xref: /openbmc/qemu/block/io.c (revision 159975f3)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33 
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35 
36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
37                                           int64_t offset,
38                                           QEMUIOVector *qiov,
39                                           BdrvRequestFlags flags,
40                                           BlockCompletionFunc *cb,
41                                           void *opaque,
42                                           bool is_write);
43 static void coroutine_fn bdrv_co_do_rw(void *opaque);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int count, BdrvRequestFlags flags);
46 
47 static void bdrv_parent_drained_begin(BlockDriverState *bs)
48 {
49     BdrvChild *c;
50 
51     QLIST_FOREACH(c, &bs->parents, next_parent) {
52         if (c->role->drained_begin) {
53             c->role->drained_begin(c);
54         }
55     }
56 }
57 
58 static void bdrv_parent_drained_end(BlockDriverState *bs)
59 {
60     BdrvChild *c;
61 
62     QLIST_FOREACH(c, &bs->parents, next_parent) {
63         if (c->role->drained_end) {
64             c->role->drained_end(c);
65         }
66     }
67 }
68 
69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
70 {
71     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
72     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
73     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
74                                  src->opt_mem_alignment);
75     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
76                                  src->min_mem_alignment);
77     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
78 }
79 
80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
81 {
82     BlockDriver *drv = bs->drv;
83     Error *local_err = NULL;
84 
85     memset(&bs->bl, 0, sizeof(bs->bl));
86 
87     if (!drv) {
88         return;
89     }
90 
91     /* Default alignment based on whether driver has byte interface */
92     bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
93 
94     /* Take some limits from the children as a default */
95     if (bs->file) {
96         bdrv_refresh_limits(bs->file->bs, &local_err);
97         if (local_err) {
98             error_propagate(errp, local_err);
99             return;
100         }
101         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
102     } else {
103         bs->bl.min_mem_alignment = 512;
104         bs->bl.opt_mem_alignment = getpagesize();
105 
106         /* Safe default since most protocols use readv()/writev()/etc */
107         bs->bl.max_iov = IOV_MAX;
108     }
109 
110     if (bs->backing) {
111         bdrv_refresh_limits(bs->backing->bs, &local_err);
112         if (local_err) {
113             error_propagate(errp, local_err);
114             return;
115         }
116         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
117     }
118 
119     /* Then let the driver override it */
120     if (drv->bdrv_refresh_limits) {
121         drv->bdrv_refresh_limits(bs, errp);
122     }
123 }
124 
125 /**
126  * The copy-on-read flag is actually a reference count so multiple users may
127  * use the feature without worrying about clobbering its previous state.
128  * Copy-on-read stays enabled until all users have called to disable it.
129  */
130 void bdrv_enable_copy_on_read(BlockDriverState *bs)
131 {
132     bs->copy_on_read++;
133 }
134 
135 void bdrv_disable_copy_on_read(BlockDriverState *bs)
136 {
137     assert(bs->copy_on_read > 0);
138     bs->copy_on_read--;
139 }
140 
141 /* Check if any requests are in-flight (including throttled requests) */
142 bool bdrv_requests_pending(BlockDriverState *bs)
143 {
144     BdrvChild *child;
145 
146     if (!QLIST_EMPTY(&bs->tracked_requests)) {
147         return true;
148     }
149 
150     QLIST_FOREACH(child, &bs->children, next) {
151         if (bdrv_requests_pending(child->bs)) {
152             return true;
153         }
154     }
155 
156     return false;
157 }
158 
159 static void bdrv_drain_recurse(BlockDriverState *bs)
160 {
161     BdrvChild *child;
162 
163     if (bs->drv && bs->drv->bdrv_drain) {
164         bs->drv->bdrv_drain(bs);
165     }
166     QLIST_FOREACH(child, &bs->children, next) {
167         bdrv_drain_recurse(child->bs);
168     }
169 }
170 
171 typedef struct {
172     Coroutine *co;
173     BlockDriverState *bs;
174     bool done;
175 } BdrvCoDrainData;
176 
177 static void bdrv_drain_poll(BlockDriverState *bs)
178 {
179     bool busy = true;
180 
181     while (busy) {
182         /* Keep iterating */
183         busy = bdrv_requests_pending(bs);
184         busy |= aio_poll(bdrv_get_aio_context(bs), busy);
185     }
186 }
187 
188 static void bdrv_co_drain_bh_cb(void *opaque)
189 {
190     BdrvCoDrainData *data = opaque;
191     Coroutine *co = data->co;
192 
193     bdrv_drain_poll(data->bs);
194     data->done = true;
195     qemu_coroutine_enter(co);
196 }
197 
198 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
199 {
200     BdrvCoDrainData data;
201 
202     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
203      * other coroutines run if they were queued from
204      * qemu_co_queue_run_restart(). */
205 
206     assert(qemu_in_coroutine());
207     data = (BdrvCoDrainData) {
208         .co = qemu_coroutine_self(),
209         .bs = bs,
210         .done = false,
211     };
212     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
213                             bdrv_co_drain_bh_cb, &data);
214 
215     qemu_coroutine_yield();
216     /* If we are resumed from some other event (such as an aio completion or a
217      * timer callback), it is a bug in the caller that should be fixed. */
218     assert(data.done);
219 }
220 
221 void bdrv_drained_begin(BlockDriverState *bs)
222 {
223     if (!bs->quiesce_counter++) {
224         aio_disable_external(bdrv_get_aio_context(bs));
225         bdrv_parent_drained_begin(bs);
226     }
227 
228     bdrv_io_unplugged_begin(bs);
229     bdrv_drain_recurse(bs);
230     if (qemu_in_coroutine()) {
231         bdrv_co_yield_to_drain(bs);
232     } else {
233         bdrv_drain_poll(bs);
234     }
235     bdrv_io_unplugged_end(bs);
236 }
237 
238 void bdrv_drained_end(BlockDriverState *bs)
239 {
240     assert(bs->quiesce_counter > 0);
241     if (--bs->quiesce_counter > 0) {
242         return;
243     }
244 
245     bdrv_parent_drained_end(bs);
246     aio_enable_external(bdrv_get_aio_context(bs));
247 }
248 
249 /*
250  * Wait for pending requests to complete on a single BlockDriverState subtree,
251  * and suspend block driver's internal I/O until next request arrives.
252  *
253  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
254  * AioContext.
255  *
256  * Only this BlockDriverState's AioContext is run, so in-flight requests must
257  * not depend on events in other AioContexts.  In that case, use
258  * bdrv_drain_all() instead.
259  */
260 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
261 {
262     assert(qemu_in_coroutine());
263     bdrv_drained_begin(bs);
264     bdrv_drained_end(bs);
265 }
266 
267 void bdrv_drain(BlockDriverState *bs)
268 {
269     bdrv_drained_begin(bs);
270     bdrv_drained_end(bs);
271 }
272 
273 /*
274  * Wait for pending requests to complete across all BlockDriverStates
275  *
276  * This function does not flush data to disk, use bdrv_flush_all() for that
277  * after calling this function.
278  */
279 void bdrv_drain_all(void)
280 {
281     /* Always run first iteration so any pending completion BHs run */
282     bool busy = true;
283     BlockDriverState *bs;
284     BdrvNextIterator it;
285     BlockJob *job = NULL;
286     GSList *aio_ctxs = NULL, *ctx;
287 
288     while ((job = block_job_next(job))) {
289         AioContext *aio_context = blk_get_aio_context(job->blk);
290 
291         aio_context_acquire(aio_context);
292         block_job_pause(job);
293         aio_context_release(aio_context);
294     }
295 
296     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
297         AioContext *aio_context = bdrv_get_aio_context(bs);
298 
299         aio_context_acquire(aio_context);
300         bdrv_parent_drained_begin(bs);
301         bdrv_io_unplugged_begin(bs);
302         bdrv_drain_recurse(bs);
303         aio_context_release(aio_context);
304 
305         if (!g_slist_find(aio_ctxs, aio_context)) {
306             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
307         }
308     }
309 
310     /* Note that completion of an asynchronous I/O operation can trigger any
311      * number of other I/O operations on other devices---for example a
312      * coroutine can submit an I/O request to another device in response to
313      * request completion.  Therefore we must keep looping until there was no
314      * more activity rather than simply draining each device independently.
315      */
316     while (busy) {
317         busy = false;
318 
319         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
320             AioContext *aio_context = ctx->data;
321 
322             aio_context_acquire(aio_context);
323             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
324                 if (aio_context == bdrv_get_aio_context(bs)) {
325                     if (bdrv_requests_pending(bs)) {
326                         busy = true;
327                         aio_poll(aio_context, busy);
328                     }
329                 }
330             }
331             busy |= aio_poll(aio_context, false);
332             aio_context_release(aio_context);
333         }
334     }
335 
336     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
337         AioContext *aio_context = bdrv_get_aio_context(bs);
338 
339         aio_context_acquire(aio_context);
340         bdrv_io_unplugged_end(bs);
341         bdrv_parent_drained_end(bs);
342         aio_context_release(aio_context);
343     }
344     g_slist_free(aio_ctxs);
345 
346     job = NULL;
347     while ((job = block_job_next(job))) {
348         AioContext *aio_context = blk_get_aio_context(job->blk);
349 
350         aio_context_acquire(aio_context);
351         block_job_resume(job);
352         aio_context_release(aio_context);
353     }
354 }
355 
356 /**
357  * Remove an active request from the tracked requests list
358  *
359  * This function should be called when a tracked request is completing.
