; 2231 int ret; 2232 bool padded = false; 2233 2234 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2235 2236 if (!bdrv_is_inserted(bs)) { 2237 return -ENOMEDIUM; 2238 } 2239 2240 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2241 if (ret < 0) { 2242 return ret; 2243 } 2244 2245 /* If the request is misaligned then we can't make it efficient */ 2246 if ((flags & BDRV_REQ_NO_FALLBACK) && 2247 !QEMU_IS_ALIGNED(offset | bytes, align)) 2248 { 2249 return -ENOTSUP; 2250 } 2251 2252 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2253 /* 2254 * Aligning zero request is nonsense. Even if driver has special meaning 2255 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2256 * it to driver due to request_alignment. 2257 * 2258 * Still, no reason to return an error if someone do unaligned 2259 * zero-length write occasionally. 2260 */ 2261 return 0; 2262 } 2263 2264 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2265 /* 2266 * Pad request for following read-modify-write cycle. 2267 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2268 * alignment only if there is no ZERO flag. 2269 */ 2270 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2271 &padded); 2272 if (ret < 0) { 2273 return ret; 2274 } 2275 } 2276 2277 bdrv_inc_in_flight(bs); 2278 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2279 2280 if (flags & BDRV_REQ_ZERO_WRITE) { 2281 assert(!padded); 2282 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2283 goto out; 2284 } 2285 2286 if (padded) { 2287 /* 2288 * Request was unaligned to request_alignment and therefore 2289 * padded. We are going to do read-modify-write, and must 2290 * serialize the request to prevent interactions of the 2291 * widened region with other transactions. 2292 */ 2293 bdrv_make_request_serialising(&req, align); 2294 bdrv_padding_rmw_read(child, &req, &pad, false); 2295 } 2296 2297 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2298 qiov, qiov_offset, flags); 2299 2300 bdrv_padding_destroy(&pad); 2301 2302 out: 2303 tracked_request_end(&req); 2304 bdrv_dec_in_flight(bs); 2305 2306 return ret; 2307 } 2308 2309 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2310 int64_t bytes, BdrvRequestFlags flags) 2311 { 2312 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2313 2314 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2315 flags &= ~BDRV_REQ_MAY_UNMAP; 2316 } 2317 2318 return bdrv_co_pwritev(child, offset, bytes, NULL, 2319 BDRV_REQ_ZERO_WRITE | flags); 2320 } 2321 2322 /* 2323 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2324 */ 2325 int bdrv_flush_all(void) 2326 { 2327 BdrvNextIterator it; 2328 BlockDriverState *bs = NULL; 2329 int result = 0; 2330 2331 /* 2332 * bdrv queue is managed by record/replay, 2333 * creating new flush request for stopping 2334 * the VM may break the determinism 2335 */ 2336 if (replay_events_enabled()) { 2337 return result; 2338 } 2339 2340 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2341 AioContext *aio_context = bdrv_get_aio_context(bs); 2342 int ret; 2343 2344 aio_context_acquire(aio_context); 2345 ret = bdrv_flush(bs); 2346 if (ret < 0 && !result) { 2347 result = ret; 2348 } 2349 aio_context_release(aio_context); 2350 } 2351 2352 return result; 2353 } 2354 2355 /* 2356 * Returns the allocation status of the specified sectors. 2357 * Drivers not implementing the functionality are assumed to not support 2358 * backing files, hence all their sectors are reported as allocated. 2359 * 2360 * If 'want_zero' is true, the caller is querying for mapping 2361 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2362 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2363 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2364 * 2365 * If 'offset' is beyond the end of the disk image the return value is 2366 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2367 * 2368 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2369 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2370 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2371 * 2372 * 'pnum' is set to the number of bytes (including and immediately 2373 * following the specified offset) that are easily known to be in the 2374 * same allocated/unallocated state. Note that a second call starting 2375 * at the original offset plus returned pnum may have the same status. 