1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "sysemu/replay.h" 41 42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 44 45 static void bdrv_parent_cb_resize(BlockDriverState *bs); 46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 47 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 48 49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c); 58 } 59 } 60 61 void bdrv_parent_drained_end_single(BdrvChild *c) 62 { 63 GLOBAL_STATE_CODE(); 64 65 assert(c->quiesced_parent); 66 c->quiesced_parent = false; 67 68 if (c->klass->drained_end) { 69 c->klass->drained_end(c); 70 } 71 } 72 73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 74 { 75 BdrvChild *c; 76 77 QLIST_FOREACH(c, &bs->parents, next_parent) { 78 if (c == ignore) { 79 continue; 80 } 81 bdrv_parent_drained_end_single(c); 82 } 83 } 84 85 bool bdrv_parent_drained_poll_single(BdrvChild *c) 86 { 87 if (c->klass->drained_poll) { 88 return c->klass->drained_poll(c); 89 } 90 return false; 91 } 92 93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 94 bool ignore_bds_parents) 95 { 96 BdrvChild *c, *next; 97 bool busy = false; 98 99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 101 continue; 102 } 103 busy |= bdrv_parent_drained_poll_single(c); 104 } 105 106 return busy; 107 } 108 109 void bdrv_parent_drained_begin_single(BdrvChild *c) 110 { 111 GLOBAL_STATE_CODE(); 112 113 assert(!c->quiesced_parent); 114 c->quiesced_parent = true; 115 116 if (c->klass->drained_begin) { 117 c->klass->drained_begin(c); 118 } 119 } 120 121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 122 { 123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 124 src->pdiscard_alignment); 125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 128 src->max_hw_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 135 } 136 137 typedef struct BdrvRefreshLimitsState { 138 BlockDriverState *bs; 139 BlockLimits old_bl; 140 } BdrvRefreshLimitsState; 141 142 static void bdrv_refresh_limits_abort(void *opaque) 143 { 144 BdrvRefreshLimitsState *s = opaque; 145 146 s->bs->bl = s->old_bl; 147 } 148 149 static TransactionActionDrv bdrv_refresh_limits_drv = { 150 .abort = bdrv_refresh_limits_abort, 151 .clean = g_free, 152 }; 153 154 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 156 { 157 ERRP_GUARD(); 158 BlockDriver *drv = bs->drv; 159 BdrvChild *c; 160 bool have_limits; 161 162 GLOBAL_STATE_CODE(); 163 164 if (tran) { 165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 166 *s = (BdrvRefreshLimitsState) { 167 .bs = bs, 168 .old_bl = bs->bl, 169 }; 170 tran_add(tran, &bdrv_refresh_limits_drv, s); 171 } 172 173 memset(&bs->bl, 0, sizeof(bs->bl)); 174 175 if (!drv) { 176 return; 177 } 178 179 /* Default alignment based on whether driver has byte interface */ 180 bs->bl.request_alignment = (drv->bdrv_co_preadv || 181 drv->bdrv_aio_preadv || 182 drv->bdrv_co_preadv_part) ? 1 : 512; 183 184 /* Take some limits from the children as a default */ 185 have_limits = false; 186 QLIST_FOREACH(c, &bs->children, next) { 187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 188 { 189 bdrv_merge_limits(&bs->bl, &c->bs->bl); 190 have_limits = true; 191 } 192 193 if (c->role & BDRV_CHILD_FILTERED) { 194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 195 } 196 } 197 198 if (!have_limits) { 199 bs->bl.min_mem_alignment = 512; 200 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 201 202 /* Safe default since most protocols use readv()/writev()/etc */ 203 bs->bl.max_iov = IOV_MAX; 204 } 205 206 /* Then let the driver override it */ 207 if (drv->bdrv_refresh_limits) { 208 drv->bdrv_refresh_limits(bs, errp); 209 if (*errp) { 210 return; 211 } 212 } 213 214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 215 error_setg(errp, "Driver requires too large request alignment"); 216 } 217 } 218 219 /** 220 * The copy-on-read flag is actually a reference count so multiple users may 221 * use the feature without worrying about clobbering its previous state. 222 * Copy-on-read stays enabled until all users have called to disable it. 223 */ 224 void bdrv_enable_copy_on_read(BlockDriverState *bs) 225 { 226 IO_CODE(); 227 qatomic_inc(&bs->copy_on_read); 228 } 229 230 void bdrv_disable_copy_on_read(BlockDriverState *bs) 231 { 232 int old = qatomic_fetch_dec(&bs->copy_on_read); 233 IO_CODE(); 234 assert(old >= 1); 235 } 236 237 typedef struct { 238 Coroutine *co; 239 BlockDriverState *bs; 240 bool done; 241 bool begin; 242 bool poll; 243 BdrvChild *parent; 244 } BdrvCoDrainData; 245 246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 248 bool ignore_bds_parents) 249 { 250 GLOBAL_STATE_CODE(); 251 252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 253 return true; 254 } 255 256 if (qatomic_read(&bs->in_flight)) { 257 return true; 258 } 259 260 return false; 261 } 262 263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 264 BdrvChild *ignore_parent) 265 { 266 return bdrv_drain_poll(bs, ignore_parent, false); 267 } 268 269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 270 bool poll); 271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 272 273 static void bdrv_co_drain_bh_cb(void *opaque) 274 { 275 BdrvCoDrainData *data = opaque; 276 Coroutine *co = data->co; 277 BlockDriverState *bs = data->bs; 278 279 if (bs) { 280 AioContext *ctx = bdrv_get_aio_context(bs); 281 aio_context_acquire(ctx); 282 bdrv_dec_in_flight(bs); 283 if (data->begin) { 284 bdrv_do_drained_begin(bs, data->parent, data->poll); 285 } else { 286 assert(!data->poll); 287 bdrv_do_drained_end(bs, data->parent); 288 } 289 aio_context_release(ctx); 290 } else { 291 assert(data->begin); 292 bdrv_drain_all_begin(); 293 } 294 295 data->done = true; 296 aio_co_wake(co); 297 } 298 299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 300 bool begin, 301 BdrvChild *parent, 302 bool poll) 303 { 304 BdrvCoDrainData data; 305 Coroutine *self = qemu_coroutine_self(); 306 AioContext *ctx = bdrv_get_aio_context(bs); 307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 308 309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 310 * other coroutines run if they were queued by aio_co_enter(). */ 311 312 assert(qemu_in_coroutine()); 313 data = (BdrvCoDrainData) { 314 .co = self, 315 .bs = bs, 316 .done = false, 317 .begin = begin, 318 .parent = parent, 319 .poll = poll, 320 }; 321 322 if (bs) { 323 bdrv_inc_in_flight(bs); 324 } 325 326 /* 327 * Temporarily drop the lock across yield or we would get deadlocks. 328 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 329 * 330 * When we yield below, the lock for the current context will be 331 * released, so if this is actually the lock that protects bs, don't drop 332 * it a second time. 333 */ 334 if (ctx != co_ctx) { 335 aio_context_release(ctx); 336 } 337 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 338 bdrv_co_drain_bh_cb, &data); 339 340 qemu_coroutine_yield(); 341 /* If we are resumed from some other event (such as an aio completion or a 342 * timer callback), it is a bug in the caller that should be fixed. */ 343 assert(data.done); 344 345 /* Reaquire the AioContext of bs if we dropped it */ 346 if (ctx != co_ctx) { 347 aio_context_acquire(ctx); 348 } 349 } 350 351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 352 bool poll) 353 { 354 IO_OR_GS_CODE(); 355 356 if (qemu_in_coroutine()) { 357 bdrv_co_yield_to_drain(bs, true, parent, poll); 358 return; 359 } 360 361 GLOBAL_STATE_CODE(); 362 363 /* Stop things in parent-to-child order */ 364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 365 bdrv_parent_drained_begin(bs, parent); 366 if (bs->drv && bs->drv->bdrv_drain_begin) { 367 bs->drv->bdrv_drain_begin(bs); 368 } 369 } 370 371 /* 372 * Wait for drained requests to finish. 373 * 374 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 375 * call is needed so things in this AioContext can make progress even 376 * though we don't return to the main AioContext loop - this automatically 377 * includes other nodes in the same AioContext and therefore all child 378 * nodes. 379 */ 380 if (poll) { 381 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 382 } 383 } 384 385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 386 { 387 bdrv_do_drained_begin(bs, parent, false); 388 } 389 390 void bdrv_drained_begin(BlockDriverState *bs) 391 { 392 IO_OR_GS_CODE(); 393 bdrv_do_drained_begin(bs, NULL, true); 394 } 395 396 /** 397 * This function does not poll, nor must any of its recursively called 398 * functions. 399 */ 400 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 401 { 402 int old_quiesce_counter; 403 404 IO_OR_GS_CODE(); 405 406 if (qemu_in_coroutine()) { 407 bdrv_co_yield_to_drain(bs, false, parent, false); 408 return; 409 } 410 assert(bs->quiesce_counter > 0); 411 GLOBAL_STATE_CODE(); 412 413 /* Re-enable things in child-to-parent order */ 414 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 415 if (old_quiesce_counter == 1) { 416 if (bs->drv && bs->drv->bdrv_drain_end) { 417 bs->drv->bdrv_drain_end(bs); 418 } 419 bdrv_parent_drained_end(bs, parent); 420 } 421 } 422 423 void bdrv_drained_end(BlockDriverState *bs) 424 { 425 IO_OR_GS_CODE(); 426 bdrv_do_drained_end(bs, NULL); 427 } 428 429 void bdrv_drain(BlockDriverState *bs) 430 { 431 IO_OR_GS_CODE(); 432 bdrv_drained_begin(bs); 433 bdrv_drained_end(bs); 434 } 435 436 static void bdrv_drain_assert_idle(BlockDriverState *bs) 437 { 438 BdrvChild *child, *next; 439 440 assert(qatomic_read(&bs->in_flight) == 0); 441 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 442 bdrv_drain_assert_idle(child->bs); 443 } 444 } 445 446 unsigned int bdrv_drain_all_count = 0; 447 448 static bool bdrv_drain_all_poll(void) 449 { 450 BlockDriverState *bs = NULL; 451 bool result = false; 452 GLOBAL_STATE_CODE(); 453 454 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 455 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 456 while ((bs = bdrv_next_all_states(bs))) { 457 AioContext *aio_context = bdrv_get_aio_context(bs); 458 aio_context_acquire(aio_context); 459 result |= bdrv_drain_poll(bs, NULL, true); 460 aio_context_release(aio_context); 461 } 462 463 return result; 464 } 465 466 /* 467 * Wait for pending requests to complete across all BlockDriverStates 468 * 469 * This function does not flush data to disk, use bdrv_flush_all() for that 470 * after calling this function. 471 * 472 * This pauses all block jobs and disables external clients. It must 473 * be paired with bdrv_drain_all_end(). 474 * 475 * NOTE: no new block jobs or BlockDriverStates can be created between 476 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 477 */ 478 void bdrv_drain_all_begin_nopoll(void) 479 { 480 BlockDriverState *bs = NULL; 481 GLOBAL_STATE_CODE(); 482 483 /* 484 * bdrv queue is managed by record/replay, 485 * waiting for finishing the I/O requests may 486 * be infinite 487 */ 488 if (replay_events_enabled()) { 489 return; 490 } 491 492 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 493 * loop AioContext, so make sure we're in the main context. */ 494 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 495 assert(bdrv_drain_all_count < INT_MAX); 496 bdrv_drain_all_count++; 497 498 /* Quiesce all nodes, without polling in-flight requests yet. The graph 499 * cannot change during this loop. */ 500 while ((bs = bdrv_next_all_states(bs))) { 501 AioContext *aio_context = bdrv_get_aio_context(bs); 502 503 aio_context_acquire(aio_context); 504 bdrv_do_drained_begin(bs, NULL, false); 505 aio_context_release(aio_context); 506 } 507 } 508 509 void bdrv_drain_all_begin(void) 510 { 511 BlockDriverState *bs = NULL; 512 513 if (qemu_in_coroutine()) { 514 bdrv_co_yield_to_drain(NULL, true, NULL, true); 515 return; 516 } 517 518 /* 519 * bdrv queue is managed by record/replay, 520 * waiting for finishing the I/O requests may 521 * be infinite 522 */ 523 if (replay_events_enabled()) { 524 return; 525 } 526 527 bdrv_drain_all_begin_nopoll(); 528 529 /* Now poll the in-flight requests */ 530 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 531 532 while ((bs = bdrv_next_all_states(bs))) { 533 bdrv_drain_assert_idle(bs); 534 } 535 } 536 537 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 538 { 539 GLOBAL_STATE_CODE(); 540 541 g_assert(bs->quiesce_counter > 0); 542 g_assert(!bs->refcnt); 543 544 while (bs->quiesce_counter) { 545 bdrv_do_drained_end(bs, NULL); 546 } 547 } 548 549 void bdrv_drain_all_end(void) 550 { 551 BlockDriverState *bs = NULL; 552 GLOBAL_STATE_CODE(); 553 554 /* 555 * bdrv queue is managed by record/replay, 556 * waiting for finishing the I/O requests may 557 * be endless 558 */ 559 if (replay_events_enabled()) { 560 return; 561 } 562 563 while ((bs = bdrv_next_all_states(bs))) { 564 AioContext *aio_context = bdrv_get_aio_context(bs); 565 566 aio_context_acquire(aio_context); 567 bdrv_do_drained_end(bs, NULL); 568 aio_context_release(aio_context); 569 } 570 571 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 572 assert(bdrv_drain_all_count > 0); 573 bdrv_drain_all_count--; 574 } 575 576 void bdrv_drain_all(void) 577 { 578 GLOBAL_STATE_CODE(); 579 bdrv_drain_all_begin(); 580 bdrv_drain_all_end(); 581 } 582 583 /** 584 * Remove an active request from the tracked requests list 585 * 586 * This function should be called when a tracked request is completing. 