360  */
361 static void tracked_request_end(BdrvTrackedRequest *req)
362 {
363     if (req->serialising) {
364         req->bs->serialising_in_flight--;
365     }
366 
367     QLIST_REMOVE(req, list);
368     qemu_co_queue_restart_all(&req->wait_queue);
369 }
370 
371 /**
372  * Add an active request to the tracked requests list
373  */
374 static void tracked_request_begin(BdrvTrackedRequest *req,
375                                   BlockDriverState *bs,
376                                   int64_t offset,
377                                   unsigned int bytes,
378                                   enum BdrvTrackedRequestType type)
379 {
380     *req = (BdrvTrackedRequest){
381         .bs = bs,
382         .offset         = offset,
383         .bytes          = bytes,
384         .type           = type,
385         .co             = qemu_coroutine_self(),
386         .serialising    = false,
387         .overlap_offset = offset,
388         .overlap_bytes  = bytes,
389     };
390 
391     qemu_co_queue_init(&req->wait_queue);
392 
393     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
394 }
395 
396 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
397 {
398     int64_t overlap_offset = req->offset & ~(align - 1);
399     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
400                                - overlap_offset;
401 
402     if (!req->serialising) {
403         req->bs->serialising_in_flight++;
404         req->serialising = true;
405     }
406 
407     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
408     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
409 }
410 
411 /**
412  * Round a region to cluster boundaries (sector-based)
413  */
414 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
415                                     int64_t sector_num, int nb_sectors,
416                                     int64_t *cluster_sector_num,
417                                     int *cluster_nb_sectors)
418 {
419     BlockDriverInfo bdi;
420 
421     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
422         *cluster_sector_num = sector_num;
423         *cluster_nb_sectors = nb_sectors;
424     } else {
425         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
426         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
427         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
428                                             nb_sectors, c);
429     }
430 }
431 
432 /**
433  * Round a region to cluster boundaries
434  */
435 void bdrv_round_to_clusters(BlockDriverState *bs,
436                             int64_t offset, unsigned int bytes,
437                             int64_t *cluster_offset,
438                             unsigned int *cluster_bytes)
439 {
440     BlockDriverInfo bdi;
441 
442     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
443         *cluster_offset = offset;
444         *cluster_bytes = bytes;
445     } else {
446         int64_t c = bdi.cluster_size;
447         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
448         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
449     }
450 }
451 
452 static int bdrv_get_cluster_size(BlockDriverState *bs)
453 {
454     BlockDriverInfo bdi;
455     int ret;
456 
457     ret = bdrv_get_info(bs, &bdi);
458     if (ret < 0 || bdi.cluster_size == 0) {
459         return bs->bl.request_alignment;
460     } else {
461         return bdi.cluster_size;
462     }
463 }
464 
465 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
466                                      int64_t offset, unsigned int bytes)
467 {
468     /*        aaaa   bbbb */
469     if (offset >= req->overlap_offset + req->overlap_bytes) {
470         return false;
471     }
472     /* bbbb   aaaa        */
473     if (req->overlap_offset >= offset + bytes) {
474         return false;
475     }
476     return true;
477 }
478 
479 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
480 {
481     BlockDriverState *bs = self->bs;
482     BdrvTrackedRequest *req;
483     bool retry;
484     bool waited = false;
485 
486     if (!bs->serialising_in_flight) {
487         return false;
488     }
489 
490     do {
491         retry = false;
492         QLIST_FOREACH(req, &bs->tracked_requests, list) {
493             if (req == self || (!req->serialising && !self->serialising)) {
494                 continue;
495             }
496             if (tracked_request_overlaps(req, self->overlap_offset,
497                                          self->overlap_bytes))
498             {
499                 /* Hitting this means there was a reentrant request, for
500                  * example, a block driver issuing nested requests.  This must
501                  * never happen since it means deadlock.
502                  */
503                 assert(qemu_coroutine_self() != req->co);
504 
505                 /* If the request is already (indirectly) waiting for us, or
506                  * will wait for us as soon as it wakes up, then just go on
507                  * (instead of producing a deadlock in the former case). */
508                 if (!req->waiting_for) {
509                     self->waiting_for = req;
510                     qemu_co_queue_wait(&req->wait_queue);
511                     self->waiting_for = NULL;
512                     retry = true;
513                     waited = true;
514                     break;
515                 }
516             }
517         }
518     } while (retry);
519 
520     return waited;
521 }
522 
523 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
524                                    size_t size)
525 {
526     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
527         return -EIO;
528     }
529 
530     if (!bdrv_is_inserted(bs)) {
531         return -ENOMEDIUM;
532     }
533 
534     if (offset < 0) {
535         return -EIO;
536     }
537 
538     return 0;
539 }
540 
541 typedef struct RwCo {
542     BdrvChild *child;
543     int64_t offset;
544     QEMUIOVector *qiov;
545     bool is_write;
546     int ret;
547     BdrvRequestFlags flags;
548 } RwCo;
549 
550 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
551 {
552     RwCo *rwco = opaque;
553 
554     if (!rwco->is_write) {
555         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
556                                    rwco->qiov->size, rwco->qiov,
557                                    rwco->flags);
558     } else {
559         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
560                                     rwco->qiov->size, rwco->qiov,
561                                     rwco->flags);
562     }
563 }
564 
565 /*
566  * Process a vectored synchronous request using coroutines
567  */
568 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
569                         QEMUIOVector *qiov, bool is_write,
570                         BdrvRequestFlags flags)
571 {
572     Coroutine *co;
573     RwCo rwco = {
574         .child = child,
575         .offset = offset,
576         .qiov = qiov,
577         .is_write = is_write,
578         .ret = NOT_DONE,
579         .flags = flags,
580     };
581 
582     if (qemu_in_coroutine()) {
583         /* Fast-path if already in coroutine context */
584         bdrv_rw_co_entry(&rwco);
585     } else {
586         AioContext *aio_context = bdrv_get_aio_context(child->bs);
587 
588         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
589         qemu_coroutine_enter(co);
590         while (rwco.ret == NOT_DONE) {
591             aio_poll(aio_context, true);
592         }
593     }
594     return rwco.ret;
595 }
596 
597 /*
598  * Process a synchronous request using coroutines
599  */
600 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
601                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
602 {
603     QEMUIOVector qiov;
604     struct iovec iov = {
605         .iov_base = (void *)buf,
606         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
607     };
608 
609     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
610         return -EINVAL;
611     }
612 
613     qemu_iovec_init_external(&qiov, &iov, 1);
614     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
615                         &qiov, is_write, flags);
616 }
617 
618 /* return < 0 if error. See bdrv_write() for the return codes */
619 int bdrv_read(BdrvChild *child, int64_t sector_num,
620               uint8_t *buf, int nb_sectors)
621 {
622     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
623 }
624 
625 /* Return < 0 if error. Important errors are:
626   -EIO         generic I/O error (may happen for all errors)
627   -ENOMEDIUM   No media inserted.
628   -EINVAL      Invalid sector number or nb_sectors
629   -EACCES      Trying to write a read-only device
630 */
631 int bdrv_write(BdrvChild *child, int64_t sector_num,
632                const uint8_t *buf, int nb_sectors)
633 {
634     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
635 }
636 
637 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
638                        int count, BdrvRequestFlags flags)
639 {
640     QEMUIOVector qiov;
641     struct iovec iov = {
642         .iov_base = NULL,
643         .iov_len = count,
644     };
645 
646     qemu_iovec_init_external(&qiov, &iov, 1);
647     return bdrv_prwv_co(child, offset, &qiov, true,
648                         BDRV_REQ_ZERO_WRITE | flags);
649 }
650 
651 /*
652  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
653  * The operation is sped up by checking the block status and only writing
654  * zeroes to the device if they currently do not return zeroes. Optional
655  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
656  * BDRV_REQ_FUA).
657  *
658  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
659  */
660 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
661 {
662     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
663     BlockDriverState *bs = child->bs;
664     BlockDriverState *file;
665     int n;
666 
667     target_sectors = bdrv_nb_sectors(bs);
668     if (target_sectors < 0) {
669         return target_sectors;
670     }
671 
672     for (;;) {
673         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
674         if (nb_sectors <= 0) {
675             return 0;
676         }
677         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
678         if (ret < 0) {
679             error_report("error getting block status at sector %" PRId64 ": %s",
680                          sector_num, strerror(-ret));
681             return ret;
682         }
683         if (ret & BDRV_BLOCK_ZERO) {
684             sector_num += n;
685             continue;
686         }
687         ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
688                                  n << BDRV_SECTOR_BITS, flags);
689         if (ret < 0) {
690             error_report("error writing zeroes at sector %" PRId64 ": %s",
691                          sector_num, strerror(-ret));
692             return ret;
693         }
694         sector_num += n;
695     }
696 }
697 
698 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
699 {
700     int ret;
701 
702     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
703     if (ret < 0) {
704         return ret;
705     }
706 
707     return qiov->size;
708 }
709 
710 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
711 {
712     QEMUIOVector qiov;
713     struct iovec iov = {
714         .iov_base = (void *)buf,
715         .iov_len = bytes,
716     };
717 
718     if (bytes < 0) {
719         return -EINVAL;
720     }
721 
722     qemu_iovec_init_external(&qiov, &iov, 1);
723     return bdrv_preadv(child, offset, &qiov);
724 }
725 
726 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
727 {
728     int ret;
729 
730     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
731     if (ret < 0) {
732         return ret;
733     }
734 
735     return qiov->size;
736 }
737 
738 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
739 {
740     QEMUIOVector qiov;
741     struct iovec iov = {
742         .iov_base   = (void *) buf,
743         .iov_len    = bytes,
744     };
745 
746     if (bytes < 0) {
747         return -EINVAL;
748     }
749 
750     qemu_iovec_init_external(&qiov, &iov, 1);
751     return bdrv_pwritev(child, offset, &qiov);
752 }
753 
754 /*
755  * Writes to the file and ensures that no writes are reordered across this
756  * request (acts as a barrier)
757  *
758  * Returns 0 on success, -errno in error cases.