2376 * The returned value is non-zero on success except at end-of-file. 2377 * 2378 * Returns negative errno on failure. Otherwise, if the 2379 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2380 * set to the host mapping and BDS corresponding to the guest offset. 2381 */ 2382 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2383 bool want_zero, 2384 int64_t offset, int64_t bytes, 2385 int64_t *pnum, int64_t *map, 2386 BlockDriverState **file) 2387 { 2388 int64_t total_size; 2389 int64_t n; /* bytes */ 2390 int ret; 2391 int64_t local_map = 0; 2392 BlockDriverState *local_file = NULL; 2393 int64_t aligned_offset, aligned_bytes; 2394 uint32_t align; 2395 bool has_filtered_child; 2396 2397 assert(pnum); 2398 *pnum = 0; 2399 total_size = bdrv_getlength(bs); 2400 if (total_size < 0) { 2401 ret = total_size; 2402 goto early_out; 2403 } 2404 2405 if (offset >= total_size) { 2406 ret = BDRV_BLOCK_EOF; 2407 goto early_out; 2408 } 2409 if (!bytes) { 2410 ret = 0; 2411 goto early_out; 2412 } 2413 2414 n = total_size - offset; 2415 if (n < bytes) { 2416 bytes = n; 2417 } 2418 2419 /* Must be non-NULL or bdrv_getlength() would have failed */ 2420 assert(bs->drv); 2421 has_filtered_child = bdrv_filter_child(bs); 2422 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2423 *pnum = bytes; 2424 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2425 if (offset + bytes == total_size) { 2426 ret |= BDRV_BLOCK_EOF; 2427 } 2428 if (bs->drv->protocol_name) { 2429 ret |= BDRV_BLOCK_OFFSET_VALID; 2430 local_map = offset; 2431 local_file = bs; 2432 } 2433 goto early_out; 2434 } 2435 2436 bdrv_inc_in_flight(bs); 2437 2438 /* Round out to request_alignment boundaries */ 2439 align = bs->bl.request_alignment; 2440 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2441 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2442 2443 if (bs->drv->bdrv_co_block_status) { 2444 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2445 aligned_bytes, pnum, &local_map, 2446 &local_file); 2447 } else { 2448 /* Default code for filters */ 2449 2450 local_file = bdrv_filter_bs(bs); 2451 assert(local_file); 2452 2453 *pnum = aligned_bytes; 2454 local_map = aligned_offset; 2455 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2456 } 2457 if (ret < 0) { 2458 *pnum = 0; 2459 goto out; 2460 } 2461 2462 /* 2463 * The driver's result must be a non-zero multiple of request_alignment. 2464 * Clamp pnum and adjust map to original request. 2465 */ 2466 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2467 align > offset - aligned_offset); 2468 if (ret & BDRV_BLOCK_RECURSE) { 2469 assert(ret & BDRV_BLOCK_DATA); 2470 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2471 assert(!(ret & BDRV_BLOCK_ZERO)); 2472 } 2473 2474 *pnum -= offset - aligned_offset; 2475 if (*pnum > bytes) { 2476 *pnum = bytes; 2477 } 2478 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2479 local_map += offset - aligned_offset; 2480 } 2481 2482 if (ret & BDRV_BLOCK_RAW) { 2483 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2484 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2485 *pnum, pnum, &local_map, &local_file); 2486 goto out; 2487 } 2488 2489 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2490 ret |= BDRV_BLOCK_ALLOCATED; 2491 } else if (bs->drv->supports_backing) { 2492 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2493 2494 if (!cow_bs) { 2495 ret |= BDRV_BLOCK_ZERO; 2496 } else if (want_zero) { 2497 int64_t size2 = bdrv_getlength(cow_bs); 2498 2499 if (size2 >= 0 && offset >= size2) { 2500 ret |= BDRV_BLOCK_ZERO; 2501 } 2502 } 2503 } 2504 2505 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2506 local_file && local_file != bs && 2507 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2508 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2509 int64_t file_pnum; 2510 int ret2; 2511 2512 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2513 *pnum, &file_pnum, NULL, NULL); 2514 if (ret2 >= 0) { 2515 /* Ignore errors. This is just providing extra information, it 2516 * is useful but not necessary. 