587 */ 588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 589 { 590 if (req->serialising) { 591 qatomic_dec(&req->bs->serialising_in_flight); 592 } 593 594 qemu_co_mutex_lock(&req->bs->reqs_lock); 595 QLIST_REMOVE(req, list); 596 qemu_co_queue_restart_all(&req->wait_queue); 597 qemu_co_mutex_unlock(&req->bs->reqs_lock); 598 } 599 600 /** 601 * Add an active request to the tracked requests list 602 */ 603 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 604 BlockDriverState *bs, 605 int64_t offset, 606 int64_t bytes, 607 enum BdrvTrackedRequestType type) 608 { 609 bdrv_check_request(offset, bytes, &error_abort); 610 611 *req = (BdrvTrackedRequest){ 612 .bs = bs, 613 .offset = offset, 614 .bytes = bytes, 615 .type = type, 616 .co = qemu_coroutine_self(), 617 .serialising = false, 618 .overlap_offset = offset, 619 .overlap_bytes = bytes, 620 }; 621 622 qemu_co_queue_init(&req->wait_queue); 623 624 qemu_co_mutex_lock(&bs->reqs_lock); 625 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 626 qemu_co_mutex_unlock(&bs->reqs_lock); 627 } 628 629 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 630 int64_t offset, int64_t bytes) 631 { 632 bdrv_check_request(offset, bytes, &error_abort); 633 634 /* aaaa bbbb */ 635 if (offset >= req->overlap_offset + req->overlap_bytes) { 636 return false; 637 } 638 /* bbbb aaaa */ 639 if (req->overlap_offset >= offset + bytes) { 640 return false; 641 } 642 return true; 643 } 644 645 /* Called with self->bs->reqs_lock held */ 646 static coroutine_fn BdrvTrackedRequest * 647 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 648 { 649 BdrvTrackedRequest *req; 650 651 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 652 if (req == self || (!req->serialising && !self->serialising)) { 653 continue; 654 } 655 if (tracked_request_overlaps(req, self->overlap_offset, 656 self->overlap_bytes)) 657 { 658 /* 659 * Hitting this means there was a reentrant request, for 660 * example, a block driver issuing nested requests. This must 661 * never happen since it means deadlock. 662 */ 663 assert(qemu_coroutine_self() != req->co); 664 665 /* 666 * If the request is already (indirectly) waiting for us, or 667 * will wait for us as soon as it wakes up, then just go on 668 * (instead of producing a deadlock in the former case). 669 */ 670 if (!req->waiting_for) { 671 return req; 672 } 673 } 674 } 675 676 return NULL; 677 } 678 679 /* Called with self->bs->reqs_lock held */ 680 static void coroutine_fn 681 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 682 { 683 BdrvTrackedRequest *req; 684 685 while ((req = bdrv_find_conflicting_request(self))) { 686 self->waiting_for = req; 687 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 688 self->waiting_for = NULL; 689 } 690 } 691 692 /* Called with req->bs->reqs_lock held */ 693 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 694 uint64_t align) 695 { 696 int64_t overlap_offset = req->offset & ~(align - 1); 697 int64_t overlap_bytes = 698 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 699 700 bdrv_check_request(req->offset, req->bytes, &error_abort); 701 702 if (!req->serialising) { 703 qatomic_inc(&req->bs->serialising_in_flight); 704 req->serialising = true; 705 } 706 707 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 708 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 709 } 710 711 /** 712 * Return the tracked request on @bs for the current coroutine, or 713 * NULL if there is none. 714 */ 715 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 716 { 717 BdrvTrackedRequest *req; 718 Coroutine *self = qemu_coroutine_self(); 719 IO_CODE(); 720 721 QLIST_FOREACH(req, &bs->tracked_requests, list) { 722 if (req->co == self) { 723 return req; 724 } 725 } 726 727 return NULL; 728 } 729 730 /** 731 * Round a region to cluster boundaries 732 */ 733 void coroutine_fn GRAPH_RDLOCK 734 bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 735 int64_t *cluster_offset, int64_t *cluster_bytes) 736 { 737 BlockDriverInfo bdi; 738 IO_CODE(); 739 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 740 *cluster_offset = offset; 741 *cluster_bytes = bytes; 742 } else { 743 int64_t c = bdi.cluster_size; 744 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 745 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 746 } 747 } 748 749 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 750 { 751 BlockDriverInfo bdi; 752 int ret; 753 754 ret = bdrv_co_get_info(bs, &bdi); 755 if (ret < 0 || bdi.cluster_size == 0) { 756 return bs->bl.request_alignment; 757 } else { 758 return bdi.cluster_size; 759 } 760 } 761 762 void bdrv_inc_in_flight(BlockDriverState *bs) 763 { 764 IO_CODE(); 765 qatomic_inc(&bs->in_flight); 766 } 767 768 void bdrv_wakeup(BlockDriverState *bs) 769 { 770 IO_CODE(); 771 aio_wait_kick(); 772 } 773 774 void bdrv_dec_in_flight(BlockDriverState *bs) 775 { 776 IO_CODE(); 777 qatomic_dec(&bs->in_flight); 778 bdrv_wakeup(bs); 779 } 780 781 static void coroutine_fn 782 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 783 { 784 BlockDriverState *bs = self->bs; 785 786 if (!qatomic_read(&bs->serialising_in_flight)) { 787 return; 788 } 789 790 qemu_co_mutex_lock(&bs->reqs_lock); 791 bdrv_wait_serialising_requests_locked(self); 792 qemu_co_mutex_unlock(&bs->reqs_lock); 793 } 794 795 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 796 uint64_t align) 797 { 798 IO_CODE(); 799 800 qemu_co_mutex_lock(&req->bs->reqs_lock); 801 802 tracked_request_set_serialising(req, align); 803 bdrv_wait_serialising_requests_locked(req); 804 805 qemu_co_mutex_unlock(&req->bs->reqs_lock); 806 } 807 808 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 809 QEMUIOVector *qiov, size_t qiov_offset, 810 Error **errp) 811 { 812 /* 813 * Check generic offset/bytes correctness 814 */ 815 816 if (offset < 0) { 817 error_setg(errp, "offset is negative: %" PRIi64, offset); 818 return -EIO; 819 } 820 821 if (bytes < 0) { 822 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 823 return -EIO; 824 } 825 826 if (bytes > BDRV_MAX_LENGTH) { 827 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 828 bytes, BDRV_MAX_LENGTH); 829 return -EIO; 830 } 831 832 if (offset > BDRV_MAX_LENGTH) { 833 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 834 offset, BDRV_MAX_LENGTH); 835 return -EIO; 836 } 837 838 if (offset > BDRV_MAX_LENGTH - bytes) { 839 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 840 "exceeds maximum(%" PRIi64 ")", offset, bytes, 841 BDRV_MAX_LENGTH); 842 return -EIO; 843 } 844 845 if (!qiov) { 846 return 0; 847 } 848 849 /* 850 * Check qiov and qiov_offset 851 */ 852 853 if (qiov_offset > qiov->size) { 854 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 855 qiov_offset, qiov->size); 856 return -EIO; 857 } 858 859 if (bytes > qiov->size - qiov_offset) { 860 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 861 "vector size(%zu)", bytes, qiov_offset, qiov->size); 862 return -EIO; 863 } 864 865 return 0; 866 } 867 868 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 869 { 870 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 871 } 872 873 static int bdrv_check_request32(int64_t offset, int64_t bytes, 874 QEMUIOVector *qiov, size_t qiov_offset) 875 { 876 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 877 if (ret < 0) { 878 return ret; 879 } 880 881 if (bytes > BDRV_REQUEST_MAX_BYTES) { 882 return -EIO; 883 } 884 885 return 0; 886 } 887 888 /* 889 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 890 * The operation is sped up by checking the block status and only writing 891 * zeroes to the device if they currently do not return zeroes. Optional 892 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 893 * BDRV_REQ_FUA). 894 * 895 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 896 */ 897 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 898 { 899 int ret; 900 int64_t target_size, bytes, offset = 0; 901 BlockDriverState *bs = child->bs; 902 IO_CODE(); 903 904 target_size = bdrv_getlength(bs); 905 if (target_size < 0) { 906 return target_size; 907 } 908 909 for (;;) { 910 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 911 if (bytes <= 0) { 912 return 0; 913 } 914 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 915 if (ret < 0) { 916 return ret; 917 } 918 if (ret & BDRV_BLOCK_ZERO) { 919 offset += bytes; 920 continue; 921 } 922 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 923 if (ret < 0) { 924 return ret; 925 } 926 offset += bytes; 927 } 928 } 929 930 /* 931 * Writes to the file and ensures that no writes are reordered across this 932 * request (acts as a barrier) 933 * 934 * Returns 0 on success, -errno in error cases. 935 */ 936 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 937 int64_t bytes, const void *buf, 938 BdrvRequestFlags flags) 939 { 940 int ret; 941 IO_CODE(); 942 assert_bdrv_graph_readable(); 943 944 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 945 if (ret < 0) { 946 return ret; 947 } 948 949 ret = bdrv_co_flush(child->bs); 950 if (ret < 0) { 951 return ret; 952 } 953 954 return 0; 955 } 956 957 typedef struct CoroutineIOCompletion { 958 Coroutine *coroutine; 959 int ret; 960 } CoroutineIOCompletion; 961 962 static void bdrv_co_io_em_complete(void *opaque, int ret) 963 { 964 CoroutineIOCompletion *co = opaque; 965 966 co->ret = ret; 967 aio_co_wake(co->coroutine); 968 } 969 970 static int coroutine_fn GRAPH_RDLOCK 971 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 972 QEMUIOVector *qiov, size_t qiov_offset, int flags) 973 { 974 BlockDriver *drv = bs->drv; 975 int64_t sector_num; 976 unsigned int nb_sectors; 977 QEMUIOVector local_qiov; 978 int ret; 979 assert_bdrv_graph_readable(); 980 981 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 982 assert(!(flags & ~bs->supported_read_flags)); 983 984 if (!drv) { 985 return -ENOMEDIUM; 986 } 987 988 if (drv->bdrv_co_preadv_part) { 989 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 990 flags); 991 } 992 993 if (qiov_offset > 0 || bytes != qiov->size) { 994 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 995 qiov = &local_qiov; 996 } 997 998 if (drv->bdrv_co_preadv) { 999 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1000 goto out; 1001 } 1002 1003 if (drv->bdrv_aio_preadv) { 1004 BlockAIOCB *acb; 1005 CoroutineIOCompletion co = { 1006 .coroutine = qemu_coroutine_self(), 1007 }; 1008 1009 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1010 bdrv_co_io_em_complete, &co); 1011 if (acb == NULL) { 1012 ret = -EIO; 1013 goto out; 1014 } else { 1015 qemu_coroutine_yield(); 1016 ret = co.ret; 1017 goto out; 1018 } 1019 } 1020 1021 sector_num = offset >> BDRV_SECTOR_BITS; 1022 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1023 1024 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1025 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1026 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1027 assert(drv->bdrv_co_readv); 1028 1029 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1030 1031 out: 1032 if (qiov == &local_qiov) { 1033 qemu_iovec_destroy(&local_qiov); 1034 } 1035 1036 return ret; 1037 } 1038 1039 static int coroutine_fn GRAPH_RDLOCK 1040 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1041 QEMUIOVector *qiov, size_t qiov_offset, 1042 BdrvRequestFlags flags) 1043 { 1044 BlockDriver *drv = bs->drv; 1045 bool emulate_fua = false; 1046 int64_t sector_num; 1047 unsigned int nb_sectors; 1048 QEMUIOVector local_qiov; 1049 int ret; 1050 assert_bdrv_graph_readable(); 1051 1052 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1053 1054 if (!drv) { 1055 return -ENOMEDIUM; 1056 } 1057 1058 if ((flags & BDRV_REQ_FUA) && 1059 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1060 flags &= ~BDRV_REQ_FUA; 1061 emulate_fua = true; 1062 } 1063 1064 flags &= bs->supported_write_flags; 1065 1066 if (drv->bdrv_co_pwritev_part) { 1067 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1068 flags); 1069 goto emulate_flags; 1070 } 1071 1072 if (qiov_offset > 0 || bytes != qiov->size) { 1073 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1074 qiov = &local_qiov; 1075 } 1076 1077 if (drv->bdrv_co_pwritev) { 1078 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1079 goto emulate_flags; 1080 } 1081 1082 if (drv->bdrv_aio_pwritev) { 1083 BlockAIOCB *acb; 1084 CoroutineIOCompletion co = { 1085 .coroutine = qemu_coroutine_self(), 1086 }; 1087 1088 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1089 bdrv_co_io_em_complete, &co); 1090 if (acb == NULL) { 1091 ret = -EIO; 1092 } else { 1093 qemu_coroutine_yield(); 1094 ret = co.ret; 1095 } 1096 goto emulate_flags; 1097 } 1098 1099 sector_num = offset >> BDRV_SECTOR_BITS; 1100 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1101 1102 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1103 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1104 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1105 1106 assert(drv->bdrv_co_writev); 1107 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1108 1109 emulate_flags: 1110 if (ret == 0 && emulate_fua) { 1111 ret = bdrv_co_flush(bs); 1112 } 1113 1114 if (qiov == &local_qiov) { 1115 qemu_iovec_destroy(&local_qiov); 1116 } 1117 1118 return ret; 1119 } 1120 1121 static int coroutine_fn GRAPH_RDLOCK 1122 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1123 int64_t bytes, QEMUIOVector *qiov, 1124 size_t qiov_offset) 1125 { 1126 BlockDriver *drv = bs->drv; 1127 QEMUIOVector local_qiov; 1128 int ret; 1129 assert_bdrv_graph_readable(); 1130 1131 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1132 1133 if (!drv) { 1134 return -ENOMEDIUM; 1135 } 1136 1137 if (!block_driver_can_compress(drv)) { 1138 return -ENOTSUP; 1139 } 1140 1141 if (drv->bdrv_co_pwritev_compressed_part) { 1142 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1143 qiov, qiov_offset); 1144 } 1145 1146 if (qiov_offset == 0) { 1147 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1148 } 1149 1150 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1151 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1152 qemu_iovec_destroy(&local_qiov); 1153 1154 return ret; 1155 } 1156 1157 static int coroutine_fn GRAPH_RDLOCK 1158 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1159 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1160 { 1161 BlockDriverState *bs = child->bs; 1162 1163 /* Perform I/O through a temporary buffer so that users who scribble over 1164 * their read buffer while the operation is in progress do not end up 1165 * modifying the image file. This is critical for zero-copy guest I/O 1166 * where anything might happen inside guest memory. 