759  */
760 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
761                      const void *buf, int count)
762 {
763     int ret;
764 
765     ret = bdrv_pwrite(child, offset, buf, count);
766     if (ret < 0) {
767         return ret;
768     }
769 
770     ret = bdrv_flush(child->bs);
771     if (ret < 0) {
772         return ret;
773     }
774 
775     return 0;
776 }
777 
778 typedef struct CoroutineIOCompletion {
779     Coroutine *coroutine;
780     int ret;
781 } CoroutineIOCompletion;
782 
783 static void bdrv_co_io_em_complete(void *opaque, int ret)
784 {
785     CoroutineIOCompletion *co = opaque;
786 
787     co->ret = ret;
788     qemu_coroutine_enter(co->coroutine);
789 }
790 
791 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
792                                            uint64_t offset, uint64_t bytes,
793                                            QEMUIOVector *qiov, int flags)
794 {
795     BlockDriver *drv = bs->drv;
796     int64_t sector_num;
797     unsigned int nb_sectors;
798 
799     assert(!(flags & ~BDRV_REQ_MASK));
800 
801     if (drv->bdrv_co_preadv) {
802         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
803     }
804 
805     sector_num = offset >> BDRV_SECTOR_BITS;
806     nb_sectors = bytes >> BDRV_SECTOR_BITS;
807 
808     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
809     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
810     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
811 
812     if (drv->bdrv_co_readv) {
813         return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
814     } else {
815         BlockAIOCB *acb;
816         CoroutineIOCompletion co = {
817             .coroutine = qemu_coroutine_self(),
818         };
819 
820         acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
821                                       bdrv_co_io_em_complete, &co);
822         if (acb == NULL) {
823             return -EIO;
824         } else {
825             qemu_coroutine_yield();
826             return co.ret;
827         }
828     }
829 }
830 
831 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
832                                             uint64_t offset, uint64_t bytes,
833                                             QEMUIOVector *qiov, int flags)
834 {
835     BlockDriver *drv = bs->drv;
836     int64_t sector_num;
837     unsigned int nb_sectors;
838     int ret;
839 
840     assert(!(flags & ~BDRV_REQ_MASK));
841 
842     if (drv->bdrv_co_pwritev) {
843         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
844                                    flags & bs->supported_write_flags);
845         flags &= ~bs->supported_write_flags;
846         goto emulate_flags;
847     }
848 
849     sector_num = offset >> BDRV_SECTOR_BITS;
850     nb_sectors = bytes >> BDRV_SECTOR_BITS;
851 
852     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
853     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
854     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
855 
856     if (drv->bdrv_co_writev_flags) {
857         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
858                                         flags & bs->supported_write_flags);
859         flags &= ~bs->supported_write_flags;
860     } else if (drv->bdrv_co_writev) {
861         assert(!bs->supported_write_flags);
862         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
863     } else {
864         BlockAIOCB *acb;
865         CoroutineIOCompletion co = {
866             .coroutine = qemu_coroutine_self(),
867         };
868 
869         acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
870                                        bdrv_co_io_em_complete, &co);
871         if (acb == NULL) {
872             ret = -EIO;
873         } else {
874             qemu_coroutine_yield();
875             ret = co.ret;
876         }
877     }
878 
879 emulate_flags:
880     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
881         ret = bdrv_co_flush(bs);
882     }
883 
884     return ret;
885 }
886 
887 static int coroutine_fn
888 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
889                                uint64_t bytes, QEMUIOVector *qiov)
890 {
891     BlockDriver *drv = bs->drv;
892 
893     if (!drv->bdrv_co_pwritev_compressed) {
894         return -ENOTSUP;
895     }
896 
897     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
898 }
899 
900 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
901         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
902 {
903     /* Perform I/O through a temporary buffer so that users who scribble over
904      * their read buffer while the operation is in progress do not end up
905      * modifying the image file.  This is critical for zero-copy guest I/O
906      * where anything might happen inside guest memory.
907      */
908     void *bounce_buffer;
909 
910     BlockDriver *drv = bs->drv;
911     struct iovec iov;
912     QEMUIOVector bounce_qiov;
913     int64_t cluster_offset;
914     unsigned int cluster_bytes;
915     size_t skip_bytes;
916     int ret;
917 
918     /* Cover entire cluster so no additional backing file I/O is required when
919      * allocating cluster in the image file.
920      */
921     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
922 
923     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
924                                    cluster_offset, cluster_bytes);
925 
926     iov.iov_len = cluster_bytes;
927     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
928     if (bounce_buffer == NULL) {
929         ret = -ENOMEM;
930         goto err;
931     }
932 
933     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
934 
935     ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
936                              &bounce_qiov, 0);
937     if (ret < 0) {
938         goto err;
939     }
940 
941     if (drv->bdrv_co_pwrite_zeroes &&
942         buffer_is_zero(bounce_buffer, iov.iov_len)) {
943         /* FIXME: Should we (perhaps conditionally) be setting
944          * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
945          * that still correctly reads as zero? */
946         ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
947     } else {
948         /* This does not change the data on the disk, it is not necessary
949          * to flush even in cache=writethrough mode.
950          */
951         ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
952                                   &bounce_qiov, 0);
953     }
954 
955     if (ret < 0) {
956         /* It might be okay to ignore write errors for guest requests.  If this
957          * is a deliberate copy-on-read then we don't want to ignore the error.
958          * Simply report it in all cases.
959          */
960         goto err;
961     }
962 
963     skip_bytes = offset - cluster_offset;
964     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
965 
966 err:
967     qemu_vfree(bounce_buffer);
968     return ret;
969 }
970 
971 /*
972  * Forwards an already correctly aligned request to the BlockDriver. This
973  * handles copy on read, zeroing after EOF, and fragmentation of large
974  * reads; any other features must be implemented by the caller.
975  */
976 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
977     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
978     int64_t align, QEMUIOVector *qiov, int flags)
979 {
980     int64_t total_bytes, max_bytes;
981     int ret = 0;
982     uint64_t bytes_remaining = bytes;
983     int max_transfer;
984 
985     assert(is_power_of_2(align));
986     assert((offset & (align - 1)) == 0);
987     assert((bytes & (align - 1)) == 0);
988     assert(!qiov || bytes == qiov->size);
989     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
990     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
991                                    align);
992 
993     /* TODO: We would need a per-BDS .supported_read_flags and
994      * potential fallback support, if we ever implement any read flags
995      * to pass through to drivers.  For now, there aren't any
996      * passthrough flags.  */
997     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
998 
999     /* Handle Copy on Read and associated serialisation */
1000     if (flags & BDRV_REQ_COPY_ON_READ) {
1001         /* If we touch the same cluster it counts as an overlap.  This
1002          * guarantees that allocating writes will be serialized and not race
1003          * with each other for the same cluster.  For example, in copy-on-read
1004          * it ensures that the CoR read and write operations are atomic and
1005          * guest writes cannot interleave between them. */
1006         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1007     }
1008 
1009     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1010         wait_serialising_requests(req);
1011     }
1012 
1013     if (flags & BDRV_REQ_COPY_ON_READ) {
1014         int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1015         int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1016         unsigned int nb_sectors = end_sector - start_sector;
1017         int pnum;
1018 
1019         ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1020         if (ret < 0) {
1021             goto out;
1022         }
1023 
1024         if (!ret || pnum != nb_sectors) {
1025             ret = bdrv_co_do_copy_on_readv(bs, offset, bytes, qiov);
1026             goto out;
1027         }
1028     }
1029 
1030     /* Forward the request to the BlockDriver, possibly fragmenting it */
1031     total_bytes = bdrv_getlength(bs);
1032     if (total_bytes < 0) {
1033         ret = total_bytes;
1034         goto out;
1035     }
1036 
1037     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1038     if (bytes <= max_bytes && bytes <= max_transfer) {
1039         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1040         goto out;
1041     }
1042 
1043     while (bytes_remaining) {
1044         int num;
1045 
1046         if (max_bytes) {
1047             QEMUIOVector local_qiov;
1048 
1049             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1050             assert(num);
1051             qemu_iovec_init(&local_qiov, qiov->niov);
1052             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1053 
1054             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1055                                      num, &local_qiov, 0);
1056             max_bytes -= num;
1057             qemu_iovec_destroy(&local_qiov);
1058         } else {
1059             num = bytes_remaining;
1060             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1061                                     bytes_remaining);
1062         }
1063         if (ret < 0) {
1064             goto out;
1065         }
1066         bytes_remaining -= num;
1067     }
1068 
1069 out:
1070     return ret < 0 ? ret : 0;
1071 }
1072 
1073 /*
1074  * Handle a read request in coroutine context
1075  */
1076 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1077     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1078     BdrvRequestFlags flags)
1079 {
1080     BlockDriverState *bs = child->bs;
1081     BlockDriver *drv = bs->drv;
1082     BdrvTrackedRequest req;
1083 
1084     uint64_t align = bs->bl.request_alignment;
1085     uint8_t *head_buf = NULL;
1086     uint8_t *tail_buf = NULL;
1087     QEMUIOVector local_qiov;
1088     bool use_local_qiov = false;
1089     int ret;
1090 
1091     if (!drv) {
1092         return -ENOMEDIUM;
1093     }
1094 
1095     ret = bdrv_check_byte_request(bs, offset, bytes);
1096     if (ret < 0) {
1097         return ret;
1098     }
1099 
1100     /* Don't do copy-on-read if we read data before write operation */
1101     if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1102         flags |= BDRV_REQ_COPY_ON_READ;
1103     }
1104 
1105     /* Align read if necessary by padding qiov */
1106     if (offset & (align - 1)) {
1107         head_buf = qemu_blockalign(bs, align);
1108         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1109         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1110         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1111         use_local_qiov = true;
1112 
1113         bytes += offset & (align - 1);
1114         offset = offset & ~(align - 1);
1115     }
1116 
1117     if ((offset + bytes) & (align - 1)) {
1118         if (!use_local_qiov) {
1119             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1120             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1121             use_local_qiov = true;
1122         }
1123         tail_buf = qemu_blockalign(bs, align);
1124         qemu_iovec_add(&local_qiov, tail_buf,
1125                        align - ((offset + bytes) & (align - 1)));
1126 
1127         bytes = ROUND_UP(bytes, align);
1128     }
1129 
1130     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1131     ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1132                               use_local_qiov ? &local_qiov : qiov,
1133                               flags);
1134     tracked_request_end(&req);
1135 
