1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "sysemu/replay.h" 41 42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 44 45 static void bdrv_parent_cb_resize(BlockDriverState *bs); 46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 47 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 48 49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c); 58 } 59 } 60 61 void bdrv_parent_drained_end_single(BdrvChild *c) 62 { 63 GLOBAL_STATE_CODE(); 64 65 assert(c->quiesced_parent); 66 c->quiesced_parent = false; 67 68 if (c->klass->drained_end) { 69 c->klass->drained_end(c); 70 } 71 } 72 73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 74 { 75 BdrvChild *c; 76 77 QLIST_FOREACH(c, &bs->parents, next_parent) { 78 if (c == ignore) { 79 continue; 80 } 81 bdrv_parent_drained_end_single(c); 82 } 83 } 84 85 bool bdrv_parent_drained_poll_single(BdrvChild *c) 86 { 87 if (c->klass->drained_poll) { 88 return c->klass->drained_poll(c); 89 } 90 return false; 91 } 92 93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 94 bool ignore_bds_parents) 95 { 96 BdrvChild *c, *next; 97 bool busy = false; 98 99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 101 continue; 102 } 103 busy |= bdrv_parent_drained_poll_single(c); 104 } 105 106 return busy; 107 } 108 109 void bdrv_parent_drained_begin_single(BdrvChild *c) 110 { 111 GLOBAL_STATE_CODE(); 112 113 assert(!c->quiesced_parent); 114 c->quiesced_parent = true; 115 116 if (c->klass->drained_begin) { 117 c->klass->drained_begin(c); 118 } 119 } 120 121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 122 { 123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 124 src->pdiscard_alignment); 125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 128 src->max_hw_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 135 } 136 137 typedef struct BdrvRefreshLimitsState { 138 BlockDriverState *bs; 139 BlockLimits old_bl; 140 } BdrvRefreshLimitsState; 141 142 static void bdrv_refresh_limits_abort(void *opaque) 143 { 144 BdrvRefreshLimitsState *s = opaque; 145 146 s->bs->bl = s->old_bl; 147 } 148 149 static TransactionActionDrv bdrv_refresh_limits_drv = { 150 .abort = bdrv_refresh_limits_abort, 151 .clean = g_free, 152 }; 153 154 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 156 { 157 ERRP_GUARD(); 158 BlockDriver *drv = bs->drv; 159 BdrvChild *c; 160 bool have_limits; 161 162 GLOBAL_STATE_CODE(); 163 164 if (tran) { 165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 166 *s = (BdrvRefreshLimitsState) { 167 .bs = bs, 168 .old_bl = bs->bl, 169 }; 170 tran_add(tran, &bdrv_refresh_limits_drv, s); 171 } 172 173 memset(&bs->bl, 0, sizeof(bs->bl)); 174 175 if (!drv) { 176 return; 177 } 178 179 /* Default alignment based on whether driver has byte interface */ 180 bs->bl.request_alignment = (drv->bdrv_co_preadv || 181 drv->bdrv_aio_preadv || 182 drv->bdrv_co_preadv_part) ? 1 : 512; 183 184 /* Take some limits from the children as a default */ 185 have_limits = false; 186 QLIST_FOREACH(c, &bs->children, next) { 187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 188 { 189 bdrv_merge_limits(&bs->bl, &c->bs->bl); 190 have_limits = true; 191 } 192 193 if (c->role & BDRV_CHILD_FILTERED) { 194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 195 } 196 } 197 198 if (!have_limits) { 199 bs->bl.min_mem_alignment = 512; 200 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 201 202 /* Safe default since most protocols use readv()/writev()/etc */ 203 bs->bl.max_iov = IOV_MAX; 204 } 205 206 /* Then let the driver override it */ 207 if (drv->bdrv_refresh_limits) { 208 drv->bdrv_refresh_limits(bs, errp); 209 if (*errp) { 210 return; 211 } 212 } 213 214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 215 error_setg(errp, "Driver requires too large request alignment"); 216 } 217 } 218 219 /** 220 * The copy-on-read flag is actually a reference count so multiple users may 221 * use the feature without worrying about clobbering its previous state. 222 * Copy-on-read stays enabled until all users have called to disable it. 223 */ 224 void bdrv_enable_copy_on_read(BlockDriverState *bs) 225 { 226 IO_CODE(); 227 qatomic_inc(&bs->copy_on_read); 228 } 229 230 void bdrv_disable_copy_on_read(BlockDriverState *bs) 231 { 232 int old = qatomic_fetch_dec(&bs->copy_on_read); 233 IO_CODE(); 234 assert(old >= 1); 235 } 236 237 typedef struct { 238 Coroutine *co; 239 BlockDriverState *bs; 240 bool done; 241 bool begin; 242 bool poll; 243 BdrvChild *parent; 244 } BdrvCoDrainData; 245 246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 248 bool ignore_bds_parents) 249 { 250 GLOBAL_STATE_CODE(); 251 252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 253 return true; 254 } 255 256 if (qatomic_read(&bs->in_flight)) { 257 return true; 258 } 259 260 return false; 261 } 262 263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 264 BdrvChild *ignore_parent) 265 { 266 return bdrv_drain_poll(bs, ignore_parent, false); 267 } 268 269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 270 bool poll); 271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 272 273 static void bdrv_co_drain_bh_cb(void *opaque) 274 { 275 BdrvCoDrainData *data = opaque; 276 Coroutine *co = data->co; 277 BlockDriverState *bs = data->bs; 278 279 if (bs) { 280 AioContext *ctx = bdrv_get_aio_context(bs); 281 aio_context_acquire(ctx); 282 bdrv_dec_in_flight(bs); 283 if (data->begin) { 284 bdrv_do_drained_begin(bs, data->parent, data->poll); 285 } else { 286 assert(!data->poll); 287 bdrv_do_drained_end(bs, data->parent); 288 } 289 aio_context_release(ctx); 290 } else { 291 assert(data->begin); 292 bdrv_drain_all_begin(); 293 } 294 295 data->done = true; 296 aio_co_wake(co); 297 } 298 299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 300 bool begin, 301 BdrvChild *parent, 302 bool poll) 303 { 304 BdrvCoDrainData data; 305 Coroutine *self = qemu_coroutine_self(); 306 AioContext *ctx = bdrv_get_aio_context(bs); 307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 308 309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 310 * other coroutines run if they were queued by aio_co_enter(). */ 311 312 assert(qemu_in_coroutine()); 313 data = (BdrvCoDrainData) { 314 .co = self, 315 .bs = bs, 316 .done = false, 317 .begin = begin, 318 .parent = parent, 319 .poll = poll, 320 }; 321 322 if (bs) { 323 bdrv_inc_in_flight(bs); 324 } 325 326 /* 327 * Temporarily drop the lock across yield or we would get deadlocks. 328 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 329 * 330 * When we yield below, the lock for the current context will be 331 * released, so if this is actually the lock that protects bs, don't drop 332 * it a second time. 333 */ 334 if (ctx != co_ctx) { 335 aio_context_release(ctx); 336 } 337 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 338 bdrv_co_drain_bh_cb, &data); 339 340 qemu_coroutine_yield(); 341 /* If we are resumed from some other event (such as an aio completion or a 342 * timer callback), it is a bug in the caller that should be fixed. */ 343 assert(data.done); 344 345 /* Reaquire the AioContext of bs if we dropped it */ 346 if (ctx != co_ctx) { 347 aio_context_acquire(ctx); 348 } 349 } 350 351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 352 bool poll) 353 { 354 IO_OR_GS_CODE(); 355 356 if (qemu_in_coroutine()) { 357 bdrv_co_yield_to_drain(bs, true, parent, poll); 358 return; 359 } 360 361 GLOBAL_STATE_CODE(); 362 363 /* Stop things in parent-to-child order */ 364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 365 aio_disable_external(bdrv_get_aio_context(bs)); 366 bdrv_parent_drained_begin(bs, parent); 367 if (bs->drv && bs->drv->bdrv_drain_begin) { 368 bs->drv->bdrv_drain_begin(bs); 369 } 370 } 371 372 /* 373 * Wait for drained requests to finish. 374 * 375 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 376 * call is needed so things in this AioContext can make progress even 377 * though we don't return to the main AioContext loop - this automatically 378 * includes other nodes in the same AioContext and therefore all child 379 * nodes. 380 */ 381 if (poll) { 382 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 383 } 384 } 385 386 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 387 { 388 bdrv_do_drained_begin(bs, parent, false); 389 } 390 391 void bdrv_drained_begin(BlockDriverState *bs) 392 { 393 IO_OR_GS_CODE(); 394 bdrv_do_drained_begin(bs, NULL, true); 395 } 396 397 /** 398 * This function does not poll, nor must any of its recursively called 399 * functions. 400 */ 401 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 402 { 403 int old_quiesce_counter; 404 405 IO_OR_GS_CODE(); 406 407 if (qemu_in_coroutine()) { 408 bdrv_co_yield_to_drain(bs, false, parent, false); 409 return; 410 } 411 assert(bs->quiesce_counter > 0); 412 GLOBAL_STATE_CODE(); 413 414 /* Re-enable things in child-to-parent order */ 415 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 416 if (old_quiesce_counter == 1) { 417 if (bs->drv && bs->drv->bdrv_drain_end) { 418 bs->drv->bdrv_drain_end(bs); 419 } 420 bdrv_parent_drained_end(bs, parent); 421 aio_enable_external(bdrv_get_aio_context(bs)); 422 } 423 } 424 425 void bdrv_drained_end(BlockDriverState *bs) 426 { 427 IO_OR_GS_CODE(); 428 bdrv_do_drained_end(bs, NULL); 429 } 430 431 void bdrv_drain(BlockDriverState *bs) 432 { 433 IO_OR_GS_CODE(); 434 bdrv_drained_begin(bs); 435 bdrv_drained_end(bs); 436 } 437 438 static void bdrv_drain_assert_idle(BlockDriverState *bs) 439 { 440 BdrvChild *child, *next; 441 442 assert(qatomic_read(&bs->in_flight) == 0); 443 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 444 bdrv_drain_assert_idle(child->bs); 445 } 446 } 447 448 unsigned int bdrv_drain_all_count = 0; 449 450 static bool bdrv_drain_all_poll(void) 451 { 452 BlockDriverState *bs = NULL; 453 bool result = false; 454 GLOBAL_STATE_CODE(); 455 456 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 457 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 458 while ((bs = bdrv_next_all_states(bs))) { 459 AioContext *aio_context = bdrv_get_aio_context(bs); 460 aio_context_acquire(aio_context); 461 result |= bdrv_drain_poll(bs, NULL, true); 462 aio_context_release(aio_context); 463 } 464 465 return result; 466 } 467 468 /* 469 * Wait for pending requests to complete across all BlockDriverStates 470 * 471 * This function does not flush data to disk, use bdrv_flush_all() for that 472 * after calling this function. 473 * 474 * This pauses all block jobs and disables external clients. It must 475 * be paired with bdrv_drain_all_end(). 476 * 477 * NOTE: no new block jobs or BlockDriverStates can be created between 478 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 479 */ 480 void bdrv_drain_all_begin_nopoll(void) 481 { 482 BlockDriverState *bs = NULL; 483 GLOBAL_STATE_CODE(); 484 485 /* 486 * bdrv queue is managed by record/replay, 487 * waiting for finishing the I/O requests may 488 * be infinite 489 */ 490 if (replay_events_enabled()) { 491 return; 492 } 493 494 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 495 * loop AioContext, so make sure we're in the main context. */ 496 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 497 assert(bdrv_drain_all_count < INT_MAX); 498 bdrv_drain_all_count++; 499 500 /* Quiesce all nodes, without polling in-flight requests yet. The graph 501 * cannot change during this loop. */ 502 while ((bs = bdrv_next_all_states(bs))) { 503 AioContext *aio_context = bdrv_get_aio_context(bs); 504 505 aio_context_acquire(aio_context); 506 bdrv_do_drained_begin(bs, NULL, false); 507 aio_context_release(aio_context); 508 } 509 } 510 511 void bdrv_drain_all_begin(void) 512 { 513 BlockDriverState *bs = NULL; 514 515 if (qemu_in_coroutine()) { 516 bdrv_co_yield_to_drain(NULL, true, NULL, true); 517 return; 518 } 519 520 /* 521 * bdrv queue is managed by record/replay, 522 * waiting for finishing the I/O requests may 523 * be infinite 524 */ 525 if (replay_events_enabled()) { 526 return; 527 } 528 529 bdrv_drain_all_begin_nopoll(); 530 531 /* Now poll the in-flight requests */ 532 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 533 534 while ((bs = bdrv_next_all_states(bs))) { 535 bdrv_drain_assert_idle(bs); 536 } 537 } 538 539 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 540 { 541 GLOBAL_STATE_CODE(); 542 543 g_assert(bs->quiesce_counter > 0); 544 g_assert(!bs->refcnt); 545 546 while (bs->quiesce_counter) { 547 bdrv_do_drained_end(bs, NULL); 548 } 549 } 550 551 void bdrv_drain_all_end(void) 552 { 553 BlockDriverState *bs = NULL; 554 GLOBAL_STATE_CODE(); 555 556 /* 557 * bdrv queue is managed by record/replay, 558 * waiting for finishing the I/O requests may 559 * be endless 560 */ 561 if (replay_events_enabled()) { 562 return; 563 } 564 565 while ((bs = bdrv_next_all_states(bs))) { 566 AioContext *aio_context = bdrv_get_aio_context(bs); 567 568 aio_context_acquire(aio_context); 569 bdrv_do_drained_end(bs, NULL); 570 aio_context_release(aio_context); 571 } 572 573 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 574 assert(bdrv_drain_all_count > 0); 575 bdrv_drain_all_count--; 576 } 577 578 void bdrv_drain_all(void) 579 { 580 GLOBAL_STATE_CODE(); 581 bdrv_drain_all_begin(); 582 bdrv_drain_all_end(); 583 } 584 585 /** 586 * Remove an active request from the tracked requests list 587 * 588 * This function should be called when a tracked request is completing. 