2517 */ 2518 if (ret2 & BDRV_BLOCK_EOF && 2519 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2520 /* 2521 * It is valid for the format block driver to read 2522 * beyond the end of the underlying file's current 2523 * size; such areas read as zero. 2524 */ 2525 ret |= BDRV_BLOCK_ZERO; 2526 } else { 2527 /* Limit request to the range reported by the protocol driver */ 2528 *pnum = file_pnum; 2529 ret |= (ret2 & BDRV_BLOCK_ZERO); 2530 } 2531 } 2532 } 2533 2534 out: 2535 bdrv_dec_in_flight(bs); 2536 if (ret >= 0 && offset + *pnum == total_size) { 2537 ret |= BDRV_BLOCK_EOF; 2538 } 2539 early_out: 2540 if (file) { 2541 *file = local_file; 2542 } 2543 if (map) { 2544 *map = local_map; 2545 } 2546 return ret; 2547 } 2548 2549 int coroutine_fn 2550 bdrv_co_common_block_status_above(BlockDriverState *bs, 2551 BlockDriverState *base, 2552 bool include_base, 2553 bool want_zero, 2554 int64_t offset, 2555 int64_t bytes, 2556 int64_t *pnum, 2557 int64_t *map, 2558 BlockDriverState **file, 2559 int *depth) 2560 { 2561 int ret; 2562 BlockDriverState *p; 2563 int64_t eof = 0; 2564 int dummy; 2565 2566 assert(!include_base || base); /* Can't include NULL base */ 2567 2568 if (!depth) { 2569 depth = &dummy; 2570 } 2571 *depth = 0; 2572 2573 if (!include_base && bs == base) { 2574 *pnum = bytes; 2575 return 0; 2576 } 2577 2578 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2579 ++*depth; 2580 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2581 return ret; 2582 } 2583 2584 if (ret & BDRV_BLOCK_EOF) { 2585 eof = offset + *pnum; 2586 } 2587 2588 assert(*pnum <= bytes); 2589 bytes = *pnum; 2590 2591 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2592 p = bdrv_filter_or_cow_bs(p)) 2593 { 2594 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2595 file); 2596 ++*depth; 2597 if (ret < 0) { 2598 return ret; 2599 } 2600 if (*pnum == 0) { 2601 /* 2602 * The top layer deferred to this layer, and because this layer is 2603 * short, any zeroes that we synthesize beyond EOF behave as if they 2604 * were allocated at this layer. 2605 * 2606 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2607 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2608 * below. 2609 */ 2610 assert(ret & BDRV_BLOCK_EOF); 2611 *pnum = bytes; 2612 if (file) { 2613 *file = p; 2614 } 2615 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2616 break; 2617 } 2618 if (ret & BDRV_BLOCK_ALLOCATED) { 2619 /* 2620 * We've found the node and the status, we must break. 2621 * 2622 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2623 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2624 * below. 2625 */ 2626 ret &= ~BDRV_BLOCK_EOF; 2627 break; 2628 } 2629 2630 if (p == base) { 2631 assert(include_base); 2632 break; 2633 } 2634 2635 /* 2636 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2637 * let's continue the diving. 2638 */ 2639 assert(*pnum <= bytes); 2640 bytes = *pnum; 2641 } 2642 2643 if (offset + *pnum == eof) { 2644 ret |= BDRV_BLOCK_EOF; 2645 } 2646 2647 return ret; 2648 } 2649 2650 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2651 int64_t offset, int64_t bytes, int64_t *pnum, 2652 int64_t *map, BlockDriverState **file) 2653 { 2654 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2655 pnum, map, file, NULL); 2656 } 2657 2658 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2659 int64_t *pnum, int64_t *map, BlockDriverState **file) 2660 { 2661 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2662 offset, bytes, pnum, map, file); 2663 } 2664 2665 /* 2666 * Check @bs (and its backing chain) to see if the range defined 2667 * by @offset and @bytes is known to read as zeroes. 2668 * Return 1 if that is the case, 0 otherwise and -errno on error. 2669 * This test is meant to be fast rather than accurate so returning 0 2670 * does not guarantee non-zero data. 2671 */ 2672 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2673 int64_t bytes) 2674 { 2675 int ret; 2676 int64_t pnum = bytes; 2677 2678 if (!bytes) { 2679 return 1; 2680 } 2681 2682 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2683 bytes, &pnum, NULL, NULL, NULL); 2684 2685 if (ret < 0) { 2686 return ret; 2687 } 2688 2689 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2690 } 2691 2692 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2693 int64_t bytes, int64_t *pnum) 2694 { 2695 int ret; 2696 int64_t dummy; 2697 2698 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2699 bytes, pnum ? pnum : &dummy, NULL, 2700 NULL, NULL); 2701 if (ret < 0) { 2702 return ret; 2703 } 2704 return !!(ret & BDRV_BLOCK_ALLOCATED); 2705 } 2706 2707 /* 2708 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2709 * 2710 * Return a positive depth if (a prefix of) the given range is allocated 2711 * in any image between BASE and TOP (BASE is only included if include_base 2712 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2713 * BASE can be NULL to check if the given offset is allocated in any 2714 * image of the chain. Return 0 otherwise, or negative errno on 2715 * failure. 