1136     if (use_local_qiov) {
1137         qemu_iovec_destroy(&local_qiov);
1138         qemu_vfree(head_buf);
1139         qemu_vfree(tail_buf);
1140     }
1141 
1142     return ret;
1143 }
1144 
1145 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1146     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1147     BdrvRequestFlags flags)
1148 {
1149     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1150         return -EINVAL;
1151     }
1152 
1153     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1154                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1155 }
1156 
1157 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1158                                int nb_sectors, QEMUIOVector *qiov)
1159 {
1160     trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1161 
1162     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1163 }
1164 
1165 /* Maximum buffer for write zeroes fallback, in bytes */
1166 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1167 
1168 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1169     int64_t offset, int count, BdrvRequestFlags flags)
1170 {
1171     BlockDriver *drv = bs->drv;
1172     QEMUIOVector qiov;
1173     struct iovec iov = {0};
1174     int ret = 0;
1175     bool need_flush = false;
1176     int head = 0;
1177     int tail = 0;
1178 
1179     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1180     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1181                         bs->bl.request_alignment);
1182 
1183     assert(alignment % bs->bl.request_alignment == 0);
1184     head = offset % alignment;
1185     tail = (offset + count) % alignment;
1186     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1187     assert(max_write_zeroes >= bs->bl.request_alignment);
1188 
1189     while (count > 0 && !ret) {
1190         int num = count;
1191 
1192         /* Align request.  Block drivers can expect the "bulk" of the request
1193          * to be aligned, and that unaligned requests do not cross cluster
1194          * boundaries.
1195          */
1196         if (head) {
1197             /* Make a small request up to the first aligned sector.  */
1198             num = MIN(count, alignment - head);
1199             head = 0;
1200         } else if (tail && num > alignment) {
1201             /* Shorten the request to the last aligned sector.  */
1202             num -= tail;
1203         }
1204 
1205         /* limit request size */
1206         if (num > max_write_zeroes) {
1207             num = max_write_zeroes;
1208         }
1209 
1210         ret = -ENOTSUP;
1211         /* First try the efficient write zeroes operation */
1212         if (drv->bdrv_co_pwrite_zeroes) {
1213             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1214                                              flags & bs->supported_zero_flags);
1215             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1216                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1217                 need_flush = true;
1218             }
1219         } else {
1220             assert(!bs->supported_zero_flags);
1221         }
1222 
1223         if (ret == -ENOTSUP) {
1224             /* Fall back to bounce buffer if write zeroes is unsupported */
1225             int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1226                                             MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1227             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1228 
1229             if ((flags & BDRV_REQ_FUA) &&
1230                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1231                 /* No need for bdrv_driver_pwrite() to do a fallback
1232                  * flush on each chunk; use just one at the end */
1233                 write_flags &= ~BDRV_REQ_FUA;
1234                 need_flush = true;
1235             }
1236             num = MIN(num, max_transfer);
1237             iov.iov_len = num;
1238             if (iov.iov_base == NULL) {
1239                 iov.iov_base = qemu_try_blockalign(bs, num);
1240                 if (iov.iov_base == NULL) {
1241                     ret = -ENOMEM;
1242                     goto fail;
1243                 }
1244                 memset(iov.iov_base, 0, num);
1245             }
1246             qemu_iovec_init_external(&qiov, &iov, 1);
1247 
1248             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1249 
1250             /* Keep bounce buffer around if it is big enough for all
1251              * all future requests.
1252              */
1253             if (num < max_transfer) {
1254                 qemu_vfree(iov.iov_base);
1255                 iov.iov_base = NULL;
1256             }
1257         }
1258 
1259         offset += num;
1260         count -= num;
1261     }
1262 
1263 fail:
1264     if (ret == 0 && need_flush) {
1265         ret = bdrv_co_flush(bs);
1266     }
1267     qemu_vfree(iov.iov_base);
1268     return ret;
1269 }
1270 
1271 /*
1272  * Forwards an already correctly aligned write request to the BlockDriver,
1273  * after possibly fragmenting it.
1274  */
1275 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1276     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1277     int64_t align, QEMUIOVector *qiov, int flags)
1278 {
1279     BlockDriver *drv = bs->drv;
1280     bool waited;
1281     int ret;
1282 
1283     int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1284     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1285     uint64_t bytes_remaining = bytes;
1286     int max_transfer;
1287 
1288     assert(is_power_of_2(align));
1289     assert((offset & (align - 1)) == 0);
1290     assert((bytes & (align - 1)) == 0);
1291     assert(!qiov || bytes == qiov->size);
1292     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1293     assert(!(flags & ~BDRV_REQ_MASK));
1294     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1295                                    align);
1296 
1297     waited = wait_serialising_requests(req);
1298     assert(!waited || !req->serialising);
1299     assert(req->overlap_offset <= offset);
1300     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1301 
1302     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1303 
1304     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1305         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1306         qemu_iovec_is_zero(qiov)) {
1307         flags |= BDRV_REQ_ZERO_WRITE;
1308         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1309             flags |= BDRV_REQ_MAY_UNMAP;
1310         }
1311     }
1312 
1313     if (ret < 0) {
1314         /* Do nothing, write notifier decided to fail this request */
1315     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1316         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1317         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1318     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1319         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1320     } else if (bytes <= max_transfer) {
1321         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1322         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1323     } else {
1324         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1325         while (bytes_remaining) {
1326             int num = MIN(bytes_remaining, max_transfer);
1327             QEMUIOVector local_qiov;
1328             int local_flags = flags;
1329 
1330             assert(num);
1331             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1332                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1333                 /* If FUA is going to be emulated by flush, we only
1334                  * need to flush on the last iteration */
1335                 local_flags &= ~BDRV_REQ_FUA;
1336             }
1337             qemu_iovec_init(&local_qiov, qiov->niov);
1338             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1339 
1340             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1341                                       num, &local_qiov, local_flags);
1342             qemu_iovec_destroy(&local_qiov);
1343             if (ret < 0) {
1344                 break;
1345             }
1346             bytes_remaining -= num;
1347         }
1348     }
1349     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1350 
1351     ++bs->write_gen;
1352     bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1353 
1354     if (bs->wr_highest_offset < offset + bytes) {
1355         bs->wr_highest_offset = offset + bytes;
1356     }
1357 
1358     if (ret >= 0) {
1359         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1360         ret = 0;
1361     }
1362 
1363     return ret;
1364 }
1365 
1366 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1367                                                 int64_t offset,
1368                                                 unsigned int bytes,
1369                                                 BdrvRequestFlags flags,
1370                                                 BdrvTrackedRequest *req)
1371 {
1372     uint8_t *buf = NULL;
1373     QEMUIOVector local_qiov;
1374     struct iovec iov;
1375     uint64_t align = bs->bl.request_alignment;
1376     unsigned int head_padding_bytes, tail_padding_bytes;
1377     int ret = 0;
1378 
1379     head_padding_bytes = offset & (align - 1);
1380     tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1381 
1382 
1383     assert(flags & BDRV_REQ_ZERO_WRITE);
1384     if (head_padding_bytes || tail_padding_bytes) {
1385         buf = qemu_blockalign(bs, align);
1386         iov = (struct iovec) {
1387             .iov_base   = buf,
1388             .iov_len    = align,
1389         };
1390         qemu_iovec_init_external(&local_qiov, &iov, 1);
1391     }
1392     if (head_padding_bytes) {
1393         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1394 
1395         /* RMW the unaligned part before head. */
1396         mark_request_serialising(req, align);
1397         wait_serialising_requests(req);
1398         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1399         ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1400                                   align, &local_qiov, 0);
1401         if (ret < 0) {
1402             goto fail;
1403         }
1404         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1405 
1406         memset(buf + head_padding_bytes, 0, zero_bytes);
1407         ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1408                                    align, &local_qiov,
1409                                    flags & ~BDRV_REQ_ZERO_WRITE);
1410         if (ret < 0) {
1411             goto fail;
1412         }
1413         offset += zero_bytes;
1414         bytes -= zero_bytes;
1415     }
1416 
1417     assert(!bytes || (offset & (align - 1)) == 0);
1418     if (bytes >= align) {
1419         /* Write the aligned part in the middle. */
1420         uint64_t aligned_bytes = bytes & ~(align - 1);
1421         ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes, align,
1422                                    NULL, flags);
1423         if (ret < 0) {
1424             goto fail;
1425         }
1426         bytes -= aligned_bytes;
1427         offset += aligned_bytes;
1428     }
1429 
1430     assert(!bytes || (offset & (align - 1)) == 0);
1431     if (bytes) {
1432         assert(align == tail_padding_bytes + bytes);
1433         /* RMW the unaligned part after tail. */
1434         mark_request_serialising(req, align);
1435         wait_serialising_requests(req);
1436         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1437         ret = bdrv_aligned_preadv(bs, req, offset, align,
1438                                   align, &local_qiov, 0);
1439         if (ret < 0) {
1440             goto fail;
1441         }
1442         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1443 
1444         memset(buf, 0, bytes);
1445         ret = bdrv_aligned_pwritev(bs, req, offset, align, align,
1446                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1447     }
1448 fail:
1449     qemu_vfree(buf);
1450     return ret;
1451 
1452 }
1453 
1454 /*
1455  * Handle a write request in coroutine context
1456  */
1457 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1458     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1459     BdrvRequestFlags flags)
1460 {
1461     BlockDriverState *bs = child->bs;
1462     BdrvTrackedRequest req;
1463     uint64_t align = bs->bl.request_alignment;
1464     uint8_t *head_buf = NULL;
1465     uint8_t *tail_buf = NULL;
1466     QEMUIOVector local_qiov;
1467     bool use_local_qiov = false;
1468     int ret;
1469 
1470     if (!bs->drv) {
1471         return -ENOMEDIUM;
1472     }
1473     if (bs->read_only) {
1474         return -EPERM;
1475     }
1476     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1477 
1478     ret = bdrv_check_byte_request(bs, offset, bytes);
1479     if (ret < 0) {
1480         return ret;
1481     }
1482 
1483     /*
1484      * Align write if necessary by performing a read-modify-write cycle.
