1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/blockjob.h" 29 #include "block/block_int.h" 30 #include "qemu/cutils.h" 31 #include "qapi/error.h" 32 #include "qemu/error-report.h" 33 34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 35 36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child, 37 int64_t offset, 38 QEMUIOVector *qiov, 39 BdrvRequestFlags flags, 40 BlockCompletionFunc *cb, 41 void *opaque, 42 bool is_write); 43 static void coroutine_fn bdrv_co_do_rw(void *opaque); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int count, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs) 48 { 49 BdrvChild *c; 50 51 QLIST_FOREACH(c, &bs->parents, next_parent) { 52 if (c->role->drained_begin) { 53 c->role->drained_begin(c); 54 } 55 } 56 } 57 58 static void bdrv_parent_drained_end(BlockDriverState *bs) 59 { 60 BdrvChild *c; 61 62 QLIST_FOREACH(c, &bs->parents, next_parent) { 63 if (c->role->drained_end) { 64 c->role->drained_end(c); 65 } 66 } 67 } 68 69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 70 { 71 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 72 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 73 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 74 src->opt_mem_alignment); 75 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 76 src->min_mem_alignment); 77 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 78 } 79 80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 81 { 82 BlockDriver *drv = bs->drv; 83 Error *local_err = NULL; 84 85 memset(&bs->bl, 0, sizeof(bs->bl)); 86 87 if (!drv) { 88 return; 89 } 90 91 /* Default alignment based on whether driver has byte interface */ 92 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512; 93 94 /* Take some limits from the children as a default */ 95 if (bs->file) { 96 bdrv_refresh_limits(bs->file->bs, &local_err); 97 if (local_err) { 98 error_propagate(errp, local_err); 99 return; 100 } 101 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 102 } else { 103 bs->bl.min_mem_alignment = 512; 104 bs->bl.opt_mem_alignment = getpagesize(); 105 106 /* Safe default since most protocols use readv()/writev()/etc */ 107 bs->bl.max_iov = IOV_MAX; 108 } 109 110 if (bs->backing) { 111 bdrv_refresh_limits(bs->backing->bs, &local_err); 112 if (local_err) { 113 error_propagate(errp, local_err); 114 return; 115 } 116 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 117 } 118 119 /* Then let the driver override it */ 120 if (drv->bdrv_refresh_limits) { 121 drv->bdrv_refresh_limits(bs, errp); 122 } 123 } 124 125 /** 126 * The copy-on-read flag is actually a reference count so multiple users may 127 * use the feature without worrying about clobbering its previous state. 128 * Copy-on-read stays enabled until all users have called to disable it. 129 */ 130 void bdrv_enable_copy_on_read(BlockDriverState *bs) 131 { 132 bs->copy_on_read++; 133 } 134 135 void bdrv_disable_copy_on_read(BlockDriverState *bs) 136 { 137 assert(bs->copy_on_read > 0); 138 bs->copy_on_read--; 139 } 140 141 /* Check if any requests are in-flight (including throttled requests) */ 142 bool bdrv_requests_pending(BlockDriverState *bs) 143 { 144 BdrvChild *child; 145 146 if (!QLIST_EMPTY(&bs->tracked_requests)) { 147 return true; 148 } 149 150 QLIST_FOREACH(child, &bs->children, next) { 151 if (bdrv_requests_pending(child->bs)) { 152 return true; 153 } 154 } 155 156 return false; 157 } 158 159 static void bdrv_drain_recurse(BlockDriverState *bs) 160 { 161 BdrvChild *child; 162 163 if (bs->drv && bs->drv->bdrv_drain) { 164 bs->drv->bdrv_drain(bs); 165 } 166 QLIST_FOREACH(child, &bs->children, next) { 167 bdrv_drain_recurse(child->bs); 168 } 169 } 170 171 typedef struct { 172 Coroutine *co; 173 BlockDriverState *bs; 174 bool done; 175 } BdrvCoDrainData; 176 177 static void bdrv_drain_poll(BlockDriverState *bs) 178 { 179 bool busy = true; 180 181 while (busy) { 182 /* Keep iterating */ 183 busy = bdrv_requests_pending(bs); 184 busy |= aio_poll(bdrv_get_aio_context(bs), busy); 185 } 186 } 187 188 static void bdrv_co_drain_bh_cb(void *opaque) 189 { 190 BdrvCoDrainData *data = opaque; 191 Coroutine *co = data->co; 192 193 bdrv_drain_poll(data->bs); 194 data->done = true; 195 qemu_coroutine_enter(co); 196 } 197 198 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs) 199 { 200 BdrvCoDrainData data; 201 202 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 203 * other coroutines run if they were queued from 204 * qemu_co_queue_run_restart(). */ 205 206 assert(qemu_in_coroutine()); 207 data = (BdrvCoDrainData) { 208 .co = qemu_coroutine_self(), 209 .bs = bs, 210 .done = false, 211 }; 212 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 213 bdrv_co_drain_bh_cb, &data); 214 215 qemu_coroutine_yield(); 216 /* If we are resumed from some other event (such as an aio completion or a 217 * timer callback), it is a bug in the caller that should be fixed. */ 218 assert(data.done); 219 } 220 221 void bdrv_drained_begin(BlockDriverState *bs) 222 { 223 if (!bs->quiesce_counter++) { 224 aio_disable_external(bdrv_get_aio_context(bs)); 225 bdrv_parent_drained_begin(bs); 226 } 227 228 bdrv_io_unplugged_begin(bs); 229 bdrv_drain_recurse(bs); 230 if (qemu_in_coroutine()) { 231 bdrv_co_yield_to_drain(bs); 232 } else { 233 bdrv_drain_poll(bs); 234 } 235 bdrv_io_unplugged_end(bs); 236 } 237 238 void bdrv_drained_end(BlockDriverState *bs) 239 { 240 assert(bs->quiesce_counter > 0); 241 if (--bs->quiesce_counter > 0) { 242 return; 243 } 244 245 bdrv_parent_drained_end(bs); 246 aio_enable_external(bdrv_get_aio_context(bs)); 247 } 248 249 /* 250 * Wait for pending requests to complete on a single BlockDriverState subtree, 251 * and suspend block driver's internal I/O until next request arrives. 252 * 253 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 254 * AioContext. 255 * 256 * Only this BlockDriverState's AioContext is run, so in-flight requests must 257 * not depend on events in other AioContexts. In that case, use 258 * bdrv_drain_all() instead. 259 */ 260 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 261 { 262 assert(qemu_in_coroutine()); 263 bdrv_drained_begin(bs); 264 bdrv_drained_end(bs); 265 } 266 267 void bdrv_drain(BlockDriverState *bs) 268 { 269 bdrv_drained_begin(bs); 270 bdrv_drained_end(bs); 271 } 272 273 /* 274 * Wait for pending requests to complete across all BlockDriverStates 275 * 276 * This function does not flush data to disk, use bdrv_flush_all() for that 277 * after calling this function. 278 */ 279 void bdrv_drain_all(void) 280 { 281 /* Always run first iteration so any pending completion BHs run */ 282 bool busy = true; 283 BlockDriverState *bs; 284 BdrvNextIterator it; 285 BlockJob *job = NULL; 286 GSList *aio_ctxs = NULL, *ctx; 287 288 while ((job = block_job_next(job))) { 289 AioContext *aio_context = blk_get_aio_context(job->blk); 290 291 aio_context_acquire(aio_context); 292 block_job_pause(job); 293 aio_context_release(aio_context); 294 } 295 296 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 297 AioContext *aio_context = bdrv_get_aio_context(bs); 298 299 aio_context_acquire(aio_context); 300 bdrv_parent_drained_begin(bs); 301 bdrv_io_unplugged_begin(bs); 302 bdrv_drain_recurse(bs); 303 aio_context_release(aio_context); 304 305 if (!g_slist_find(aio_ctxs, aio_context)) { 306 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); 307 } 308 } 309 310 /* Note that completion of an asynchronous I/O operation can trigger any 311 * number of other I/O operations on other devices---for example a 312 * coroutine can submit an I/O request to another device in response to 313 * request completion. Therefore we must keep looping until there was no 314 * more activity rather than simply draining each device independently. 315 */ 316 while (busy) { 317 busy = false; 318 319 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { 320 AioContext *aio_context = ctx->data; 321 322 aio_context_acquire(aio_context); 323 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 324 if (aio_context == bdrv_get_aio_context(bs)) { 325 if (bdrv_requests_pending(bs)) { 326 busy = true; 327 aio_poll(aio_context, busy); 328 } 329 } 330 } 331 busy |= aio_poll(aio_context, false); 332 aio_context_release(aio_context); 333 } 334 } 335 336 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 337 AioContext *aio_context = bdrv_get_aio_context(bs); 338 339 aio_context_acquire(aio_context); 340 bdrv_io_unplugged_end(bs); 341 bdrv_parent_drained_end(bs); 342 aio_context_release(aio_context); 343 } 344 g_slist_free(aio_ctxs); 345 346 job = NULL; 347 while ((job = block_job_next(job))) { 348 AioContext *aio_context = blk_get_aio_context(job->blk); 349 350 aio_context_acquire(aio_context); 351 block_job_resume(job); 352 aio_context_release(aio_context); 353 } 354 } 355 356 /** 357 * Remove an active request from the tracked requests list 358 * 359 * This function should be called when a tracked request is completing. 