1167 */ 1168 void *bounce_buffer = NULL; 1169 1170 BlockDriver *drv = bs->drv; 1171 int64_t cluster_offset; 1172 int64_t cluster_bytes; 1173 int64_t skip_bytes; 1174 int ret; 1175 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1176 BDRV_REQUEST_MAX_BYTES); 1177 int64_t progress = 0; 1178 bool skip_write; 1179 1180 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1181 1182 if (!drv) { 1183 return -ENOMEDIUM; 1184 } 1185 1186 /* 1187 * Do not write anything when the BDS is inactive. That is not 1188 * allowed, and it would not help. 1189 */ 1190 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1191 1192 /* FIXME We cannot require callers to have write permissions when all they 1193 * are doing is a read request. If we did things right, write permissions 1194 * would be obtained anyway, but internally by the copy-on-read code. As 1195 * long as it is implemented here rather than in a separate filter driver, 1196 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1197 * it could request permissions. Therefore we have to bypass the permission 1198 * system for the moment. */ 1199 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1200 1201 /* Cover entire cluster so no additional backing file I/O is required when 1202 * allocating cluster in the image file. Note that this value may exceed 1203 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1204 * is one reason we loop rather than doing it all at once. 1205 */ 1206 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1207 skip_bytes = offset - cluster_offset; 1208 1209 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1210 cluster_offset, cluster_bytes); 1211 1212 while (cluster_bytes) { 1213 int64_t pnum; 1214 1215 if (skip_write) { 1216 ret = 1; /* "already allocated", so nothing will be copied */ 1217 pnum = MIN(cluster_bytes, max_transfer); 1218 } else { 1219 ret = bdrv_is_allocated(bs, cluster_offset, 1220 MIN(cluster_bytes, max_transfer), &pnum); 1221 if (ret < 0) { 1222 /* 1223 * Safe to treat errors in querying allocation as if 1224 * unallocated; we'll probably fail again soon on the 1225 * read, but at least that will set a decent errno. 1226 */ 1227 pnum = MIN(cluster_bytes, max_transfer); 1228 } 1229 1230 /* Stop at EOF if the image ends in the middle of the cluster */ 1231 if (ret == 0 && pnum == 0) { 1232 assert(progress >= bytes); 1233 break; 1234 } 1235 1236 assert(skip_bytes < pnum); 1237 } 1238 1239 if (ret <= 0) { 1240 QEMUIOVector local_qiov; 1241 1242 /* Must copy-on-read; use the bounce buffer */ 1243 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1244 if (!bounce_buffer) { 1245 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1246 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1247 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1248 1249 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1250 if (!bounce_buffer) { 1251 ret = -ENOMEM; 1252 goto err; 1253 } 1254 } 1255 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1256 1257 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1258 &local_qiov, 0, 0); 1259 if (ret < 0) { 1260 goto err; 1261 } 1262 1263 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1264 if (drv->bdrv_co_pwrite_zeroes && 1265 buffer_is_zero(bounce_buffer, pnum)) { 1266 /* FIXME: Should we (perhaps conditionally) be setting 1267 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1268 * that still correctly reads as zero? */ 1269 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1270 BDRV_REQ_WRITE_UNCHANGED); 1271 } else { 1272 /* This does not change the data on the disk, it is not 1273 * necessary to flush even in cache=writethrough mode. 1274 */ 1275 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1276 &local_qiov, 0, 1277 BDRV_REQ_WRITE_UNCHANGED); 1278 } 1279 1280 if (ret < 0) { 1281 /* It might be okay to ignore write errors for guest 1282 * requests. If this is a deliberate copy-on-read 1283 * then we don't want to ignore the error. Simply 1284 * report it in all cases. 1285 */ 1286 goto err; 1287 } 1288 1289 if (!(flags & BDRV_REQ_PREFETCH)) { 1290 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1291 bounce_buffer + skip_bytes, 1292 MIN(pnum - skip_bytes, bytes - progress)); 1293 } 1294 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1295 /* Read directly into the destination */ 1296 ret = bdrv_driver_preadv(bs, offset + progress, 1297 MIN(pnum - skip_bytes, bytes - progress), 1298 qiov, qiov_offset + progress, 0); 1299 if (ret < 0) { 1300 goto err; 1301 } 1302 } 1303 1304 cluster_offset += pnum; 1305 cluster_bytes -= pnum; 1306 progress += pnum - skip_bytes; 1307 skip_bytes = 0; 1308 } 1309 ret = 0; 1310 1311 err: 1312 qemu_vfree(bounce_buffer); 1313 return ret; 1314 } 1315 1316 /* 1317 * Forwards an already correctly aligned request to the BlockDriver. This 1318 * handles copy on read, zeroing after EOF, and fragmentation of large 1319 * reads; any other features must be implemented by the caller. 1320 */ 1321 static int coroutine_fn GRAPH_RDLOCK 1322 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1323 int64_t offset, int64_t bytes, int64_t align, 1324 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1325 { 1326 BlockDriverState *bs = child->bs; 1327 int64_t total_bytes, max_bytes; 1328 int ret = 0; 1329 int64_t bytes_remaining = bytes; 1330 int max_transfer; 1331 1332 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1333 assert(is_power_of_2(align)); 1334 assert((offset & (align - 1)) == 0); 1335 assert((bytes & (align - 1)) == 0); 1336 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1337 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1338 align); 1339 1340 /* 1341 * TODO: We would need a per-BDS .supported_read_flags and 1342 * potential fallback support, if we ever implement any read flags 1343 * to pass through to drivers. For now, there aren't any 1344 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1345 */ 1346 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1347 BDRV_REQ_REGISTERED_BUF))); 1348 1349 /* Handle Copy on Read and associated serialisation */ 1350 if (flags & BDRV_REQ_COPY_ON_READ) { 1351 /* If we touch the same cluster it counts as an overlap. This 1352 * guarantees that allocating writes will be serialized and not race 1353 * with each other for the same cluster. For example, in copy-on-read 1354 * it ensures that the CoR read and write operations are atomic and 1355 * guest writes cannot interleave between them. */ 1356 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1357 } else { 1358 bdrv_wait_serialising_requests(req); 1359 } 1360 1361 if (flags & BDRV_REQ_COPY_ON_READ) { 1362 int64_t pnum; 1363 1364 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1365 flags &= ~BDRV_REQ_COPY_ON_READ; 1366 1367 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1368 if (ret < 0) { 1369 goto out; 1370 } 1371 1372 if (!ret || pnum != bytes) { 1373 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1374 qiov, qiov_offset, flags); 1375 goto out; 1376 } else if (flags & BDRV_REQ_PREFETCH) { 1377 goto out; 1378 } 1379 } 1380 1381 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1382 total_bytes = bdrv_co_getlength(bs); 1383 if (total_bytes < 0) { 1384 ret = total_bytes; 1385 goto out; 1386 } 1387 1388 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1389 1390 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1391 if (bytes <= max_bytes && bytes <= max_transfer) { 1392 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1393 goto out; 1394 } 1395 1396 while (bytes_remaining) { 1397 int64_t num; 1398 1399 if (max_bytes) { 1400 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1401 assert(num); 1402 1403 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1404 num, qiov, 1405 qiov_offset + bytes - bytes_remaining, 1406 flags); 1407 max_bytes -= num; 1408 } else { 1409 num = bytes_remaining; 1410 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1411 0, bytes_remaining); 1412 } 1413 if (ret < 0) { 1414 goto out; 1415 } 1416 bytes_remaining -= num; 1417 } 1418 1419 out: 1420 return ret < 0 ? ret : 0; 1421 } 1422 1423 /* 1424 * Request padding 1425 * 1426 * |<---- align ----->| |<----- align ---->| 1427 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1428 * | | | | | | 1429 * -*----------$-------*-------- ... --------*-----$------------*--- 1430 * | | | | | | 1431 * | offset | | end | 1432 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1433 * [buf ... ) [tail_buf ) 1434 * 1435 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1436 * is placed at the beginning of @buf and @tail at the @end. 1437 * 1438 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1439 * around tail, if tail exists. 1440 * 1441 * @merge_reads is true for small requests, 1442 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1443 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1444 * 1445 * @write is true for write requests, false for read requests. 1446 * 1447 * If padding makes the vector too long (exceeding IOV_MAX), then we need to 1448 * merge existing vector elements into a single one. @collapse_bounce_buf acts 1449 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse 1450 * I/O vector elements so for read requests, the data can be copied back after 1451 * the read is done. 1452 */ 1453 typedef struct BdrvRequestPadding { 1454 uint8_t *buf; 1455 size_t buf_len; 1456 uint8_t *tail_buf; 1457 size_t head; 1458 size_t tail; 1459 bool merge_reads; 1460 bool write; 1461 QEMUIOVector local_qiov; 1462 1463 uint8_t *collapse_bounce_buf; 1464 size_t collapse_len; 1465 QEMUIOVector pre_collapse_qiov; 1466 } BdrvRequestPadding; 1467 1468 static bool bdrv_init_padding(BlockDriverState *bs, 1469 int64_t offset, int64_t bytes, 1470 bool write, 1471 BdrvRequestPadding *pad) 1472 { 1473 int64_t align = bs->bl.request_alignment; 1474 int64_t sum; 1475 1476 bdrv_check_request(offset, bytes, &error_abort); 1477 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1478 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1479 1480 memset(pad, 0, sizeof(*pad)); 1481 1482 pad->head = offset & (align - 1); 1483 pad->tail = ((offset + bytes) & (align - 1)); 1484 if (pad->tail) { 1485 pad->tail = align - pad->tail; 1486 } 1487 1488 if (!pad->head && !pad->tail) { 1489 return false; 1490 } 1491 1492 assert(bytes); /* Nothing good in aligning zero-length requests */ 1493 1494 sum = pad->head + bytes + pad->tail; 1495 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1496 pad->buf = qemu_blockalign(bs, pad->buf_len); 1497 pad->merge_reads = sum == pad->buf_len; 1498 if (pad->tail) { 1499 pad->tail_buf = pad->buf + pad->buf_len - align; 1500 } 1501 1502 pad->write = write; 1503 1504 return true; 1505 } 1506 1507 static int coroutine_fn GRAPH_RDLOCK 1508 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1509 BdrvRequestPadding *pad, bool zero_middle) 1510 { 1511 QEMUIOVector local_qiov; 1512 BlockDriverState *bs = child->bs; 1513 uint64_t align = bs->bl.request_alignment; 1514 int ret; 1515 1516 assert(req->serialising && pad->buf); 1517 1518 if (pad->head || pad->merge_reads) { 1519 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1520 1521 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1522 1523 if (pad->head) { 1524 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1525 } 1526 if (pad->merge_reads && pad->tail) { 1527 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1528 } 1529 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1530 align, &local_qiov, 0, 0); 1531 if (ret < 0) { 1532 return ret; 1533 } 1534 if (pad->head) { 1535 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1536 } 1537 if (pad->merge_reads && pad->tail) { 1538 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1539 } 1540 1541 if (pad->merge_reads) { 1542 goto zero_mem; 1543 } 1544 } 1545 1546 if (pad->tail) { 1547 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1548 1549 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1550 ret = bdrv_aligned_preadv( 1551 child, req, 1552 req->overlap_offset + req->overlap_bytes - align, 1553 align, align, &local_qiov, 0, 0); 1554 if (ret < 0) { 1555 return ret; 1556 } 1557 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1558 } 1559 1560 zero_mem: 1561 if (zero_middle) { 1562 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1563 } 1564 1565 return 0; 1566 } 1567 1568 /** 1569 * Free *pad's associated buffers, and perform any necessary finalization steps. 