1485      * Pad qiov with the read parts and be sure to have a tracked request not
1486      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1487      */
1488     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1489 
1490     if (!qiov) {
1491         ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1492         goto out;
1493     }
1494 
1495     if (offset & (align - 1)) {
1496         QEMUIOVector head_qiov;
1497         struct iovec head_iov;
1498 
1499         mark_request_serialising(&req, align);
1500         wait_serialising_requests(&req);
1501 
1502         head_buf = qemu_blockalign(bs, align);
1503         head_iov = (struct iovec) {
1504             .iov_base   = head_buf,
1505             .iov_len    = align,
1506         };
1507         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1508 
1509         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1510         ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1511                                   align, &head_qiov, 0);
1512         if (ret < 0) {
1513             goto fail;
1514         }
1515         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1516 
1517         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1518         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1519         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1520         use_local_qiov = true;
1521 
1522         bytes += offset & (align - 1);
1523         offset = offset & ~(align - 1);
1524 
1525         /* We have read the tail already if the request is smaller
1526          * than one aligned block.
1527          */
1528         if (bytes < align) {
1529             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1530             bytes = align;
1531         }
1532     }
1533 
1534     if ((offset + bytes) & (align - 1)) {
1535         QEMUIOVector tail_qiov;
1536         struct iovec tail_iov;
1537         size_t tail_bytes;
1538         bool waited;
1539 
1540         mark_request_serialising(&req, align);
1541         waited = wait_serialising_requests(&req);
1542         assert(!waited || !use_local_qiov);
1543 
1544         tail_buf = qemu_blockalign(bs, align);
1545         tail_iov = (struct iovec) {
1546             .iov_base   = tail_buf,
1547             .iov_len    = align,
1548         };
1549         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1550 
1551         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1552         ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1553                                   align, &tail_qiov, 0);
1554         if (ret < 0) {
1555             goto fail;
1556         }
1557         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1558 
1559         if (!use_local_qiov) {
1560             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1561             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1562             use_local_qiov = true;
1563         }
1564 
1565         tail_bytes = (offset + bytes) & (align - 1);
1566         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1567 
1568         bytes = ROUND_UP(bytes, align);
1569     }
1570 
1571     ret = bdrv_aligned_pwritev(bs, &req, offset, bytes, align,
1572                                use_local_qiov ? &local_qiov : qiov,
1573                                flags);
1574 
1575 fail:
1576 
1577     if (use_local_qiov) {
1578         qemu_iovec_destroy(&local_qiov);
1579     }
1580     qemu_vfree(head_buf);
1581     qemu_vfree(tail_buf);
1582 out:
1583     tracked_request_end(&req);
1584     return ret;
1585 }
1586 
1587 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1588     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1589     BdrvRequestFlags flags)
1590 {
1591     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1592         return -EINVAL;
1593     }
1594 
1595     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1596                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1597 }
1598 
1599 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1600     int nb_sectors, QEMUIOVector *qiov)
1601 {
1602     trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1603 
1604     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1605 }
1606 
1607 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1608                                        int count, BdrvRequestFlags flags)
1609 {
1610     trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1611 
1612     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1613         flags &= ~BDRV_REQ_MAY_UNMAP;
1614     }
1615 
1616     return bdrv_co_pwritev(child, offset, count, NULL,
1617                            BDRV_REQ_ZERO_WRITE | flags);
1618 }
1619 
1620 /*
1621  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1622  */
1623 int bdrv_flush_all(void)
1624 {
1625     BdrvNextIterator it;
1626     BlockDriverState *bs = NULL;
1627     int result = 0;
1628 
1629     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1630         AioContext *aio_context = bdrv_get_aio_context(bs);
1631         int ret;
1632 
1633         aio_context_acquire(aio_context);
1634         ret = bdrv_flush(bs);
1635         if (ret < 0 && !result) {
1636             result = ret;
1637         }
1638         aio_context_release(aio_context);
1639     }
1640 
1641     return result;
1642 }
1643 
1644 
1645 typedef struct BdrvCoGetBlockStatusData {
1646     BlockDriverState *bs;
1647     BlockDriverState *base;
1648     BlockDriverState **file;
1649     int64_t sector_num;
1650     int nb_sectors;
1651     int *pnum;
1652     int64_t ret;
1653     bool done;
1654 } BdrvCoGetBlockStatusData;
1655 
1656 /*
1657  * Returns the allocation status of the specified sectors.
1658  * Drivers not implementing the functionality are assumed to not support
1659  * backing files, hence all their sectors are reported as allocated.
1660  *
1661  * If 'sector_num' is beyond the end of the disk image the return value is 0
1662  * and 'pnum' is set to 0.
1663  *
1664  * 'pnum' is set to the number of sectors (including and immediately following
1665  * the specified sector) that are known to be in the same
1666  * allocated/unallocated state.
1667  *
1668  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1669  * beyond the end of the disk image it will be clamped.
1670  *
1671  * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1672  * points to the BDS which the sector range is allocated in.
1673  */
1674 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1675                                                      int64_t sector_num,
1676                                                      int nb_sectors, int *pnum,
1677                                                      BlockDriverState **file)
1678 {
1679     int64_t total_sectors;
1680     int64_t n;
1681     int64_t ret, ret2;
1682 
1683     total_sectors = bdrv_nb_sectors(bs);
1684     if (total_sectors < 0) {
1685         return total_sectors;
1686     }
1687 
1688     if (sector_num >= total_sectors) {
1689         *pnum = 0;
1690         return 0;
1691     }
1692 
1693     n = total_sectors - sector_num;
1694     if (n < nb_sectors) {
1695         nb_sectors = n;
1696     }
1697 
1698     if (!bs->drv->bdrv_co_get_block_status) {
1699         *pnum = nb_sectors;
1700         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1701         if (bs->drv->protocol_name) {
1702             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1703         }
1704         return ret;
1705     }
1706 
1707     *file = NULL;
1708     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1709                                             file);
1710     if (ret < 0) {
1711         *pnum = 0;
1712         return ret;
1713     }
1714 
1715     if (ret & BDRV_BLOCK_RAW) {
1716         assert(ret & BDRV_BLOCK_OFFSET_VALID);
1717         return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1718                                      *pnum, pnum, file);
1719     }
1720 
1721     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1722         ret |= BDRV_BLOCK_ALLOCATED;
1723     } else {
1724         if (bdrv_unallocated_blocks_are_zero(bs)) {
1725             ret |= BDRV_BLOCK_ZERO;
1726         } else if (bs->backing) {
1727             BlockDriverState *bs2 = bs->backing->bs;
1728             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1729             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1730                 ret |= BDRV_BLOCK_ZERO;
1731             }
1732         }
1733     }
1734 
1735     if (*file && *file != bs &&
1736         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1737         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1738         BlockDriverState *file2;
1739         int file_pnum;
1740 
1741         ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1742                                         *pnum, &file_pnum, &file2);
1743         if (ret2 >= 0) {
1744             /* Ignore errors.  This is just providing extra information, it
1745              * is useful but not necessary.