360 */ 361 static void tracked_request_end(BdrvTrackedRequest *req) 362 { 363 if (req->serialising) { 364 req->bs->serialising_in_flight--; 365 } 366 367 QLIST_REMOVE(req, list); 368 qemu_co_queue_restart_all(&req->wait_queue); 369 } 370 371 /** 372 * Add an active request to the tracked requests list 373 */ 374 static void tracked_request_begin(BdrvTrackedRequest *req, 375 BlockDriverState *bs, 376 int64_t offset, 377 unsigned int bytes, 378 enum BdrvTrackedRequestType type) 379 { 380 *req = (BdrvTrackedRequest){ 381 .bs = bs, 382 .offset = offset, 383 .bytes = bytes, 384 .type = type, 385 .co = qemu_coroutine_self(), 386 .serialising = false, 387 .overlap_offset = offset, 388 .overlap_bytes = bytes, 389 }; 390 391 qemu_co_queue_init(&req->wait_queue); 392 393 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 394 } 395 396 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 397 { 398 int64_t overlap_offset = req->offset & ~(align - 1); 399 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 400 - overlap_offset; 401 402 if (!req->serialising) { 403 req->bs->serialising_in_flight++; 404 req->serialising = true; 405 } 406 407 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 408 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 409 } 410 411 /** 412 * Round a region to cluster boundaries (sector-based) 413 */ 414 void bdrv_round_sectors_to_clusters(BlockDriverState *bs, 415 int64_t sector_num, int nb_sectors, 416 int64_t *cluster_sector_num, 417 int *cluster_nb_sectors) 418 { 419 BlockDriverInfo bdi; 420 421 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 422 *cluster_sector_num = sector_num; 423 *cluster_nb_sectors = nb_sectors; 424 } else { 425 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 426 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 427 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 428 nb_sectors, c); 429 } 430 } 431 432 /** 433 * Round a region to cluster boundaries 434 */ 435 void bdrv_round_to_clusters(BlockDriverState *bs, 436 int64_t offset, unsigned int bytes, 437 int64_t *cluster_offset, 438 unsigned int *cluster_bytes) 439 { 440 BlockDriverInfo bdi; 441 442 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 443 *cluster_offset = offset; 444 *cluster_bytes = bytes; 445 } else { 446 int64_t c = bdi.cluster_size; 447 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 448 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 449 } 450 } 451 452 static int bdrv_get_cluster_size(BlockDriverState *bs) 453 { 454 BlockDriverInfo bdi; 455 int ret; 456 457 ret = bdrv_get_info(bs, &bdi); 458 if (ret < 0 || bdi.cluster_size == 0) { 459 return bs->bl.request_alignment; 460 } else { 461 return bdi.cluster_size; 462 } 463 } 464 465 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 466 int64_t offset, unsigned int bytes) 467 { 468 /* aaaa bbbb */ 469 if (offset >= req->overlap_offset + req->overlap_bytes) { 470 return false; 471 } 472 /* bbbb aaaa */ 473 if (req->overlap_offset >= offset + bytes) { 474 return false; 475 } 476 return true; 477 } 478 479 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 480 { 481 BlockDriverState *bs = self->bs; 482 BdrvTrackedRequest *req; 483 bool retry; 484 bool waited = false; 485 486 if (!bs->serialising_in_flight) { 487 return false; 488 } 489 490 do { 491 retry = false; 492 QLIST_FOREACH(req, &bs->tracked_requests, list) { 493 if (req == self || (!req->serialising && !self->serialising)) { 494 continue; 495 } 496 if (tracked_request_overlaps(req, self->overlap_offset, 497 self->overlap_bytes)) 498 { 499 /* Hitting this means there was a reentrant request, for 500 * example, a block driver issuing nested requests. This must 501 * never happen since it means deadlock. 502 */ 503 assert(qemu_coroutine_self() != req->co); 504 505 /* If the request is already (indirectly) waiting for us, or 506 * will wait for us as soon as it wakes up, then just go on 507 * (instead of producing a deadlock in the former case). */ 508 if (!req->waiting_for) { 509 self->waiting_for = req; 510 qemu_co_queue_wait(&req->wait_queue); 511 self->waiting_for = NULL; 512 retry = true; 513 waited = true; 514 break; 515 } 516 } 517 } 518 } while (retry); 519 520 return waited; 521 } 522 523 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 524 size_t size) 525 { 526 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { 527 return -EIO; 528 } 529 530 if (!bdrv_is_inserted(bs)) { 531 return -ENOMEDIUM; 532 } 533 534 if (offset < 0) { 535 return -EIO; 536 } 537 538 return 0; 539 } 540 541 typedef struct RwCo { 542 BdrvChild *child; 543 int64_t offset; 544 QEMUIOVector *qiov; 545 bool is_write; 546 int ret; 547 BdrvRequestFlags flags; 548 } RwCo; 549 550 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 551 { 552 RwCo *rwco = opaque; 553 554 if (!rwco->is_write) { 555 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 556 rwco->qiov->size, rwco->qiov, 557 rwco->flags); 558 } else { 559 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 560 rwco->qiov->size, rwco->qiov, 561 rwco->flags); 562 } 563 } 564 565 /* 566 * Process a vectored synchronous request using coroutines 567 */ 568 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 569 QEMUIOVector *qiov, bool is_write, 570 BdrvRequestFlags flags) 571 { 572 Coroutine *co; 573 RwCo rwco = { 574 .child = child, 575 .offset = offset, 576 .qiov = qiov, 577 .is_write = is_write, 578 .ret = NOT_DONE, 579 .flags = flags, 580 }; 581 582 if (qemu_in_coroutine()) { 583 /* Fast-path if already in coroutine context */ 584 bdrv_rw_co_entry(&rwco); 585 } else { 586 AioContext *aio_context = bdrv_get_aio_context(child->bs); 587 588 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 589 qemu_coroutine_enter(co); 590 while (rwco.ret == NOT_DONE) { 591 aio_poll(aio_context, true); 592 } 593 } 594 return rwco.ret; 595 } 596 597 /* 598 * Process a synchronous request using coroutines 599 */ 600 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, 601 int nb_sectors, bool is_write, BdrvRequestFlags flags) 602 { 603 QEMUIOVector qiov; 604 struct iovec iov = { 605 .iov_base = (void *)buf, 606 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 607 }; 608 609 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 610 return -EINVAL; 611 } 612 613 qemu_iovec_init_external(&qiov, &iov, 1); 614 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, 615 &qiov, is_write, flags); 616 } 617 618 /* return < 0 if error. See bdrv_write() for the return codes */ 619 int bdrv_read(BdrvChild *child, int64_t sector_num, 620 uint8_t *buf, int nb_sectors) 621 { 622 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); 623 } 624 625 /* Return < 0 if error. Important errors are: 626 -EIO generic I/O error (may happen for all errors) 627 -ENOMEDIUM No media inserted. 628 -EINVAL Invalid sector number or nb_sectors 629 -EACCES Trying to write a read-only device 630 */ 631 int bdrv_write(BdrvChild *child, int64_t sector_num, 632 const uint8_t *buf, int nb_sectors) 633 { 634 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 635 } 636 637 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 638 int count, BdrvRequestFlags flags) 639 { 640 QEMUIOVector qiov; 641 struct iovec iov = { 642 .iov_base = NULL, 643 .iov_len = count, 644 }; 645 646 qemu_iovec_init_external(&qiov, &iov, 1); 647 return bdrv_prwv_co(child, offset, &qiov, true, 648 BDRV_REQ_ZERO_WRITE | flags); 649 } 650 651 /* 652 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 653 * The operation is sped up by checking the block status and only writing 654 * zeroes to the device if they currently do not return zeroes. Optional 655 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 656 * BDRV_REQ_FUA). 657 * 658 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 659 */ 660 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 661 { 662 int64_t target_sectors, ret, nb_sectors, sector_num = 0; 663 BlockDriverState *bs = child->bs; 664 BlockDriverState *file; 665 int n; 666 667 target_sectors = bdrv_nb_sectors(bs); 668 if (target_sectors < 0) { 669 return target_sectors; 670 } 671 672 for (;;) { 673 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS); 674 if (nb_sectors <= 0) { 675 return 0; 676 } 677 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file); 678 if (ret < 0) { 679 error_report("error getting block status at sector %" PRId64 ": %s", 680 sector_num, strerror(-ret)); 681 return ret; 682 } 683 if (ret & BDRV_BLOCK_ZERO) { 684 sector_num += n; 685 continue; 686 } 687 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS, 688 n << BDRV_SECTOR_BITS, flags); 689 if (ret < 0) { 690 error_report("error writing zeroes at sector %" PRId64 ": %s", 691 sector_num, strerror(-ret)); 692 return ret; 693 } 694 sector_num += n; 695 } 696 } 697 698 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 699 { 700 int ret; 701 702 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 703 if (ret < 0) { 704 return ret; 705 } 706 707 return qiov->size; 708 } 709 710 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 711 { 712 QEMUIOVector qiov; 713 struct iovec iov = { 714 .iov_base = (void *)buf, 715 .iov_len = bytes, 716 }; 717 718 if (bytes < 0) { 719 return -EINVAL; 720 } 721 722 qemu_iovec_init_external(&qiov, &iov, 1); 723 return bdrv_preadv(child, offset, &qiov); 724 } 725 726 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 727 { 728 int ret; 729 730 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 731 if (ret < 0) { 732 return ret; 733 } 734 735 return qiov->size; 736 } 737 738 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 739 { 740 QEMUIOVector qiov; 741 struct iovec iov = { 742 .iov_base = (void *) buf, 743 .iov_len = bytes, 744 }; 745 746 if (bytes < 0) { 747 return -EINVAL; 748 } 749 750 qemu_iovec_init_external(&qiov, &iov, 1); 751 return bdrv_pwritev(child, offset, &qiov); 752 } 753 754 /* 755 * Writes to the file and ensures that no writes are reordered across this 756 * request (acts as a barrier) 757 * 758 * Returns 0 on success, -errno in error cases. 