589 */ 590 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 591 { 592 if (req->serialising) { 593 qatomic_dec(&req->bs->serialising_in_flight); 594 } 595 596 qemu_co_mutex_lock(&req->bs->reqs_lock); 597 QLIST_REMOVE(req, list); 598 qemu_co_queue_restart_all(&req->wait_queue); 599 qemu_co_mutex_unlock(&req->bs->reqs_lock); 600 } 601 602 /** 603 * Add an active request to the tracked requests list 604 */ 605 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 606 BlockDriverState *bs, 607 int64_t offset, 608 int64_t bytes, 609 enum BdrvTrackedRequestType type) 610 { 611 bdrv_check_request(offset, bytes, &error_abort); 612 613 *req = (BdrvTrackedRequest){ 614 .bs = bs, 615 .offset = offset, 616 .bytes = bytes, 617 .type = type, 618 .co = qemu_coroutine_self(), 619 .serialising = false, 620 .overlap_offset = offset, 621 .overlap_bytes = bytes, 622 }; 623 624 qemu_co_queue_init(&req->wait_queue); 625 626 qemu_co_mutex_lock(&bs->reqs_lock); 627 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 628 qemu_co_mutex_unlock(&bs->reqs_lock); 629 } 630 631 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 632 int64_t offset, int64_t bytes) 633 { 634 bdrv_check_request(offset, bytes, &error_abort); 635 636 /* aaaa bbbb */ 637 if (offset >= req->overlap_offset + req->overlap_bytes) { 638 return false; 639 } 640 /* bbbb aaaa */ 641 if (req->overlap_offset >= offset + bytes) { 642 return false; 643 } 644 return true; 645 } 646 647 /* Called with self->bs->reqs_lock held */ 648 static coroutine_fn BdrvTrackedRequest * 649 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 650 { 651 BdrvTrackedRequest *req; 652 653 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 654 if (req == self || (!req->serialising && !self->serialising)) { 655 continue; 656 } 657 if (tracked_request_overlaps(req, self->overlap_offset, 658 self->overlap_bytes)) 659 { 660 /* 661 * Hitting this means there was a reentrant request, for 662 * example, a block driver issuing nested requests. This must 663 * never happen since it means deadlock. 664 */ 665 assert(qemu_coroutine_self() != req->co); 666 667 /* 668 * If the request is already (indirectly) waiting for us, or 669 * will wait for us as soon as it wakes up, then just go on 670 * (instead of producing a deadlock in the former case). 671 */ 672 if (!req->waiting_for) { 673 return req; 674 } 675 } 676 } 677 678 return NULL; 679 } 680 681 /* Called with self->bs->reqs_lock held */ 682 static void coroutine_fn 683 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 684 { 685 BdrvTrackedRequest *req; 686 687 while ((req = bdrv_find_conflicting_request(self))) { 688 self->waiting_for = req; 689 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 690 self->waiting_for = NULL; 691 } 692 } 693 694 /* Called with req->bs->reqs_lock held */ 695 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 696 uint64_t align) 697 { 698 int64_t overlap_offset = req->offset & ~(align - 1); 699 int64_t overlap_bytes = 700 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 701 702 bdrv_check_request(req->offset, req->bytes, &error_abort); 703 704 if (!req->serialising) { 705 qatomic_inc(&req->bs->serialising_in_flight); 706 req->serialising = true; 707 } 708 709 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 710 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 711 } 712 713 /** 714 * Return the tracked request on @bs for the current coroutine, or 715 * NULL if there is none. 716 */ 717 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 718 { 719 BdrvTrackedRequest *req; 720 Coroutine *self = qemu_coroutine_self(); 721 IO_CODE(); 722 723 QLIST_FOREACH(req, &bs->tracked_requests, list) { 724 if (req->co == self) { 725 return req; 726 } 727 } 728 729 return NULL; 730 } 731 732 /** 733 * Round a region to cluster boundaries 734 */ 735 void coroutine_fn GRAPH_RDLOCK 736 bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 737 int64_t *cluster_offset, int64_t *cluster_bytes) 738 { 739 BlockDriverInfo bdi; 740 IO_CODE(); 741 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 742 *cluster_offset = offset; 743 *cluster_bytes = bytes; 744 } else { 745 int64_t c = bdi.cluster_size; 746 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 747 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 748 } 749 } 750 751 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 752 { 753 BlockDriverInfo bdi; 754 int ret; 755 756 ret = bdrv_co_get_info(bs, &bdi); 757 if (ret < 0 || bdi.cluster_size == 0) { 758 return bs->bl.request_alignment; 759 } else { 760 return bdi.cluster_size; 761 } 762 } 763 764 void bdrv_inc_in_flight(BlockDriverState *bs) 765 { 766 IO_CODE(); 767 qatomic_inc(&bs->in_flight); 768 } 769 770 void bdrv_wakeup(BlockDriverState *bs) 771 { 772 IO_CODE(); 773 aio_wait_kick(); 774 } 775 776 void bdrv_dec_in_flight(BlockDriverState *bs) 777 { 778 IO_CODE(); 779 qatomic_dec(&bs->in_flight); 780 bdrv_wakeup(bs); 781 } 782 783 static void coroutine_fn 784 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 785 { 786 BlockDriverState *bs = self->bs; 787 788 if (!qatomic_read(&bs->serialising_in_flight)) { 789 return; 790 } 791 792 qemu_co_mutex_lock(&bs->reqs_lock); 793 bdrv_wait_serialising_requests_locked(self); 794 qemu_co_mutex_unlock(&bs->reqs_lock); 795 } 796 797 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 798 uint64_t align) 799 { 800 IO_CODE(); 801 802 qemu_co_mutex_lock(&req->bs->reqs_lock); 803 804 tracked_request_set_serialising(req, align); 805 bdrv_wait_serialising_requests_locked(req); 806 807 qemu_co_mutex_unlock(&req->bs->reqs_lock); 808 } 809 810 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 811 QEMUIOVector *qiov, size_t qiov_offset, 812 Error **errp) 813 { 814 /* 815 * Check generic offset/bytes correctness 816 */ 817 818 if (offset < 0) { 819 error_setg(errp, "offset is negative: %" PRIi64, offset); 820 return -EIO; 821 } 822 823 if (bytes < 0) { 824 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 825 return -EIO; 826 } 827 828 if (bytes > BDRV_MAX_LENGTH) { 829 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 830 bytes, BDRV_MAX_LENGTH); 831 return -EIO; 832 } 833 834 if (offset > BDRV_MAX_LENGTH) { 835 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 836 offset, BDRV_MAX_LENGTH); 837 return -EIO; 838 } 839 840 if (offset > BDRV_MAX_LENGTH - bytes) { 841 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 842 "exceeds maximum(%" PRIi64 ")", offset, bytes, 843 BDRV_MAX_LENGTH); 844 return -EIO; 845 } 846 847 if (!qiov) { 848 return 0; 849 } 850 851 /* 852 * Check qiov and qiov_offset 853 */ 854 855 if (qiov_offset > qiov->size) { 856 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 857 qiov_offset, qiov->size); 858 return -EIO; 859 } 860 861 if (bytes > qiov->size - qiov_offset) { 862 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 863 "vector size(%zu)", bytes, qiov_offset, qiov->size); 864 return -EIO; 865 } 866 867 return 0; 868 } 869 870 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 871 { 872 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 873 } 874 875 static int bdrv_check_request32(int64_t offset, int64_t bytes, 876 QEMUIOVector *qiov, size_t qiov_offset) 877 { 878 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 879 if (ret < 0) { 880 return ret; 881 } 882 883 if (bytes > BDRV_REQUEST_MAX_BYTES) { 884 return -EIO; 885 } 886 887 return 0; 888 } 889 890 /* 891 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 892 * The operation is sped up by checking the block status and only writing 893 * zeroes to the device if they currently do not return zeroes. Optional 894 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 895 * BDRV_REQ_FUA). 896 * 897 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 898 */ 899 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 900 { 901 int ret; 902 int64_t target_size, bytes, offset = 0; 903 BlockDriverState *bs = child->bs; 904 IO_CODE(); 905 906 target_size = bdrv_getlength(bs); 907 if (target_size < 0) { 908 return target_size; 909 } 910 911 for (;;) { 912 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 913 if (bytes <= 0) { 914 return 0; 915 } 916 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 917 if (ret < 0) { 918 return ret; 919 } 920 if (ret & BDRV_BLOCK_ZERO) { 921 offset += bytes; 922 continue; 923 } 924 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 925 if (ret < 0) { 926 return ret; 927 } 928 offset += bytes; 929 } 930 } 931 932 /* 933 * Writes to the file and ensures that no writes are reordered across this 934 * request (acts as a barrier) 935 * 936 * Returns 0 on success, -errno in error cases. 937 */ 938 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 939 int64_t bytes, const void *buf, 940 BdrvRequestFlags flags) 941 { 942 int ret; 943 IO_CODE(); 944 assert_bdrv_graph_readable(); 945 946 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 947 if (ret < 0) { 948 return ret; 949 } 950 951 ret = bdrv_co_flush(child->bs); 952 if (ret < 0) { 953 return ret; 954 } 955 956 return 0; 957 } 958 959 typedef struct CoroutineIOCompletion { 960 Coroutine *coroutine; 961 int ret; 962 } CoroutineIOCompletion; 963 964 static void bdrv_co_io_em_complete(void *opaque, int ret) 965 { 966 CoroutineIOCompletion *co = opaque; 967 968 co->ret = ret; 969 aio_co_wake(co->coroutine); 970 } 971 972 static int coroutine_fn GRAPH_RDLOCK 973 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 974 QEMUIOVector *qiov, size_t qiov_offset, int flags) 975 { 976 BlockDriver *drv = bs->drv; 977 int64_t sector_num; 978 unsigned int nb_sectors; 979 QEMUIOVector local_qiov; 980 int ret; 981 assert_bdrv_graph_readable(); 982 983 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 984 assert(!