1746              */
1747             if (!file_pnum) {
1748                 /* !file_pnum indicates an offset at or beyond the EOF; it is
1749                  * perfectly valid for the format block driver to point to such
1750                  * offsets, so catch it and mark everything as zero */
1751                 ret |= BDRV_BLOCK_ZERO;
1752             } else {
1753                 /* Limit request to the range reported by the protocol driver */
1754                 *pnum = file_pnum;
1755                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1756             }
1757         }
1758     }
1759 
1760     return ret;
1761 }
1762 
1763 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1764         BlockDriverState *base,
1765         int64_t sector_num,
1766         int nb_sectors,
1767         int *pnum,
1768         BlockDriverState **file)
1769 {
1770     BlockDriverState *p;
1771     int64_t ret = 0;
1772 
1773     assert(bs != base);
1774     for (p = bs; p != base; p = backing_bs(p)) {
1775         ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1776         if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1777             break;
1778         }
1779         /* [sector_num, pnum] unallocated on this layer, which could be only
1780          * the first part of [sector_num, nb_sectors].  */
1781         nb_sectors = MIN(nb_sectors, *pnum);
1782     }
1783     return ret;
1784 }
1785 
1786 /* Coroutine wrapper for bdrv_get_block_status_above() */
1787 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1788 {
1789     BdrvCoGetBlockStatusData *data = opaque;
1790 
1791     data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1792                                                data->sector_num,
1793                                                data->nb_sectors,
1794                                                data->pnum,
1795                                                data->file);
1796     data->done = true;
1797 }
1798 
1799 /*
1800  * Synchronous wrapper around bdrv_co_get_block_status_above().
1801  *
1802  * See bdrv_co_get_block_status_above() for details.
1803  */
1804 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1805                                     BlockDriverState *base,
1806                                     int64_t sector_num,
1807                                     int nb_sectors, int *pnum,
1808                                     BlockDriverState **file)
1809 {
1810     Coroutine *co;
1811     BdrvCoGetBlockStatusData data = {
1812         .bs = bs,
1813         .base = base,
1814         .file = file,
1815         .sector_num = sector_num,
1816         .nb_sectors = nb_sectors,
1817         .pnum = pnum,
1818         .done = false,
1819     };
1820 
1821     if (qemu_in_coroutine()) {
1822         /* Fast-path if already in coroutine context */
1823         bdrv_get_block_status_above_co_entry(&data);
1824     } else {
1825         AioContext *aio_context = bdrv_get_aio_context(bs);
1826 
1827         co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1828                                    &data);
1829         qemu_coroutine_enter(co);
1830         while (!data.done) {
1831             aio_poll(aio_context, true);
1832         }
1833     }
1834     return data.ret;
1835 }
1836 
1837 int64_t bdrv_get_block_status(BlockDriverState *bs,
1838                               int64_t sector_num,
1839                               int nb_sectors, int *pnum,
1840                               BlockDriverState **file)
1841 {
1842     return bdrv_get_block_status_above(bs, backing_bs(bs),
1843                                        sector_num, nb_sectors, pnum, file);
1844 }
1845 
1846 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1847                                    int nb_sectors, int *pnum)
1848 {
1849     BlockDriverState *file;
1850     int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1851                                         &file);
1852     if (ret < 0) {
1853         return ret;
1854     }
1855     return !!(ret & BDRV_BLOCK_ALLOCATED);
1856 }
1857 
1858 /*
1859  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1860  *
1861  * Return true if the given sector is allocated in any image between
1862  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1863  * sector is allocated in any image of the chain.  Return false otherwise.
1864  *
1865  * 'pnum' is set to the number of sectors (including and immediately following
1866  *  the specified sector) that are known to be in the same
1867  *  allocated/unallocated state.
1868  *
1869  */
1870 int bdrv_is_allocated_above(BlockDriverState *top,
1871                             BlockDriverState *base,
1872                             int64_t sector_num,
1873                             int nb_sectors, int *pnum)
1874 {
1875     BlockDriverState *intermediate;
1876     int ret, n = nb_sectors;
1877 
1878     intermediate = top;
1879     while (intermediate && intermediate != base) {
1880         int pnum_inter;
1881         ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1882                                 &pnum_inter);
1883         if (ret < 0) {
1884             return ret;
1885         } else if (ret) {
1886             *pnum = pnum_inter;
1887             return 1;
1888         }
1889 
1890         /*
1891          * [sector_num, nb_sectors] is unallocated on top but intermediate
1892          * might have
1893          *
1894          * [sector_num+x, nr_sectors] allocated.
1895          */
1896         if (n > pnum_inter &&
1897             (intermediate == top ||
1898              sector_num + pnum_inter < intermediate->total_sectors)) {
1899             n = pnum_inter;
1900         }
1901 
1902         intermediate = backing_bs(intermediate);
1903     }
1904 
1905     *pnum = n;
1906     return 0;
1907 }
1908 
1909 typedef struct BdrvVmstateCo {
1910     BlockDriverState    *bs;
1911     QEMUIOVector        *qiov;
1912     int64_t             pos;
1913     bool                is_read;
1914     int                 ret;
1915 } BdrvVmstateCo;
1916 
1917 static int coroutine_fn
1918 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1919                    bool is_read)
1920 {
1921     BlockDriver *drv = bs->drv;
1922 
1923     if (!drv) {
1924         return -ENOMEDIUM;
1925     } else if (drv->bdrv_load_vmstate) {
1926         return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1927                        : drv->bdrv_save_vmstate(bs, qiov, pos);
1928     } else if (bs->file) {
1929         return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1930     }
1931 
1932     return -ENOTSUP;
1933 }
1934 
1935 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
1936 {
1937     BdrvVmstateCo *co = opaque;
1938     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
1939 }
1940 
1941 static inline int
1942 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1943                 bool is_read)
1944 {
1945     if (qemu_in_coroutine()) {
1946         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
1947     } else {
1948         BdrvVmstateCo data = {
1949             .bs         = bs,
1950             .qiov       = qiov,
1951             .pos        = pos,
1952             .is_read    = is_read,
1953             .ret        = -EINPROGRESS,
1954         };
1955         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
1956 
1957         qemu_coroutine_enter(co);
1958         while (data.ret == -EINPROGRESS) {
1959             aio_poll(bdrv_get_aio_context(bs), true);
1960         }
1961         return data.ret;
1962     }
1963 }
1964 
1965 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1966                       int64_t pos, int size)
1967 {
1968     QEMUIOVector qiov;
1969     struct iovec iov = {
1970         .iov_base   = (void *) buf,
1971         .iov_len    = size,
1972     };
1973     int ret;
1974 
1975     qemu_iovec_init_external(&qiov, &iov, 1);
1976 
1977     ret = bdrv_writev_vmstate(bs, &qiov, pos);
1978     if (ret < 0) {
1979         return ret;
1980     }
1981 
1982     return size;
1983 }
1984 
1985 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1986 {
1987     return bdrv_rw_vmstate(bs, qiov, pos, false);
1988 }
1989 
1990 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1991                       int64_t pos, int size)
1992 {
1993     QEMUIOVector qiov;
1994     struct iovec iov = {
1995         .iov_base   = buf,
1996         .iov_len    = size,
1997     };
1998     int ret;
1999 
2000     qemu_iovec_init_external(&qiov, &iov, 1);
2001     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2002     if (ret < 0) {
2003         return ret;
2004     }
2005 
2006     return size;
2007 }
2008 
2009 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2010 {
2011     return bdrv_rw_vmstate(bs, qiov, pos, true);
2012 }
2013 
2014 /**************************************************************/
2015 /* async I/Os */
2016 
2017 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
2018                            QEMUIOVector *qiov, int nb_sectors,
2019                            BlockCompletionFunc *cb, void *opaque)
2020 {
2021     trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
2022 
2023     assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2024     return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2025                                   0, cb, opaque, false);
2026 }
2027 
2028 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
2029                             QEMUIOVector *qiov, int nb_sectors,
2030                             BlockCompletionFunc *cb, void *opaque)
2031 {
2032     trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
2033 
2034     assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2035     return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2036                                   0, cb, opaque, true);
2037 }
2038 
2039 void bdrv_aio_cancel(BlockAIOCB *acb)
2040 {
2041     qemu_aio_ref(acb);
2042     bdrv_aio_cancel_async(acb);
2043     while (acb->refcnt > 1) {
2044         if (acb->aiocb_info->get_aio_context) {
2045             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2046         } else if (acb->bs) {
2047             aio_poll(bdrv_get_aio_context(acb->bs), true);
2048         } else {
2049             abort();
2050         }
2051     }
2052     qemu_aio_unref(acb);
2053 }
2054 
2055 /* Async version of aio cancel. The caller is not blocked if the acb implements
2056  * cancel_async, otherwise we do nothing and let the request normally complete.