1570 */ 1571 static void bdrv_padding_finalize(BdrvRequestPadding *pad) 1572 { 1573 if (pad->collapse_bounce_buf) { 1574 if (!pad->write) { 1575 /* 1576 * If padding required elements in the vector to be collapsed into a 1577 * bounce buffer, copy the bounce buffer content back 1578 */ 1579 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0, 1580 pad->collapse_bounce_buf, pad->collapse_len); 1581 } 1582 qemu_vfree(pad->collapse_bounce_buf); 1583 qemu_iovec_destroy(&pad->pre_collapse_qiov); 1584 } 1585 if (pad->buf) { 1586 qemu_vfree(pad->buf); 1587 qemu_iovec_destroy(&pad->local_qiov); 1588 } 1589 memset(pad, 0, sizeof(*pad)); 1590 } 1591 1592 /* 1593 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while 1594 * ensuring that the resulting vector will not exceed IOV_MAX elements. 1595 * 1596 * To ensure this, when necessary, the first two or three elements of @iov are 1597 * merged into pad->collapse_bounce_buf and replaced by a reference to that 1598 * bounce buffer in pad->local_qiov. 1599 * 1600 * After performing a read request, the data from the bounce buffer must be 1601 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()). 1602 */ 1603 static int bdrv_create_padded_qiov(BlockDriverState *bs, 1604 BdrvRequestPadding *pad, 1605 struct iovec *iov, int niov, 1606 size_t iov_offset, size_t bytes) 1607 { 1608 int padded_niov, surplus_count, collapse_count; 1609 1610 /* Assert this invariant */ 1611 assert(niov <= IOV_MAX); 1612 1613 /* 1614 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error 1615 * to the guest is not ideal, but there is little else we can do. At least 1616 * this will practically never happen on 64-bit systems. 1617 */ 1618 if (SIZE_MAX - pad->head < bytes || 1619 SIZE_MAX - pad->head - bytes < pad->tail) 1620 { 1621 return -EINVAL; 1622 } 1623 1624 /* Length of the resulting IOV if we just concatenated everything */ 1625 padded_niov = !!pad->head + niov + !!pad->tail; 1626 1627 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX)); 1628 1629 if (pad->head) { 1630 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head); 1631 } 1632 1633 /* 1634 * If padded_niov > IOV_MAX, we cannot just concatenate everything. 1635 * Instead, merge the first two or three elements of @iov to reduce the 1636 * number of vector elements as necessary. 1637 */ 1638 if (padded_niov > IOV_MAX) { 1639 /* 1640 * Only head and tail can have lead to the number of entries exceeding 1641 * IOV_MAX, so we can exceed it by the head and tail at most. We need 1642 * to reduce the number of elements by `surplus_count`, so we merge that 1643 * many elements plus one into one element. 1644 */ 1645 surplus_count = padded_niov - IOV_MAX; 1646 assert(surplus_count <= !!pad->head + !!pad->tail); 1647 collapse_count = surplus_count + 1; 1648 1649 /* 1650 * Move the elements to collapse into `pad->pre_collapse_qiov`, then 1651 * advance `iov` (and associated variables) by those elements. 1652 */ 1653 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count); 1654 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov, 1655 collapse_count, iov_offset, SIZE_MAX); 1656 iov += collapse_count; 1657 iov_offset = 0; 1658 niov -= collapse_count; 1659 bytes -= pad->pre_collapse_qiov.size; 1660 1661 /* 1662 * Construct the bounce buffer to match the length of the to-collapse 1663 * vector elements, and for write requests, initialize it with the data 1664 * from those elements. Then add it to `pad->local_qiov`. 1665 */ 1666 pad->collapse_len = pad->pre_collapse_qiov.size; 1667 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len); 1668 if (pad->write) { 1669 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0, 1670 pad->collapse_bounce_buf, pad->collapse_len); 1671 } 1672 qemu_iovec_add(&pad->local_qiov, 1673 pad->collapse_bounce_buf, pad->collapse_len); 1674 } 1675 1676 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes); 1677 1678 if (pad->tail) { 1679 qemu_iovec_add(&pad->local_qiov, 1680 pad->buf + pad->buf_len - pad->tail, pad->tail); 1681 } 1682 1683 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX)); 1684 return 0; 1685 } 1686 1687 /* 1688 * bdrv_pad_request 1689 * 1690 * Exchange request parameters with padded request if needed. Don't include RMW 1691 * read of padding, bdrv_padding_rmw_read() should be called separately if 1692 * needed. 1693 * 1694 * @write is true for write requests, false for read requests. 1695 * 1696 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1697 * - on function start they represent original request 1698 * - on failure or when padding is not needed they are unchanged 1699 * - on success when padding is needed they represent padded request 1700 */ 1701 static int bdrv_pad_request(BlockDriverState *bs, 1702 QEMUIOVector **qiov, size_t *qiov_offset, 1703 int64_t *offset, int64_t *bytes, 1704 bool write, 1705 BdrvRequestPadding *pad, bool *padded, 1706 BdrvRequestFlags *flags) 1707 { 1708 int ret; 1709 struct iovec *sliced_iov; 1710 int sliced_niov; 1711 size_t sliced_head, sliced_tail; 1712 1713 /* Should have been checked by the caller already */ 1714 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset); 1715 if (ret < 0) { 1716 return ret; 1717 } 1718 1719 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) { 1720 if (padded) { 1721 *padded = false; 1722 } 1723 return 0; 1724 } 1725 1726 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes, 1727 &sliced_head, &sliced_tail, 1728 &sliced_niov); 1729 1730 /* Guaranteed by bdrv_check_request32() */ 1731 assert(*bytes <= SIZE_MAX); 1732 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov, 1733 sliced_head, *bytes); 1734 if (ret < 0) { 1735 bdrv_padding_finalize(pad); 1736 return ret; 1737 } 1738 *bytes += pad->head + pad->tail; 1739 *offset -= pad->head; 1740 *qiov = &pad->local_qiov; 1741 *qiov_offset = 0; 1742 if (padded) { 1743 *padded = true; 1744 } 1745 if (flags) { 1746 /* Can't use optimization hint with bounce buffer */ 1747 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1748 } 1749 1750 return 0; 1751 } 1752 1753 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1754 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1755 BdrvRequestFlags flags) 1756 { 1757 IO_CODE(); 1758 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1759 } 1760 1761 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1762 int64_t offset, int64_t bytes, 1763 QEMUIOVector *qiov, size_t qiov_offset, 1764 BdrvRequestFlags flags) 1765 { 1766 BlockDriverState *bs = child->bs; 1767 BdrvTrackedRequest req; 1768 BdrvRequestPadding pad; 1769 int ret; 1770 IO_CODE(); 1771 1772 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1773 1774 if (!bdrv_co_is_inserted(bs)) { 1775 return -ENOMEDIUM; 1776 } 1777 1778 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1779 if (ret < 0) { 1780 return ret; 1781 } 1782 1783 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1784 /* 1785 * Aligning zero request is nonsense. Even if driver has special meaning 1786 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1787 * it to driver due to request_alignment. 1788 * 1789 * Still, no reason to return an error if someone do unaligned 1790 * zero-length read occasionally. 1791 */ 1792 return 0; 1793 } 1794 1795 bdrv_inc_in_flight(bs); 1796 1797 /* Don't do copy-on-read if we read data before write operation */ 1798 if (qatomic_read(&bs->copy_on_read)) { 1799 flags |= BDRV_REQ_COPY_ON_READ; 1800 } 1801 1802 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false, 1803 &pad, NULL, &flags); 1804 if (ret < 0) { 1805 goto fail; 1806 } 1807 1808 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1809 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1810 bs->bl.request_alignment, 1811 qiov, qiov_offset, flags); 1812 tracked_request_end(&req); 1813 bdrv_padding_finalize(&pad); 1814 1815 fail: 1816 bdrv_dec_in_flight(bs); 1817 1818 return ret; 1819 } 1820 1821 static int coroutine_fn GRAPH_RDLOCK 1822 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1823 BdrvRequestFlags flags) 1824 { 1825 BlockDriver *drv = bs->drv; 1826 QEMUIOVector qiov; 1827 void *buf = NULL; 1828 int ret = 0; 1829 bool need_flush = false; 1830 int head = 0; 1831 int tail = 0; 1832 1833 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1834 INT64_MAX); 1835 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1836 bs->bl.request_alignment); 1837 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1838 1839 assert_bdrv_graph_readable(); 1840 bdrv_check_request(offset, bytes, &error_abort); 1841 1842 if (!drv) { 1843 return -ENOMEDIUM; 1844 } 1845 1846 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1847 return -ENOTSUP; 1848 } 1849 1850 /* By definition there is no user buffer so this flag doesn't make sense */ 1851 if (flags & BDRV_REQ_REGISTERED_BUF) { 1852 return -EINVAL; 1853 } 1854 1855 /* Invalidate the cached block-status data range if this write overlaps */ 1856 bdrv_bsc_invalidate_range(bs, offset, bytes); 1857 1858 assert(alignment % bs->bl.request_alignment == 0); 1859 head = offset % alignment; 1860 tail = (offset + bytes) % alignment; 1861 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1862 assert(max_write_zeroes >= bs->bl.request_alignment); 1863 1864 while (bytes > 0 && !ret) { 1865 int64_t num = bytes; 1866 1867 /* Align request. Block drivers can expect the "bulk" of the request 1868 * to be aligned, and that unaligned requests do not cross cluster 1869 * boundaries. 1870 */ 1871 if (head) { 1872 /* Make a small request up to the first aligned sector. For 1873 * convenience, limit this request to max_transfer even if 1874 * we don't need to fall back to writes. */ 1875 num = MIN(MIN(bytes, max_transfer), alignment - head); 1876 head = (head + num) % alignment; 1877 assert(num < max_write_zeroes); 1878 } else if (tail && num > alignment) { 1879 /* Shorten the request to the last aligned sector. */ 1880 num -= tail; 1881 } 1882 1883 /* limit request size */ 1884 if (num > max_write_zeroes) { 1885 num = max_write_zeroes; 1886 } 1887 1888 ret = -ENOTSUP; 1889 /* First try the efficient write zeroes operation */ 1890 if (drv->bdrv_co_pwrite_zeroes) { 1891 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1892 flags & bs->supported_zero_flags); 1893 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1894 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1895 need_flush = true; 1896 } 1897 } else { 1898 assert(!bs->supported_zero_flags); 1899 } 1900 1901 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1902 /* Fall back to bounce buffer if write zeroes is unsupported */ 1903 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1904 1905 if ((flags & BDRV_REQ_FUA) && 1906 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1907 /* No need for bdrv_driver_pwrite() to do a fallback 1908 * flush on each chunk; use just one at the end */ 1909 write_flags &= ~BDRV_REQ_FUA; 1910 need_flush = true; 1911 } 1912 num = MIN(num, max_transfer); 1913 if (buf == NULL) { 1914 buf = qemu_try_blockalign0(bs, num); 1915 if (buf == NULL) { 1916 ret = -ENOMEM; 1917 goto fail; 1918 } 1919 } 1920 qemu_iovec_init_buf(&qiov, buf, num); 1921 1922 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1923 1924 /* Keep bounce buffer around if it is big enough for all 1925 * all future requests. 