(flags & ~bs->supported_read_flags)); 985 986 if (!drv) { 987 return -ENOMEDIUM; 988 } 989 990 if (drv->bdrv_co_preadv_part) { 991 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 992 flags); 993 } 994 995 if (qiov_offset > 0 || bytes != qiov->size) { 996 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 997 qiov = &local_qiov; 998 } 999 1000 if (drv->bdrv_co_preadv) { 1001 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1002 goto out; 1003 } 1004 1005 if (drv->bdrv_aio_preadv) { 1006 BlockAIOCB *acb; 1007 CoroutineIOCompletion co = { 1008 .coroutine = qemu_coroutine_self(), 1009 }; 1010 1011 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1012 bdrv_co_io_em_complete, &co); 1013 if (acb == NULL) { 1014 ret = -EIO; 1015 goto out; 1016 } else { 1017 qemu_coroutine_yield(); 1018 ret = co.ret; 1019 goto out; 1020 } 1021 } 1022 1023 sector_num = offset >> BDRV_SECTOR_BITS; 1024 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1025 1026 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1027 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1028 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1029 assert(drv->bdrv_co_readv); 1030 1031 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1032 1033 out: 1034 if (qiov == &local_qiov) { 1035 qemu_iovec_destroy(&local_qiov); 1036 } 1037 1038 return ret; 1039 } 1040 1041 static int coroutine_fn GRAPH_RDLOCK 1042 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1043 QEMUIOVector *qiov, size_t qiov_offset, 1044 BdrvRequestFlags flags) 1045 { 1046 BlockDriver *drv = bs->drv; 1047 bool emulate_fua = false; 1048 int64_t sector_num; 1049 unsigned int nb_sectors; 1050 QEMUIOVector local_qiov; 1051 int ret; 1052 assert_bdrv_graph_readable(); 1053 1054 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1055 1056 if (!drv) { 1057 return -ENOMEDIUM; 1058 } 1059 1060 if ((flags & BDRV_REQ_FUA) && 1061 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1062 flags &= ~BDRV_REQ_FUA; 1063 emulate_fua = true; 1064 } 1065 1066 flags &= bs->supported_write_flags; 1067 1068 if (drv->bdrv_co_pwritev_part) { 1069 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1070 flags); 1071 goto emulate_flags; 1072 } 1073 1074 if (qiov_offset > 0 || bytes != qiov->size) { 1075 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1076 qiov = &local_qiov; 1077 } 1078 1079 if (drv->bdrv_co_pwritev) { 1080 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1081 goto emulate_flags; 1082 } 1083 1084 if (drv->bdrv_aio_pwritev) { 1085 BlockAIOCB *acb; 1086 CoroutineIOCompletion co = { 1087 .coroutine = qemu_coroutine_self(), 1088 }; 1089 1090 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1091 bdrv_co_io_em_complete, &co); 1092 if (acb == NULL) { 1093 ret = -EIO; 1094 } else { 1095 qemu_coroutine_yield(); 1096 ret = co.ret; 1097 } 1098 goto emulate_flags; 1099 } 1100 1101 sector_num = offset >> BDRV_SECTOR_BITS; 1102 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1103 1104 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1105 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1106 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1107 1108 assert(drv->bdrv_co_writev); 1109 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1110 1111 emulate_flags: 1112 if (ret == 0 && emulate_fua) { 1113 ret = bdrv_co_flush(bs); 1114 } 1115 1116 if (qiov == &local_qiov) { 1117 qemu_iovec_destroy(&local_qiov); 1118 } 1119 1120 return ret; 1121 } 1122 1123 static int coroutine_fn GRAPH_RDLOCK 1124 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1125 int64_t bytes, QEMUIOVector *qiov, 1126 size_t qiov_offset) 1127 { 1128 BlockDriver *drv = bs->drv; 1129 QEMUIOVector local_qiov; 1130 int ret; 1131 assert_bdrv_graph_readable(); 1132 1133 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1134 1135 if (!drv) { 1136 return -ENOMEDIUM; 1137 } 1138 1139 if (!block_driver_can_compress(drv)) { 1140 return -ENOTSUP; 1141 } 1142 1143 if (drv->bdrv_co_pwritev_compressed_part) { 1144 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1145 qiov, qiov_offset); 1146 } 1147 1148 if (qiov_offset == 0) { 1149 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1150 } 1151 1152 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1153 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1154 qemu_iovec_destroy(&local_qiov); 1155 1156 return ret; 1157 } 1158 1159 static int coroutine_fn GRAPH_RDLOCK 1160 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1161 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1162 { 1163 BlockDriverState *bs = child->bs; 1164 1165 /* Perform I/O through a temporary buffer so that users who scribble over 1166 * their read buffer while the operation is in progress do not end up 1167 * modifying the image file. This is critical for zero-copy guest I/O 1168 * where anything might happen inside guest memory. 1169 */ 1170 void *bounce_buffer = NULL; 1171 1172 BlockDriver *drv = bs->drv; 1173 int64_t cluster_offset; 1174 int64_t cluster_bytes; 1175 int64_t skip_bytes; 1176 int ret; 1177 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1178 BDRV_REQUEST_MAX_BYTES); 1179 int64_t progress = 0; 1180 bool skip_write; 1181 1182 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1183 1184 if (!drv) { 1185 return -ENOMEDIUM; 1186 } 1187 1188 /* 1189 * Do not write anything when the BDS is inactive. That is not 1190 * allowed, and it would not help. 1191 */ 1192 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1193 1194 /* FIXME We cannot require callers to have write permissions when all they 1195 * are doing is a read request. If we did things right, write permissions 1196 * would be obtained anyway, but internally by the copy-on-read code. As 1197 * long as it is implemented here rather than in a separate filter driver, 1198 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1199 * it could request permissions. Therefore we have to bypass the permission 1200 * system for the moment. */ 1201 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1202 1203 /* Cover entire cluster so no additional backing file I/O is required when 1204 * allocating cluster in the image file. Note that this value may exceed 1205 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1206 * is one reason we loop rather than doing it all at once. 1207 */ 1208 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1209 skip_bytes = offset - cluster_offset; 1210 1211 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1212 cluster_offset, cluster_bytes); 1213 1214 while (cluster_bytes) { 1215 int64_t pnum; 1216 1217 if (skip_write) { 1218 ret = 1; /* "already allocated", so nothing will be copied */ 1219 pnum = MIN(cluster_bytes, max_transfer); 1220 } else { 1221 ret = bdrv_is_allocated(bs, cluster_offset, 1222 MIN(cluster_bytes, max_transfer), &pnum); 1223 if (ret < 0) { 1224 /* 1225 * Safe to treat errors in querying allocation as if 1226 * unallocated; we'll probably fail again soon on the 1227 * read, but at least that will set a decent errno. 1228 */ 1229 pnum = MIN(cluster_bytes, max_transfer); 1230 } 1231 1232 /* Stop at EOF if the image ends in the middle of the cluster */ 1233 if (ret == 0 && pnum == 0) { 1234 assert(progress >= bytes); 1235 break; 1236 } 1237 1238 assert(skip_bytes < pnum); 1239 } 1240 1241 if (ret <= 0) { 1242 QEMUIOVector local_qiov; 1243 1244 /* Must copy-on-read; use the bounce buffer */ 1245 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1246 if (!bounce_buffer) { 1247 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1248 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1249 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1250 1251 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1252 if (!bounce_buffer) { 1253 ret = -ENOMEM; 1254 goto err; 1255 } 1256 } 1257 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1258 1259 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1260 &local_qiov, 0, 0); 1261 if (ret < 0) { 1262 goto err; 1263 } 1264 1265 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1266 if (drv->bdrv_co_pwrite_zeroes && 1267 buffer_is_zero(bounce_buffer, pnum)) { 1268 /* FIXME: Should we (perhaps conditionally) be setting 1269 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1270 * that still correctly reads as zero? */ 1271 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1272 BDRV_REQ_WRITE_UNCHANGED); 1273 } else { 1274 /* This does not change the data on the disk, it is not 1275 * necessary to flush even in cache=writethrough mode. 1276 */ 1277 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1278 &local_qiov, 0, 1279 BDRV_REQ_WRITE_UNCHANGED); 1280 } 1281 1282 if (ret < 0) { 1283 /* It might be okay to ignore write errors for guest 1284 * requests. If this is a deliberate copy-on-read 1285 * then we don't want to ignore the error. Simply 1286 * report it in all cases. 1287 */ 1288 goto err; 1289 } 1290 1291 if (!(flags & BDRV_REQ_PREFETCH)) { 1292 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1293 bounce_buffer + skip_bytes, 1294 MIN(pnum - skip_bytes, bytes - progress)); 1295 } 1296 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1297 /* Read directly into the destination */ 1298 ret = bdrv_driver_preadv(bs, offset + progress, 1299 MIN(pnum - skip_bytes, bytes - progress), 1300 qiov, qiov_offset + progress, 0); 1301 if (ret < 0) { 1302 goto err; 1303 } 1304 } 1305 1306 cluster_offset += pnum; 1307 cluster_bytes -= pnum; 1308 progress += pnum - skip_bytes; 1309 skip_bytes = 0; 1310 } 1311 ret = 0; 1312 1313 err: 1314 qemu_vfree(bounce_buffer); 1315 return ret; 1316 } 1317 1318 /* 1319 * Forwards an already correctly aligned request to the BlockDriver. This 1320 * handles copy on read, zeroing after EOF, and fragmentation of large 1321 * reads; any other features must be implemented by the caller. 1322 */ 1323 static int coroutine_fn GRAPH_RDLOCK 1324 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1325 int64_t offset, int64_t bytes, int64_t align, 1326 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1327 { 1328 BlockDriverState *bs = child->bs; 1329 int64_t total_bytes, max_bytes; 1330 int ret = 0; 1331 int64_t bytes_remaining = bytes; 1332 int max_transfer; 1333 1334 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1335 assert(is_power_of_2(align)); 1336 assert((offset & (align - 1)) == 0); 1337 assert((bytes & (align - 1)) == 0); 1338 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1339 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1340 align); 1341 1342 /* 1343 * TODO: We would need a per-BDS .supported_read_flags and 1344 * potential fallback support, if we ever implement any read flags 1345 * to pass through to drivers. For now, there aren't any 1346 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1347 */ 1348 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1349 BDRV_REQ_REGISTERED_BUF))); 1350 1351 /* Handle Copy on Read and associated serialisation */ 1352 if (flags & BDRV_REQ_COPY_ON_READ) { 1353 /* If we touch the same cluster it counts as an overlap. This 1354 * guarantees that allocating writes will be serialized and not race 1355 * with each other for the same cluster. For example, in copy-on-read 1356 * it ensures that the CoR read and write operations are atomic and 1357 * guest writes cannot interleave between them. */ 1358 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1359 } else { 1360 bdrv_wait_serialising_requests(req); 1361 } 1362 1363 if (flags & BDRV_REQ_COPY_ON_READ) { 1364 int64_t pnum; 1365 1366 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1367 flags &= ~BDRV_REQ_COPY_ON_READ; 1368 1369 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1370 if (ret < 0) { 1371 goto out; 1372 } 1373 1374 if (!ret || pnum != bytes) { 1375 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1376 qiov, qiov_offset, flags); 1377 goto out; 1378 } else if (flags & BDRV_REQ_PREFETCH) { 1379 goto out; 1380 } 1381 } 1382 1383 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1384 total_bytes = bdrv_getlength(bs); 1385 if (total_bytes < 0) { 1386 ret = total_bytes; 1387 goto out; 1388 } 1389 1390 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1391 1392 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1393 if (bytes <= max_bytes && bytes <= max_transfer) { 1394 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1395 goto out; 1396 } 1397 1398 while (bytes_remaining) { 1399 int64_t num; 1400 1401 if (max_bytes) { 1402 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1403 assert(num); 1404 1405 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1406 num, qiov, 1407 qiov_offset + bytes - bytes_remaining, 1408 flags); 1409 max_bytes -= num; 1410 } else { 1411 num = bytes_remaining; 1412 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1413 0, bytes_remaining); 1414 } 1415 if (ret < 0) { 1416 goto out; 1417 } 1418 bytes_remaining -= num; 1419 } 1420 1421 out: 1422 return ret < 0 ? ret : 0; 1423 } 1424 1425 /* 1426 * Request padding 1427 * 1428 * |<---- align ----->| |<----- align ---->| 1429 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1430 * | | | | | | 1431 * -*----------$-------*-------- ... --------*-----$------------*--- 1432 * | | | | | | 1433 * | offset | | end | 1434 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1435 * [buf ... ) [tail_buf ) 1436 * 1437 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1438 * is placed at the beginning of @buf and @tail at the @end. 1439 * 1440 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1441 * around tail, if tail exists. 