2057  * In either case the completion callback must be called. */
2058 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2059 {
2060     if (acb->aiocb_info->cancel_async) {
2061         acb->aiocb_info->cancel_async(acb);
2062     }
2063 }
2064 
2065 /**************************************************************/
2066 /* async block device emulation */
2067 
2068 typedef struct BlockRequest {
2069     union {
2070         /* Used during read, write, trim */
2071         struct {
2072             int64_t offset;
2073             int bytes;
2074             int flags;
2075             QEMUIOVector *qiov;
2076         };
2077         /* Used during ioctl */
2078         struct {
2079             int req;
2080             void *buf;
2081         };
2082     };
2083     BlockCompletionFunc *cb;
2084     void *opaque;
2085 
2086     int error;
2087 } BlockRequest;
2088 
2089 typedef struct BlockAIOCBCoroutine {
2090     BlockAIOCB common;
2091     BdrvChild *child;
2092     BlockRequest req;
2093     bool is_write;
2094     bool need_bh;
2095     bool *done;
2096 } BlockAIOCBCoroutine;
2097 
2098 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2099     .aiocb_size         = sizeof(BlockAIOCBCoroutine),
2100 };
2101 
2102 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2103 {
2104     if (!acb->need_bh) {
2105         acb->common.cb(acb->common.opaque, acb->req.error);
2106         qemu_aio_unref(acb);
2107     }
2108 }
2109 
2110 static void bdrv_co_em_bh(void *opaque)
2111 {
2112     BlockAIOCBCoroutine *acb = opaque;
2113 
2114     assert(!acb->need_bh);
2115     bdrv_co_complete(acb);
2116 }
2117 
2118 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2119 {
2120     acb->need_bh = false;
2121     if (acb->req.error != -EINPROGRESS) {
2122         BlockDriverState *bs = acb->common.bs;
2123 
2124         aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2125     }
2126 }
2127 
2128 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2129 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2130 {
2131     BlockAIOCBCoroutine *acb = opaque;
2132 
2133     if (!acb->is_write) {
2134         acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset,
2135             acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2136     } else {
2137         acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset,
2138             acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2139     }
2140 
2141     bdrv_co_complete(acb);
2142 }
2143 
2144 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
2145                                           int64_t offset,
2146                                           QEMUIOVector *qiov,
2147                                           BdrvRequestFlags flags,
2148                                           BlockCompletionFunc *cb,
2149                                           void *opaque,
2150                                           bool is_write)
2151 {
2152     Coroutine *co;
2153     BlockAIOCBCoroutine *acb;
2154 
2155     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2156     acb->child = child;
2157     acb->need_bh = true;
2158     acb->req.error = -EINPROGRESS;
2159     acb->req.offset = offset;
2160     acb->req.qiov = qiov;
2161     acb->req.flags = flags;
2162     acb->is_write = is_write;
2163 
2164     co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2165     qemu_coroutine_enter(co);
2166 
2167     bdrv_co_maybe_schedule_bh(acb);
2168     return &acb->common;
2169 }
2170 
2171 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2172 {
2173     BlockAIOCBCoroutine *acb = opaque;
2174     BlockDriverState *bs = acb->common.bs;
2175 
2176     acb->req.error = bdrv_co_flush(bs);
2177     bdrv_co_complete(acb);
2178 }
2179 
2180 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2181         BlockCompletionFunc *cb, void *opaque)
2182 {
2183     trace_bdrv_aio_flush(bs, opaque);
2184 
2185     Coroutine *co;
2186     BlockAIOCBCoroutine *acb;
2187 
2188     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2189     acb->need_bh = true;
2190     acb->req.error = -EINPROGRESS;
2191 
2192     co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2193     qemu_coroutine_enter(co);
2194 
2195     bdrv_co_maybe_schedule_bh(acb);
2196     return &acb->common;
2197 }
2198 
2199 static void coroutine_fn bdrv_aio_pdiscard_co_entry(void *opaque)
2200 {
2201     BlockAIOCBCoroutine *acb = opaque;
2202     BlockDriverState *bs = acb->common.bs;
2203 
2204     acb->req.error = bdrv_co_pdiscard(bs, acb->req.offset, acb->req.bytes);
2205     bdrv_co_complete(acb);
2206 }
2207 
2208 BlockAIOCB *bdrv_aio_pdiscard(BlockDriverState *bs, int64_t offset, int count,
2209                               BlockCompletionFunc *cb, void *opaque)
2210 {
2211     Coroutine *co;
2212     BlockAIOCBCoroutine *acb;
2213 
2214     trace_bdrv_aio_pdiscard(bs, offset, count, opaque);
2215 
2216     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2217     acb->need_bh = true;
2218     acb->req.error = -EINPROGRESS;
2219     acb->req.offset = offset;
2220     acb->req.bytes = count;
2221     co = qemu_coroutine_create(bdrv_aio_pdiscard_co_entry, acb);
2222     qemu_coroutine_enter(co);
2223 
2224     bdrv_co_maybe_schedule_bh(acb);
2225     return &acb->common;
2226 }
2227 
2228 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2229                    BlockCompletionFunc *cb, void *opaque)
2230 {
2231     BlockAIOCB *acb;
2232 
2233     acb = g_malloc(aiocb_info->aiocb_size);
2234     acb->aiocb_info = aiocb_info;
2235     acb->bs = bs;
2236     acb->cb = cb;
2237     acb->opaque = opaque;
2238     acb->refcnt = 1;
2239     return acb;
2240 }
2241 
2242 void qemu_aio_ref(void *p)
2243 {
2244     BlockAIOCB *acb = p;
2245     acb->refcnt++;
2246 }
2247 
2248 void qemu_aio_unref(void *p)
2249 {
2250     BlockAIOCB *acb = p;
2251     assert(acb->refcnt > 0);
2252     if (--acb->refcnt == 0) {
2253         g_free(acb);
2254     }
2255 }
2256 
2257 /**************************************************************/
2258 /* Coroutine block device emulation */
2259 
2260 typedef struct FlushCo {
2261     BlockDriverState *bs;
2262     int ret;
2263 } FlushCo;
2264 
2265 
2266 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2267 {
2268     FlushCo *rwco = opaque;
2269 
2270     rwco->ret = bdrv_co_flush(rwco->bs);
2271 }
2272 
2273 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2274 {
2275     int ret;
2276     BdrvTrackedRequest req;
2277 
2278     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2279         bdrv_is_sg(bs)) {
2280         return 0;
2281     }
2282 
2283     tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2284 
2285     int current_gen = bs->write_gen;
2286 
2287     /* Wait until any previous flushes are completed */
2288     while (bs->active_flush_req != NULL) {
2289         qemu_co_queue_wait(&bs->flush_queue);
2290     }
2291 
2292     bs->active_flush_req = &req;
2293 
2294     /* Write back all layers by calling one driver function */
2295     if (bs->drv->bdrv_co_flush) {
2296         ret = bs->drv->bdrv_co_flush(bs);
2297         goto out;
2298     }
2299 
2300     /* Write back cached data to the OS even with cache=unsafe */
2301     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2302     if (bs->drv->bdrv_co_flush_to_os) {
2303         ret = bs->drv->bdrv_co_flush_to_os(bs);
2304         if (ret < 0) {
2305             goto out;
2306         }
2307     }
2308 
2309     /* But don't actually force it to the disk with cache=unsafe */
2310     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2311         goto flush_parent;
2312     }
2313 
2314     /* Check if we really need to flush anything */
2315     if (bs->flushed_gen == current_gen) {
2316         goto flush_parent;
2317     }
2318 
2319     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2320     if (bs->drv->bdrv_co_flush_to_disk) {
2321         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2322     } else if (bs->drv->bdrv_aio_flush) {
2323         BlockAIOCB *acb;
2324         CoroutineIOCompletion co = {
2325             .coroutine = qemu_coroutine_self(),
2326         };
2327 
2328         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2329         if (acb == NULL) {
2330             ret = -EIO;
2331         } else {
2332             qemu_coroutine_yield();
2333             ret = co.ret;
2334         }
2335     } else {
2336         /*
2337          * Some block drivers always operate in either writethrough or unsafe
2338          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2339          * know how the server works (because the behaviour is hardcoded or
2340          * depends on server-side configuration), so we can't ensure that
2341          * everything is safe on disk. Returning an error doesn't work because
2342          * that would break guests even if the server operates in writethrough
2343          * mode.
2344          *
2345          * Let's hope the user knows what he's doing.
2346          */
2347         ret = 0;
2348     }
2349 
2350     if (ret < 0) {
2351         goto out;
2352     }
2353 
2354     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2355      * in the case of cache=unsafe, so there are no useless flushes.