759 */ 760 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 761 const void *buf, int count) 762 { 763 int ret; 764 765 ret = bdrv_pwrite(child, offset, buf, count); 766 if (ret < 0) { 767 return ret; 768 } 769 770 ret = bdrv_flush(child->bs); 771 if (ret < 0) { 772 return ret; 773 } 774 775 return 0; 776 } 777 778 typedef struct CoroutineIOCompletion { 779 Coroutine *coroutine; 780 int ret; 781 } CoroutineIOCompletion; 782 783 static void bdrv_co_io_em_complete(void *opaque, int ret) 784 { 785 CoroutineIOCompletion *co = opaque; 786 787 co->ret = ret; 788 qemu_coroutine_enter(co->coroutine); 789 } 790 791 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 792 uint64_t offset, uint64_t bytes, 793 QEMUIOVector *qiov, int flags) 794 { 795 BlockDriver *drv = bs->drv; 796 int64_t sector_num; 797 unsigned int nb_sectors; 798 799 assert(!(flags & ~BDRV_REQ_MASK)); 800 801 if (drv->bdrv_co_preadv) { 802 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 803 } 804 805 sector_num = offset >> BDRV_SECTOR_BITS; 806 nb_sectors = bytes >> BDRV_SECTOR_BITS; 807 808 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 809 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 810 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 811 812 if (drv->bdrv_co_readv) { 813 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 814 } else { 815 BlockAIOCB *acb; 816 CoroutineIOCompletion co = { 817 .coroutine = qemu_coroutine_self(), 818 }; 819 820 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, 821 bdrv_co_io_em_complete, &co); 822 if (acb == NULL) { 823 return -EIO; 824 } else { 825 qemu_coroutine_yield(); 826 return co.ret; 827 } 828 } 829 } 830 831 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 832 uint64_t offset, uint64_t bytes, 833 QEMUIOVector *qiov, int flags) 834 { 835 BlockDriver *drv = bs->drv; 836 int64_t sector_num; 837 unsigned int nb_sectors; 838 int ret; 839 840 assert(!(flags & ~BDRV_REQ_MASK)); 841 842 if (drv->bdrv_co_pwritev) { 843 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 844 flags & bs->supported_write_flags); 845 flags &= ~bs->supported_write_flags; 846 goto emulate_flags; 847 } 848 849 sector_num = offset >> BDRV_SECTOR_BITS; 850 nb_sectors = bytes >> BDRV_SECTOR_BITS; 851 852 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 853 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 854 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); 855 856 if (drv->bdrv_co_writev_flags) { 857 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, 858 flags & bs->supported_write_flags); 859 flags &= ~bs->supported_write_flags; 860 } else if (drv->bdrv_co_writev) { 861 assert(!bs->supported_write_flags); 862 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 863 } else { 864 BlockAIOCB *acb; 865 CoroutineIOCompletion co = { 866 .coroutine = qemu_coroutine_self(), 867 }; 868 869 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, 870 bdrv_co_io_em_complete, &co); 871 if (acb == NULL) { 872 ret = -EIO; 873 } else { 874 qemu_coroutine_yield(); 875 ret = co.ret; 876 } 877 } 878 879 emulate_flags: 880 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 881 ret = bdrv_co_flush(bs); 882 } 883 884 return ret; 885 } 886 887 static int coroutine_fn 888 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 889 uint64_t bytes, QEMUIOVector *qiov) 890 { 891 BlockDriver *drv = bs->drv; 892 893 if (!drv->bdrv_co_pwritev_compressed) { 894 return -ENOTSUP; 895 } 896 897 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 898 } 899 900 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 901 int64_t offset, unsigned int bytes, QEMUIOVector *qiov) 902 { 903 /* Perform I/O through a temporary buffer so that users who scribble over 904 * their read buffer while the operation is in progress do not end up 905 * modifying the image file. This is critical for zero-copy guest I/O 906 * where anything might happen inside guest memory. 907 */ 908 void *bounce_buffer; 909 910 BlockDriver *drv = bs->drv; 911 struct iovec iov; 912 QEMUIOVector bounce_qiov; 913 int64_t cluster_offset; 914 unsigned int cluster_bytes; 915 size_t skip_bytes; 916 int ret; 917 918 /* Cover entire cluster so no additional backing file I/O is required when 919 * allocating cluster in the image file. 920 */ 921 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 922 923 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 924 cluster_offset, cluster_bytes); 925 926 iov.iov_len = cluster_bytes; 927 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len); 928 if (bounce_buffer == NULL) { 929 ret = -ENOMEM; 930 goto err; 931 } 932 933 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 934 935 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes, 936 &bounce_qiov, 0); 937 if (ret < 0) { 938 goto err; 939 } 940 941 if (drv->bdrv_co_pwrite_zeroes && 942 buffer_is_zero(bounce_buffer, iov.iov_len)) { 943 /* FIXME: Should we (perhaps conditionally) be setting 944 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 945 * that still correctly reads as zero? */ 946 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0); 947 } else { 948 /* This does not change the data on the disk, it is not necessary 949 * to flush even in cache=writethrough mode. 950 */ 951 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes, 952 &bounce_qiov, 0); 953 } 954 955 if (ret < 0) { 956 /* It might be okay to ignore write errors for guest requests. If this 957 * is a deliberate copy-on-read then we don't want to ignore the error. 958 * Simply report it in all cases. 959 */ 960 goto err; 961 } 962 963 skip_bytes = offset - cluster_offset; 964 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes); 965 966 err: 967 qemu_vfree(bounce_buffer); 968 return ret; 969 } 970 971 /* 972 * Forwards an already correctly aligned request to the BlockDriver. This 973 * handles copy on read, zeroing after EOF, and fragmentation of large 974 * reads; any other features must be implemented by the caller. 975 */ 976 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs, 977 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 978 int64_t align, QEMUIOVector *qiov, int flags) 979 { 980 int64_t total_bytes, max_bytes; 981 int ret = 0; 982 uint64_t bytes_remaining = bytes; 983 int max_transfer; 984 985 assert(is_power_of_2(align)); 986 assert((offset & (align - 1)) == 0); 987 assert((bytes & (align - 1)) == 0); 988 assert(!qiov || bytes == qiov->size); 989 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 990 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 991 align); 992 993 /* TODO: We would need a per-BDS .supported_read_flags and 994 * potential fallback support, if we ever implement any read flags 995 * to pass through to drivers. For now, there aren't any 996 * passthrough flags. */ 997 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); 998 999 /* Handle Copy on Read and associated serialisation */ 1000 if (flags & BDRV_REQ_COPY_ON_READ) { 1001 /* If we touch the same cluster it counts as an overlap. This 1002 * guarantees that allocating writes will be serialized and not race 1003 * with each other for the same cluster. For example, in copy-on-read 1004 * it ensures that the CoR read and write operations are atomic and 1005 * guest writes cannot interleave between them. */ 1006 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1007 } 1008 1009 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1010 wait_serialising_requests(req); 1011 } 1012 1013 if (flags & BDRV_REQ_COPY_ON_READ) { 1014 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1015 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1016 unsigned int nb_sectors = end_sector - start_sector; 1017 int pnum; 1018 1019 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum); 1020 if (ret < 0) { 1021 goto out; 1022 } 1023 1024 if (!ret || pnum != nb_sectors) { 1025 ret = bdrv_co_do_copy_on_readv(bs, offset, bytes, qiov); 1026 goto out; 1027 } 1028 } 1029 1030 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1031 total_bytes = bdrv_getlength(bs); 1032 if (total_bytes < 0) { 1033 ret = total_bytes; 1034 goto out; 1035 } 1036 1037 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1038 if (bytes <= max_bytes && bytes <= max_transfer) { 1039 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); 1040 goto out; 1041 } 1042 1043 while (bytes_remaining) { 1044 int num; 1045 1046 if (max_bytes) { 1047 QEMUIOVector local_qiov; 1048 1049 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1050 assert(num); 1051 qemu_iovec_init(&local_qiov, qiov->niov); 1052 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1053 1054 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1055 