1442 * 1443 * @merge_reads is true for small requests, 1444 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1445 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1446 */ 1447 typedef struct BdrvRequestPadding { 1448 uint8_t *buf; 1449 size_t buf_len; 1450 uint8_t *tail_buf; 1451 size_t head; 1452 size_t tail; 1453 bool merge_reads; 1454 QEMUIOVector local_qiov; 1455 } BdrvRequestPadding; 1456 1457 static bool bdrv_init_padding(BlockDriverState *bs, 1458 int64_t offset, int64_t bytes, 1459 BdrvRequestPadding *pad) 1460 { 1461 int64_t align = bs->bl.request_alignment; 1462 int64_t sum; 1463 1464 bdrv_check_request(offset, bytes, &error_abort); 1465 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1466 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1467 1468 memset(pad, 0, sizeof(*pad)); 1469 1470 pad->head = offset & (align - 1); 1471 pad->tail = ((offset + bytes) & (align - 1)); 1472 if (pad->tail) { 1473 pad->tail = align - pad->tail; 1474 } 1475 1476 if (!pad->head && !pad->tail) { 1477 return false; 1478 } 1479 1480 assert(bytes); /* Nothing good in aligning zero-length requests */ 1481 1482 sum = pad->head + bytes + pad->tail; 1483 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1484 pad->buf = qemu_blockalign(bs, pad->buf_len); 1485 pad->merge_reads = sum == pad->buf_len; 1486 if (pad->tail) { 1487 pad->tail_buf = pad->buf + pad->buf_len - align; 1488 } 1489 1490 return true; 1491 } 1492 1493 static int coroutine_fn GRAPH_RDLOCK 1494 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1495 BdrvRequestPadding *pad, bool zero_middle) 1496 { 1497 QEMUIOVector local_qiov; 1498 BlockDriverState *bs = child->bs; 1499 uint64_t align = bs->bl.request_alignment; 1500 int ret; 1501 1502 assert(req->serialising && pad->buf); 1503 1504 if (pad->head || pad->merge_reads) { 1505 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1506 1507 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1508 1509 if (pad->head) { 1510 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1511 } 1512 if (pad->merge_reads && pad->tail) { 1513 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1514 } 1515 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1516 align, &local_qiov, 0, 0); 1517 if (ret < 0) { 1518 return ret; 1519 } 1520 if (pad->head) { 1521 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1522 } 1523 if (pad->merge_reads && pad->tail) { 1524 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1525 } 1526 1527 if (pad->merge_reads) { 1528 goto zero_mem; 1529 } 1530 } 1531 1532 if (pad->tail) { 1533 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1534 1535 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1536 ret = bdrv_aligned_preadv( 1537 child, req, 1538 req->overlap_offset + req->overlap_bytes - align, 1539 align, align, &local_qiov, 0, 0); 1540 if (ret < 0) { 1541 return ret; 1542 } 1543 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1544 } 1545 1546 zero_mem: 1547 if (zero_middle) { 1548 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1549 } 1550 1551 return 0; 1552 } 1553 1554 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1555 { 1556 if (pad->buf) { 1557 qemu_vfree(pad->buf); 1558 qemu_iovec_destroy(&pad->local_qiov); 1559 } 1560 memset(pad, 0, sizeof(*pad)); 1561 } 1562 1563 /* 1564 * bdrv_pad_request 1565 * 1566 * Exchange request parameters with padded request if needed. Don't include RMW 1567 * read of padding, bdrv_padding_rmw_read() should be called separately if 1568 * needed. 1569 * 1570 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1571 * - on function start they represent original request 1572 * - on failure or when padding is not needed they are unchanged 1573 * - on success when padding is needed they represent padded request 1574 */ 1575 static int bdrv_pad_request(BlockDriverState *bs, 1576 QEMUIOVector **qiov, size_t *qiov_offset, 1577 int64_t *offset, int64_t *bytes, 1578 BdrvRequestPadding *pad, bool *padded, 1579 BdrvRequestFlags *flags) 1580 { 1581 int ret; 1582 1583 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1584 1585 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1586 if (padded) { 1587 *padded = false; 1588 } 1589 return 0; 1590 } 1591 1592 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1593 *qiov, *qiov_offset, *bytes, 1594 pad->buf + pad->buf_len - pad->tail, 1595 pad->tail); 1596 if (ret < 0) { 1597 bdrv_padding_destroy(pad); 1598 return ret; 1599 } 1600 *bytes += pad->head + pad->tail; 1601 *offset -= pad->head; 1602 *qiov = &pad->local_qiov; 1603 *qiov_offset = 0; 1604 if (padded) { 1605 *padded = true; 1606 } 1607 if (flags) { 1608 /* Can't use optimization hint with bounce buffer */ 1609 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1610 } 1611 1612 return 0; 1613 } 1614 1615 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1616 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1617 BdrvRequestFlags flags) 1618 { 1619 IO_CODE(); 1620 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1621 } 1622 1623 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1624 int64_t offset, int64_t bytes, 1625 QEMUIOVector *qiov, size_t qiov_offset, 1626 BdrvRequestFlags flags) 1627 { 1628 BlockDriverState *bs = child->bs; 1629 BdrvTrackedRequest req; 1630 BdrvRequestPadding pad; 1631 int ret; 1632 IO_CODE(); 1633 1634 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1635 1636 if (!bdrv_co_is_inserted(bs)) { 1637 return -ENOMEDIUM; 1638 } 1639 1640 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1641 if (ret < 0) { 1642 return ret; 1643 } 1644 1645 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1646 /* 1647 * Aligning zero request is nonsense. Even if driver has special meaning 1648 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1649 * it to driver due to request_alignment. 1650 * 1651 * Still, no reason to return an error if someone do unaligned 1652 * zero-length read occasionally. 1653 */ 1654 return 0; 1655 } 1656 1657 bdrv_inc_in_flight(bs); 1658 1659 /* Don't do copy-on-read if we read data before write operation */ 1660 if (qatomic_read(&bs->copy_on_read)) { 1661 flags |= BDRV_REQ_COPY_ON_READ; 1662 } 1663 1664 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1665 NULL, &flags); 1666 if (ret < 0) { 1667 goto fail; 1668 } 1669 1670 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1671 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1672 bs->bl.request_alignment, 1673 qiov, qiov_offset, flags); 1674 tracked_request_end(&req); 1675 bdrv_padding_destroy(&pad); 1676 1677 fail: 1678 bdrv_dec_in_flight(bs); 1679 1680 return ret; 1681 } 1682 1683 static int coroutine_fn GRAPH_RDLOCK 1684 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1685 BdrvRequestFlags flags) 1686 { 1687 BlockDriver *drv = bs->drv; 1688 QEMUIOVector qiov; 1689 void *buf = NULL; 1690 int ret = 0; 1691 bool need_flush = false; 1692 int head = 0; 1693 int tail = 0; 1694 1695 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1696 INT64_MAX); 1697 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1698 bs->bl.request_alignment); 1699 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1700 1701 assert_bdrv_graph_readable(); 1702 bdrv_check_request(offset, bytes, &error_abort); 1703 1704 if (!drv) { 1705 return -ENOMEDIUM; 1706 } 1707 1708 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1709 return -ENOTSUP; 1710 } 1711 1712 /* By definition there is no user buffer so this flag doesn't make sense */ 1713 if (flags & BDRV_REQ_REGISTERED_BUF) { 1714 return -EINVAL; 1715 } 1716 1717 /* Invalidate the cached block-status data range if this write overlaps */ 1718 bdrv_bsc_invalidate_range(bs, offset, bytes); 1719 1720 assert(alignment % bs->bl.request_alignment == 0); 1721 head = offset % alignment; 1722 tail = (offset + bytes) % alignment; 1723 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1724 assert(max_write_zeroes >= bs->bl.request_alignment); 1725 1726 while (bytes > 0 && !ret) { 1727 int64_t num = bytes; 1728 1729 /* Align request. Block drivers can expect the "bulk" of the request 1730 * to be aligned, and that unaligned requests do not cross cluster 1731 * boundaries. 1732 */ 1733 if (head) { 1734 /* Make a small request up to the first aligned sector. For 1735 * convenience, limit this request to max_transfer even if 1736 * we don't need to fall back to writes. */ 1737 num = MIN(MIN(bytes, max_transfer), alignment - head); 1738 head = (head + num) % alignment; 1739 assert(num < max_write_zeroes); 1740 } else if (tail && num > alignment) { 1741 /* Shorten the request to the last aligned sector. */ 1742 num -= tail; 1743 } 1744 1745 /* limit request size */ 1746 if (num > max_write_zeroes) { 1747 num = max_write_zeroes; 1748 } 1749 1750 ret = -ENOTSUP; 1751 /* First try the efficient write zeroes operation */ 1752 if (drv->bdrv_co_pwrite_zeroes) { 1753 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1754 flags & bs->supported_zero_flags); 1755 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1756 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1757 need_flush = true; 1758 } 1759 } else { 1760 assert(!bs->supported_zero_flags); 1761 } 1762 1763 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1764 /* Fall back to bounce buffer if write zeroes is unsupported */ 1765 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1766 1767 if ((flags & BDRV_REQ_FUA) && 1768 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1769 /* No need for bdrv_driver_pwrite() to do a fallback 1770 * flush on each chunk; use just one at the end */ 1771 write_flags &= ~BDRV_REQ_FUA; 1772 need_flush = true; 1773 } 1774 num = MIN(num, max_transfer); 1775 if (buf == NULL) { 1776 buf = qemu_try_blockalign0(bs, num); 1777 if (buf == NULL) { 1778 ret = -ENOMEM; 1779 goto fail; 1780 } 1781 } 1782 qemu_iovec_init_buf(&qiov, buf, num); 1783 1784 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1785 1786 /* Keep bounce buffer around if it is big enough for all 1787 * all future requests. 1788 */ 1789 if (num < max_transfer) { 1790 qemu_vfree(buf); 1791 buf = NULL; 1792 } 1793 } 1794 1795 offset += num; 1796 bytes -= num; 1797 } 1798 1799 fail: 1800 if (ret == 0 && need_flush) { 1801 ret = bdrv_co_flush(bs); 1802 } 1803 qemu_vfree(buf); 1804 return ret; 1805 } 1806 1807 static inline int coroutine_fn GRAPH_RDLOCK 1808 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1809 BdrvTrackedRequest *req, int flags) 1810 { 1811 BlockDriverState *bs = child->bs; 1812 1813 bdrv_check_request(offset, bytes, &error_abort); 1814 1815 if (bdrv_is_read_only(bs)) { 1816 return -EPERM; 1817 } 1818 1819 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1820 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1821 assert(!(flags & ~BDRV_REQ_MASK)); 1822 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1823 1824 if (flags & BDRV_REQ_SERIALISING) { 1825 QEMU_LOCK_GUARD(&bs->reqs_lock); 1826 1827 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1828 1829 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1830 return -EBUSY; 1831 } 1832 1833 bdrv_wait_serialising_requests_locked(req); 1834 } else { 1835 bdrv_wait_serialising_requests(req); 1836 } 1837 1838 assert(req->overlap_offset <= offset); 1839 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1840 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1841 child->perm & BLK_PERM_RESIZE); 1842 1843 switch (req->type) { 1844 case BDRV_TRACKED_WRITE: 1845 case BDRV_TRACKED_DISCARD: 1846 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1847 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1848 } else { 1849 assert(child->perm & BLK_PERM_WRITE); 1850 } 1851 bdrv_write_threshold_check_write(bs, offset, bytes); 1852 return 0; 1853 case BDRV_TRACKED_TRUNCATE: 1854 assert(child->perm & BLK_PERM_RESIZE); 1855 return 0; 1856 default: 1857 abort(); 1858 } 1859 } 1860 1861 static inline void coroutine_fn 1862 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 1863 BdrvTrackedRequest *req, int ret) 1864 { 1865 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1866 BlockDriverState *bs = child->bs; 1867 1868 bdrv_check_request(offset, bytes, &error_abort); 1869 1870 qatomic_inc(&bs->write_gen); 1871 1872 /* 1873 * Discard cannot extend the image, but in error handling cases, such as 1874 * when reverting a qcow2 cluster allocation, the discarded range can pass 1875 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1876 * here. Instead, just skip it, since semantically a discard request 1877 * beyond EOF cannot expand the image anyway. 