1926 */ 1927 if (num < max_transfer) { 1928 qemu_vfree(buf); 1929 buf = NULL; 1930 } 1931 } 1932 1933 offset += num; 1934 bytes -= num; 1935 } 1936 1937 fail: 1938 if (ret == 0 && need_flush) { 1939 ret = bdrv_co_flush(bs); 1940 } 1941 qemu_vfree(buf); 1942 return ret; 1943 } 1944 1945 static inline int coroutine_fn GRAPH_RDLOCK 1946 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1947 BdrvTrackedRequest *req, int flags) 1948 { 1949 BlockDriverState *bs = child->bs; 1950 1951 bdrv_check_request(offset, bytes, &error_abort); 1952 1953 if (bdrv_is_read_only(bs)) { 1954 return -EPERM; 1955 } 1956 1957 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1958 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1959 assert(!(flags & ~BDRV_REQ_MASK)); 1960 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1961 1962 if (flags & BDRV_REQ_SERIALISING) { 1963 QEMU_LOCK_GUARD(&bs->reqs_lock); 1964 1965 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1966 1967 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1968 return -EBUSY; 1969 } 1970 1971 bdrv_wait_serialising_requests_locked(req); 1972 } else { 1973 bdrv_wait_serialising_requests(req); 1974 } 1975 1976 assert(req->overlap_offset <= offset); 1977 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1978 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1979 child->perm & BLK_PERM_RESIZE); 1980 1981 switch (req->type) { 1982 case BDRV_TRACKED_WRITE: 1983 case BDRV_TRACKED_DISCARD: 1984 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1985 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1986 } else { 1987 assert(child->perm & BLK_PERM_WRITE); 1988 } 1989 bdrv_write_threshold_check_write(bs, offset, bytes); 1990 return 0; 1991 case BDRV_TRACKED_TRUNCATE: 1992 assert(child->perm & BLK_PERM_RESIZE); 1993 return 0; 1994 default: 1995 abort(); 1996 } 1997 } 1998 1999 static inline void coroutine_fn 2000 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2001 BdrvTrackedRequest *req, int ret) 2002 { 2003 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2004 BlockDriverState *bs = child->bs; 2005 2006 bdrv_check_request(offset, bytes, &error_abort); 2007 2008 qatomic_inc(&bs->write_gen); 2009 2010 /* 2011 * Discard cannot extend the image, but in error handling cases, such as 2012 * when reverting a qcow2 cluster allocation, the discarded range can pass 2013 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2014 * here. Instead, just skip it, since semantically a discard request 2015 * beyond EOF cannot expand the image anyway. 2016 */ 2017 if (ret == 0 && 2018 (req->type == BDRV_TRACKED_TRUNCATE || 2019 end_sector > bs->total_sectors) && 2020 req->type != BDRV_TRACKED_DISCARD) { 2021 bs->total_sectors = end_sector; 2022 bdrv_parent_cb_resize(bs); 2023 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2024 } 2025 if (req->bytes) { 2026 switch (req->type) { 2027 case BDRV_TRACKED_WRITE: 2028 stat64_max(&bs->wr_highest_offset, offset + bytes); 2029 /* fall through, to set dirty bits */ 2030 case BDRV_TRACKED_DISCARD: 2031 bdrv_set_dirty(bs, offset, bytes); 2032 break; 2033 default: 2034 break; 2035 } 2036 } 2037 } 2038 2039 /* 2040 * Forwards an already correctly aligned write request to the BlockDriver, 2041 * after possibly fragmenting it. 2042 */ 2043 static int coroutine_fn GRAPH_RDLOCK 2044 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 2045 int64_t offset, int64_t bytes, int64_t align, 2046 QEMUIOVector *qiov, size_t qiov_offset, 2047 BdrvRequestFlags flags) 2048 { 2049 BlockDriverState *bs = child->bs; 2050 BlockDriver *drv = bs->drv; 2051 int ret; 2052 2053 int64_t bytes_remaining = bytes; 2054 int max_transfer; 2055 2056 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2057 2058 if (!drv) { 2059 return -ENOMEDIUM; 2060 } 2061 2062 if (bdrv_has_readonly_bitmaps(bs)) { 2063 return -EPERM; 2064 } 2065 2066 assert(is_power_of_2(align)); 2067 assert((offset & (align - 1)) == 0); 2068 assert((bytes & (align - 1)) == 0); 2069 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2070 align); 2071 2072 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2073 2074 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2075 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2076 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2077 flags |= BDRV_REQ_ZERO_WRITE; 2078 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2079 flags |= BDRV_REQ_MAY_UNMAP; 2080 } 2081 2082 /* Can't use optimization hint with bufferless zero write */ 2083 flags &= ~BDRV_REQ_REGISTERED_BUF; 2084 } 2085 2086 if (ret < 0) { 2087 /* Do nothing, write notifier decided to fail this request */ 2088 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2089 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2090 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2091 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2092 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2093 qiov, qiov_offset); 2094 } else if (bytes <= max_transfer) { 2095 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2096 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2097 } else { 2098 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2099 while (bytes_remaining) { 2100 int num = MIN(bytes_remaining, max_transfer); 2101 int local_flags = flags; 2102 2103 assert(num); 2104 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2105 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2106 /* If FUA is going to be emulated by flush, we only 2107 * need to flush on the last iteration */ 2108 local_flags &= ~BDRV_REQ_FUA; 2109 } 2110 2111 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2112 num, qiov, 2113 qiov_offset + bytes - bytes_remaining, 2114 local_flags); 2115 if (ret < 0) { 2116 break; 2117 } 2118 bytes_remaining -= num; 2119 } 2120 } 2121 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 2122 2123 if (ret >= 0) { 2124 ret = 0; 2125 } 2126 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2127 2128 return ret; 2129 } 2130 2131 static int coroutine_fn GRAPH_RDLOCK 2132 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 2133 BdrvRequestFlags flags, BdrvTrackedRequest *req) 2134 { 2135 BlockDriverState *bs = child->bs; 2136 QEMUIOVector local_qiov; 2137 uint64_t align = bs->bl.request_alignment; 2138 int ret = 0; 2139 bool padding; 2140 BdrvRequestPadding pad; 2141 2142 /* This flag doesn't make sense for padding or zero writes */ 2143 flags &= ~BDRV_REQ_REGISTERED_BUF; 2144 2145 padding = bdrv_init_padding(bs, offset, bytes, true, &pad); 2146 if (padding) { 2147 assert(!(flags & BDRV_REQ_NO_WAIT)); 2148 bdrv_make_request_serialising(req, align); 2149 2150 bdrv_padding_rmw_read(child, req, &pad, true); 2151 2152 if (pad.head || pad.merge_reads) { 2153 int64_t aligned_offset = offset & ~(align - 1); 2154 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2155 2156 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2157 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2158 align, &local_qiov, 0, 2159 flags & ~BDRV_REQ_ZERO_WRITE); 2160 if (ret < 0 || pad.merge_reads) { 2161 /* Error or all work is done */ 2162 goto out; 2163 } 2164 offset += write_bytes - pad.head; 2165 bytes -= write_bytes - pad.head; 2166 } 2167 } 2168 2169 assert(!bytes || (offset & (align - 1)) == 0); 2170 if (bytes >= align) { 2171 /* Write the aligned part in the middle. */ 2172 int64_t aligned_bytes = bytes & ~(align - 1); 2173 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2174 NULL, 0, flags); 2175 if (ret < 0) { 2176 goto out; 2177 } 2178 bytes -= aligned_bytes; 2179 offset += aligned_bytes; 2180 } 2181 2182 assert(!bytes || (offset & (align - 1)) == 0); 2183 if (bytes) { 2184 assert(align == pad.tail + bytes); 2185 2186 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2187 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2188 &local_qiov, 0, 2189 flags & ~BDRV_REQ_ZERO_WRITE); 2190 } 2191 2192 out: 2193 bdrv_padding_finalize(&pad); 2194 2195 return ret; 2196 } 2197 2198 /* 2199 * Handle a write request in coroutine context 2200 */ 2201 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2202 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2203 BdrvRequestFlags flags) 2204 { 2205 IO_CODE(); 2206 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2207 } 2208 2209 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2210 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2211 BdrvRequestFlags flags) 2212 { 2213 BlockDriverState *bs = child->bs; 2214 BdrvTrackedRequest req; 2215 uint64_t align = bs->bl.request_alignment; 2216 BdrvRequestPadding pad; 2217 int ret; 2218 bool padded = false; 2219 IO_CODE(); 2220 2221 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2222 2223 if (!bdrv_co_is_inserted(bs)) { 2224 return -ENOMEDIUM; 2225 } 2226 2227 if (flags & BDRV_REQ_ZERO_WRITE) { 2228 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2229 } else { 2230 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2231 } 2232 if (ret < 0) { 2233 return ret; 2234 } 2235 2236 /* If the request is misaligned then we can't make it efficient */ 2237 if ((flags & BDRV_REQ_NO_FALLBACK) && 2238 !QEMU_IS_ALIGNED(offset | bytes, align)) 2239 { 2240 return -ENOTSUP; 2241 } 2242 2243 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2244 /* 2245 * Aligning zero request is nonsense. Even if driver has special meaning 2246 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2247 * it to driver due to request_alignment. 2248 * 2249 * Still, no reason to return an error if someone do unaligned 2250 * zero-length write occasionally. 2251 */ 2252 return 0; 2253 } 2254 2255 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2256 /* 2257 * Pad request for following read-modify-write cycle. 2258 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2259 * alignment only if there is no ZERO flag. 2260 */ 2261 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true, 2262 &pad, &padded, &flags); 2263 if (ret < 0) { 2264 return ret; 2265 } 2266 } 2267 2268 bdrv_inc_in_flight(bs); 2269 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2270 2271 if (flags & BDRV_REQ_ZERO_WRITE) { 2272 assert(!padded); 2273 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2274 goto out; 2275 } 2276 2277 if (padded) { 2278 /* 2279 * Request was unaligned to request_alignment and therefore 2280 * padded. We are going to do read-modify-write, and must 2281 * serialize the request to prevent interactions of the 2282 * widened region with other transactions. 2283 */ 2284 assert(!(flags & BDRV_REQ_NO_WAIT)); 2285 bdrv_make_request_serialising(&req, align); 2286 bdrv_padding_rmw_read(child, &req, &pad, false); 2287 } 2288 2289 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2290 qiov, qiov_offset, flags); 2291 2292 bdrv_padding_finalize(&pad); 2293 2294 out: 2295 tracked_request_end(&req); 2296 bdrv_dec_in_flight(bs); 2297 2298 return ret; 2299 } 2300 2301 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2302 int64_t bytes, BdrvRequestFlags flags) 2303 { 2304 IO_CODE(); 2305 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2306 assert_bdrv_graph_readable(); 2307 2308 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2309 flags &= ~BDRV_REQ_MAY_UNMAP; 2310 } 2311 2312 return bdrv_co_pwritev(child, offset, bytes, NULL, 2313 BDRV_REQ_ZERO_WRITE | flags); 2314 } 2315 2316 /* 2317 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2318 */ 2319 int bdrv_flush_all(void) 2320 { 2321 BdrvNextIterator it; 2322 BlockDriverState *bs = NULL; 2323 int result = 0; 2324 2325 GLOBAL_STATE_CODE(); 2326 2327 /* 2328 * bdrv queue is managed by record/replay, 2329 * creating new flush request for stopping 2330 * the VM may break the determinism 2331 */ 2332 if (replay_events_enabled()) { 2333 return result; 2334 } 2335 2336 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2337 AioContext *aio_context = bdrv_get_aio_context(bs); 2338 int ret; 2339 2340 aio_context_acquire(aio_context); 2341 ret = bdrv_flush(bs); 2342 if (ret < 0 && !result) { 2343 result = ret; 2344 } 2345 aio_context_release(aio_context); 2346 } 2347 2348 return result; 2349 } 2350 2351 /* 2352 * Returns the allocation status of the specified sectors. 2353 * Drivers not implementing the functionality are assumed to not support 2354 * backing files, hence all their sectors are reported as allocated. 2355 * 2356 * If 'want_zero' is true, the caller is querying for mapping 2357 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2358 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2359 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2360 * 2361 * If 'offset' is beyond the end of the disk image the return value is 2362 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2363 * 2364 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2365 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2366 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2367 * 2368 * 'pnum' is set to the number of bytes (including and immediately 2369 * following the specified offset) that are easily known to be in the 2370 * same allocated/unallocated state. Note that a second call starting 2371 * at the original offset plus returned pnum may have the same status. 2372 * The returned value is non-zero on success except at end-of-file. 2373 * 2374 * Returns negative errno on failure. Otherwise, if the 2375 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2376 * set to the host mapping and BDS corresponding to the guest offset. 