num, &local_qiov, 0); 1056 max_bytes -= num; 1057 qemu_iovec_destroy(&local_qiov); 1058 } else { 1059 num = bytes_remaining; 1060 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1061 bytes_remaining); 1062 } 1063 if (ret < 0) { 1064 goto out; 1065 } 1066 bytes_remaining -= num; 1067 } 1068 1069 out: 1070 return ret < 0 ? ret : 0; 1071 } 1072 1073 /* 1074 * Handle a read request in coroutine context 1075 */ 1076 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1077 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1078 BdrvRequestFlags flags) 1079 { 1080 BlockDriverState *bs = child->bs; 1081 BlockDriver *drv = bs->drv; 1082 BdrvTrackedRequest req; 1083 1084 uint64_t align = bs->bl.request_alignment; 1085 uint8_t *head_buf = NULL; 1086 uint8_t *tail_buf = NULL; 1087 QEMUIOVector local_qiov; 1088 bool use_local_qiov = false; 1089 int ret; 1090 1091 if (!drv) { 1092 return -ENOMEDIUM; 1093 } 1094 1095 ret = bdrv_check_byte_request(bs, offset, bytes); 1096 if (ret < 0) { 1097 return ret; 1098 } 1099 1100 /* Don't do copy-on-read if we read data before write operation */ 1101 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) { 1102 flags |= BDRV_REQ_COPY_ON_READ; 1103 } 1104 1105 /* Align read if necessary by padding qiov */ 1106 if (offset & (align - 1)) { 1107 head_buf = qemu_blockalign(bs, align); 1108 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1109 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1110 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1111 use_local_qiov = true; 1112 1113 bytes += offset & (align - 1); 1114 offset = offset & ~(align - 1); 1115 } 1116 1117 if ((offset + bytes) & (align - 1)) { 1118 if (!use_local_qiov) { 1119 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1120 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1121 use_local_qiov = true; 1122 } 1123 tail_buf = qemu_blockalign(bs, align); 1124 qemu_iovec_add(&local_qiov, tail_buf, 1125 align - ((offset + bytes) & (align - 1))); 1126 1127 bytes = ROUND_UP(bytes, align); 1128 } 1129 1130 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1131 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align, 1132 use_local_qiov ? &local_qiov : qiov, 1133 flags); 1134 tracked_request_end(&req); 1135 1136 if (use_local_qiov) { 1137 qemu_iovec_destroy(&local_qiov); 1138 qemu_vfree(head_buf); 1139 qemu_vfree(tail_buf); 1140 } 1141 1142 return ret; 1143 } 1144 1145 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, 1146 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1147 BdrvRequestFlags flags) 1148 { 1149 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1150 return -EINVAL; 1151 } 1152 1153 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, 1154 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1155 } 1156 1157 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, 1158 int nb_sectors, QEMUIOVector *qiov) 1159 { 1160 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors); 1161 1162 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); 1163 } 1164 1165 /* Maximum buffer for write zeroes fallback, in bytes */ 1166 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 1167 1168 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1169 int64_t offset, int count, BdrvRequestFlags flags) 1170 { 1171 BlockDriver *drv = bs->drv; 1172 QEMUIOVector qiov; 1173 struct iovec iov = {0}; 1174 int ret = 0; 1175 bool need_flush = false; 1176 int head = 0; 1177 int tail = 0; 1178 1179 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1180 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1181 bs->bl.request_alignment); 1182 1183 assert(alignment % bs->bl.request_alignment == 0); 1184 head = offset % alignment; 1185 tail = (offset + count) % alignment; 1186 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1187 assert(max_write_zeroes >= bs->bl.request_alignment); 1188 1189 while (count > 0 && !ret) { 1190 int num = count; 1191 1192 /* Align request. Block drivers can expect the "bulk" of the request 1193 * to be aligned, and that unaligned requests do not cross cluster 1194 * boundaries. 1195 */ 1196 if (head) { 1197 /* Make a small request up to the first aligned sector. */ 1198 num = MIN(count, alignment - head); 1199 head = 0; 1200 } else if (tail && num > alignment) { 1201 /* Shorten the request to the last aligned sector. */ 1202 num -= tail; 1203 } 1204 1205 /* limit request size */ 1206 if (num > max_write_zeroes) { 1207 num = max_write_zeroes; 1208 } 1209 1210 ret = -ENOTSUP; 1211 /* First try the efficient write zeroes operation */ 1212 if (drv->bdrv_co_pwrite_zeroes) { 1213 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1214 flags & bs->supported_zero_flags); 1215 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1216 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1217 need_flush = true; 1218 } 1219 } else { 1220 assert(!bs->supported_zero_flags); 1221 } 1222 1223 if (ret == -ENOTSUP) { 1224 /* Fall back to bounce buffer if write zeroes is unsupported */ 1225 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1226 MAX_WRITE_ZEROES_BOUNCE_BUFFER); 1227 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1228 1229 if ((flags & BDRV_REQ_FUA) && 1230 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1231 /* No need for bdrv_driver_pwrite() to do a fallback 1232 * flush on each chunk; use just one at the end */ 1233 write_flags &= ~BDRV_REQ_FUA; 1234 need_flush = true; 1235 } 1236 num = MIN(num, max_transfer); 1237 iov.iov_len = num; 1238 if (iov.iov_base == NULL) { 1239 iov.iov_base = qemu_try_blockalign(bs, num); 1240 if (iov.iov_base == NULL) { 1241 ret = -ENOMEM; 1242 goto fail; 1243 } 1244 memset(iov.iov_base, 0, num); 1245 } 1246 qemu_iovec_init_external(&qiov, &iov, 1); 1247 1248 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); 1249 1250 /* Keep bounce buffer around if it is big enough for all 1251 * all future requests. 1252 */ 1253 if (num < max_transfer) { 1254 qemu_vfree(iov.iov_base); 1255 iov.iov_base = NULL; 1256 } 1257 } 1258 1259 offset += num; 1260 count -= num; 1261 } 1262 1263 fail: 1264 if (ret == 0 && need_flush) { 1265 ret = bdrv_co_flush(bs); 1266 } 1267 qemu_vfree(iov.iov_base); 1268 return ret; 1269 } 1270 1271 /* 1272 * Forwards an already correctly aligned write request to the BlockDriver, 1273 * after possibly fragmenting it. 1274 */ 1275 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs, 1276 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1277 int64_t align, QEMUIOVector *qiov, int flags) 1278 { 1279 BlockDriver *drv = bs->drv; 1280 bool waited; 1281 int ret; 1282 1283 int64_t start_sector = offset >> BDRV_SECTOR_BITS; 1284 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1285 uint64_t bytes_remaining = bytes; 1286 int max_transfer; 1287 1288 assert(is_power_of_2(align)); 1289 assert((offset & (align - 1)) == 0); 1290 assert((bytes & (align - 1)) == 0); 1291 assert(!qiov || bytes == qiov->size); 1292 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1293 assert(!(flags & ~BDRV_REQ_MASK)); 1294 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1295 align); 1296 1297 waited = wait_serialising_requests(req); 1298 assert(!waited || !req->serialising); 1299 assert(req->overlap_offset <= offset); 1300 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1301 1302 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); 1303 1304 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1305 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1306 qemu_iovec_is_zero(qiov)) { 1307 flags |= BDRV_REQ_ZERO_WRITE; 1308 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1309 flags |= BDRV_REQ_MAY_UNMAP; 1310 } 1311 } 1312 1313 if (ret < 0) { 1314 /* Do nothing, write notifier decided to fail this request */ 1315 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1316 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1317 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1318 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1319 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); 1320 } else if (bytes <= max_transfer) { 1321 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1322 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); 1323 } else { 1324 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1325 while (bytes_remaining) { 1326 int num = MIN(bytes_remaining, max_transfer); 1327 QEMUIOVector local_qiov; 1328 int local_flags = flags; 1329 1330 assert(num); 1331 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1332 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1333 /* If FUA is going to be emulated by flush, we only 1334 * need to flush on the last iteration */ 1335 local_flags &= ~BDRV_REQ_FUA; 1336 } 1337 qemu_iovec_init(&local_qiov, qiov->niov); 1338 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); 1339 1340 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1341 num, &local_qiov, local_flags); 1342 qemu_iovec_destroy(&local_qiov); 1343 if (ret < 0) { 1344 break; 1345 } 1346 bytes_remaining -= num; 1347 } 1348 } 1349 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1350 1351 ++bs->write_gen; 1352 bdrv_set_dirty(bs, start_sector, end_sector - start_sector); 1353 