2716 * 2717 * 'pnum' is set to the number of bytes (including and immediately 2718 * following the specified offset) that are known to be in the same 2719 * allocated/unallocated state. Note that a subsequent call starting 2720 * at 'offset + *pnum' may return the same allocation status (in other 2721 * words, the result is not necessarily the maximum possible range); 2722 * but 'pnum' will only be 0 when end of file is reached. 2723 */ 2724 int bdrv_is_allocated_above(BlockDriverState *top, 2725 BlockDriverState *base, 2726 bool include_base, int64_t offset, 2727 int64_t bytes, int64_t *pnum) 2728 { 2729 int depth; 2730 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2731 offset, bytes, pnum, NULL, NULL, 2732 &depth); 2733 if (ret < 0) { 2734 return ret; 2735 } 2736 2737 if (ret & BDRV_BLOCK_ALLOCATED) { 2738 return depth; 2739 } 2740 return 0; 2741 } 2742 2743 int coroutine_fn 2744 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2745 { 2746 BlockDriver *drv = bs->drv; 2747 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2748 int ret = -ENOTSUP; 2749 2750 if (!drv) { 2751 return -ENOMEDIUM; 2752 } 2753 2754 bdrv_inc_in_flight(bs); 2755 2756 if (drv->bdrv_load_vmstate) { 2757 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2758 } else if (child_bs) { 2759 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2760 } 2761 2762 bdrv_dec_in_flight(bs); 2763 2764 return ret; 2765 } 2766 2767 int coroutine_fn 2768 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2769 { 2770 BlockDriver *drv = bs->drv; 2771 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2772 int ret = -ENOTSUP; 2773 2774 if (!drv) { 2775 return -ENOMEDIUM; 2776 } 2777 2778 bdrv_inc_in_flight(bs); 2779 2780 if (drv->bdrv_save_vmstate) { 2781 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2782 } else if (child_bs) { 2783 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2784 } 2785 2786 bdrv_dec_in_flight(bs); 2787 2788 return ret; 2789 } 2790 2791 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2792 int64_t pos, int size) 2793 { 2794 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2795 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2796 2797 return ret < 0 ? ret : size; 2798 } 2799 2800 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2801 int64_t pos, int size) 2802 { 2803 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2804 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2805 2806 return ret < 0 ? ret : size; 2807 } 2808 2809 /**************************************************************/ 2810 /* async I/Os */ 2811 2812 void bdrv_aio_cancel(BlockAIOCB *acb) 2813 { 2814 qemu_aio_ref(acb); 2815 bdrv_aio_cancel_async(acb); 2816 while (acb->refcnt > 1) { 2817 if (acb->aiocb_info->get_aio_context) { 2818 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2819 } else if (acb->bs) { 2820 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2821 * assert that we're not using an I/O thread. Thread-safe 2822 * code should use bdrv_aio_cancel_async exclusively. 2823 */ 2824 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2825 aio_poll(bdrv_get_aio_context(acb->bs), true); 2826 } else { 2827 abort(); 2828 } 2829 } 2830 qemu_aio_unref(acb); 2831 } 2832 2833 /* Async version of aio cancel. The caller is not blocked if the acb implements 2834 * cancel_async, otherwise we do nothing and let the request normally complete. 2835 * In either case the completion callback must be called. */ 2836 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2837 { 2838 if (acb->aiocb_info->cancel_async) { 2839 acb->aiocb_info->cancel_async(acb); 2840 } 2841 } 2842 2843 /**************************************************************/ 2844 /* Coroutine block device emulation */ 2845 2846 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2847 { 2848 BdrvChild *primary_child = bdrv_primary_child(bs); 2849 BdrvChild *child; 2850 int current_gen; 2851 int ret = 0; 2852 2853 bdrv_inc_in_flight(bs); 2854 2855 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2856 bdrv_is_sg(bs)) { 2857 goto early_exit; 2858 } 2859 2860 qemu_co_mutex_lock(&bs->reqs_lock); 2861 current_gen = qatomic_read(&bs->write_gen); 2862 2863 /* Wait