2377 */ 2378 static int coroutine_fn GRAPH_RDLOCK 2379 bdrv_co_block_status(BlockDriverState *bs, bool want_zero, 2380 int64_t offset, int64_t bytes, 2381 int64_t *pnum, int64_t *map, BlockDriverState **file) 2382 { 2383 int64_t total_size; 2384 int64_t n; /* bytes */ 2385 int ret; 2386 int64_t local_map = 0; 2387 BlockDriverState *local_file = NULL; 2388 int64_t aligned_offset, aligned_bytes; 2389 uint32_t align; 2390 bool has_filtered_child; 2391 2392 assert(pnum); 2393 assert_bdrv_graph_readable(); 2394 *pnum = 0; 2395 total_size = bdrv_co_getlength(bs); 2396 if (total_size < 0) { 2397 ret = total_size; 2398 goto early_out; 2399 } 2400 2401 if (offset >= total_size) { 2402 ret = BDRV_BLOCK_EOF; 2403 goto early_out; 2404 } 2405 if (!bytes) { 2406 ret = 0; 2407 goto early_out; 2408 } 2409 2410 n = total_size - offset; 2411 if (n < bytes) { 2412 bytes = n; 2413 } 2414 2415 /* Must be non-NULL or bdrv_co_getlength() would have failed */ 2416 assert(bs->drv); 2417 has_filtered_child = bdrv_filter_child(bs); 2418 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2419 *pnum = bytes; 2420 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2421 if (offset + bytes == total_size) { 2422 ret |= BDRV_BLOCK_EOF; 2423 } 2424 if (bs->drv->protocol_name) { 2425 ret |= BDRV_BLOCK_OFFSET_VALID; 2426 local_map = offset; 2427 local_file = bs; 2428 } 2429 goto early_out; 2430 } 2431 2432 bdrv_inc_in_flight(bs); 2433 2434 /* Round out to request_alignment boundaries */ 2435 align = bs->bl.request_alignment; 2436 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2437 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2438 2439 if (bs->drv->bdrv_co_block_status) { 2440 /* 2441 * Use the block-status cache only for protocol nodes: Format 2442 * drivers are generally quick to inquire the status, but protocol 2443 * drivers often need to get information from outside of qemu, so 2444 * we do not have control over the actual implementation. There 2445 * have been cases where inquiring the status took an unreasonably 2446 * long time, and we can do nothing in qemu to fix it. 2447 * This is especially problematic for images with large data areas, 2448 * because finding the few holes in them and giving them special 2449 * treatment does not gain much performance. Therefore, we try to 2450 * cache the last-identified data region. 2451 * 2452 * Second, limiting ourselves to protocol nodes allows us to assume 2453 * the block status for data regions to be DATA | OFFSET_VALID, and 2454 * that the host offset is the same as the guest offset. 2455 * 2456 * Note that it is possible that external writers zero parts of 2457 * the cached regions without the cache being invalidated, and so 2458 * we may report zeroes as data. This is not catastrophic, 2459 * however, because reporting zeroes as data is fine. 2460 */ 2461 if (QLIST_EMPTY(&bs->children) && 2462 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2463 { 2464 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2465 local_file = bs; 2466 local_map = aligned_offset; 2467 } else { 2468 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2469 aligned_bytes, pnum, &local_map, 2470 &local_file); 2471 2472 /* 2473 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2474 * the cache is queried above. Technically, we do not need to check 2475 * it here; the worst that can happen is that we fill the cache for 2476 * non-protocol nodes, and then it is never used. However, filling 2477 * the cache requires an RCU update, so double check here to avoid 2478 * such an update if possible. 2479 * 2480 * Check want_zero, because we only want to update the cache when we 2481 * have accurate information about what is zero and what is data. 2482 */ 2483 if (want_zero && 2484 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2485 QLIST_EMPTY(&bs->children)) 2486 { 2487 /* 2488 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2489 * returned local_map value must be the same as the offset we 2490 * have passed (aligned_offset), and local_bs must be the node 2491 * itself. 2492 * Assert this, because we follow this rule when reading from 2493 * the cache (see the `local_file = bs` and 2494 * `local_map = aligned_offset` assignments above), and the 2495 * result the cache delivers must be the same as the driver 2496 * would deliver. 2497 */ 2498 assert(local_file == bs); 2499 assert(local_map == aligned_offset); 2500 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2501 } 2502 } 2503 } else { 2504 /* Default code for filters */ 2505 2506 local_file = bdrv_filter_bs(bs); 2507 assert(local_file); 2508 2509 *pnum = aligned_bytes; 2510 local_map = aligned_offset; 2511 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2512 } 2513 if (ret < 0) { 2514 *pnum = 0; 2515 goto out; 2516 } 2517 2518 /* 2519 * The driver's result must be a non-zero multiple of request_alignment. 2520 * Clamp pnum and adjust map to original request. 2521 */ 2522 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2523 align > offset - aligned_offset); 2524 if (ret & BDRV_BLOCK_RECURSE) { 2525 assert(ret & BDRV_BLOCK_DATA); 2526 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2527 assert(!(ret & BDRV_BLOCK_ZERO)); 2528 } 2529 2530 *pnum -= offset - aligned_offset; 2531 if (*pnum > bytes) { 2532 *pnum = bytes; 2533 } 2534 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2535 local_map += offset - aligned_offset; 2536 } 2537 2538 if (ret & BDRV_BLOCK_RAW) { 2539 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2540 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2541 *pnum, pnum, &local_map, &local_file); 2542 goto out; 2543 } 2544 2545 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2546 ret |= BDRV_BLOCK_ALLOCATED; 2547 } else if (bs->drv->supports_backing) { 2548 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2549 2550 if (!cow_bs) { 2551 ret |= BDRV_BLOCK_ZERO; 2552 } else if (want_zero) { 2553 int64_t size2 = bdrv_co_getlength(cow_bs); 2554 2555 if (size2 >= 0 && offset >= size2) { 2556 ret |= BDRV_BLOCK_ZERO; 2557 } 2558 } 2559 } 2560 2561 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2562 local_file && local_file != bs && 2563 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2564 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2565 int64_t file_pnum; 2566 int ret2; 2567 2568 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2569 *pnum, &file_pnum, NULL, NULL); 2570 if (ret2 >= 0) { 2571 /* Ignore errors. This is just providing extra information, it 2572 * is useful but not necessary. 2573 */ 2574 if (ret2 & BDRV_BLOCK_EOF && 2575 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2576 /* 2577 * It is valid for the format block driver to read 2578 * beyond the end of the underlying file's current 2579 * size; such areas read as zero. 2580 */ 2581 ret |= BDRV_BLOCK_ZERO; 2582 } else { 2583 /* Limit request to the range reported by the protocol driver */ 2584 *pnum = file_pnum; 2585 ret |= (ret2 & BDRV_BLOCK_ZERO); 2586 } 2587 } 2588 } 2589 2590 out: 2591 bdrv_dec_in_flight(bs); 2592 if (ret >= 0 && offset + *pnum == total_size) { 2593 ret |= BDRV_BLOCK_EOF; 2594 } 2595 early_out: 2596 if (file) { 2597 *file = local_file; 2598 } 2599 if (map) { 2600 *map = local_map; 2601 } 2602 return ret; 2603 } 2604 2605 int coroutine_fn 2606 bdrv_co_common_block_status_above(BlockDriverState *bs, 2607 BlockDriverState *base, 2608 bool include_base, 2609 bool want_zero, 2610 int64_t offset, 2611 int64_t bytes, 2612 int64_t *pnum, 2613 int64_t *map, 2614 BlockDriverState **file, 2615 int *depth) 2616 { 2617 int ret; 2618 BlockDriverState *p; 2619 int64_t eof = 0; 2620 int dummy; 2621 IO_CODE(); 2622 2623 assert(!include_base || base); /* Can't include NULL base */ 2624 assert_bdrv_graph_readable(); 2625 2626 if (!depth) { 2627 depth = &dummy; 2628 } 2629 *depth = 0; 2630 2631 if (!include_base && bs == base) { 2632 *pnum = bytes; 2633 return 0; 2634 } 2635 2636 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2637 ++*depth; 2638 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2639 return ret; 2640 } 2641 2642 if (ret & BDRV_BLOCK_EOF) { 2643 eof = offset + *pnum; 2644 } 2645 2646 assert(*pnum <= bytes); 2647 bytes = *pnum; 2648 2649 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2650 p = bdrv_filter_or_cow_bs(p)) 2651 { 2652 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2653 file); 2654 ++*depth; 2655 if (ret < 0) { 2656 return ret; 2657 } 2658 if (*pnum == 0) { 2659 /* 2660 * The top layer deferred to this layer, and because this layer is 2661 * short, any zeroes that we synthesize beyond EOF behave as if they 2662 * were allocated at this layer. 2663 * 2664 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2665 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2666 * below. 2667 */ 2668 assert(ret & BDRV_BLOCK_EOF); 2669 *pnum = bytes; 2670 if (file) { 2671 *file = p; 2672 } 2673 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2674 break; 2675 } 2676 if (ret & BDRV_BLOCK_ALLOCATED) { 2677 /* 2678 * We've found the node and the status, we must break. 2679 * 2680 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2681 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2682 * below. 2683 */ 2684 ret &= ~BDRV_BLOCK_EOF; 2685 break; 2686 } 2687 2688 if (p == base) { 2689 assert(include_base); 2690 break; 2691 } 2692 2693 /* 2694 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2695 * let's continue the diving. 2696 */ 2697 assert(*pnum <= bytes); 2698 bytes = *pnum; 2699 } 2700 2701 if (offset + *pnum == eof) { 2702 ret |= BDRV_BLOCK_EOF; 2703 } 2704 2705 return ret; 2706 } 2707 2708 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2709 BlockDriverState *base, 2710 int64_t offset, int64_t bytes, 2711 int64_t *pnum, int64_t *map, 2712 BlockDriverState **file) 2713 { 2714 IO_CODE(); 2715 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2716 bytes, pnum, map, file, NULL); 2717 } 2718 2719 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2720 int64_t offset, int64_t bytes, int64_t *pnum, 2721 int64_t *map, BlockDriverState **file) 2722 { 2723 IO_CODE(); 2724 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2725 pnum, map, file, NULL); 2726 } 2727 2728 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2729 int64_t *pnum, int64_t *map, BlockDriverState **file) 2730 { 2731 IO_CODE(); 2732 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2733 offset, bytes, pnum, map, file); 2734 } 2735 2736 /* 2737 * Check @bs (and its backing chain) to see if the range defined 2738 * by @offset and @bytes is known to read as zeroes. 2739 * Return 1 if that is the case, 0 otherwise and -errno on error. 2740 * This test is meant to be fast rather than accurate so returning 0 2741 * does not guarantee non-zero data. 2742 */ 2743 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2744 int64_t bytes) 2745 { 2746 int ret; 2747 int64_t pnum = bytes; 2748 IO_CODE(); 2749 2750 if (!bytes) { 2751 return 1; 2752 } 2753 2754 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2755 bytes, &pnum, NULL, NULL, NULL); 2756 2757 if (ret < 0) { 2758 return ret; 2759 } 2760 2761 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2762 } 2763 2764 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2765 int64_t bytes, int64_t *pnum) 2766 { 2767 int ret; 2768 int64_t dummy; 2769 IO_CODE(); 2770 2771 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2772 bytes, pnum ? pnum : &dummy, NULL, 2773 NULL, NULL); 2774 if (ret < 0) { 2775 return ret; 2776 } 2777 return !!(ret & BDRV_BLOCK_ALLOCATED); 2778 } 2779 2780 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, 2781 int64_t *pnum) 2782 { 2783 int ret; 2784 int64_t dummy; 2785 IO_CODE(); 2786 2787 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2788 bytes, pnum ? pnum : &dummy, NULL, 2789 NULL, NULL); 2790 if (ret < 0) { 2791 return ret; 2792 } 2793 return !!(ret & BDRV_BLOCK_ALLOCATED); 2794 } 2795 2796 /* See bdrv_is_allocated_above for documentation */ 2797 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2798 BlockDriverState *base, 2799 bool include_base, int64_t offset, 2800 int64_t bytes, int64_t *pnum) 2801 { 2802 int depth; 2803 int ret; 2804 IO_CODE(); 2805 2806 ret = bdrv_co_common_block_status_above(top, base, include_base, false, 2807 offset, bytes, pnum, NULL, NULL, 2808 &depth); 2809 if (ret < 0) { 2810 return ret; 2811 } 2812 2813 if (ret & BDRV_BLOCK_ALLOCATED) { 2814 return depth; 2815 } 2816 return 0; 2817 } 2818 2819 /* 2820 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2821 * 2822 * Return a positive depth if (a prefix of) the given range is allocated 2823 * in any image between BASE and TOP (BASE is only included if include_base 2824 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2825 * BASE can be NULL to check if the given offset is allocated in any 2826 * image of the chain. Return 0 otherwise, or negative errno on 2827 * failure. 