1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "qemu/cutils.h" 33 #include "qapi/error.h" 34 #include "qemu/error-report.h" 35 #include "qemu/main-loop.h" 36 37 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 38 39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 41 42 static void bdrv_parent_cb_resize(BlockDriverState *bs); 43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 44 int64_t offset, int bytes, BdrvRequestFlags flags); 45 46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 47 bool ignore_bds_parents) 48 { 49 BdrvChild *c, *next; 50 51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 52 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 53 continue; 54 } 55 bdrv_parent_drained_begin_single(c, false); 56 } 57 } 58 59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 60 int *drained_end_counter) 61 { 62 assert(c->parent_quiesce_counter > 0); 63 c->parent_quiesce_counter--; 64 if (c->role->drained_end) { 65 c->role->drained_end(c, drained_end_counter); 66 } 67 } 68 69 void bdrv_parent_drained_end_single(BdrvChild *c) 70 { 71 int drained_end_counter = 0; 72 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 73 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0); 74 } 75 76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 77 bool ignore_bds_parents, 78 int *drained_end_counter) 79 { 80 BdrvChild *c; 81 82 QLIST_FOREACH(c, &bs->parents, next_parent) { 83 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 84 continue; 85 } 86 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 87 } 88 } 89 90 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 91 { 92 if (c->role->drained_poll) { 93 return c->role->drained_poll(c); 94 } 95 return false; 96 } 97 98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 99 bool ignore_bds_parents) 100 { 101 BdrvChild *c, *next; 102 bool busy = false; 103 104 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 105 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) { 106 continue; 107 } 108 busy |= bdrv_parent_drained_poll_single(c); 109 } 110 111 return busy; 112 } 113 114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 115 { 116 c->parent_quiesce_counter++; 117 if (c->role->drained_begin) { 118 c->role->drained_begin(c); 119 } 120 if (poll) { 121 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 122 } 123 } 124 125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 126 { 127 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 128 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 } 135 136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) 137 { 138 BlockDriver *drv = bs->drv; 139 Error *local_err = NULL; 140 141 memset(&bs->bl, 0, sizeof(bs->bl)); 142 143 if (!drv) { 144 return; 145 } 146 147 /* Default alignment based on whether driver has byte interface */ 148 bs->bl.request_alignment = (drv->bdrv_co_preadv || 149 drv->bdrv_aio_preadv || 150 drv->bdrv_co_preadv_part) ? 1 : 512; 151 152 /* Take some limits from the children as a default */ 153 if (bs->file) { 154 bdrv_refresh_limits(bs->file->bs, &local_err); 155 if (local_err) { 156 error_propagate(errp, local_err); 157 return; 158 } 159 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); 160 } else { 161 bs->bl.min_mem_alignment = 512; 162 bs->bl.opt_mem_alignment = getpagesize(); 163 164 /* Safe default since most protocols use readv()/writev()/etc */ 165 bs->bl.max_iov = IOV_MAX; 166 } 167 168 if (bs->backing) { 169 bdrv_refresh_limits(bs->backing->bs, &local_err); 170 if (local_err) { 171 error_propagate(errp, local_err); 172 return; 173 } 174 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); 175 } 176 177 /* Then let the driver override it */ 178 if (drv->bdrv_refresh_limits) { 179 drv->bdrv_refresh_limits(bs, errp); 180 } 181 } 182 183 /** 184 * The copy-on-read flag is actually a reference count so multiple users may 185 * use the feature without worrying about clobbering its previous state. 