1878 */ 1879 if (ret == 0 && 1880 (req->type == BDRV_TRACKED_TRUNCATE || 1881 end_sector > bs->total_sectors) && 1882 req->type != BDRV_TRACKED_DISCARD) { 1883 bs->total_sectors = end_sector; 1884 bdrv_parent_cb_resize(bs); 1885 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1886 } 1887 if (req->bytes) { 1888 switch (req->type) { 1889 case BDRV_TRACKED_WRITE: 1890 stat64_max(&bs->wr_highest_offset, offset + bytes); 1891 /* fall through, to set dirty bits */ 1892 case BDRV_TRACKED_DISCARD: 1893 bdrv_set_dirty(bs, offset, bytes); 1894 break; 1895 default: 1896 break; 1897 } 1898 } 1899 } 1900 1901 /* 1902 * Forwards an already correctly aligned write request to the BlockDriver, 1903 * after possibly fragmenting it. 1904 */ 1905 static int coroutine_fn GRAPH_RDLOCK 1906 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 1907 int64_t offset, int64_t bytes, int64_t align, 1908 QEMUIOVector *qiov, size_t qiov_offset, 1909 BdrvRequestFlags flags) 1910 { 1911 BlockDriverState *bs = child->bs; 1912 BlockDriver *drv = bs->drv; 1913 int ret; 1914 1915 int64_t bytes_remaining = bytes; 1916 int max_transfer; 1917 1918 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1919 1920 if (!drv) { 1921 return -ENOMEDIUM; 1922 } 1923 1924 if (bdrv_has_readonly_bitmaps(bs)) { 1925 return -EPERM; 1926 } 1927 1928 assert(is_power_of_2(align)); 1929 assert((offset & (align - 1)) == 0); 1930 assert((bytes & (align - 1)) == 0); 1931 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1932 align); 1933 1934 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1935 1936 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1937 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1938 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1939 flags |= BDRV_REQ_ZERO_WRITE; 1940 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1941 flags |= BDRV_REQ_MAY_UNMAP; 1942 } 1943 1944 /* Can't use optimization hint with bufferless zero write */ 1945 flags &= ~BDRV_REQ_REGISTERED_BUF; 1946 } 1947 1948 if (ret < 0) { 1949 /* Do nothing, write notifier decided to fail this request */ 1950 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1951 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1952 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1953 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1954 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1955 qiov, qiov_offset); 1956 } else if (bytes <= max_transfer) { 1957 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 1958 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1959 } else { 1960 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 1961 while (bytes_remaining) { 1962 int num = MIN(bytes_remaining, max_transfer); 1963 int local_flags = flags; 1964 1965 assert(num); 1966 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1967 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1968 /* If FUA is going to be emulated by flush, we only 1969 * need to flush on the last iteration */ 1970 local_flags &= ~BDRV_REQ_FUA; 1971 } 1972 1973 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1974 num, qiov, 1975 qiov_offset + bytes - bytes_remaining, 1976 local_flags); 1977 if (ret < 0) { 1978 break; 1979 } 1980 bytes_remaining -= num; 1981 } 1982 } 1983 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 1984 1985 if (ret >= 0) { 1986 ret = 0; 1987 } 1988 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1989 1990 return ret; 1991 } 1992 1993 static int coroutine_fn GRAPH_RDLOCK 1994 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 1995 BdrvRequestFlags flags, BdrvTrackedRequest *req) 1996 { 1997 BlockDriverState *bs = child->bs; 1998 QEMUIOVector local_qiov; 1999 uint64_t align = bs->bl.request_alignment; 2000 int ret = 0; 2001 bool padding; 2002 BdrvRequestPadding pad; 2003 2004 /* This flag doesn't make sense for padding or zero writes */ 2005 flags &= ~BDRV_REQ_REGISTERED_BUF; 2006 2007 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2008 if (padding) { 2009 assert(!(flags & BDRV_REQ_NO_WAIT)); 2010 bdrv_make_request_serialising(req, align); 2011 2012 bdrv_padding_rmw_read(child, req, &pad, true); 2013 2014 if (pad.head || pad.merge_reads) { 2015 int64_t aligned_offset = offset & ~(align - 1); 2016 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2017 2018 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2019 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2020 align, &local_qiov, 0, 2021 flags & ~BDRV_REQ_ZERO_WRITE); 2022 if (ret < 0 || pad.merge_reads) { 2023 /* Error or all work is done */ 2024 goto out; 2025 } 2026 offset += write_bytes - pad.head; 2027 bytes -= write_bytes - pad.head; 2028 } 2029 } 2030 2031 assert(!bytes || (offset & (align - 1)) == 0); 2032 if (bytes >= align) { 2033 /* Write the aligned part in the middle. */ 2034 int64_t aligned_bytes = bytes & ~(align - 1); 2035 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2036 NULL, 0, flags); 2037 if (ret < 0) { 2038 goto out; 2039 } 2040 bytes -= aligned_bytes; 2041 offset += aligned_bytes; 2042 } 2043 2044 assert(!bytes || (offset & (align - 1)) == 0); 2045 if (bytes) { 2046 assert(align == pad.tail + bytes); 2047 2048 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2049 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2050 &local_qiov, 0, 2051 flags & ~BDRV_REQ_ZERO_WRITE); 2052 } 2053 2054 out: 2055 bdrv_padding_destroy(&pad); 2056 2057 return ret; 2058 } 2059 2060 /* 2061 * Handle a write request in coroutine context 2062 */ 2063 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2064 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2065 BdrvRequestFlags flags) 2066 { 2067 IO_CODE(); 2068 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2069 } 2070 2071 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2072 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2073 BdrvRequestFlags flags) 2074 { 2075 BlockDriverState *bs = child->bs; 2076 BdrvTrackedRequest req; 2077 uint64_t align = bs->bl.request_alignment; 2078 BdrvRequestPadding pad; 2079 int ret; 2080 bool padded = false; 2081 IO_CODE(); 2082 2083 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2084 2085 if (!bdrv_co_is_inserted(bs)) { 2086 return -ENOMEDIUM; 2087 } 2088 2089 if (flags & BDRV_REQ_ZERO_WRITE) { 2090 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2091 } else { 2092 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2093 } 2094 if (ret < 0) { 2095 return ret; 2096 } 2097 2098 /* If the request is misaligned then we can't make it efficient */ 2099 if ((flags & BDRV_REQ_NO_FALLBACK) && 2100 !QEMU_IS_ALIGNED(offset | bytes, align)) 2101 { 2102 return -ENOTSUP; 2103 } 2104 2105 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2106 /* 2107 * Aligning zero request is nonsense. Even if driver has special meaning 2108 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2109 * it to driver due to request_alignment. 2110 * 2111 * Still, no reason to return an error if someone do unaligned 2112 * zero-length write occasionally. 2113 */ 2114 return 0; 2115 } 2116 2117 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2118 /* 2119 * Pad request for following read-modify-write cycle. 2120 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2121 * alignment only if there is no ZERO flag. 2122 */ 2123 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2124 &padded, &flags); 2125 if (ret < 0) { 2126 return ret; 2127 } 2128 } 2129 2130 bdrv_inc_in_flight(bs); 2131 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2132 2133 if (flags & BDRV_REQ_ZERO_WRITE) { 2134 assert(!padded); 2135 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2136 goto out; 2137 } 2138 2139 if (padded) { 2140 /* 2141 * Request was unaligned to request_alignment and therefore 2142 * padded. We are going to do read-modify-write, and must 2143 * serialize the request to prevent interactions of the 2144 * widened region with other transactions. 2145 */ 2146 assert(!(flags & BDRV_REQ_NO_WAIT)); 2147 bdrv_make_request_serialising(&req, align); 2148 bdrv_padding_rmw_read(child, &req, &pad, false); 2149 } 2150 2151 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2152 qiov, qiov_offset, flags); 2153 2154 bdrv_padding_destroy(&pad); 2155 2156 out: 2157 tracked_request_end(&req); 2158 bdrv_dec_in_flight(bs); 2159 2160 return ret; 2161 } 2162 2163 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2164 int64_t bytes, BdrvRequestFlags flags) 2165 { 2166 IO_CODE(); 2167 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2168 assert_bdrv_graph_readable(); 2169 2170 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2171 flags &= ~BDRV_REQ_MAY_UNMAP; 2172 } 2173 2174 return bdrv_co_pwritev(child, offset, bytes, NULL, 2175 BDRV_REQ_ZERO_WRITE | flags); 2176 } 2177 2178 /* 2179 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2180 */ 2181 int bdrv_flush_all(void) 2182 { 2183 BdrvNextIterator it; 2184 BlockDriverState *bs = NULL; 2185 int result = 0; 2186 2187 GLOBAL_STATE_CODE(); 2188 2189 /* 2190 * bdrv queue is managed by record/replay, 2191 * creating new flush request for stopping 2192 * the VM may break the determinism 2193 */ 2194 if (replay_events_enabled()) { 2195 return result; 2196 } 2197 2198 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2199 AioContext *aio_context = bdrv_get_aio_context(bs); 2200 int ret; 2201 2202 aio_context_acquire(aio_context); 2203 ret = bdrv_flush(bs); 2204 if (ret < 0 && !result) { 2205 result = ret; 2206 } 2207 aio_context_release(aio_context); 2208 } 2209 2210 return result; 2211 } 2212 2213 /* 2214 * Returns the allocation status of the specified sectors. 2215 * Drivers not implementing the functionality are assumed to not support 2216 * backing files, hence all their sectors are reported as allocated. 2217 * 2218 * If 'want_zero' is true, the caller is querying for mapping 2219 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2220 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2221 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2222 * 2223 * If 'offset' is beyond the end of the disk image the return value is 2224 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2225 * 2226 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2227 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2228 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2229 * 2230 * 'pnum' is set to the number of bytes (including and immediately 2231 * following the specified offset) that are easily known to be in the 2232 * same allocated/unallocated state. Note that a second call starting 2233 * at the original offset plus returned pnum may have the same status. 2234 * The returned value is non-zero on success except at end-of-file. 2235 * 2236 * Returns negative errno on failure. Otherwise, if the 2237 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2238 * set to the host mapping and BDS corresponding to the guest offset. 2239 */ 2240 static int coroutine_fn GRAPH_RDLOCK 2241 bdrv_co_block_status(BlockDriverState *bs, bool want_zero, 2242 int64_t offset, int64_t bytes, 2243 int64_t *pnum, int64_t *map, BlockDriverState **file) 2244 { 2245 int64_t total_size; 2246 int64_t n; /* bytes */ 2247 int ret; 2248 int64_t local_map = 0; 2249 BlockDriverState *local_file = NULL; 2250 int64_t aligned_offset, aligned_bytes; 2251 uint32_t align; 2252 bool has_filtered_child; 2253 2254 assert(pnum); 2255 assert_bdrv_graph_readable(); 2256 *pnum = 0; 2257 total_size = bdrv_getlength(bs); 2258 if (total_size < 0) { 2259 ret = total_size; 2260 goto early_out; 2261 } 2262 2263 if (offset >= total_size) { 2264 ret = BDRV_BLOCK_EOF; 2265 goto early_out; 2266 } 2267 if (!bytes) { 2268 ret = 0; 2269 goto early_out; 2270 } 2271 2272 n = total_size - offset; 2273 if (n < bytes) { 2274 bytes = n; 2275 } 2276 2277 /* Must be non-NULL or bdrv_getlength() would have failed */ 2278 assert(bs->drv); 2279 has_filtered_child = bdrv_filter_child(bs); 2280 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2281 *pnum = bytes; 2282 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2283 if (offset + bytes == total_size) { 2284 ret |= BDRV_BLOCK_EOF; 2285 } 2286 if (bs->drv->protocol_name) { 2287 ret |= BDRV_BLOCK_OFFSET_VALID; 2288 local_map = offset; 2289 local_file = bs; 2290 } 2291 goto early_out; 2292 } 2293 2294 bdrv_inc_in_flight(bs); 2295 2296 /* Round out to request_alignment boundaries */ 2297 align = bs->bl.request_alignment; 2298 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2299 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2300 2301 if (bs->drv->bdrv_co_block_status) { 2302 /* 2303 * Use the block-status cache only for protocol nodes: Format 2304 * drivers are generally quick to inquire the status, but protocol 2305 * drivers often need to get information from outside of qemu, so 2306 * we do not have control over the actual implementation. There 2307 * have been cases where inquiring the status took an unreasonably 2308 * long time, and we can do nothing in qemu to fix it. 2309 * This is especially problematic for images with large data areas, 2310 * because finding the few holes in them and giving them special 2311 * treatment does not gain much performance. Therefore, we try to 2312 * cache the last-identified data region. 