1354 if (bs->wr_highest_offset < offset + bytes) { 1355 bs->wr_highest_offset = offset + bytes; 1356 } 1357 1358 if (ret >= 0) { 1359 bs->total_sectors = MAX(bs->total_sectors, end_sector); 1360 ret = 0; 1361 } 1362 1363 return ret; 1364 } 1365 1366 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs, 1367 int64_t offset, 1368 unsigned int bytes, 1369 BdrvRequestFlags flags, 1370 BdrvTrackedRequest *req) 1371 { 1372 uint8_t *buf = NULL; 1373 QEMUIOVector local_qiov; 1374 struct iovec iov; 1375 uint64_t align = bs->bl.request_alignment; 1376 unsigned int head_padding_bytes, tail_padding_bytes; 1377 int ret = 0; 1378 1379 head_padding_bytes = offset & (align - 1); 1380 tail_padding_bytes = align - ((offset + bytes) & (align - 1)); 1381 1382 1383 assert(flags & BDRV_REQ_ZERO_WRITE); 1384 if (head_padding_bytes || tail_padding_bytes) { 1385 buf = qemu_blockalign(bs, align); 1386 iov = (struct iovec) { 1387 .iov_base = buf, 1388 .iov_len = align, 1389 }; 1390 qemu_iovec_init_external(&local_qiov, &iov, 1); 1391 } 1392 if (head_padding_bytes) { 1393 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); 1394 1395 /* RMW the unaligned part before head. */ 1396 mark_request_serialising(req, align); 1397 wait_serialising_requests(req); 1398 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1399 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align, 1400 align, &local_qiov, 0); 1401 if (ret < 0) { 1402 goto fail; 1403 } 1404 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1405 1406 memset(buf + head_padding_bytes, 0, zero_bytes); 1407 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align, 1408 align, &local_qiov, 1409 flags & ~BDRV_REQ_ZERO_WRITE); 1410 if (ret < 0) { 1411 goto fail; 1412 } 1413 offset += zero_bytes; 1414 bytes -= zero_bytes; 1415 } 1416 1417 assert(!bytes || (offset & (align - 1)) == 0); 1418 if (bytes >= align) { 1419 /* Write the aligned part in the middle. */ 1420 uint64_t aligned_bytes = bytes & ~(align - 1); 1421 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, align, 1422 NULL, flags); 1423 if (ret < 0) { 1424 goto fail; 1425 } 1426 bytes -= aligned_bytes; 1427 offset += aligned_bytes; 1428 } 1429 1430 assert(!bytes || (offset & (align - 1)) == 0); 1431 if (bytes) { 1432 assert(align == tail_padding_bytes + bytes); 1433 /* RMW the unaligned part after tail. */ 1434 mark_request_serialising(req, align); 1435 wait_serialising_requests(req); 1436 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1437 ret = bdrv_aligned_preadv(bs, req, offset, align, 1438 align, &local_qiov, 0); 1439 if (ret < 0) { 1440 goto fail; 1441 } 1442 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1443 1444 memset(buf, 0, bytes); 1445 ret = bdrv_aligned_pwritev(bs, req, offset, align, align, 1446 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); 1447 } 1448 fail: 1449 qemu_vfree(buf); 1450 return ret; 1451 1452 } 1453 1454 /* 1455 * Handle a write request in coroutine context 1456 */ 1457 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 1458 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1459 BdrvRequestFlags flags) 1460 { 1461 BlockDriverState *bs = child->bs; 1462 BdrvTrackedRequest req; 1463 uint64_t align = bs->bl.request_alignment; 1464 uint8_t *head_buf = NULL; 1465 uint8_t *tail_buf = NULL; 1466 QEMUIOVector local_qiov; 1467 bool use_local_qiov = false; 1468 int ret; 1469 1470 if (!bs->drv) { 1471 return -ENOMEDIUM; 1472 } 1473 if (bs->read_only) { 1474 return -EPERM; 1475 } 1476 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1477 1478 ret = bdrv_check_byte_request(bs, offset, bytes); 1479 if (ret < 0) { 1480 return ret; 1481 } 1482 1483 /* 1484 * Align write if necessary by performing a read-modify-write cycle. 1485 * Pad qiov with the read parts and be sure to have a tracked request not 1486 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 1487 */ 1488 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 1489 1490 if (!qiov) { 1491 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req); 1492 goto out; 1493 } 1494 1495 if (offset & (align - 1)) { 1496 QEMUIOVector head_qiov; 1497 struct iovec head_iov; 1498 1499 mark_request_serialising(&req, align); 1500 wait_serialising_requests(&req); 1501 1502 head_buf = qemu_blockalign(bs, align); 1503 head_iov = (struct iovec) { 1504 .iov_base = head_buf, 1505 .iov_len = align, 1506 }; 1507 qemu_iovec_init_external(&head_qiov, &head_iov, 1); 1508 1509 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1510 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align, 1511 align, &head_qiov, 0); 1512 if (ret < 0) { 1513 goto fail; 1514 } 1515 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1516 1517 qemu_iovec_init(&local_qiov, qiov->niov + 2); 1518 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); 1519 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1520 use_local_qiov = true; 1521 1522 bytes += offset & (align - 1); 1523 offset = offset & ~(align - 1); 1524 1525 /* We have read the tail already if the request is smaller 1526 * than one aligned block. 1527 */ 1528 if (bytes < align) { 1529 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); 1530 bytes = align; 1531 } 1532 } 1533 1534 if ((offset + bytes) & (align - 1)) { 1535 QEMUIOVector tail_qiov; 1536 struct iovec tail_iov; 1537 size_t tail_bytes; 1538 bool waited; 1539 1540 mark_request_serialising(&req, align); 1541 waited = wait_serialising_requests(&req); 1542 assert(!waited || !use_local_qiov); 1543 1544 tail_buf = qemu_blockalign(bs, align); 1545 tail_iov = (struct iovec) { 1546 .iov_base = tail_buf, 1547 .iov_len = align, 1548 }; 1549 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); 1550 1551 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1552 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align, 1553 align, &tail_qiov, 0); 1554 if (ret < 0) { 1555 goto fail; 1556 } 1557 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1558 1559 if (!use_local_qiov) { 1560 qemu_iovec_init(&local_qiov, qiov->niov + 1); 1561 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); 1562 use_local_qiov = true; 1563 } 1564 1565 tail_bytes = (offset + bytes) & (align - 1); 1566 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); 1567 1568 bytes = ROUND_UP(bytes, align); 1569 } 1570 1571 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, align, 1572 use_local_qiov ? &local_qiov : qiov, 1573 flags); 1574 1575 fail: 1576 1577 if (use_local_qiov) { 1578 qemu_iovec_destroy(&local_qiov); 1579 } 1580 qemu_vfree(head_buf); 1581 qemu_vfree(tail_buf); 1582 out: 1583 tracked_request_end(&req); 1584 return ret; 1585 } 1586 1587 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, 1588 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1589 BdrvRequestFlags flags) 1590 { 1591 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { 1592 return -EINVAL; 1593 } 1594 1595 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, 1596 nb_sectors << BDRV_SECTOR_BITS, qiov, flags); 1597 } 1598 1599 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, 1600 int nb_sectors, QEMUIOVector *qiov) 1601 { 1602 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors); 1603 1604 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); 1605 } 1606 1607 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 1608 int count, BdrvRequestFlags flags) 1609 { 1610 trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags); 1611 1612 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 1613 flags &= ~BDRV_REQ_MAY_UNMAP; 1614 } 1615 1616 return bdrv_co_pwritev(child, offset, count, NULL, 1617 BDRV_REQ_ZERO_WRITE | flags); 1618 } 1619 1620 /* 1621 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 1622 */ 1623 int bdrv_flush_all(void) 1624 { 1625 BdrvNextIterator it; 1626 BlockDriverState *bs = NULL; 1627 int result = 0; 1628 1629 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 1630 AioContext *aio_context = bdrv_get_aio_context(bs); 1631 int ret; 1632 1633 aio_context_acquire(aio_context); 1634 ret = bdrv_flush(bs); 1635 if (ret < 0 && !result) { 1636 result = ret; 1637 } 1638 aio_context_release(aio_context); 1639 } 1640 1641 return result; 1642 } 1643 1644 1645 typedef struct BdrvCoGetBlockStatusData { 1646 BlockDriverState *bs; 1647 BlockDriverState *base; 1648 BlockDriverState **file; 1649 int64_t sector_num; 1650 int nb_sectors; 1651 int *pnum; 1652 int64_t ret; 1653 bool done; 1654 } BdrvCoGetBlockStatusData; 1655 1656 /* 1657 * Returns the allocation status of the specified sectors. 1658 * Drivers not implementing the functionality are assumed to not support 1659 * backing files, hence all their sectors are reported as allocated. 1660 * 1661 * If 'sector_num' is beyond the end of the disk image the return value is 0 1662 * and 'pnum' is set to 0. 1663 * 1664 * 'pnum' is set to the number of sectors (including and immediately following 1665 * the specified sector) that are known to be in the same 1666 * allocated/unallocated state. 1667 * 1668 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 1669 * beyond the end of the disk image it will be clamped. 