2828 * 2829 * 'pnum' is set to the number of bytes (including and immediately 2830 * following the specified offset) that are known to be in the same 2831 * allocated/unallocated state. Note that a subsequent call starting 2832 * at 'offset + *pnum' may return the same allocation status (in other 2833 * words, the result is not necessarily the maximum possible range); 2834 * but 'pnum' will only be 0 when end of file is reached. 2835 */ 2836 int bdrv_is_allocated_above(BlockDriverState *top, 2837 BlockDriverState *base, 2838 bool include_base, int64_t offset, 2839 int64_t bytes, int64_t *pnum) 2840 { 2841 int depth; 2842 int ret; 2843 IO_CODE(); 2844 2845 ret = bdrv_common_block_status_above(top, base, include_base, false, 2846 offset, bytes, pnum, NULL, NULL, 2847 &depth); 2848 if (ret < 0) { 2849 return ret; 2850 } 2851 2852 if (ret & BDRV_BLOCK_ALLOCATED) { 2853 return depth; 2854 } 2855 return 0; 2856 } 2857 2858 int coroutine_fn 2859 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2860 { 2861 BlockDriver *drv = bs->drv; 2862 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2863 int ret; 2864 IO_CODE(); 2865 assert_bdrv_graph_readable(); 2866 2867 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2868 if (ret < 0) { 2869 return ret; 2870 } 2871 2872 if (!drv) { 2873 return -ENOMEDIUM; 2874 } 2875 2876 bdrv_inc_in_flight(bs); 2877 2878 if (drv->bdrv_co_load_vmstate) { 2879 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2880 } else if (child_bs) { 2881 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2882 } else { 2883 ret = -ENOTSUP; 2884 } 2885 2886 bdrv_dec_in_flight(bs); 2887 2888 return ret; 2889 } 2890 2891 int coroutine_fn 2892 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2893 { 2894 BlockDriver *drv = bs->drv; 2895 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2896 int ret; 2897 IO_CODE(); 2898 assert_bdrv_graph_readable(); 2899 2900 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2901 if (ret < 0) { 2902 return ret; 2903 } 2904 2905 if (!drv) { 2906 return -ENOMEDIUM; 2907 } 2908 2909 bdrv_inc_in_flight(bs); 2910 2911 if (drv->bdrv_co_save_vmstate) { 2912 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2913 } else if (child_bs) { 2914 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2915 } else { 2916 ret = -ENOTSUP; 2917 } 2918 2919 bdrv_dec_in_flight(bs); 2920 2921 return ret; 2922 } 2923 2924 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2925 int64_t pos, int size) 2926 { 2927 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2928 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2929 IO_CODE(); 2930 2931 return ret < 0 ? ret : size; 2932 } 2933 2934 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2935 int64_t pos, int size) 2936 { 2937 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2938 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2939 IO_CODE(); 2940 2941 return ret < 0 ? ret : size; 2942 } 2943 2944 /**************************************************************/ 2945 /* async I/Os */ 2946 2947 void bdrv_aio_cancel(BlockAIOCB *acb) 2948 { 2949 IO_CODE(); 2950 qemu_aio_ref(acb); 2951 bdrv_aio_cancel_async(acb); 2952 while (acb->refcnt > 1) { 2953 if (acb->aiocb_info->get_aio_context) { 2954 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2955 } else if (acb->bs) { 2956 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2957 * assert that we're not using an I/O thread. Thread-safe 2958 * code should use bdrv_aio_cancel_async exclusively. 2959 */ 2960 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2961 aio_poll(bdrv_get_aio_context(acb->bs), true); 2962 } else { 2963 abort(); 2964 } 2965 } 2966 qemu_aio_unref(acb); 2967 } 2968 2969 /* Async version of aio cancel. The caller is not blocked if the acb implements 2970 * cancel_async, otherwise we do nothing and let the request normally complete. 2971 * In either case the completion callback must be called. */ 2972 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2973 { 2974 IO_CODE(); 2975 if (acb->aiocb_info->cancel_async) { 2976 acb->aiocb_info->cancel_async(acb); 2977 } 2978 } 2979 2980 /**************************************************************/ 2981 /* Coroutine block device emulation */ 2982 2983 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2984 { 2985 BdrvChild *primary_child = bdrv_primary_child(bs); 2986 BdrvChild *child; 2987 int current_gen; 2988 int ret = 0; 2989 IO_CODE(); 2990 2991 assert_bdrv_graph_readable(); 2992 bdrv_inc_in_flight(bs); 2993 2994 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 2995 bdrv_is_sg(bs)) { 2996 goto early_exit; 2997 } 2998 2999 qemu_co_mutex_lock(&bs->reqs_lock); 3000 current_gen = qatomic_read(&bs->write_gen); 3001 3002 /* Wait until any previous flushes are completed */ 3003 while (bs->active_flush_req) { 3004 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 3005 } 3006 3007 /* Flushes reach this point in nondecreasing current_gen order. */ 3008 bs->active_flush_req = true; 3009 qemu_co_mutex_unlock(&bs->reqs_lock); 3010 3011 /* Write back all layers by calling one driver function */ 3012 if (bs->drv->bdrv_co_flush) { 3013 ret = bs->drv->bdrv_co_flush(bs); 3014 goto out; 3015 } 3016 3017 /* Write back cached data to the OS even with cache=unsafe */ 3018 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3019 if (bs->drv->bdrv_co_flush_to_os) { 3020 ret = bs->drv->bdrv_co_flush_to_os(bs); 3021 if (ret < 0) { 3022 goto out; 3023 } 3024 } 3025 3026 /* But don't actually force it to the disk with cache=unsafe */ 3027 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3028 goto flush_children; 3029 } 3030 3031 /* Check if we really need to flush anything */ 3032 if (bs->flushed_gen == current_gen) { 3033 goto flush_children; 3034 } 3035 3036 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3037 if (!bs->drv) { 3038 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3039 * (even in case of apparent success) */ 3040 ret = -ENOMEDIUM; 3041 goto out; 3042 } 3043 if (bs->drv->bdrv_co_flush_to_disk) { 3044 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3045 } else if (bs->drv->bdrv_aio_flush) { 3046 BlockAIOCB *acb; 3047 CoroutineIOCompletion co = { 3048 .coroutine = qemu_coroutine_self(), 3049 }; 3050 3051 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3052 if (acb == NULL) { 3053 ret = -EIO; 3054 } else { 3055 qemu_coroutine_yield(); 3056 ret = co.ret; 3057 } 3058 } else { 3059 /* 3060 * Some block drivers always operate in either writethrough or unsafe 3061 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3062 * know how the server works (because the behaviour is hardcoded or 3063 * depends on server-side configuration), so we can't ensure that 3064 * everything is safe on disk. Returning an error doesn't work because 3065 * that would break guests even if the server operates in writethrough 3066 * mode. 3067 * 3068 * Let's hope the user knows what he's doing. 3069 */ 3070 ret = 0; 3071 } 3072 3073 if (ret < 0) { 3074 goto out; 3075 } 3076 3077 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3078 * in the case of cache=unsafe, so there are no useless flushes. 3079 */ 3080 flush_children: 3081 ret = 0; 3082 QLIST_FOREACH(child, &bs->children, next) { 3083 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3084 int this_child_ret = bdrv_co_flush(child->bs); 3085 if (!ret) { 3086 ret = this_child_ret; 3087 } 3088 } 3089 } 3090 3091 out: 3092 /* Notify any pending flushes that we have completed */ 3093 if (ret == 0) { 3094 bs->flushed_gen = current_gen; 3095 } 3096 3097 qemu_co_mutex_lock(&bs->reqs_lock); 3098 bs->active_flush_req = false; 3099 /* Return value is ignored - it's ok if wait queue is empty */ 3100 qemu_co_queue_next(&bs->flush_queue); 3101 qemu_co_mutex_unlock(&bs->reqs_lock); 3102 3103 early_exit: 3104 bdrv_dec_in_flight(bs); 3105 return ret; 3106 } 3107 3108 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3109 int64_t bytes) 3110 { 3111 BdrvTrackedRequest req; 3112 int ret; 3113 int64_t max_pdiscard; 3114 int head, tail, align; 3115 BlockDriverState *bs = child->bs; 3116 IO_CODE(); 3117 assert_bdrv_graph_readable(); 3118 3119 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 3120 return -ENOMEDIUM; 3121 } 3122 3123 if (bdrv_has_readonly_bitmaps(bs)) { 3124 return -EPERM; 3125 } 3126 3127 ret = bdrv_check_request(offset, bytes, NULL); 3128 if (ret < 0) { 3129 return ret; 3130 } 3131 3132 /* Do nothing if disabled. */ 3133 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3134 return 0; 3135 } 3136 3137 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3138 return 0; 3139 } 3140 3141 /* Invalidate the cached block-status data range if this discard overlaps */ 3142 bdrv_bsc_invalidate_range(bs, offset, bytes); 3143 3144 /* Discard is advisory, but some devices track and coalesce 3145 * unaligned requests, so we must pass everything down rather than 3146 * round here. Still, most devices will just silently ignore 3147 * unaligned requests (by returning -ENOTSUP), so we must fragment 3148 * the request accordingly. */ 3149 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3150 assert(align % bs->bl.request_alignment == 0); 3151 head = offset % align; 3152 tail = (offset + bytes) % align; 3153 3154 bdrv_inc_in_flight(bs); 3155 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3156 3157 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3158 if (ret < 0) { 3159 goto out; 3160 } 3161 3162 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3163 align); 3164 assert(max_pdiscard >= bs->bl.request_alignment); 3165 3166 while (bytes > 0) { 3167 int64_t num = bytes; 3168 3169 if (head) { 3170 /* Make small requests to get to alignment boundaries. */ 3171 num = MIN(bytes, align - head); 3172 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3173 num %= bs->bl.request_alignment; 3174 } 3175 head = (head + num) % align; 3176 assert(num < max_pdiscard); 3177 } else if (tail) { 3178 if (num > align) { 3179 /* Shorten the request to the last aligned cluster. */ 3180 num -= tail; 3181 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3182 tail > bs->bl.request_alignment) { 3183 tail %= bs->bl.request_alignment; 3184 num -= tail; 3185 } 3186 } 3187 /* limit request size */ 3188 if (num > max_pdiscard) { 3189 num = max_pdiscard; 3190 } 3191 3192 if (!bs->drv) { 3193 ret = -ENOMEDIUM; 3194 goto out; 3195 } 3196 if (bs->drv->bdrv_co_pdiscard) { 3197 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3198 } else { 3199 BlockAIOCB *acb; 3200 CoroutineIOCompletion co = { 3201 .coroutine = qemu_coroutine_self(), 3202 }; 3203 3204 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3205 bdrv_co_io_em_complete, &co); 3206 if (acb == NULL) { 3207 ret = -EIO; 3208 goto out; 3209 } else { 3210 qemu_coroutine_yield(); 3211 ret = co.ret; 3212 } 3213 } 3214 if (ret && ret != -ENOTSUP) { 3215 goto out; 3216 } 3217 3218 offset += num; 3219 bytes -= num; 3220 } 3221 ret = 0; 3222 out: 3223 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3224 tracked_request_end(&req); 3225 bdrv_dec_in_flight(bs); 3226 return ret; 3227 } 3228 3229 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3230 { 3231 BlockDriver *drv = bs->drv; 3232 CoroutineIOCompletion co = { 3233 .coroutine = qemu_coroutine_self(), 3234 }; 3235 BlockAIOCB *acb; 3236 IO_CODE(); 3237 assert_bdrv_graph_readable(); 3238 3239 bdrv_inc_in_flight(bs); 3240 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3241 co.ret = -ENOTSUP; 3242 goto out; 3243 } 3244 3245 if (drv->bdrv_co_ioctl) { 3246 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3247 } else { 3248 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3249 if (!acb) { 3250 co.ret = -ENOTSUP; 3251 goto out; 3252 } 3253 qemu_coroutine_yield(); 3254 } 3255 out: 3256 bdrv_dec_in_flight(bs); 3257 return co.ret; 3258 } 3259 3260 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3261 unsigned int *nr_zones, 3262 BlockZoneDescriptor *zones) 3263 { 3264 BlockDriver *drv = bs->drv; 3265 CoroutineIOCompletion co = { 3266 .coroutine = qemu_coroutine_self(), 3267 }; 3268 IO_CODE(); 3269 3270 bdrv_inc_in_flight(bs); 3271 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3272 co.ret = -ENOTSUP; 3273 goto out; 3274 } 3275 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3276 out: 3277 bdrv_dec_in_flight(bs); 3278 return co.ret; 3279 } 3280 3281 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3282 int64_t offset, int64_t len) 3283 { 3284 BlockDriver *drv = bs->drv; 3285 CoroutineIOCompletion co = { 3286 .coroutine = qemu_coroutine_self(), 3287 }; 3288 IO_CODE(); 3289 3290 bdrv_inc_in_flight(bs); 3291 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3292 co.ret = -ENOTSUP; 3293 goto out; 3294 } 3295 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3296 out: 3297 bdrv_dec_in_flight(bs); 3298 return co.ret; 3299 } 3300 3301 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3302 QEMUIOVector *qiov, 3303 BdrvRequestFlags