until any previous flushes are completed */ 2864 while (bs->active_flush_req) { 2865 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2866 } 2867 2868 /* Flushes reach this point in nondecreasing current_gen order. */ 2869 bs->active_flush_req = true; 2870 qemu_co_mutex_unlock(&bs->reqs_lock); 2871 2872 /* Write back all layers by calling one driver function */ 2873 if (bs->drv->bdrv_co_flush) { 2874 ret = bs->drv->bdrv_co_flush(bs); 2875 goto out; 2876 } 2877 2878 /* Write back cached data to the OS even with cache=unsafe */ 2879 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2880 if (bs->drv->bdrv_co_flush_to_os) { 2881 ret = bs->drv->bdrv_co_flush_to_os(bs); 2882 if (ret < 0) { 2883 goto out; 2884 } 2885 } 2886 2887 /* But don't actually force it to the disk with cache=unsafe */ 2888 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2889 goto flush_children; 2890 } 2891 2892 /* Check if we really need to flush anything */ 2893 if (bs->flushed_gen == current_gen) { 2894 goto flush_children; 2895 } 2896 2897 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2898 if (!bs->drv) { 2899 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2900 * (even in case of apparent success) */ 2901 ret = -ENOMEDIUM; 2902 goto out; 2903 } 2904 if (bs->drv->bdrv_co_flush_to_disk) { 2905 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2906 } else if (bs->drv->bdrv_aio_flush) { 2907 BlockAIOCB *acb; 2908 CoroutineIOCompletion co = { 2909 .coroutine = qemu_coroutine_self(), 2910 }; 2911 2912 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2913 if (acb == NULL) { 2914 ret = -EIO; 2915 } else { 2916 qemu_coroutine_yield(); 2917 ret = co.ret; 2918 } 2919 } else { 2920 /* 2921 * Some block drivers always operate in either writethrough or unsafe 2922 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2923 * know how the server works (because the behaviour is hardcoded or 2924 * depends on server-side configuration), so we can't ensure that 2925 * everything is safe on disk. Returning an error doesn't work because 2926 * that would break guests even if the server operates in writethrough 2927 * mode. 2928 * 2929 * Let's hope the user knows what he's doing. 2930 */ 2931 ret = 0; 2932 } 2933 2934 if (ret < 0) { 2935 goto out; 2936 } 2937 2938 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2939 * in the case of cache=unsafe, so there are no useless flushes. 2940 */ 2941 flush_children: 2942 ret = 0; 2943 QLIST_FOREACH(child, &bs->children, next) { 2944 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 2945 int this_child_ret = bdrv_co_flush(child->bs); 2946 if (!ret) { 2947 ret = this_child_ret; 2948 } 2949 } 2950 } 2951 2952 out: 2953 /* Notify any pending flushes that we have completed */ 2954 if (ret == 0) { 2955 bs->flushed_gen = current_gen; 2956 } 2957 2958 qemu_co_mutex_lock(&bs->reqs_lock); 2959 bs->active_flush_req = false; 2960 /* Return value is ignored - it's ok if wait queue is empty */ 2961 qemu_co_queue_next(&bs->flush_queue); 2962 qemu_co_mutex_unlock(&bs->reqs_lock); 2963 2964 early_exit: 2965 bdrv_dec_in_flight(bs); 2966 return ret; 2967 } 2968 2969 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2970 int64_t bytes) 2971 { 2972 BdrvTrackedRequest req; 2973 int max_pdiscard, ret; 2974 int head, tail, align; 2975 BlockDriverState *bs = child->bs; 2976 2977 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2978 return -ENOMEDIUM; 2979 } 2980 2981 if (bdrv_has_readonly_bitmaps(bs)) { 2982 return -EPERM; 2983 } 2984 2985 ret = bdrv_check_request(offset, bytes, NULL); 2986 if (ret < 0) { 2987 return ret; 2988 } 2989 2990 /* Do nothing if disabled. */ 2991 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2992 return 0; 2993 } 2994 2995 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2996 return 0; 2997 } 2998 2999 /* Discard is advisory, but some devices track and coalesce 3000 * unaligned requests, so we must pass everything down rather than 3001 * round here. Still, most devices will just silently ignore 3002 * unaligned requests (by returning -ENOTSUP), so we must fragment 3003 * the request accordingly. */ 3004 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3005 assert(align % bs->bl.request_alignment == 0); 3006 head = offset % align; 3007 tail = (offset + bytes) % align; 3008 3009 bdrv_inc_in_flight(bs); 3010 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3011 3012 