1670 * 1671 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file' 1672 * points to the BDS which the sector range is allocated in. 1673 */ 1674 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs, 1675 int64_t sector_num, 1676 int nb_sectors, int *pnum, 1677 BlockDriverState **file) 1678 { 1679 int64_t total_sectors; 1680 int64_t n; 1681 int64_t ret, ret2; 1682 1683 total_sectors = bdrv_nb_sectors(bs); 1684 if (total_sectors < 0) { 1685 return total_sectors; 1686 } 1687 1688 if (sector_num >= total_sectors) { 1689 *pnum = 0; 1690 return 0; 1691 } 1692 1693 n = total_sectors - sector_num; 1694 if (n < nb_sectors) { 1695 nb_sectors = n; 1696 } 1697 1698 if (!bs->drv->bdrv_co_get_block_status) { 1699 *pnum = nb_sectors; 1700 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 1701 if (bs->drv->protocol_name) { 1702 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE); 1703 } 1704 return ret; 1705 } 1706 1707 *file = NULL; 1708 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum, 1709 file); 1710 if (ret < 0) { 1711 *pnum = 0; 1712 return ret; 1713 } 1714 1715 if (ret & BDRV_BLOCK_RAW) { 1716 assert(ret & BDRV_BLOCK_OFFSET_VALID); 1717 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS, 1718 *pnum, pnum, file); 1719 } 1720 1721 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 1722 ret |= BDRV_BLOCK_ALLOCATED; 1723 } else { 1724 if (bdrv_unallocated_blocks_are_zero(bs)) { 1725 ret |= BDRV_BLOCK_ZERO; 1726 } else if (bs->backing) { 1727 BlockDriverState *bs2 = bs->backing->bs; 1728 int64_t nb_sectors2 = bdrv_nb_sectors(bs2); 1729 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) { 1730 ret |= BDRV_BLOCK_ZERO; 1731 } 1732 } 1733 } 1734 1735 if (*file && *file != bs && 1736 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 1737 (ret & BDRV_BLOCK_OFFSET_VALID)) { 1738 BlockDriverState *file2; 1739 int file_pnum; 1740 1741 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS, 1742 *pnum, &file_pnum, &file2); 1743 if (ret2 >= 0) { 1744 /* Ignore errors. This is just providing extra information, it 1745 * is useful but not necessary. 1746 */ 1747 if (!file_pnum) { 1748 /* !file_pnum indicates an offset at or beyond the EOF; it is 1749 * perfectly valid for the format block driver to point to such 1750 * offsets, so catch it and mark everything as zero */ 1751 ret |= BDRV_BLOCK_ZERO; 1752 } else { 1753 /* Limit request to the range reported by the protocol driver */ 1754 *pnum = file_pnum; 1755 ret |= (ret2 & BDRV_BLOCK_ZERO); 1756 } 1757 } 1758 } 1759 1760 return ret; 1761 } 1762 1763 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs, 1764 BlockDriverState *base, 1765 int64_t sector_num, 1766 int nb_sectors, 1767 int *pnum, 1768 BlockDriverState **file) 1769 { 1770 BlockDriverState *p; 1771 int64_t ret = 0; 1772 1773 assert(bs != base); 1774 for (p = bs; p != base; p = backing_bs(p)) { 1775 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file); 1776 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) { 1777 break; 1778 } 1779 /* [sector_num, pnum] unallocated on this layer, which could be only 1780 * the first part of [sector_num, nb_sectors]. */ 1781 nb_sectors = MIN(nb_sectors, *pnum); 1782 } 1783 return ret; 1784 } 1785 1786 /* Coroutine wrapper for bdrv_get_block_status_above() */ 1787 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque) 1788 { 1789 BdrvCoGetBlockStatusData *data = opaque; 1790 1791 data->ret = bdrv_co_get_block_status_above(data->bs, data->base, 1792 data->sector_num, 1793 data->nb_sectors, 1794 data->pnum, 1795 data->file); 1796 data->done = true; 1797 } 1798 1799 /* 1800 * Synchronous wrapper around bdrv_co_get_block_status_above(). 1801 * 1802 * See bdrv_co_get_block_status_above() for details. 1803 */ 1804 int64_t bdrv_get_block_status_above(BlockDriverState *bs, 1805 BlockDriverState *base, 1806 int64_t sector_num, 1807 int nb_sectors, int *pnum, 1808 BlockDriverState **file) 1809 { 1810 Coroutine *co; 1811 BdrvCoGetBlockStatusData data = { 1812 .bs = bs, 1813 .base = base, 1814 .file = file, 1815 .sector_num = sector_num, 1816 .nb_sectors = nb_sectors, 1817 .pnum = pnum, 1818 .done = false, 1819 }; 1820 1821 if (qemu_in_coroutine()) { 1822 /* Fast-path if already in coroutine context */ 1823 bdrv_get_block_status_above_co_entry(&data); 1824 } else { 1825 AioContext *aio_context = bdrv_get_aio_context(bs); 1826 1827 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry, 1828 &data); 1829 qemu_coroutine_enter(co); 1830 while (!data.done) { 1831 aio_poll(aio_context, true); 1832 } 1833 } 1834 return data.ret; 1835 } 1836 1837 int64_t bdrv_get_block_status(BlockDriverState *bs, 1838 int64_t sector_num, 1839 int nb_sectors, int *pnum, 1840 BlockDriverState **file) 1841 { 1842 return bdrv_get_block_status_above(bs, backing_bs(bs), 1843 sector_num, nb_sectors, pnum, file); 1844 } 1845 1846 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, 1847 int nb_sectors, int *pnum) 1848 { 1849 BlockDriverState *file; 1850 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum, 1851 &file); 1852 if (ret < 0) { 1853 return ret; 1854 } 1855 return !!(ret & BDRV_BLOCK_ALLOCATED); 1856 } 1857 1858 /* 1859 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 1860 * 1861 * Return true if the given sector is allocated in any image between 1862 * BASE and TOP (inclusive). BASE can be NULL to check if the given 1863 * sector is allocated in any image of the chain. Return false otherwise. 1864 * 1865 * 'pnum' is set to the number of sectors (including and immediately following 1866 * the specified sector) that are known to be in the same 1867 * allocated/unallocated state. 1868 * 1869 */ 1870 int bdrv_is_allocated_above(BlockDriverState *top, 1871 BlockDriverState *base, 1872 int64_t sector_num, 1873 int nb_sectors, int *pnum) 1874 { 1875 BlockDriverState *intermediate; 1876 int ret, n = nb_sectors; 1877 1878 intermediate = top; 1879 while (intermediate && intermediate != base) { 1880 int pnum_inter; 1881 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors, 1882 &pnum_inter); 1883 if (ret < 0) { 1884 return ret; 1885 } else if (ret) { 1886 *pnum = pnum_inter; 1887 return 1; 1888 } 1889 1890 /* 1891 * [sector_num, nb_sectors] is unallocated on top but intermediate 1892 * might have 1893 * 1894 * [sector_num+x, nr_sectors] allocated. 1895 */ 1896 if (n > pnum_inter && 1897 (intermediate == top || 1898 sector_num + pnum_inter < intermediate->total_sectors)) { 1899 n = pnum_inter; 1900 } 1901 1902 intermediate = backing_bs(intermediate); 1903 } 1904 1905 *pnum = n; 1906 return 0; 1907 } 1908 1909 typedef struct BdrvVmstateCo { 1910 BlockDriverState *bs; 1911 QEMUIOVector *qiov; 1912 int64_t pos; 1913 bool is_read; 1914 int ret; 1915 } BdrvVmstateCo; 1916 1917 static int coroutine_fn 1918 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 1919 bool is_read) 1920 { 1921 BlockDriver *drv = bs->drv; 1922 1923 if (!drv) { 1924 return -ENOMEDIUM; 1925 } else if (drv->bdrv_load_vmstate) { 1926 return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos) 1927 : drv->bdrv_save_vmstate(bs, qiov, pos); 1928 } else if (bs->file) { 1929 return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 1930 } 1931 1932 return -ENOTSUP; 1933 } 1934 1935 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 1936 { 1937 BdrvVmstateCo *co = opaque; 1938 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 1939 } 1940 1941 static inline int 1942 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 1943 bool is_read) 1944 { 1945 if (qemu_in_coroutine()) { 1946 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 1947 } else { 1948 BdrvVmstateCo data = { 1949 .bs = bs, 1950 .qiov = qiov, 1951 .pos = pos, 1952 .is_read = is_read, 1953 .ret = -EINPROGRESS, 1954 }; 1955 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 1956 1957 qemu_coroutine_enter(co); 1958 while (data.ret == -EINPROGRESS) { 1959 aio_poll(bdrv_get_aio_context(bs), true); 1960 } 1961 return data.ret; 1962 } 1963 } 1964 1965 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 1966 int64_t pos, int size) 1967 { 1968 QEMUIOVector qiov; 1969 struct iovec iov = { 1970 .iov_base = (void *) buf, 1971 .iov_len = size, 1972 }; 1973 int ret; 1974 1975 qemu_iovec_init_external(&qiov, &iov, 1); 1976 1977 ret = bdrv_writev_vmstate(bs, &qiov, pos); 1978 if (ret < 0) { 1979 return ret; 1980 } 1981 1982 return size; 1983 } 1984 1985 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 1986 { 1987 return bdrv_rw_vmstate(bs, qiov, pos, false); 1988 } 1989 1990 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 1991 int64_t pos, int size) 1992 { 1993 QEMUIOVector qiov; 1994 struct iovec iov = { 1995 .iov_base = buf, 1996 .iov_len = size, 1997 }; 1998 int ret; 1999 2000 qemu_iovec_init_external(&qiov, &iov, 1); 2001 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2002 if (ret < 0) { 2003 return ret; 2004 } 2005 2006 return size; 2007 } 2008 2009 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2010 { 2011 return bdrv_rw_vmstate(bs, qiov, pos, true); 2012 } 2013 2014 /**************************************************************/ 2015 /* async I/Os */ 2016 2017 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num, 2018 QEMUIOVector *qiov, int nb_sectors, 2019 BlockCompletionFunc *cb, void *opaque) 2020 { 2021 trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque); 2022 2023 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size); 2024 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov, 2025 0, cb, opaque, false); 2026 } 2027 2028 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num, 2029 QEMUIOVector *qiov, int nb_sectors, 2030 BlockCompletionFunc *cb, void *opaque) 2031 { 2032 trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque); 2033 2034 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size); 2035 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov, 2036 0, cb, opaque, true); 2037 } 2038 2039 void bdrv_aio_cancel(BlockAIOCB *acb) 2040 { 2041 qemu_aio_ref(acb); 2042 bdrv_aio_cancel_async(acb); 2043 while (acb->refcnt > 1) { 2044 if (acb->aiocb_info->get_aio_context) { 2045 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2046 } else if (acb->bs) { 2047 aio_poll(bdrv_get_aio_context(acb->bs), true); 2048 } else { 2049 abort(); 2050 } 2051 } 2052 qemu_aio_unref(acb); 2053 } 2054 2055 /* Async version of aio cancel. The caller is not blocked if the acb implements 2056 * cancel_async, otherwise we do nothing and let the request normally complete. 