flags) 3304 { 3305 int ret; 3306 BlockDriver *drv = bs->drv; 3307 CoroutineIOCompletion co = { 3308 .coroutine = qemu_coroutine_self(), 3309 }; 3310 IO_CODE(); 3311 3312 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3313 if (ret < 0) { 3314 return ret; 3315 } 3316 3317 bdrv_inc_in_flight(bs); 3318 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3319 co.ret = -ENOTSUP; 3320 goto out; 3321 } 3322 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3323 out: 3324 bdrv_dec_in_flight(bs); 3325 return co.ret; 3326 } 3327 3328 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3329 { 3330 IO_CODE(); 3331 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3332 } 3333 3334 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3335 { 3336 IO_CODE(); 3337 return memset(qemu_blockalign(bs, size), 0, size); 3338 } 3339 3340 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3341 { 3342 size_t align = bdrv_opt_mem_align(bs); 3343 IO_CODE(); 3344 3345 /* Ensure that NULL is never returned on success */ 3346 assert(align > 0); 3347 if (size == 0) { 3348 size = align; 3349 } 3350 3351 return qemu_try_memalign(align, size); 3352 } 3353 3354 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3355 { 3356 void *mem = qemu_try_blockalign(bs, size); 3357 IO_CODE(); 3358 3359 if (mem) { 3360 memset(mem, 0, size); 3361 } 3362 3363 return mem; 3364 } 3365 3366 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3367 static void GRAPH_RDLOCK 3368 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3369 BdrvChild *final_child) 3370 { 3371 BdrvChild *child; 3372 3373 GLOBAL_STATE_CODE(); 3374 assert_bdrv_graph_readable(); 3375 3376 QLIST_FOREACH(child, &bs->children, next) { 3377 if (child == final_child) { 3378 break; 3379 } 3380 3381 bdrv_unregister_buf(child->bs, host, size); 3382 } 3383 3384 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3385 bs->drv->bdrv_unregister_buf(bs, host, size); 3386 } 3387 } 3388 3389 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3390 Error **errp) 3391 { 3392 BdrvChild *child; 3393 3394 GLOBAL_STATE_CODE(); 3395 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3396 3397 if (bs->drv && bs->drv->bdrv_register_buf) { 3398 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3399 return false; 3400 } 3401 } 3402 QLIST_FOREACH(child, &bs->children, next) { 3403 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3404 bdrv_register_buf_rollback(bs, host, size, child); 3405 return false; 3406 } 3407 } 3408 return true; 3409 } 3410 3411 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3412 { 3413 BdrvChild *child; 3414 3415 GLOBAL_STATE_CODE(); 3416 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3417 3418 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3419 bs->drv->bdrv_unregister_buf(bs, host, size); 3420 } 3421 QLIST_FOREACH(child, &bs->children, next) { 3422 bdrv_unregister_buf(child->bs, host, size); 3423 } 3424 } 3425 3426 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3427 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3428 int64_t dst_offset, int64_t bytes, 3429 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3430 bool recurse_src) 3431 { 3432 BdrvTrackedRequest req; 3433 int ret; 3434 assert_bdrv_graph_readable(); 3435 3436 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3437 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3438 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3439 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3440 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3441 3442 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3443 return -ENOMEDIUM; 3444 } 3445 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3446 if (ret) { 3447 return ret; 3448 } 3449 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3450 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3451 } 3452 3453 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3454 return -ENOMEDIUM; 3455 } 3456 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3457 if (ret) { 3458 return ret; 3459 } 3460 3461 if (!src->bs->drv->bdrv_co_copy_range_from 3462 || !dst->bs->drv->bdrv_co_copy_range_to 3463 || src->bs->encrypted || dst->bs->encrypted) { 3464 return -ENOTSUP; 3465 } 3466 3467 if (recurse_src) { 3468 bdrv_inc_in_flight(src->bs); 3469 tracked_request_begin(&req, src->bs, src_offset, bytes, 3470 BDRV_TRACKED_READ); 3471 3472 /* BDRV_REQ_SERIALISING is only for write operation */ 3473 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3474 bdrv_wait_serialising_requests(&req); 3475 3476 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3477 src, src_offset, 3478 dst, dst_offset, 3479 bytes, 3480 read_flags, write_flags); 3481 3482 tracked_request_end(&req); 3483 bdrv_dec_in_flight(src->bs); 3484 } else { 3485 bdrv_inc_in_flight(dst->bs); 3486 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3487 BDRV_TRACKED_WRITE); 3488 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3489 write_flags); 3490 if (!ret) { 3491 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3492 src, src_offset, 3493 dst, dst_offset, 3494 bytes, 3495 read_flags, write_flags); 3496 } 3497 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3498 tracked_request_end(&req); 3499 bdrv_dec_in_flight(dst->bs); 3500 } 3501 3502 return ret; 3503 } 3504 3505 /* Copy range from @src to @dst. 3506 * 3507 * See the comment of bdrv_co_copy_range for the parameter and return value 3508 * semantics. */ 3509 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3510 BdrvChild *dst, int64_t dst_offset, 3511 int64_t bytes, 3512 BdrvRequestFlags read_flags, 3513 BdrvRequestFlags write_flags) 3514 { 3515 IO_CODE(); 3516 assert_bdrv_graph_readable(); 3517 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3518 read_flags, write_flags); 3519 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3520 bytes, read_flags, write_flags, true); 3521 } 3522 3523 /* Copy range from @src to @dst. 3524 * 3525 * See the comment of bdrv_co_copy_range for the parameter and return value 3526 * semantics. */ 3527 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3528 BdrvChild *dst, int64_t dst_offset, 3529 int64_t bytes, 3530 BdrvRequestFlags read_flags, 3531 BdrvRequestFlags write_flags) 3532 { 3533 IO_CODE(); 3534 assert_bdrv_graph_readable(); 3535 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3536 read_flags, write_flags); 3537 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3538 bytes, read_flags, write_flags, false); 3539 } 3540 3541 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3542 BdrvChild *dst, int64_t dst_offset, 3543 int64_t bytes, BdrvRequestFlags read_flags, 3544 BdrvRequestFlags write_flags) 3545 { 3546 IO_CODE(); 3547 assert_bdrv_graph_readable(); 3548 3549 return bdrv_co_copy_range_from(src, src_offset, 3550 dst, dst_offset, 3551 bytes, read_flags, write_flags); 3552 } 3553 3554 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3555 { 3556 BdrvChild *c; 3557 QLIST_FOREACH(c, &bs->parents, next_parent) { 3558 if (c->klass->resize) { 3559 c->klass->resize(c); 3560 } 3561 } 3562 } 3563 3564 /** 3565 * Truncate file to 'offset' bytes (needed only for file protocols) 3566 * 3567 * If 'exact' is true, the file must be resized to exactly the given 3568 * 'offset'. Otherwise, it is sufficient for the node to be at least 3569 * 'offset' bytes in length. 3570 */ 3571 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3572 PreallocMode prealloc, BdrvRequestFlags flags, 3573 Error **errp) 3574 { 3575 BlockDriverState *bs = child->bs; 3576 BdrvChild *filtered, *backing; 3577 BlockDriver *drv = bs->drv; 3578 BdrvTrackedRequest req; 3579 int64_t old_size, new_bytes; 3580 int ret; 3581 IO_CODE(); 3582 assert_bdrv_graph_readable(); 3583 3584 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3585 if (!drv) { 3586 error_setg(errp, "No medium inserted"); 3587 return -ENOMEDIUM; 3588 } 3589 if (offset < 0) { 3590 error_setg(errp, "Image size cannot be negative"); 3591 return -EINVAL; 3592 } 3593 3594 ret = bdrv_check_request(offset, 0, errp); 3595 if (ret < 0) { 3596 return ret; 3597 } 3598 3599 old_size = bdrv_co_getlength(bs); 3600 if (old_size < 0) { 3601 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3602 return old_size; 3603 } 3604 3605 if (bdrv_is_read_only(bs)) { 3606 error_setg(errp, "Image is read-only"); 3607 return -EACCES; 3608 } 3609 3610 if (offset > old_size) { 3611 new_bytes = offset - old_size; 3612 } else { 3613 new_bytes = 0; 3614 } 3615 3616 bdrv_inc_in_flight(bs); 3617 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3618 BDRV_TRACKED_TRUNCATE); 3619 3620 /* If we are growing the image and potentially using preallocation for the 3621 * new area, we need to make sure that no write requests are made to it 3622 * concurrently or they might be overwritten by preallocation. */ 3623 if (new_bytes) { 3624 bdrv_make_request_serialising(&req, 1); 3625 } 3626 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3627 0); 3628 if (ret < 0) { 3629 error_setg_errno(errp, -ret, 3630 "Failed to prepare request for truncation"); 3631 goto out; 3632 } 3633 3634 filtered = bdrv_filter_child(bs); 3635 backing = bdrv_cow_child(bs); 3636 3637 /* 3638 * If the image has a backing file that is large enough that it would 3639 * provide data for the new area, we cannot leave it unallocated because 3640 * then the backing file content would become visible. Instead, zero-fill 3641 * the new area. 3642 * 3643 * Note that if the image has a backing file, but was opened without the 3644 * backing file, taking care of keeping things consistent with that backing 3645 * file is the user's responsibility. 3646 */ 3647 if (new_bytes && backing) { 3648 int64_t backing_len; 3649 3650 backing_len = bdrv_co_getlength(backing->bs); 3651 if (backing_len < 0) { 3652 ret = backing_len; 3653 error_setg_errno(errp, -ret, "Could not get backing file size"); 3654 goto out; 3655 } 3656 3657 if (backing_len > old_size) { 3658 flags |= BDRV_REQ_ZERO_WRITE; 3659 } 3660 } 3661 3662 if (drv->bdrv_co_truncate) { 3663 if (flags & ~bs->supported_truncate_flags) { 3664 error_setg(errp, "Block driver does not support requested flags"); 3665 ret = -ENOTSUP; 3666 goto out; 3667 } 3668 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3669 } else if (filtered) { 3670 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3671 } else { 3672 error_setg(errp, "Image format driver does not support resize"); 3673 ret = -ENOTSUP; 3674 goto out; 3675 } 3676 if (ret < 0) { 3677 goto out; 3678 } 3679 3680 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3681 if (ret < 0) { 3682 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3683 } else { 3684 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3685 } 3686 /* 3687 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3688 * failed, but the latter doesn't affect how we should finish the request. 3689 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3690 */ 3691 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3692 3693 out: 3694 tracked_request_end(&req); 3695 bdrv_dec_in_flight(bs); 3696 3697 return ret; 3698 } 3699 3700 void bdrv_cancel_in_flight(BlockDriverState *bs) 3701 { 3702 GLOBAL_STATE_CODE(); 3703 if (!bs || !bs->drv) { 3704 return; 3705 } 3706 3707 if (bs->drv->bdrv_cancel_in_flight) { 3708 bs->drv->bdrv_cancel_in_flight(bs); 3709 } 3710 } 3711 3712 int coroutine_fn 3713 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3714 QEMUIOVector *qiov, size_t qiov_offset) 3715 { 3716 BlockDriverState *bs = child->bs; 3717 BlockDriver *drv = bs->drv; 3718 int ret; 3719 IO_CODE(); 3720 assert_bdrv_graph_readable(); 3721 3722 if (!drv) { 3723 return -ENOMEDIUM; 3724 } 3725 3726 if (!drv->bdrv_co_preadv_snapshot) { 3727 return -ENOTSUP; 3728 } 3729 3730 bdrv_inc_in_flight(bs); 3731 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3732 bdrv_dec_in_flight(bs); 3733 3734 return ret; 3735 } 3736 3737 int coroutine_fn 3738 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3739 bool want_zero, int64_t offset, int64_t bytes, 3740 int64_t *pnum, int64_t *map, 3741 BlockDriverState **file) 3742 { 3743 BlockDriver *drv = bs->drv; 3744 int ret; 3745 IO_CODE(); 3746 assert_bdrv_graph_readable(); 3747 3748 if (!drv) { 3749 return -ENOMEDIUM; 3750 } 3751 3752 if (!drv->bdrv_co_snapshot_block_status) { 3753 return -ENOTSUP; 3754 } 3755 3756 bdrv_inc_in_flight(bs); 3757 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3758 pnum, map, file); 3759 bdrv_dec_in_flight(bs); 3760 3761 return ret; 3762 } 3763 3764 int coroutine_fn 3765 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3766 { 3767 BlockDriver *drv = bs->drv; 3768 int ret; 3769 IO_CODE(); 3770 assert_bdrv_graph_readable(); 3771 3772 if (!drv) { 3773 return -ENOMEDIUM; 3774 } 3775 3776 if (!drv->bdrv_co_pdiscard_snapshot) { 3777 return -ENOTSUP; 3778 } 3779 3780 bdrv_inc_in_flight(bs); 3781 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3782 bdrv_dec_in_flight(bs); 3783 3784 return ret; 3785 } 3786