2313 * 2314 * Second, limiting ourselves to protocol nodes allows us to assume 2315 * the block status for data regions to be DATA | OFFSET_VALID, and 2316 * that the host offset is the same as the guest offset. 2317 * 2318 * Note that it is possible that external writers zero parts of 2319 * the cached regions without the cache being invalidated, and so 2320 * we may report zeroes as data. This is not catastrophic, 2321 * however, because reporting zeroes as data is fine. 2322 */ 2323 if (QLIST_EMPTY(&bs->children) && 2324 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2325 { 2326 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2327 local_file = bs; 2328 local_map = aligned_offset; 2329 } else { 2330 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2331 aligned_bytes, pnum, &local_map, 2332 &local_file); 2333 2334 /* 2335 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2336 * the cache is queried above. Technically, we do not need to check 2337 * it here; the worst that can happen is that we fill the cache for 2338 * non-protocol nodes, and then it is never used. However, filling 2339 * the cache requires an RCU update, so double check here to avoid 2340 * such an update if possible. 2341 * 2342 * Check want_zero, because we only want to update the cache when we 2343 * have accurate information about what is zero and what is data. 2344 */ 2345 if (want_zero && 2346 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2347 QLIST_EMPTY(&bs->children)) 2348 { 2349 /* 2350 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2351 * returned local_map value must be the same as the offset we 2352 * have passed (aligned_offset), and local_bs must be the node 2353 * itself. 2354 * Assert this, because we follow this rule when reading from 2355 * the cache (see the `local_file = bs` and 2356 * `local_map = aligned_offset` assignments above), and the 2357 * result the cache delivers must be the same as the driver 2358 * would deliver. 2359 */ 2360 assert(local_file == bs); 2361 assert(local_map == aligned_offset); 2362 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2363 } 2364 } 2365 } else { 2366 /* Default code for filters */ 2367 2368 local_file = bdrv_filter_bs(bs); 2369 assert(local_file); 2370 2371 *pnum = aligned_bytes; 2372 local_map = aligned_offset; 2373 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2374 } 2375 if (ret < 0) { 2376 *pnum = 0; 2377 goto out; 2378 } 2379 2380 /* 2381 * The driver's result must be a non-zero multiple of request_alignment. 2382 * Clamp pnum and adjust map to original request. 2383 */ 2384 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2385 align > offset - aligned_offset); 2386 if (ret & BDRV_BLOCK_RECURSE) { 2387 assert(ret & BDRV_BLOCK_DATA); 2388 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2389 assert(!(ret & BDRV_BLOCK_ZERO)); 2390 } 2391 2392 *pnum -= offset - aligned_offset; 2393 if (*pnum > bytes) { 2394 *pnum = bytes; 2395 } 2396 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2397 local_map += offset - aligned_offset; 2398 } 2399 2400 if (ret & BDRV_BLOCK_RAW) { 2401 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2402 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2403 *pnum, pnum, &local_map, &local_file); 2404 goto out; 2405 } 2406 2407 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2408 ret |= BDRV_BLOCK_ALLOCATED; 2409 } else if (bs->drv->supports_backing) { 2410 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2411 2412 if (!cow_bs) { 2413 ret |= BDRV_BLOCK_ZERO; 2414 } else if (want_zero) { 2415 int64_t size2 = bdrv_getlength(cow_bs); 2416 2417 if (size2 >= 0 && offset >= size2) { 2418 ret |= BDRV_BLOCK_ZERO; 2419 } 2420 } 2421 } 2422 2423 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2424 local_file && local_file != bs && 2425 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2426 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2427 int64_t file_pnum; 2428 int ret2; 2429 2430 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2431 *pnum, &file_pnum, NULL, NULL); 2432 if (ret2 >= 0) { 2433 /* Ignore errors. This is just providing extra information, it 2434 * is useful but not necessary. 2435 */ 2436 if (ret2 & BDRV_BLOCK_EOF && 2437 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2438 /* 2439 * It is valid for the format block driver to read 2440 * beyond the end of the underlying file's current 2441 * size; such areas read as zero. 2442 */ 2443 ret |= BDRV_BLOCK_ZERO; 2444 } else { 2445 /* Limit request to the range reported by the protocol driver */ 2446 *pnum = file_pnum; 2447 ret |= (ret2 & BDRV_BLOCK_ZERO); 2448 } 2449 } 2450 } 2451 2452 out: 2453 bdrv_dec_in_flight(bs); 2454 if (ret >= 0 && offset + *pnum == total_size) { 2455 ret |= BDRV_BLOCK_EOF; 2456 } 2457 early_out: 2458 if (file) { 2459 *file = local_file; 2460 } 2461 if (map) { 2462 *map = local_map; 2463 } 2464 return ret; 2465 } 2466 2467 int coroutine_fn 2468 bdrv_co_common_block_status_above(BlockDriverState *bs, 2469 BlockDriverState *base, 2470 bool include_base, 2471 bool want_zero, 2472 int64_t offset, 2473 int64_t bytes, 2474 int64_t *pnum, 2475 int64_t *map, 2476 BlockDriverState **file, 2477 int *depth) 2478 { 2479 int ret; 2480 BlockDriverState *p; 2481 int64_t eof = 0; 2482 int dummy; 2483 IO_CODE(); 2484 2485 assert(!include_base || base); /* Can't include NULL base */ 2486 assert_bdrv_graph_readable(); 2487 2488 if (!depth) { 2489 depth = &dummy; 2490 } 2491 *depth = 0; 2492 2493 if (!include_base && bs == base) { 2494 *pnum = bytes; 2495 return 0; 2496 } 2497 2498 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2499 ++*depth; 2500 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2501 return ret; 2502 } 2503 2504 if (ret & BDRV_BLOCK_EOF) { 2505 eof = offset + *pnum; 2506 } 2507 2508 assert(*pnum <= bytes); 2509 bytes = *pnum; 2510 2511 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2512 p = bdrv_filter_or_cow_bs(p)) 2513 { 2514 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2515 file); 2516 ++*depth; 2517 if (ret < 0) { 2518 return ret; 2519 } 2520 if (*pnum == 0) { 2521 /* 2522 * The top layer deferred to this layer, and because this layer is 2523 * short, any zeroes that we synthesize beyond EOF behave as if they 2524 * were allocated at this layer. 2525 * 2526 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2527 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2528 * below. 2529 */ 2530 assert(ret & BDRV_BLOCK_EOF); 2531 *pnum = bytes; 2532 if (file) { 2533 *file = p; 2534 } 2535 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2536 break; 2537 } 2538 if (ret & BDRV_BLOCK_ALLOCATED) { 2539 /* 2540 * We've found the node and the status, we must break. 2541 * 2542 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2543 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2544 * below. 2545 */ 2546 ret &= ~BDRV_BLOCK_EOF; 2547 break; 2548 } 2549 2550 if (p == base) { 2551 assert(include_base); 2552 break; 2553 } 2554 2555 /* 2556 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2557 * let's continue the diving. 2558 */ 2559 assert(*pnum <= bytes); 2560 bytes = *pnum; 2561 } 2562 2563 if (offset + *pnum == eof) { 2564 ret |= BDRV_BLOCK_EOF; 2565 } 2566 2567 return ret; 2568 } 2569 2570 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2571 BlockDriverState *base, 2572 int64_t offset, int64_t bytes, 2573 int64_t *pnum, int64_t *map, 2574 BlockDriverState **file) 2575 { 2576 IO_CODE(); 2577 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2578 bytes, pnum, map, file, NULL); 2579 } 2580 2581 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2582 int64_t offset, int64_t bytes, int64_t *pnum, 2583 int64_t *map, BlockDriverState **file) 2584 { 2585 IO_CODE(); 2586 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2587 pnum, map, file, NULL); 2588 } 2589 2590 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2591 int64_t *pnum, int64_t *map, BlockDriverState **file) 2592 { 2593 IO_CODE(); 2594 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2595 offset, bytes, pnum, map, file); 2596 } 2597 2598 /* 2599 * Check @bs (and its backing chain) to see if the range defined 2600 * by @offset and @bytes is known to read as zeroes. 2601 * Return 1 if that is the case, 0 otherwise and -errno on error. 2602 * This test is meant to be fast rather than accurate so returning 0 2603 * does not guarantee non-zero data. 2604 */ 2605 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2606 int64_t bytes) 2607 { 2608 int ret; 2609 int64_t pnum = bytes; 2610 IO_CODE(); 2611 2612 if (!bytes) { 2613 return 1; 2614 } 2615 2616 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2617 bytes, &pnum, NULL, NULL, NULL); 2618 2619 if (ret < 0) { 2620 return ret; 2621 } 2622 2623 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2624 } 2625 2626 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2627 int64_t bytes, int64_t *pnum) 2628 { 2629 int ret; 2630 int64_t dummy; 2631 IO_CODE(); 2632 2633 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2634 bytes, pnum ? pnum : &dummy, NULL, 2635 NULL, NULL); 2636 if (ret < 0) { 2637 return ret; 2638 } 2639 return !!(ret & BDRV_BLOCK_ALLOCATED); 2640 } 2641 2642 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, 2643 int64_t *pnum) 2644 { 2645 int ret; 2646 int64_t dummy; 2647 IO_CODE(); 2648 2649 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2650 bytes, pnum ? pnum : &dummy, NULL, 2651 NULL, NULL); 2652 if (ret < 0) { 2653 return ret; 2654 } 2655 return !!(ret & BDRV_BLOCK_ALLOCATED); 2656 } 2657 2658 /* See bdrv_is_allocated_above for documentation */ 2659 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2660 BlockDriverState *base, 2661 bool include_base, int64_t offset, 2662 int64_t bytes, int64_t *pnum) 2663 { 2664 int depth; 2665 int ret; 2666 IO_CODE(); 2667 2668 ret = bdrv_co_common_block_status_above(top, base, include_base, false, 2669 offset, bytes, pnum, NULL, NULL, 2670 &depth); 2671 if (ret < 0) { 2672 return ret; 2673 } 2674 2675 if (ret & BDRV_BLOCK_ALLOCATED) { 2676 return depth; 2677 } 2678 return 0; 2679 } 2680 2681 /* 2682 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2683 * 2684 * Return a positive depth if (a prefix of) the given range is allocated 2685 * in any image between BASE and TOP (BASE is only included if include_base 2686 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2687 * BASE can be NULL to check if the given offset is allocated in any 2688 * image of the chain. Return 0 otherwise, or negative errno on 2689 * failure. 2690 * 2691 * 'pnum' is set to the number of bytes (including and immediately 2692 * following the specified offset) that are known to be in the same 2693 * allocated/unallocated state. Note that a subsequent call starting 2694 * at 'offset + *pnum' may return the same allocation status (in other 2695 * words, the result is not necessarily the maximum possible range); 2696 * but 'pnum' will only be 0 when end of file is reached. 