2057 * In either case the completion callback must be called. */ 2058 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2059 { 2060 if (acb->aiocb_info->cancel_async) { 2061 acb->aiocb_info->cancel_async(acb); 2062 } 2063 } 2064 2065 /**************************************************************/ 2066 /* async block device emulation */ 2067 2068 typedef struct BlockRequest { 2069 union { 2070 /* Used during read, write, trim */ 2071 struct { 2072 int64_t offset; 2073 int bytes; 2074 int flags; 2075 QEMUIOVector *qiov; 2076 }; 2077 /* Used during ioctl */ 2078 struct { 2079 int req; 2080 void *buf; 2081 }; 2082 }; 2083 BlockCompletionFunc *cb; 2084 void *opaque; 2085 2086 int error; 2087 } BlockRequest; 2088 2089 typedef struct BlockAIOCBCoroutine { 2090 BlockAIOCB common; 2091 BdrvChild *child; 2092 BlockRequest req; 2093 bool is_write; 2094 bool need_bh; 2095 bool *done; 2096 } BlockAIOCBCoroutine; 2097 2098 static const AIOCBInfo bdrv_em_co_aiocb_info = { 2099 .aiocb_size = sizeof(BlockAIOCBCoroutine), 2100 }; 2101 2102 static void bdrv_co_complete(BlockAIOCBCoroutine *acb) 2103 { 2104 if (!acb->need_bh) { 2105 acb->common.cb(acb->common.opaque, acb->req.error); 2106 qemu_aio_unref(acb); 2107 } 2108 } 2109 2110 static void bdrv_co_em_bh(void *opaque) 2111 { 2112 BlockAIOCBCoroutine *acb = opaque; 2113 2114 assert(!acb->need_bh); 2115 bdrv_co_complete(acb); 2116 } 2117 2118 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb) 2119 { 2120 acb->need_bh = false; 2121 if (acb->req.error != -EINPROGRESS) { 2122 BlockDriverState *bs = acb->common.bs; 2123 2124 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb); 2125 } 2126 } 2127 2128 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 2129 static void coroutine_fn bdrv_co_do_rw(void *opaque) 2130 { 2131 BlockAIOCBCoroutine *acb = opaque; 2132 2133 if (!acb->is_write) { 2134 acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset, 2135 acb->req.qiov->size, acb->req.qiov, acb->req.flags); 2136 } else { 2137 acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset, 2138 acb->req.qiov->size, acb->req.qiov, acb->req.flags); 2139 } 2140 2141 bdrv_co_complete(acb); 2142 } 2143 2144 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child, 2145 int64_t offset, 2146 QEMUIOVector *qiov, 2147 BdrvRequestFlags flags, 2148 BlockCompletionFunc *cb, 2149 void *opaque, 2150 bool is_write) 2151 { 2152 Coroutine *co; 2153 BlockAIOCBCoroutine *acb; 2154 2155 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque); 2156 acb->child = child; 2157 acb->need_bh = true; 2158 acb->req.error = -EINPROGRESS; 2159 acb->req.offset = offset; 2160 acb->req.qiov = qiov; 2161 acb->req.flags = flags; 2162 acb->is_write = is_write; 2163 2164 co = qemu_coroutine_create(bdrv_co_do_rw, acb); 2165 qemu_coroutine_enter(co); 2166 2167 bdrv_co_maybe_schedule_bh(acb); 2168 return &acb->common; 2169 } 2170 2171 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 2172 { 2173 BlockAIOCBCoroutine *acb = opaque; 2174 BlockDriverState *bs = acb->common.bs; 2175 2176 acb->req.error = bdrv_co_flush(bs); 2177 bdrv_co_complete(acb); 2178 } 2179 2180 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs, 2181 BlockCompletionFunc *cb, void *opaque) 2182 { 2183 trace_bdrv_aio_flush(bs, opaque); 2184 2185 Coroutine *co; 2186 BlockAIOCBCoroutine *acb; 2187 2188 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2189 acb->need_bh = true; 2190 acb->req.error = -EINPROGRESS; 2191 2192 co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb); 2193 qemu_coroutine_enter(co); 2194 2195 bdrv_co_maybe_schedule_bh(acb); 2196 return &acb->common; 2197 } 2198 2199 static void coroutine_fn bdrv_aio_pdiscard_co_entry(void *opaque) 2200 { 2201 BlockAIOCBCoroutine *acb = opaque; 2202 BlockDriverState *bs = acb->common.bs; 2203 2204 acb->req.error = bdrv_co_pdiscard(bs, acb->req.offset, acb->req.bytes); 2205 bdrv_co_complete(acb); 2206 } 2207 2208 BlockAIOCB *bdrv_aio_pdiscard(BlockDriverState *bs, int64_t offset, int count, 2209 BlockCompletionFunc *cb, void *opaque) 2210 { 2211 Coroutine *co; 2212 BlockAIOCBCoroutine *acb; 2213 2214 trace_bdrv_aio_pdiscard(bs, offset, count, opaque); 2215 2216 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 2217 acb->need_bh = true; 2218 acb->req.error = -EINPROGRESS; 2219 acb->req.offset = offset; 2220 acb->req.bytes = count; 2221 co = qemu_coroutine_create(bdrv_aio_pdiscard_co_entry, acb); 2222 qemu_coroutine_enter(co); 2223 2224 bdrv_co_maybe_schedule_bh(acb); 2225 return &acb->common; 2226 } 2227 2228 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 2229 BlockCompletionFunc *cb, void *opaque) 2230 { 2231 BlockAIOCB *acb; 2232 2233 acb = g_malloc(aiocb_info->aiocb_size); 2234 acb->aiocb_info = aiocb_info; 2235 acb->bs = bs; 2236 acb->cb = cb; 2237 acb->opaque = opaque; 2238 acb->refcnt = 1; 2239 return acb; 2240 } 2241 2242 void qemu_aio_ref(void *p) 2243 { 2244 BlockAIOCB *acb = p; 2245 acb->refcnt++; 2246 } 2247 2248 void qemu_aio_unref(void *p) 2249 { 2250 BlockAIOCB *acb = p; 2251 assert(acb->refcnt > 0); 2252 if (--acb->refcnt == 0) { 2253 g_free(acb); 2254 } 2255 } 2256 2257 /**************************************************************/ 2258 /* Coroutine block device emulation */ 2259 2260 typedef struct FlushCo { 2261 BlockDriverState *bs; 2262 int ret; 2263 } FlushCo; 2264 2265 2266 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2267 { 2268 FlushCo *rwco = opaque; 2269 2270 rwco->ret = bdrv_co_flush(rwco->bs); 2271 } 2272 2273 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2274 { 2275 int ret; 2276 BdrvTrackedRequest req; 2277 2278 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2279 bdrv_is_sg(bs)) { 2280 return 0; 2281 } 2282 2283 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH); 2284 2285 int current_gen = bs->write_gen; 2286 2287 /* Wait until any previous flushes are completed */ 2288 while (bs->active_flush_req != NULL) { 2289 qemu_co_queue_wait(&bs->flush_queue); 2290 } 2291 2292 bs->active_flush_req = &req; 2293 2294 /* Write back all layers by calling one driver function */ 2295 if (bs->drv->bdrv_co_flush) { 2296 ret = bs->drv->bdrv_co_flush(bs); 2297 goto out; 2298 } 2299 2300 /* Write back cached data to the OS even with cache=unsafe */ 2301 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2302 if (bs->drv->bdrv_co_flush_to_os) { 2303 ret = bs->drv->bdrv_co_flush_to_os(bs); 2304 if (ret < 0) { 2305 goto out; 2306 } 2307 } 2308 2309 /* But don't actually force it to the disk with cache=unsafe */ 2310 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2311 goto flush_parent; 2312 } 2313 2314 /* Check if we really need to flush anything */ 2315 if (bs->flushed_gen == current_gen) { 2316 goto flush_parent; 2317 } 2318 2319 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2320 if (bs->drv->bdrv_co_flush_to_disk) { 2321 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2322 } else if (bs->drv->bdrv_aio_flush) { 2323 BlockAIOCB *acb; 2324 CoroutineIOCompletion co = { 2325 .coroutine = qemu_coroutine_self(), 2326 }; 2327 2328 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2329 if (acb == NULL) { 2330 ret = -EIO; 2331 } else { 2332 qemu_coroutine_yield(); 2333 ret = co.ret; 2334 } 2335 } else { 2336 /* 2337 * Some block drivers always operate in either writethrough or unsafe 2338 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2339 * know how the server works (because the behaviour is hardcoded or 2340 * depends on server-side configuration), so we can't ensure that 2341 * everything is safe on disk. Returning an error doesn't work because 2342 * that would break guests even if the server operates in writethrough 2343 * mode. 2344 * 2345 * Let's hope the user knows what he's doing. 2346 */ 2347 ret = 0; 2348 } 2349 2350 if (ret < 0) { 2351 goto out; 2352 } 2353 2354 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2355 * in the case of cache=unsafe, so there are no useless flushes. 