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3013 if (ret < 0) { 3014 goto out; 3015 } 3016 3017 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 3018 align); 3019 assert(max_pdiscard >= bs->bl.request_alignment); 3020 3021 while (bytes > 0) { 3022 int64_t num = bytes; 3023 3024 if (head) { 3025 /* Make small requests to get to alignment boundaries. */ 3026 num = MIN(bytes, align - head); 3027 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3028 num %= bs->bl.request_alignment; 3029 } 3030 head = (head + num) % align; 3031 assert(num < max_pdiscard); 3032 } else if (tail) { 3033 if (num > align) { 3034 /* Shorten the request to the last aligned cluster. */ 3035 num -= tail; 3036 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3037 tail > bs->bl.request_alignment) { 3038 tail %= bs->bl.request_alignment; 3039 num -= tail; 3040 } 3041 } 3042 /* limit request size */ 3043 if (num > max_pdiscard) { 3044 num = max_pdiscard; 3045 } 3046 3047 if (!bs->drv) { 3048 ret = -ENOMEDIUM; 3049 goto out; 3050 } 3051 if (bs->drv->bdrv_co_pdiscard) { 3052 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3053 } else { 3054 BlockAIOCB *acb; 3055 CoroutineIOCompletion co = { 3056 .coroutine = qemu_coroutine_self(), 3057 }; 3058 3059 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3060 bdrv_co_io_em_complete, &co); 3061 if (acb == NULL) { 3062 ret = -EIO; 3063 goto out; 3064 } else { 3065 qemu_coroutine_yield(); 3066 ret = co.ret; 3067 } 3068 } 3069 if (ret && ret != -ENOTSUP) { 3070 goto out; 3071 } 3072 3073 offset += num; 3074 bytes -= num; 3075 } 3076 ret = 0; 3077 out: 3078 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3079 tracked_request_end(&req); 3080 bdrv_dec_in_flight(bs); 3081 return ret; 3082 } 3083 3084 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3085 { 3086 BlockDriver *drv = bs->drv; 3087 CoroutineIOCompletion co = { 3088 .coroutine = qemu_coroutine_self(), 3089 }; 3090 BlockAIOCB *acb; 3091 3092 bdrv_inc_in_flight(bs); 3093 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3094 co.ret = -ENOTSUP; 3095 goto out; 3096 } 3097 3098 if (drv->bdrv_co_ioctl) { 3099 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3100 } else { 3101 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3102 if (!acb) { 3103 co.ret = -ENOTSUP; 3104 goto out; 3105 } 3106 qemu_coroutine_yield(); 3107 } 3108 out: 3109 bdrv_dec_in_flight(bs); 3110 return co.ret; 3111 } 3112 3113 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3114 { 3115 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3116 } 3117 3118 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3119 { 3120 return memset(qemu_blockalign(bs, size), 0, size); 3121 } 3122 3123 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3124 { 3125 size_t align = bdrv_opt_mem_align(bs); 3126 3127 /* Ensure that NULL is never returned on success */ 3128 assert(align > 0); 3129 if (size == 0) { 3130 size = align; 3131 } 3132 3133 return qemu_try_memalign(align, size); 3134 } 3135 3136 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3137 { 3138 void *mem = qemu_try_blockalign(bs, size); 3139 3140 if (mem) { 3141 memset(mem, 0, size); 3142 } 3143 3144 return mem; 3145 } 3146 3147 /* 3148 * Check if all memory in this vector is sector aligned. 3149 */ 3150 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3151 { 3152 int i; 3153 size_t alignment = bdrv_min_mem_align(bs); 3154 3155 for (i = 0; i < qiov->niov; i++) { 3156 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3157 return false; 3158 } 3159 if (qiov->iov[i].iov_len % alignment) { 3160 return false; 3161 } 3162 } 3163 3164 return true; 3165 } 3166 3167 void bdrv_add_before_write_notifier(BlockDriverState *bs, 3168 NotifierWithReturn *notifier) 3169 { 3170 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 3171 } 3172 3173 void bdrv_io_plug(BlockDriverState *bs) 3174 { 3175 BdrvChild *child; 3176 3177 QLIST_FOREACH(child, &bs->children, next) { 3178 bdrv_io_plug(child->bs); 3179 } 3180 3181 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3182 BlockDriver *drv = bs->drv; 3183 if (drv && drv->bdrv_io_plug) { 3184 drv->bdrv_io_plug(bs); 3185 } 3186 } 3187 } 3188 3189 void bdrv_io_unplug(BlockDriverState *bs) 3190 { 3191 BdrvChild *child; 3192 3193 assert(bs->io_plugged); 3194 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3195 BlockDriver *drv = bs->drv; 3196 if (drv && drv->bdrv_io_unplug) { 