2697 */ 2698 int bdrv_is_allocated_above(BlockDriverState *top, 2699 BlockDriverState *base, 2700 bool include_base, int64_t offset, 2701 int64_t bytes, int64_t *pnum) 2702 { 2703 int depth; 2704 int ret; 2705 IO_CODE(); 2706 2707 ret = bdrv_common_block_status_above(top, base, include_base, false, 2708 offset, bytes, pnum, NULL, NULL, 2709 &depth); 2710 if (ret < 0) { 2711 return ret; 2712 } 2713 2714 if (ret & BDRV_BLOCK_ALLOCATED) { 2715 return depth; 2716 } 2717 return 0; 2718 } 2719 2720 int coroutine_fn 2721 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2722 { 2723 BlockDriver *drv = bs->drv; 2724 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2725 int ret; 2726 IO_CODE(); 2727 assert_bdrv_graph_readable(); 2728 2729 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2730 if (ret < 0) { 2731 return ret; 2732 } 2733 2734 if (!drv) { 2735 return -ENOMEDIUM; 2736 } 2737 2738 bdrv_inc_in_flight(bs); 2739 2740 if (drv->bdrv_co_load_vmstate) { 2741 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2742 } else if (child_bs) { 2743 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2744 } else { 2745 ret = -ENOTSUP; 2746 } 2747 2748 bdrv_dec_in_flight(bs); 2749 2750 return ret; 2751 } 2752 2753 int coroutine_fn 2754 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2755 { 2756 BlockDriver *drv = bs->drv; 2757 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2758 int ret; 2759 IO_CODE(); 2760 assert_bdrv_graph_readable(); 2761 2762 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2763 if (ret < 0) { 2764 return ret; 2765 } 2766 2767 if (!drv) { 2768 return -ENOMEDIUM; 2769 } 2770 2771 bdrv_inc_in_flight(bs); 2772 2773 if (drv->bdrv_co_save_vmstate) { 2774 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2775 } else if (child_bs) { 2776 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2777 } else { 2778 ret = -ENOTSUP; 2779 } 2780 2781 bdrv_dec_in_flight(bs); 2782 2783 return ret; 2784 } 2785 2786 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2787 int64_t pos, int size) 2788 { 2789 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2790 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2791 IO_CODE(); 2792 2793 return ret < 0 ? ret : size; 2794 } 2795 2796 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2797 int64_t pos, int size) 2798 { 2799 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2800 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2801 IO_CODE(); 2802 2803 return ret < 0 ? ret : size; 2804 } 2805 2806 /**************************************************************/ 2807 /* async I/Os */ 2808 2809 void bdrv_aio_cancel(BlockAIOCB *acb) 2810 { 2811 IO_CODE(); 2812 qemu_aio_ref(acb); 2813 bdrv_aio_cancel_async(acb); 2814 while (acb->refcnt > 1) { 2815 if (acb->aiocb_info->get_aio_context) { 2816 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2817 } else if (acb->bs) { 2818 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2819 * assert that we're not using an I/O thread. Thread-safe 2820 * code should use bdrv_aio_cancel_async exclusively. 2821 */ 2822 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2823 aio_poll(bdrv_get_aio_context(acb->bs), true); 2824 } else { 2825 abort(); 2826 } 2827 } 2828 qemu_aio_unref(acb); 2829 } 2830 2831 /* Async version of aio cancel. The caller is not blocked if the acb implements 2832 * cancel_async, otherwise we do nothing and let the request normally complete. 2833 * In either case the completion callback must be called. */ 2834 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2835 { 2836 IO_CODE(); 2837 if (acb->aiocb_info->cancel_async) { 2838 acb->aiocb_info->cancel_async(acb); 2839 } 2840 } 2841 2842 /**************************************************************/ 2843 /* Coroutine block device emulation */ 2844 2845 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2846 { 2847 BdrvChild *primary_child = bdrv_primary_child(bs); 2848 BdrvChild *child; 2849 int current_gen; 2850 int ret = 0; 2851 IO_CODE(); 2852 2853 assert_bdrv_graph_readable(); 2854 bdrv_inc_in_flight(bs); 2855 2856 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 2857 bdrv_is_sg(bs)) { 2858 goto early_exit; 2859 } 2860 2861 qemu_co_mutex_lock(&bs->reqs_lock); 2862 current_gen = qatomic_read(&bs->write_gen); 2863 2864 /* Wait until any previous flushes are completed */ 2865 while (bs->active_flush_req) { 2866 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2867 } 2868 2869 /* Flushes reach this point in nondecreasing current_gen order. */ 2870 bs->active_flush_req = true; 2871 qemu_co_mutex_unlock(&bs->reqs_lock); 2872 2873 /* Write back all layers by calling one driver function */ 2874 if (bs->drv->bdrv_co_flush) { 2875 ret = bs->drv->bdrv_co_flush(bs); 2876 goto out; 2877 } 2878 2879 /* Write back cached data to the OS even with cache=unsafe */ 2880 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2881 if (bs->drv->bdrv_co_flush_to_os) { 2882 ret = bs->drv->bdrv_co_flush_to_os(bs); 2883 if (ret < 0) { 2884 goto out; 2885 } 2886 } 2887 2888 /* But don't actually force it to the disk with cache=unsafe */ 2889 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2890 goto flush_children; 2891 } 2892 2893 /* Check if we really need to flush anything */ 2894 if (bs->flushed_gen == current_gen) { 2895 goto flush_children; 2896 } 2897 2898 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2899 if (!bs->drv) { 2900 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2901 * (even in case of apparent success) */ 2902 ret = -ENOMEDIUM; 2903 goto out; 2904 } 2905 if (bs->drv->bdrv_co_flush_to_disk) { 2906 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2907 } else if (bs->drv->bdrv_aio_flush) { 2908 BlockAIOCB *acb; 2909 CoroutineIOCompletion co = { 2910 .coroutine = qemu_coroutine_self(), 2911 }; 2912 2913 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2914 if (acb == NULL) { 2915 ret = -EIO; 2916 } else { 2917 qemu_coroutine_yield(); 2918 ret = co.ret; 2919 } 2920 } else { 2921 /* 2922 * Some block drivers always operate in either writethrough or unsafe 2923 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2924 * know how the server works (because the behaviour is hardcoded or 2925 * depends on server-side configuration), so we can't ensure that 2926 * everything is safe on disk. Returning an error doesn't work because 2927 * that would break guests even if the server operates in writethrough 2928 * mode. 2929 * 2930 * Let's hope the user knows what he's doing. 2931 */ 2932 ret = 0; 2933 } 2934 2935 if (ret < 0) { 2936 goto out; 2937 } 2938 2939 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2940 * in the case of cache=unsafe, so there are no useless flushes. 2941 */ 2942 flush_children: 2943 ret = 0; 2944 QLIST_FOREACH(child, &bs->children, next) { 2945 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 2946 int this_child_ret = bdrv_co_flush(child->bs); 2947 if (!ret) { 2948 ret = this_child_ret; 2949 } 2950 } 2951 } 2952 2953 out: 2954 /* Notify any pending flushes that we have completed */ 2955 if (ret == 0) { 2956 bs->flushed_gen = current_gen; 2957 } 2958 2959 qemu_co_mutex_lock(&bs->reqs_lock); 2960 bs->active_flush_req = false; 2961 /* Return value is ignored - it's ok if wait queue is empty */ 2962 qemu_co_queue_next(&bs->flush_queue); 2963 qemu_co_mutex_unlock(&bs->reqs_lock); 2964 2965 early_exit: 2966 bdrv_dec_in_flight(bs); 2967 return ret; 2968 } 2969 2970 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2971 int64_t bytes) 2972 { 2973 BdrvTrackedRequest req; 2974 int ret; 2975 int64_t max_pdiscard; 2976 int head, tail, align; 2977 BlockDriverState *bs = child->bs; 2978 IO_CODE(); 2979 assert_bdrv_graph_readable(); 2980 2981 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 2982 return -ENOMEDIUM; 2983 } 2984 2985 if (bdrv_has_readonly_bitmaps(bs)) { 2986 return -EPERM; 2987 } 2988 2989 ret = bdrv_check_request(offset, bytes, NULL); 2990 if (ret < 0) { 2991 return ret; 2992 } 2993 2994 /* Do nothing if disabled. */ 2995 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2996 return 0; 2997 } 2998 2999 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3000 return 0; 3001 } 3002 3003 /* Invalidate the cached block-status data range if this discard overlaps */ 3004 bdrv_bsc_invalidate_range(bs, offset, bytes); 3005 3006 /* Discard is advisory, but some devices track and coalesce 3007 * unaligned requests, so we must pass everything down rather than 3008 * round here. Still, most devices will just silently ignore 3009 * unaligned requests (by returning -ENOTSUP), so we must fragment 3010 * the request accordingly. */ 3011 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3012 assert(align % bs->bl.request_alignment == 0); 3013 head = offset % align; 3014 tail = (offset + bytes) % align; 3015 3016 bdrv_inc_in_flight(bs); 3017 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3018 3019 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3020 if (ret < 0) { 3021 goto out; 3022 } 3023 3024 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3025 align); 3026 assert(max_pdiscard >= bs->bl.request_alignment); 3027 3028 while (bytes > 0) { 3029 int64_t num = bytes; 3030 3031 if (head) { 3032 /* Make small requests to get to alignment boundaries. */ 3033 num = MIN(bytes, align - head); 3034 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3035 num %= bs->bl.request_alignment; 3036 } 3037 head = (head + num) % align; 3038 assert(num < max_pdiscard); 3039 } else if (tail) { 3040 if (num > align) { 3041 /* Shorten the request to the last aligned cluster. */ 3042 num -= tail; 3043 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3044 tail > bs->bl.request_alignment) { 3045 tail %= bs->bl.request_alignment; 3046 num -= tail; 3047 } 3048 } 3049 /* limit request size */ 3050 if (num > max_pdiscard) { 3051 num = max_pdiscard; 3052 } 3053 3054 if (!bs->drv) { 3055 ret = -ENOMEDIUM; 3056 goto out; 3057 } 3058 if (bs->drv->bdrv_co_pdiscard) { 3059 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3060 } else { 3061 BlockAIOCB *acb; 3062 CoroutineIOCompletion co = { 3063 .coroutine = qemu_coroutine_self(), 3064 }; 3065 3066 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3067 bdrv_co_io_em_complete, &co); 3068 if (acb == NULL) { 3069 ret = -EIO; 3070 goto out; 3071 } else { 3072 qemu_coroutine_yield(); 3073 ret = co.ret; 3074 } 3075 } 3076 if (ret && ret != -ENOTSUP) { 3077 goto out; 3078 } 3079 3080 offset += num; 3081 bytes -= num; 3082 } 3083 ret = 0; 3084 out: 3085 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3086 tracked_request_end(&req); 3087 bdrv_dec_in_flight(bs); 3088 return ret; 3089 } 3090 3091 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3092 { 3093 BlockDriver *drv = bs->drv; 3094 CoroutineIOCompletion co = { 3095 .coroutine = qemu_coroutine_self(), 3096 }; 3097 BlockAIOCB *acb; 3098 IO_CODE(); 3099 assert_bdrv_graph_readable(); 3100 3101 bdrv_inc_in_flight(bs); 3102 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3103 co.ret = -ENOTSUP; 3104 goto out; 3105 } 3106 3107 if (drv->bdrv_co_ioctl) { 3108 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3109 } else { 3110 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3111 if (!acb) { 3112 co.ret = -ENOTSUP; 3113 goto out; 3114 } 3115 qemu_coroutine_yield(); 3116 } 3117 out: 3118 bdrv_dec_in_flight(bs); 3119 return co.ret; 3120 } 3121 3122 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3123 unsigned int *nr_zones, 3124 BlockZoneDescriptor *zones) 3125 { 3126 BlockDriver *drv = bs->drv; 3127 CoroutineIOCompletion co = { 3128 .coroutine = qemu_coroutine_self(), 3129 }; 3130 IO_CODE(); 3131 3132 bdrv_inc_in_flight(bs); 3133 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3134 co.ret = -ENOTSUP; 3135 goto out; 3136 } 3137 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3138 out: 3139 bdrv_dec_in_flight(bs); 3140 return co.ret; 3141 } 3142 3143 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3144 int64_t offset, int64_t len) 3145 { 3146 BlockDriver *drv = bs->drv; 3147 CoroutineIOCompletion co = { 3148 .coroutine = qemu_coroutine_self(), 3149 }; 3150 IO_CODE(); 3151 3152 bdrv_inc_in_flight(bs); 3153 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3154 co.ret = -ENOTSUP; 3155 goto out; 3156 } 3157 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3158 out: 3159 bdrv_dec_in_flight(bs); 3160 return co.ret; 3161 } 3162 3163 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3164 QEMUIOVector *qiov, 3165 BdrvRequestFlags flags) 3166 { 3167 int ret; 3168 BlockDriver *drv = bs->drv; 3169 CoroutineIOCompletion co = { 3170 .coroutine = qemu_coroutine_self(), 3171 }; 3172 IO_CODE(); 3173 3174 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3175 if (ret < 0) { 3176 return ret; 3177 } 3178 3179 bdrv_inc_in_flight(bs); 3180 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3181 co.ret = -ENOTSUP; 3182 goto out; 3183 } 3184 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3185 out: 3186 bdrv_dec_in_flight(bs); 3187 return co.ret; 3188 } 3189 3190 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3191 { 3192 IO_CODE(); 3193 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3194 } 3195 3196 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3197 { 3198 IO_CODE(); 3199 return memset(qemu_blockalign(bs, size), 0, size); 3200 } 3201 3202 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3203 { 3204 size_t align = bdrv_opt_mem_align(bs); 3205 IO_CODE(); 3206 3207 /* Ensure that NULL is never returned on success */ 3208 assert(align > 0); 3209 if (size == 0) { 3210 size = align; 3211 } 3212 3213 return qemu_try_memalign(align, size); 3214 } 3215 3216 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3217 { 3218 void *mem = qemu_try_blockalign(bs, size); 3219 IO_CODE(); 3220 3221 if (mem) { 3222 memset(mem, 0, size); 3223 } 3224 3225 return mem; 3226 } 3227 3228 void coroutine_fn