2356 */ 2357 flush_parent: 2358 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2359 out: 2360 /* Notify any pending flushes that we have completed */ 2361 bs->flushed_gen = current_gen; 2362 bs->active_flush_req = NULL; 2363 /* Return value is ignored - it's ok if wait queue is empty */ 2364 qemu_co_queue_next(&bs->flush_queue); 2365 2366 tracked_request_end(&req); 2367 return ret; 2368 } 2369 2370 int bdrv_flush(BlockDriverState *bs) 2371 { 2372 Coroutine *co; 2373 FlushCo flush_co = { 2374 .bs = bs, 2375 .ret = NOT_DONE, 2376 }; 2377 2378 if (qemu_in_coroutine()) { 2379 /* Fast-path if already in coroutine context */ 2380 bdrv_flush_co_entry(&flush_co); 2381 } else { 2382 AioContext *aio_context = bdrv_get_aio_context(bs); 2383 2384 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2385 qemu_coroutine_enter(co); 2386 while (flush_co.ret == NOT_DONE) { 2387 aio_poll(aio_context, true); 2388 } 2389 } 2390 2391 return flush_co.ret; 2392 } 2393 2394 typedef struct DiscardCo { 2395 BlockDriverState *bs; 2396 int64_t offset; 2397 int count; 2398 int ret; 2399 } DiscardCo; 2400 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2401 { 2402 DiscardCo *rwco = opaque; 2403 2404 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count); 2405 } 2406 2407 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, 2408 int count) 2409 { 2410 BdrvTrackedRequest req; 2411 int max_pdiscard, ret; 2412 int head, align; 2413 2414 if (!bs->drv) { 2415 return -ENOMEDIUM; 2416 } 2417 2418 ret = bdrv_check_byte_request(bs, offset, count); 2419 if (ret < 0) { 2420 return ret; 2421 } else if (bs->read_only) { 2422 return -EPERM; 2423 } 2424 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2425 2426 /* Do nothing if disabled. */ 2427 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2428 return 0; 2429 } 2430 2431 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2432 return 0; 2433 } 2434 2435 /* Discard is advisory, so ignore any unaligned head or tail */ 2436 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2437 assert(align % bs->bl.request_alignment == 0); 2438 head = offset % align; 2439 if (head) { 2440 head = MIN(count, align - head); 2441 count -= head; 2442 offset += head; 2443 } 2444 count = QEMU_ALIGN_DOWN(count, align); 2445 if (!count) { 2446 return 0; 2447 } 2448 2449 tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD); 2450 2451 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2452 if (ret < 0) { 2453 goto out; 2454 } 2455 2456 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2457 align); 2458 assert(max_pdiscard); 2459 2460 while (count > 0) { 2461 int ret; 2462 int num = MIN(count, max_pdiscard); 2463 2464 if (bs->drv->bdrv_co_pdiscard) { 2465 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2466 } else { 2467 BlockAIOCB *acb; 2468 CoroutineIOCompletion co = { 2469 .coroutine = qemu_coroutine_self(), 2470 }; 2471 2472 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2473 bdrv_co_io_em_complete, &co); 2474 if (acb == NULL) { 2475 ret = -EIO; 2476 goto out; 2477 } else { 2478 qemu_coroutine_yield(); 2479 ret = co.ret; 2480 } 2481 } 2482 if (ret && ret != -ENOTSUP) { 2483 goto out; 2484 } 2485 2486 offset += num; 2487 count -= num; 2488 } 2489 ret = 0; 2490 out: 2491 ++bs->write_gen; 2492 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS, 2493 req.bytes >> BDRV_SECTOR_BITS); 2494 tracked_request_end(&req); 2495 return ret; 2496 } 2497 2498 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count) 2499 { 2500 Coroutine *co; 2501 DiscardCo rwco = { 2502 .bs = bs, 2503 .offset = offset, 2504 .count = count, 2505 .ret = NOT_DONE, 2506 }; 2507 2508 if (qemu_in_coroutine()) { 2509 /* Fast-path if already in coroutine context */ 2510 bdrv_pdiscard_co_entry(&rwco); 2511 } else { 2512 AioContext *aio_context = bdrv_get_aio_context(bs); 2513 2514 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2515 qemu_coroutine_enter(co); 2516 while (rwco.ret == NOT_DONE) { 2517 aio_poll(aio_context, true); 2518 } 2519 } 2520 2521 return rwco.ret; 2522 } 2523 2524 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf) 2525 { 2526 BlockDriver *drv = bs->drv; 2527 BdrvTrackedRequest tracked_req; 2528 CoroutineIOCompletion co = { 2529 .coroutine = qemu_coroutine_self(), 2530 }; 2531 BlockAIOCB *acb; 2532 2533 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL); 2534 if (!drv || !drv->bdrv_aio_ioctl) { 2535 co.ret = -ENOTSUP; 2536 goto out; 2537 } 2538 2539 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2540 if (!acb) { 2541 co.ret = -ENOTSUP; 2542 goto out; 2543 } 2544 qemu_coroutine_yield(); 2545 out: 2546 tracked_request_end(&tracked_req); 2547 return co.ret; 2548 } 2549 2550 typedef struct { 2551 BlockDriverState *bs; 2552 int req; 2553 void *buf; 2554 int ret; 2555 } BdrvIoctlCoData; 2556 2557 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque) 2558 { 2559 BdrvIoctlCoData *data = opaque; 2560 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf); 2561 } 2562 2563 /* needed for generic scsi interface */ 2564 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 2565 { 2566 BdrvIoctlCoData data = { 2567 .bs = bs, 2568 .req = req, 2569 .buf = buf, 2570 .ret = -EINPROGRESS, 2571 }; 2572 2573 if (qemu_in_coroutine()) { 2574 /* Fast-path if already in coroutine context */ 2575 bdrv_co_ioctl_entry(&data); 2576 } else { 2577 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry, &data); 2578 2579 qemu_coroutine_enter(co); 2580 while (data.ret == -EINPROGRESS) { 2581 aio_poll(bdrv_get_aio_context(bs), true); 2582 } 2583 } 2584 return data.ret; 2585 } 2586 2587 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque) 2588 { 2589 BlockAIOCBCoroutine *acb = opaque; 2590 acb->req.error = bdrv_co_do_ioctl(acb->common.bs, 2591 acb->req.req, acb->req.buf); 2592 bdrv_co_complete(acb); 2593 } 2594 2595 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 2596 unsigned long int req, void *buf, 2597 BlockCompletionFunc *cb, void *opaque) 2598 { 2599 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info, 2600 bs, cb, opaque); 2601 Coroutine *co; 2602 2603 acb->need_bh = true; 2604 acb->req.error = -EINPROGRESS; 2605 acb->req.req = req; 2606 acb->req.buf = buf; 2607 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry, acb); 2608 qemu_coroutine_enter(co); 2609 2610 bdrv_co_maybe_schedule_bh(acb); 2611 return &acb->common; 2612 } 2613 2614 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2615 { 2616 return qemu_memalign(bdrv_opt_mem_align(bs), size); 2617 } 2618 2619 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 2620 { 2621 return memset(qemu_blockalign(bs, size), 0, size); 2622 } 2623 2624 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 2625 { 2626 size_t align = bdrv_opt_mem_align(bs); 2627 2628 /* Ensure that NULL is never returned on success */ 2629 assert(align > 0); 2630 if (size == 0) { 2631 size = align; 2632 } 2633 2634 return qemu_try_memalign(align, size); 2635 } 2636 2637 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 2638 { 2639 void *mem = qemu_try_blockalign(bs, size); 2640 2641 if (mem) { 2642 memset(mem, 0, size); 2643 } 2644 2645 return mem; 2646 } 2647 2648 /* 2649 * Check if all memory in this vector is sector aligned. 2650 */ 2651 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 2652 { 2653 int i; 2654 size_t alignment = bdrv_min_mem_align(bs); 2655 2656 for (i = 0; i < qiov->niov; i++) { 2657 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 2658 return false; 2659 } 2660 if (qiov->iov[i].iov_len % alignment) { 2661 return false; 2662 } 2663 } 2664 2665 return true; 2666 } 2667 2668 void bdrv_add_before_write_notifier(BlockDriverState *bs, 2669 NotifierWithReturn *notifier) 2670 { 2671 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 2672 } 2673 2674 void bdrv_io_plug(BlockDriverState *bs) 2675 { 2676 BdrvChild *child; 2677 2678 QLIST_FOREACH(child, &bs->children, next) { 2679 bdrv_io_plug(child->bs); 2680 } 2681 2682 if (bs->io_plugged++ == 0 && bs->io_plug_disabled == 0) { 2683 BlockDriver *drv = bs->drv; 2684 if (drv && drv->bdrv_io_plug) { 2685 drv->bdrv_io_plug(bs); 2686 } 2687 } 2688 } 2689 2690 void bdrv_io_unplug(BlockDriverState *bs) 2691 { 2692 BdrvChild *child; 2693 2694 assert(bs->io_plugged); 2695 if (--bs->io_plugged == 0 && bs->io_plug_disabled == 0) { 2696 BlockDriver *drv = bs->drv; 2697 if (drv && drv->bdrv_io_unplug) { 2698 drv->bdrv_io_unplug(bs); 2699 } 2700 } 2701 2702 QLIST_FOREACH(child, &bs->children, next) { 2703 bdrv_io_unplug(child->bs); 2704 } 2705 } 2706 2707 void bdrv_io_unplugged_begin(BlockDriverState *bs) 2708 { 2709 BdrvChild *child; 2710 2711 if (bs->io_plug_disabled++ == 0 && bs->io_plugged > 0) { 2712 BlockDriver *drv = bs->drv; 2713 if (drv && drv->bdrv_io_unplug) { 2714 drv->bdrv_io_unplug(bs); 2715 } 2716 } 2717 2718 QLIST_FOREACH(child, &bs->children, next) { 2719 bdrv_io_unplugged_begin(child->bs); 2720 } 2721 } 2722 2723 void bdrv_io_unplugged_end(BlockDriverState *bs) 2724 { 2725 BdrvChild *child; 2726 2727 assert(bs->io_plug_disabled); 2728 QLIST_FOREACH(child, &bs->children, next) { 2729 bdrv_io_unplugged_end(child->bs); 2730 } 2731 2732 if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) { 2733 BlockDriver *drv = bs->drv; 2734 if (drv && drv->bdrv_io_plug) { 2735 drv->bdrv_io_plug(bs); 2736 } 2737 } 2738 } 2739