2356      */
2357 flush_parent:
2358     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2359 out:
2360     /* Notify any pending flushes that we have completed */
2361     bs->flushed_gen = current_gen;
2362     bs->active_flush_req = NULL;
2363     /* Return value is ignored - it's ok if wait queue is empty */
2364     qemu_co_queue_next(&bs->flush_queue);
2365 
2366     tracked_request_end(&req);
2367     return ret;
2368 }
2369 
2370 int bdrv_flush(BlockDriverState *bs)
2371 {
2372     Coroutine *co;
2373     FlushCo flush_co = {
2374         .bs = bs,
2375         .ret = NOT_DONE,
2376     };
2377 
2378     if (qemu_in_coroutine()) {
2379         /* Fast-path if already in coroutine context */
2380         bdrv_flush_co_entry(&flush_co);
2381     } else {
2382         AioContext *aio_context = bdrv_get_aio_context(bs);
2383 
2384         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2385         qemu_coroutine_enter(co);
2386         while (flush_co.ret == NOT_DONE) {
2387             aio_poll(aio_context, true);
2388         }
2389     }
2390 
2391     return flush_co.ret;
2392 }
2393 
2394 typedef struct DiscardCo {
2395     BlockDriverState *bs;
2396     int64_t offset;
2397     int count;
2398     int ret;
2399 } DiscardCo;
2400 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2401 {
2402     DiscardCo *rwco = opaque;
2403 
2404     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count);
2405 }
2406 
2407 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2408                                   int count)
2409 {
2410     BdrvTrackedRequest req;
2411     int max_pdiscard, ret;
2412     int head, align;
2413 
2414     if (!bs->drv) {
2415         return -ENOMEDIUM;
2416     }
2417 
2418     ret = bdrv_check_byte_request(bs, offset, count);
2419     if (ret < 0) {
2420         return ret;
2421     } else if (bs->read_only) {
2422         return -EPERM;
2423     }
2424     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2425 
2426     /* Do nothing if disabled.  */
2427     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2428         return 0;
2429     }
2430 
2431     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2432         return 0;
2433     }
2434 
2435     /* Discard is advisory, so ignore any unaligned head or tail */
2436     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2437     assert(align % bs->bl.request_alignment == 0);
2438     head = offset % align;
2439     if (head) {
2440         head = MIN(count, align - head);
2441         count -= head;
2442         offset += head;
2443     }
2444     count = QEMU_ALIGN_DOWN(count, align);
2445     if (!count) {
2446         return 0;
2447     }
2448 
2449     tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD);
2450 
2451     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2452     if (ret < 0) {
2453         goto out;
2454     }
2455 
2456     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2457                                    align);
2458     assert(max_pdiscard);
2459 
2460     while (count > 0) {
2461         int ret;
2462         int num = MIN(count, max_pdiscard);
2463 
2464         if (bs->drv->bdrv_co_pdiscard) {
2465             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2466         } else {
2467             BlockAIOCB *acb;
2468             CoroutineIOCompletion co = {
2469                 .coroutine = qemu_coroutine_self(),
2470             };
2471 
2472             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2473                                              bdrv_co_io_em_complete, &co);
2474             if (acb == NULL) {
2475                 ret = -EIO;
2476                 goto out;
2477             } else {
2478                 qemu_coroutine_yield();
2479                 ret = co.ret;
2480             }
2481         }
2482         if (ret && ret != -ENOTSUP) {
2483             goto out;
2484         }
2485 
2486         offset += num;
2487         count -= num;
2488     }
2489     ret = 0;
2490 out:
2491     ++bs->write_gen;
2492     bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2493                    req.bytes >> BDRV_SECTOR_BITS);
2494     tracked_request_end(&req);
2495     return ret;
2496 }
2497 
2498 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count)
2499 {
2500     Coroutine *co;
2501     DiscardCo rwco = {
2502         .bs = bs,
2503         .offset = offset,
2504         .count = count,
2505         .ret = NOT_DONE,
2506     };
2507 
2508     if (qemu_in_coroutine()) {
2509         /* Fast-path if already in coroutine context */
2510         bdrv_pdiscard_co_entry(&rwco);
2511     } else {
2512         AioContext *aio_context = bdrv_get_aio_context(bs);
2513 
2514         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2515         qemu_coroutine_enter(co);
2516         while (rwco.ret == NOT_DONE) {
2517             aio_poll(aio_context, true);
2518         }
2519     }
2520 
2521     return rwco.ret;
2522 }
2523 
2524 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2525 {
2526     BlockDriver *drv = bs->drv;
2527     BdrvTrackedRequest tracked_req;
2528     CoroutineIOCompletion co = {
2529         .coroutine = qemu_coroutine_self(),
2530     };
2531     BlockAIOCB *acb;
2532 
2533     tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2534     if (!drv || !drv->bdrv_aio_ioctl) {
2535         co.ret = -ENOTSUP;
2536         goto out;
2537     }
2538 
2539     acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2540     if (!acb) {
2541         co.ret = -ENOTSUP;
2542         goto out;
2543     }
2544     qemu_coroutine_yield();
2545 out:
2546     tracked_request_end(&tracked_req);
2547     return co.ret;
2548 }
2549 
2550 typedef struct {
2551     BlockDriverState *bs;
2552     int req;
2553     void *buf;
2554     int ret;
2555 } BdrvIoctlCoData;
2556 
2557 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2558 {
2559     BdrvIoctlCoData *data = opaque;
2560     data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2561 }
2562 
2563 /* needed for generic scsi interface */
2564 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2565 {
2566     BdrvIoctlCoData data = {
2567         .bs = bs,
2568         .req = req,
2569         .buf = buf,
2570         .ret = -EINPROGRESS,
2571     };
2572 
2573     if (qemu_in_coroutine()) {
2574         /* Fast-path if already in coroutine context */
2575         bdrv_co_ioctl_entry(&data);
2576     } else {
2577         Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry, &data);
2578 
2579         qemu_coroutine_enter(co);
2580         while (data.ret == -EINPROGRESS) {
2581             aio_poll(bdrv_get_aio_context(bs), true);
2582         }
2583     }
2584     return data.ret;
2585 }
2586 
2587 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2588 {
2589     BlockAIOCBCoroutine *acb = opaque;
2590     acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2591                                       acb->req.req, acb->req.buf);
2592     bdrv_co_complete(acb);
2593 }
2594 
2595 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2596         unsigned long int req, void *buf,
2597         BlockCompletionFunc *cb, void *opaque)
2598 {
2599     BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2600                                             bs, cb, opaque);
2601     Coroutine *co;
2602 
2603     acb->need_bh = true;
2604     acb->req.error = -EINPROGRESS;
2605     acb->req.req = req;
2606     acb->req.buf = buf;
2607     co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry, acb);
2608     qemu_coroutine_enter(co);
2609 
2610     bdrv_co_maybe_schedule_bh(acb);
2611     return &acb->common;
2612 }
2613 
2614 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2615 {
2616     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2617 }
2618 
2619 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2620 {
2621     return memset(qemu_blockalign(bs, size), 0, size);
2622 }
2623 
2624 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2625 {
2626     size_t align = bdrv_opt_mem_align(bs);
2627 
2628     /* Ensure that NULL is never returned on success */
2629     assert(align > 0);
2630     if (size == 0) {
2631         size = align;
2632     }
2633 
2634     return qemu_try_memalign(align, size);
2635 }
2636 
2637 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2638 {
2639     void *mem = qemu_try_blockalign(bs, size);
2640 
2641     if (mem) {
2642         memset(mem, 0, size);
2643     }
2644 
2645     return mem;
2646 }
2647 
2648 /*
2649  * Check if all memory in this vector is sector aligned.
2650  */
2651 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2652 {
2653     int i;
2654     size_t alignment = bdrv_min_mem_align(bs);
2655 
2656     for (i = 0; i < qiov->niov; i++) {
2657         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2658             return false;
2659         }
2660         if (qiov->iov[i].iov_len % alignment) {
2661             return false;
2662         }
2663     }
2664 
2665     return true;
2666 }
2667 
2668 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2669                                     NotifierWithReturn *notifier)
2670 {
2671     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2672 }
2673 
2674 void bdrv_io_plug(BlockDriverState *bs)
2675 {
2676     BdrvChild *child;
2677 
2678     QLIST_FOREACH(child, &bs->children, next) {
2679         bdrv_io_plug(child->bs);
2680     }
2681 
2682     if (bs->io_plugged++ == 0 && bs->io_plug_disabled == 0) {
2683         BlockDriver *drv = bs->drv;
2684         if (drv && drv->bdrv_io_plug) {
2685             drv->bdrv_io_plug(bs);
2686         }
2687     }
2688 }
2689 
2690 void bdrv_io_unplug(BlockDriverState *bs)
2691 {
2692     BdrvChild *child;
2693 
2694     assert(bs->io_plugged);
2695     if (--bs->io_plugged == 0 && bs->io_plug_disabled == 0) {
2696         BlockDriver *drv = bs->drv;
2697         if (drv && drv->bdrv_io_unplug) {
2698             drv->bdrv_io_unplug(bs);
2699         }
2700     }
2701 
2702     QLIST_FOREACH(child, &bs->children, next) {
2703         bdrv_io_unplug(child->bs);
2704     }
2705 }
2706 
2707 void bdrv_io_unplugged_begin(BlockDriverState *bs)
2708 {
2709     BdrvChild *child;
2710 
2711     if (bs->io_plug_disabled++ == 0 && bs->io_plugged > 0) {
2712         BlockDriver *drv = bs->drv;
2713         if (drv && drv->bdrv_io_unplug) {
2714             drv->bdrv_io_unplug(bs);
2715         }
2716     }
2717 
2718     QLIST_FOREACH(child, &bs->children, next) {
2719         bdrv_io_unplugged_begin(child->bs);
2720     }
2721 }
2722 
2723 void bdrv_io_unplugged_end(BlockDriverState *bs)
2724 {
2725     BdrvChild *child;
2726 
2727     assert(bs->io_plug_disabled);
2728     QLIST_FOREACH(child, &bs->children, next) {
2729         bdrv_io_unplugged_end(child->bs);
2730     }
2731 
2732     if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) {
2733         BlockDriver *drv = bs->drv;
2734         if (drv && drv->bdrv_io_plug) {
2735             drv->bdrv_io_plug(bs);
2736         }
2737     }
2738 }
2739