bdrv_co_io_plug(BlockDriverState *bs) 3229 { 3230 BdrvChild *child; 3231 IO_CODE(); 3232 assert_bdrv_graph_readable(); 3233 3234 QLIST_FOREACH(child, &bs->children, next) { 3235 bdrv_co_io_plug(child->bs); 3236 } 3237 3238 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3239 BlockDriver *drv = bs->drv; 3240 if (drv && drv->bdrv_co_io_plug) { 3241 drv->bdrv_co_io_plug(bs); 3242 } 3243 } 3244 } 3245 3246 void coroutine_fn bdrv_co_io_unplug(BlockDriverState *bs) 3247 { 3248 BdrvChild *child; 3249 IO_CODE(); 3250 assert_bdrv_graph_readable(); 3251 3252 assert(bs->io_plugged); 3253 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3254 BlockDriver *drv = bs->drv; 3255 if (drv && drv->bdrv_co_io_unplug) { 3256 drv->bdrv_co_io_unplug(bs); 3257 } 3258 } 3259 3260 QLIST_FOREACH(child, &bs->children, next) { 3261 bdrv_co_io_unplug(child->bs); 3262 } 3263 } 3264 3265 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3266 static void GRAPH_RDLOCK 3267 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3268 BdrvChild *final_child) 3269 { 3270 BdrvChild *child; 3271 3272 GLOBAL_STATE_CODE(); 3273 assert_bdrv_graph_readable(); 3274 3275 QLIST_FOREACH(child, &bs->children, next) { 3276 if (child == final_child) { 3277 break; 3278 } 3279 3280 bdrv_unregister_buf(child->bs, host, size); 3281 } 3282 3283 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3284 bs->drv->bdrv_unregister_buf(bs, host, size); 3285 } 3286 } 3287 3288 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3289 Error **errp) 3290 { 3291 BdrvChild *child; 3292 3293 GLOBAL_STATE_CODE(); 3294 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3295 3296 if (bs->drv && bs->drv->bdrv_register_buf) { 3297 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3298 return false; 3299 } 3300 } 3301 QLIST_FOREACH(child, &bs->children, next) { 3302 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3303 bdrv_register_buf_rollback(bs, host, size, child); 3304 return false; 3305 } 3306 } 3307 return true; 3308 } 3309 3310 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3311 { 3312 BdrvChild *child; 3313 3314 GLOBAL_STATE_CODE(); 3315 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3316 3317 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3318 bs->drv->bdrv_unregister_buf(bs, host, size); 3319 } 3320 QLIST_FOREACH(child, &bs->children, next) { 3321 bdrv_unregister_buf(child->bs, host, size); 3322 } 3323 } 3324 3325 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3326 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3327 int64_t dst_offset, int64_t bytes, 3328 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3329 bool recurse_src) 3330 { 3331 BdrvTrackedRequest req; 3332 int ret; 3333 assert_bdrv_graph_readable(); 3334 3335 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3336 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3337 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3338 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3339 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3340 3341 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3342 return -ENOMEDIUM; 3343 } 3344 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3345 if (ret) { 3346 return ret; 3347 } 3348 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3349 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3350 } 3351 3352 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3353 return -ENOMEDIUM; 3354 } 3355 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3356 if (ret) { 3357 return ret; 3358 } 3359 3360 if (!src->bs->drv->bdrv_co_copy_range_from 3361 || !dst->bs->drv->bdrv_co_copy_range_to 3362 || src->bs->encrypted || dst->bs->encrypted) { 3363 return -ENOTSUP; 3364 } 3365 3366 if (recurse_src) { 3367 bdrv_inc_in_flight(src->bs); 3368 tracked_request_begin(&req, src->bs, src_offset, bytes, 3369 BDRV_TRACKED_READ); 3370 3371 /* BDRV_REQ_SERIALISING is only for write operation */ 3372 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3373 bdrv_wait_serialising_requests(&req); 3374 3375 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3376 src, src_offset, 3377 dst, dst_offset, 3378 bytes, 3379 read_flags, write_flags); 3380 3381 tracked_request_end(&req); 3382 bdrv_dec_in_flight(src->bs); 3383 } else { 3384 bdrv_inc_in_flight(dst->bs); 3385 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3386 BDRV_TRACKED_WRITE); 3387 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3388 write_flags); 3389 if (!ret) { 3390 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3391 src, src_offset, 3392 dst, dst_offset, 3393 bytes, 3394 read_flags, write_flags); 3395 } 3396 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3397 tracked_request_end(&req); 3398 bdrv_dec_in_flight(dst->bs); 3399 } 3400 3401 return ret; 3402 } 3403 3404 /* Copy range from @src to @dst. 3405 * 3406 * See the comment of bdrv_co_copy_range for the parameter and return value 3407 * semantics. */ 3408 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3409 BdrvChild *dst, int64_t dst_offset, 3410 int64_t bytes, 3411 BdrvRequestFlags read_flags, 3412 BdrvRequestFlags write_flags) 3413 { 3414 IO_CODE(); 3415 assert_bdrv_graph_readable(); 3416 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3417 read_flags, write_flags); 3418 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3419 bytes, read_flags, write_flags, true); 3420 } 3421 3422 /* Copy range from @src to @dst. 3423 * 3424 * See the comment of bdrv_co_copy_range for the parameter and return value 3425 * semantics. */ 3426 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3427 BdrvChild *dst, int64_t dst_offset, 3428 int64_t bytes, 3429 BdrvRequestFlags read_flags, 3430 BdrvRequestFlags write_flags) 3431 { 3432 IO_CODE(); 3433 assert_bdrv_graph_readable(); 3434 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3435 read_flags, write_flags); 3436 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3437 bytes, read_flags, write_flags, false); 3438 } 3439 3440 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3441 BdrvChild *dst, int64_t dst_offset, 3442 int64_t bytes, BdrvRequestFlags read_flags, 3443 BdrvRequestFlags write_flags) 3444 { 3445 IO_CODE(); 3446 assert_bdrv_graph_readable(); 3447 3448 return bdrv_co_copy_range_from(src, src_offset, 3449 dst, dst_offset, 3450 bytes, read_flags, write_flags); 3451 } 3452 3453 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3454 { 3455 BdrvChild *c; 3456 QLIST_FOREACH(c, &bs->parents, next_parent) { 3457 if (c->klass->resize) { 3458 c->klass->resize(c); 3459 } 3460 } 3461 } 3462 3463 /** 3464 * Truncate file to 'offset' bytes (needed only for file protocols) 3465 * 3466 * If 'exact' is true, the file must be resized to exactly the given 3467 * 'offset'. Otherwise, it is sufficient for the node to be at least 3468 * 'offset' bytes in length. 3469 */ 3470 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3471 PreallocMode prealloc, BdrvRequestFlags flags, 3472 Error **errp) 3473 { 3474 BlockDriverState *bs = child->bs; 3475 BdrvChild *filtered, *backing; 3476 BlockDriver *drv = bs->drv; 3477 BdrvTrackedRequest req; 3478 int64_t old_size, new_bytes; 3479 int ret; 3480 IO_CODE(); 3481 assert_bdrv_graph_readable(); 3482 3483 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3484 if (!drv) { 3485 error_setg(errp, "No medium inserted"); 3486 return -ENOMEDIUM; 3487 } 3488 if (offset < 0) { 3489 error_setg(errp, "Image size cannot be negative"); 3490 return -EINVAL; 3491 } 3492 3493 ret = bdrv_check_request(offset, 0, errp); 3494 if (ret < 0) { 3495 return ret; 3496 } 3497 3498 old_size = bdrv_getlength(bs); 3499 if (old_size < 0) { 3500 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3501 return old_size; 3502 } 3503 3504 if (bdrv_is_read_only(bs)) { 3505 error_setg(errp, "Image is read-only"); 3506 return -EACCES; 3507 } 3508 3509 if (offset > old_size) { 3510 new_bytes = offset - old_size; 3511 } else { 3512 new_bytes = 0; 3513 } 3514 3515 bdrv_inc_in_flight(bs); 3516 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3517 BDRV_TRACKED_TRUNCATE); 3518 3519 /* If we are growing the image and potentially using preallocation for the 3520 * new area, we need to make sure that no write requests are made to it 3521 * concurrently or they might be overwritten by preallocation. */ 3522 if (new_bytes) { 3523 bdrv_make_request_serialising(&req, 1); 3524 } 3525 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3526 0); 3527 if (ret < 0) { 3528 error_setg_errno(errp, -ret, 3529 "Failed to prepare request for truncation"); 3530 goto out; 3531 } 3532 3533 filtered = bdrv_filter_child(bs); 3534 backing = bdrv_cow_child(bs); 3535 3536 /* 3537 * If the image has a backing file that is large enough that it would 3538 * provide data for the new area, we cannot leave it unallocated because 3539 * then the backing file content would become visible. Instead, zero-fill 3540 * the new area. 3541 * 3542 * Note that if the image has a backing file, but was opened without the 3543 * backing file, taking care of keeping things consistent with that backing 3544 * file is the user's responsibility. 3545 */ 3546 if (new_bytes && backing) { 3547 int64_t backing_len; 3548 3549 backing_len = bdrv_co_getlength(backing->bs); 3550 if (backing_len < 0) { 3551 ret = backing_len; 3552 error_setg_errno(errp, -ret, "Could not get backing file size"); 3553 goto out; 3554 } 3555 3556 if (backing_len > old_size) { 3557 flags |= BDRV_REQ_ZERO_WRITE; 3558 } 3559 } 3560 3561 if (drv->bdrv_co_truncate) { 3562 if (flags & ~bs->supported_truncate_flags) { 3563 error_setg(errp, "Block driver does not support requested flags"); 3564 ret = -ENOTSUP; 3565 goto out; 3566 } 3567 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3568 } else if (filtered) { 3569 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3570 } else { 3571 error_setg(errp, "Image format driver does not support resize"); 3572 ret = -ENOTSUP; 3573 goto out; 3574 } 3575 if (ret < 0) { 3576 goto out; 3577 } 3578 3579 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3580 if (ret < 0) { 3581 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3582 } else { 3583 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3584 } 3585 /* 3586 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3587 * failed, but the latter doesn't affect how we should finish the request. 3588 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3589 */ 3590 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3591 3592 out: 3593 tracked_request_end(&req); 3594 bdrv_dec_in_flight(bs); 3595 3596 return ret; 3597 } 3598 3599 void bdrv_cancel_in_flight(BlockDriverState *bs) 3600 { 3601 GLOBAL_STATE_CODE(); 3602 if (!bs || !bs->drv) { 3603 return; 3604 } 3605 3606 if (bs->drv->bdrv_cancel_in_flight) { 3607 bs->drv->bdrv_cancel_in_flight(bs); 3608 } 3609 } 3610 3611 int coroutine_fn 3612 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3613 QEMUIOVector *qiov, size_t qiov_offset) 3614 { 3615 BlockDriverState *bs = child->bs; 3616 BlockDriver *drv = bs->drv; 3617 int ret; 3618 IO_CODE(); 3619 assert_bdrv_graph_readable(); 3620 3621 if (!drv) { 3622 return -ENOMEDIUM; 3623 } 3624 3625 if (!drv->bdrv_co_preadv_snapshot) { 3626 return -ENOTSUP; 3627 } 3628 3629 bdrv_inc_in_flight(bs); 3630 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3631 bdrv_dec_in_flight(bs); 3632 3633 return ret; 3634 } 3635 3636 int coroutine_fn 3637 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3638 bool want_zero, int64_t offset, int64_t bytes, 3639 int64_t *pnum, int64_t *map, 3640 BlockDriverState **file) 3641 { 3642 BlockDriver *drv = bs->drv; 3643 int ret; 3644 IO_CODE(); 3645 assert_bdrv_graph_readable(); 3646 3647 if (!drv) { 3648 return -ENOMEDIUM; 3649 } 3650 3651 if (!drv->bdrv_co_snapshot_block_status) { 3652 return -ENOTSUP; 3653 } 3654 3655 bdrv_inc_in_flight(bs); 3656 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3657 pnum, map, file); 3658 bdrv_dec_in_flight(bs); 3659 3660 return ret; 3661 } 3662 3663 int coroutine_fn 3664 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3665 { 3666 BlockDriver *drv = bs->drv; 3667 int ret; 3668 IO_CODE(); 3669 assert_bdrv_graph_readable(); 3670 3671 if (!drv) { 3672 return -ENOMEDIUM; 3673 } 3674 3675 if (!drv->bdrv_co_pdiscard_snapshot) { 3676 return -ENOTSUP; 3677 } 3678 3679 bdrv_inc_in_flight(bs); 3680 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3681 bdrv_dec_in_flight(bs); 3682 3683 return ret; 3684 } 3685