3197 drv->bdrv_io_unplug(bs); 3198 } 3199 } 3200 3201 QLIST_FOREACH(child, &bs->children, next) { 3202 bdrv_io_unplug(child->bs); 3203 } 3204 } 3205 3206 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3207 { 3208 BdrvChild *child; 3209 3210 if (bs->drv && bs->drv->bdrv_register_buf) { 3211 bs->drv->bdrv_register_buf(bs, host, size); 3212 } 3213 QLIST_FOREACH(child, &bs->children, next) { 3214 bdrv_register_buf(child->bs, host, size); 3215 } 3216 } 3217 3218 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3219 { 3220 BdrvChild *child; 3221 3222 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3223 bs->drv->bdrv_unregister_buf(bs, host); 3224 } 3225 QLIST_FOREACH(child, &bs->children, next) { 3226 bdrv_unregister_buf(child->bs, host); 3227 } 3228 } 3229 3230 static int coroutine_fn bdrv_co_copy_range_internal( 3231 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3232 int64_t dst_offset, int64_t bytes, 3233 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3234 bool recurse_src) 3235 { 3236 BdrvTrackedRequest req; 3237 int ret; 3238 3239 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3240 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3241 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3242 3243 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3244 return -ENOMEDIUM; 3245 } 3246 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3247 if (ret) { 3248 return ret; 3249 } 3250 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3251 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3252 } 3253 3254 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3255 return -ENOMEDIUM; 3256 } 3257 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3258 if (ret) { 3259 return ret; 3260 } 3261 3262 if (!src->bs->drv->bdrv_co_copy_range_from 3263 || !dst->bs->drv->bdrv_co_copy_range_to 3264 || src->bs->encrypted || dst->bs->encrypted) { 3265 return -ENOTSUP; 3266 } 3267 3268 if (recurse_src) { 3269 bdrv_inc_in_flight(src->bs); 3270 tracked_request_begin(&req, src->bs, src_offset, bytes, 3271 BDRV_TRACKED_READ); 3272 3273 /* BDRV_REQ_SERIALISING is only for write operation */ 3274 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3275 bdrv_wait_serialising_requests(&req); 3276 3277 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3278 src, src_offset, 3279 dst, dst_offset, 3280 bytes, 3281 read_flags, write_flags); 3282 3283 tracked_request_end(&req); 3284 bdrv_dec_in_flight(src->bs); 3285 } else { 3286 bdrv_inc_in_flight(dst->bs); 3287 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3288 BDRV_TRACKED_WRITE); 3289 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3290 write_flags); 3291 if (!ret) { 3292 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3293 src, src_offset, 3294 dst, dst_offset, 3295 bytes, 3296 read_flags, write_flags); 3297 } 3298 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3299 tracked_request_end(&req); 3300 bdrv_dec_in_flight(dst->bs); 3301 } 3302 3303 return ret; 3304 } 3305 3306 /* Copy range from @src to @dst. 3307 * 3308 * See the comment of bdrv_co_copy_range for the parameter and return value 3309 * semantics. */ 3310 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3311 BdrvChild *dst, int64_t dst_offset, 3312 int64_t bytes, 3313 BdrvRequestFlags read_flags, 3314 BdrvRequestFlags write_flags) 3315 { 3316 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3317 read_flags, write_flags); 3318 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3319 bytes, read_flags, write_flags, true); 3320 } 3321 3322 /* Copy range from @src to @dst. 3323 * 3324 * See the comment of bdrv_co_copy_range for the parameter and return value 3325 * semantics. */ 3326 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3327 BdrvChild *dst, int64_t dst_offset, 3328 int64_t bytes, 3329 BdrvRequestFlags read_flags, 3330 BdrvRequestFlags write_flags) 3331 { 3332 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3333 read_flags, write_flags); 3334 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3335 bytes, read_flags, write_flags, false); 3336 } 3337 3338 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3339 BdrvChild *dst, int64_t dst_offset, 3340 int64_t bytes, BdrvRequestFlags read_flags, 3341 BdrvRequestFlags write_flags) 3342 { 3343 return bdrv_co_copy_range_from(src, src_offset, 3344 dst, dst_offset, 3345 bytes, read_flags, write_flags); 3346 } 3347 3348 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3349 { 3350 BdrvChild *c; 3351 QLIST_FOREACH(c, &bs->parents, next_parent) { 3352 if (c->klass->resize) { 3353 c->klass->resize(c); 3354 } 3355 } 3356 } 3357 3358 /** 3359 * Truncate file to 'offset' bytes (needed only for file protocols) 3360 * 3361 * If 'exact' is true, the file must be resized to exactly the given 3362 * 'offset'. Otherwise, it is sufficient for the node to be at least 3363 * 'offset' bytes in length. 3364 */ 3365 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3366 PreallocMode prealloc, BdrvRequestFlags flags, 3367 Error **errp) 3368 { 3369 BlockDriverState *bs = child->bs; 3370 BdrvChild *filtered, *backing; 3371 BlockDriver *drv = bs->drv; 3372 BdrvTrackedRequest req; 3373 int64_t old_size, new_bytes; 3374 int ret; 3375 3376 3377 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3378 if (!drv) { 3379 error_setg(errp, "No medium inserted"); 3380 return -ENOMEDIUM; 3381 } 3382 if (offset < 0) { 3383 error_setg(errp, "Image size cannot be negative"); 3384 return -EINVAL; 3385 } 3386 3387 ret = bdrv_check_request(offset, 0, errp); 3388 if (ret < 0) { 3389 return ret; 3390 } 3391 3392 old_size = bdrv_getlength(bs); 3393 if (old_size < 0) { 3394 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3395 return old_size; 3396 } 3397 3398 if (offset > old_size) { 3399 new_bytes = offset - old_size; 3400 } else { 3401 new_bytes = 0; 3402 } 3403 3404 bdrv_inc_in_flight(bs); 3405 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3406 BDRV_TRACKED_TRUNCATE); 3407 3408 /* If we are growing the image and potentially using preallocation for the 3409 * new area, we need to make sure that no write requests are made to it 3410 * concurrently or they might be overwritten by preallocation. */ 3411 if (new_bytes) { 3412 bdrv_make_request_serialising(&req, 1); 3413 } 3414 if (bs->read_only) { 3415 error_setg(errp, "Image is read-only"); 3416 ret = -EACCES; 3417 goto out; 3418 } 3419 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3420 0); 3421 if (ret < 0) { 3422 error_setg_errno(errp, -ret, 3423 "Failed to prepare request for truncation"); 3424 goto out; 3425 } 3426 3427 filtered = bdrv_filter_child(bs); 3428 backing = bdrv_cow_child(bs); 3429 3430 /* 3431 * If the image has a backing file that is large enough that it would 3432 * provide data for the new area, we cannot leave it unallocated because 3433 * then the backing file content would become visible. Instead, zero-fill 3434 * the new area. 3435 * 3436 * Note that if the image has a backing file, but was opened without the 3437 * backing file, taking care of keeping things consistent with that backing 3438 * file is the user's responsibility. 3439 */ 3440 if (new_bytes && backing) { 3441 int64_t backing_len; 3442 3443 backing_len = bdrv_getlength(backing->bs); 3444 if (backing_len < 0) { 3445 ret = backing_len; 3446 error_setg_errno(errp, -ret, "Could not get backing file size"); 3447 goto out; 3448 } 3449 3450 if (backing_len > old_size) { 3451 flags |= BDRV_REQ_ZERO_WRITE; 3452 } 3453 } 3454 3455 if (drv->bdrv_co_truncate) { 3456 if (flags & ~bs->supported_truncate_flags) { 3457 error_setg(errp, "Block driver does not support requested flags"); 3458 ret = -ENOTSUP; 3459 goto out; 3460 } 3461 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3462 } else if (filtered) { 3463 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3464 } else { 3465 error_setg(errp, "Image format driver does not support resize"); 3466 ret = -ENOTSUP; 3467 goto out; 3468 } 3469 if (ret < 0) { 3470 goto out; 3471 } 3472 3473 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3474 if (ret < 0) { 3475 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3476 } else { 3477 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3478 } 3479 /* It's possible that truncation succeeded but refresh_total_sectors 3480 * failed, but the latter doesn't affect how we should finish the request. 3481 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3482 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3483 3484 out: 3485 tracked_request_end(&req); 3486 bdrv_dec_in_flight(bs); 3487 3488 return ret; 3489 } 3490 3491 void bdrv_cancel_in_flight(BlockDriverState *bs) 3492 { 3493 if (!bs || !bs->drv) { 3494 return; 3495 } 3496 3497 if (bs->drv->bdrv_cancel_in_flight) { 3498 bs->drv->bdrv_cancel_in_flight(bs); 3499 } 3500 } 3501