186 * Copy-on-read stays enabled until all users have called to disable it. 187 */ 188 void bdrv_enable_copy_on_read(BlockDriverState *bs) 189 { 190 atomic_inc(&bs->copy_on_read); 191 } 192 193 void bdrv_disable_copy_on_read(BlockDriverState *bs) 194 { 195 int old = atomic_fetch_dec(&bs->copy_on_read); 196 assert(old >= 1); 197 } 198 199 typedef struct { 200 Coroutine *co; 201 BlockDriverState *bs; 202 bool done; 203 bool begin; 204 bool recursive; 205 bool poll; 206 BdrvChild *parent; 207 bool ignore_bds_parents; 208 int *drained_end_counter; 209 } BdrvCoDrainData; 210 211 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 212 { 213 BdrvCoDrainData *data = opaque; 214 BlockDriverState *bs = data->bs; 215 216 if (data->begin) { 217 bs->drv->bdrv_co_drain_begin(bs); 218 } else { 219 bs->drv->bdrv_co_drain_end(bs); 220 } 221 222 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 223 atomic_mb_set(&data->done, true); 224 if (!data->begin) { 225 atomic_dec(data->drained_end_counter); 226 } 227 bdrv_dec_in_flight(bs); 228 229 g_free(data); 230 } 231 232 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 233 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 234 int *drained_end_counter) 235 { 236 BdrvCoDrainData *data; 237 238 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 239 (!begin && !bs->drv->bdrv_co_drain_end)) { 240 return; 241 } 242 243 data = g_new(BdrvCoDrainData, 1); 244 *data = (BdrvCoDrainData) { 245 .bs = bs, 246 .done = false, 247 .begin = begin, 248 .drained_end_counter = drained_end_counter, 249 }; 250 251 if (!begin) { 252 atomic_inc(drained_end_counter); 253 } 254 255 /* Make sure the driver callback completes during the polling phase for 256 * drain_begin. */ 257 bdrv_inc_in_flight(bs); 258 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 259 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 260 } 261 262 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 263 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 264 BdrvChild *ignore_parent, bool ignore_bds_parents) 265 { 266 BdrvChild *child, *next; 267 268 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 269 return true; 270 } 271 272 if (atomic_read(&bs->in_flight)) { 273 return true; 274 } 275 276 if (recursive) { 277 assert(!ignore_bds_parents); 278 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 279 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 280 return true; 281 } 282 } 283 } 284 285 return false; 286 } 287 288 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 289 BdrvChild *ignore_parent) 290 { 291 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 292 } 293 294 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 295 BdrvChild *parent, bool ignore_bds_parents, 296 bool poll); 297 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 298 BdrvChild *parent, bool ignore_bds_parents, 299 int *drained_end_counter); 300 301 static void bdrv_co_drain_bh_cb(void *opaque) 302 { 303 BdrvCoDrainData *data = opaque; 304 Coroutine *co = data->co; 305 BlockDriverState *bs = data->bs; 306 307 if (bs) { 308 AioContext *ctx = bdrv_get_aio_context(bs); 309 AioContext *co_ctx = qemu_coroutine_get_aio_context(co); 310 311 /* 312 * When the coroutine yielded, the lock for its home context was 313 * released, so we need to re-acquire it here. If it explicitly 314 * acquired a different context, the lock is still held and we don't 315 * want to lock it a second time (or AIO_WAIT_WHILE() would hang). 316 */ 317 if (ctx == co_ctx) { 318 aio_context_acquire(ctx); 319 } 320 bdrv_dec_in_flight(bs); 321 if (data->begin) { 322 assert(!data->drained_end_counter); 323 bdrv_do_drained_begin(bs, data->recursive, data->parent, 324 data->ignore_bds_parents, data->poll); 325 } else { 326 assert(!data->poll); 327 bdrv_do_drained_end(bs, data->recursive, data->parent, 328 data->ignore_bds_parents, 329 data->drained_end_counter); 330 } 331 if (ctx == co_ctx) { 332 aio_context_release(ctx); 333 } 334 } else { 335 assert(data->begin); 336 bdrv_drain_all_begin(); 337 } 338 339 data->done = true; 340 aio_co_wake(co); 341 } 342 343 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 344 bool begin, bool recursive, 345 BdrvChild *parent, 346 bool ignore_bds_parents, 347 bool poll, 348 int *drained_end_counter) 349 { 350 BdrvCoDrainData data; 351 352 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 353 * other coroutines run if they were queued by aio_co_enter(). */ 354 355 assert(qemu_in_coroutine()); 356 data = (BdrvCoDrainData) { 357 .co = qemu_coroutine_self(), 358 .bs = bs, 359 .done = false, 360 .begin = begin, 361 .recursive = recursive, 362 .parent = parent, 363 .ignore_bds_parents = ignore_bds_parents, 364 .poll = poll, 365 .drained_end_counter = drained_end_counter, 366 }; 367 368 if (bs) { 369 bdrv_inc_in_flight(bs); 370 } 371 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), 372 bdrv_co_drain_bh_cb, &data); 373 374 qemu_coroutine_yield(); 375 /* If we are resumed from some other event (such as an aio completion or a 376 * timer callback), it is a bug in the caller that should be fixed. */ 377 assert(data.done); 378 } 379 380 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 381 BdrvChild *parent, bool ignore_bds_parents) 382 { 383 assert(!qemu_in_coroutine()); 384 385 /* Stop things in parent-to-child order */ 386 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { 387 aio_disable_external(bdrv_get_aio_context(bs)); 388 } 389 390 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 391 bdrv_drain_invoke(bs, true, NULL); 392 } 393 394 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 395 BdrvChild *parent, bool ignore_bds_parents, 396 bool poll) 397 { 398 BdrvChild *child, *next; 399 400 if (qemu_in_coroutine()) { 401 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 402 poll, NULL); 403 return; 404 } 405 406 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 407 408 if (recursive) { 409 assert(!ignore_bds_parents); 410 bs->recursive_quiesce_counter++; 411 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 412 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 413 false); 414 } 415 } 416 417 /* 418 * Wait for drained requests to finish. 419 * 420 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 421 * call is needed so things in this AioContext can make progress even 422 * though we don't return to the main AioContext loop - this automatically 423 * includes other nodes in the same AioContext and therefore all child 424 * nodes. 425 */ 426 if (poll) { 427 assert(!ignore_bds_parents); 428 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 429 } 430 } 431 432 void bdrv_drained_begin(BlockDriverState *bs) 433 { 434 bdrv_do_drained_begin(bs, false, NULL, false, true); 435 } 436 437 void bdrv_subtree_drained_begin(BlockDriverState *bs) 438 { 439 bdrv_do_drained_begin(bs, true, NULL, false, true); 440 } 441 442 /** 443 * This function does not poll, nor must any of its recursively called 444 * functions. The *drained_end_counter pointee will be incremented 445 * once for every background operation scheduled, and decremented once 446 * the operation settles. Therefore, the pointer must remain valid 447 * until the pointee reaches 0. That implies that whoever sets up the 448 * pointee has to poll until it is 0. 449 * 450 * We use atomic operations to access *drained_end_counter, because 451 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 452 * @bs may contain nodes in different AioContexts, 453 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 454 * regardless of which AioContext they are in. 455 */ 456 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 457 BdrvChild *parent, bool ignore_bds_parents, 458 int *drained_end_counter) 459 { 460 BdrvChild *child; 461 int old_quiesce_counter; 462 463 assert(drained_end_counter != NULL); 464 465 if (qemu_in_coroutine()) { 466 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 467 false, drained_end_counter); 468 return; 469 } 470 assert(bs->quiesce_counter > 0); 471 472 /* Re-enable things in child-to-parent order */ 473 bdrv_drain_invoke(bs, false, drained_end_counter); 474 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 475 drained_end_counter); 476 477 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); 478 if (old_quiesce_counter == 1) { 479 aio_enable_external(bdrv_get_aio_context(bs)); 480 } 481 482 if (recursive) { 483 assert(!ignore_bds_parents); 484 bs->recursive_quiesce_counter--; 485 QLIST_FOREACH(child, &bs->children, next) { 486 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 487 drained_end_counter); 488 } 489 } 490 } 491 492 void bdrv_drained_end(BlockDriverState *bs) 493 { 494 int drained_end_counter = 0; 495 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 496 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 497 } 498 499 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 500 { 501 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 502 } 503 504 void bdrv_subtree_drained_end(BlockDriverState *bs) 505 { 506 int drained_end_counter = 0; 507 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 508 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0); 509 } 510 511 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 512 { 513 int i; 514 515 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 516 bdrv_do_drained_begin(child->bs, true, child, false, true); 517 } 518 } 519 520 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 521 { 522 int drained_end_counter = 0; 523 int i; 524 525 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 526 bdrv_do_drained_end(child->bs, true, child, false, 527 &drained_end_counter); 528 } 529 530 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0); 531 } 532 533 /* 534 * Wait for pending requests to complete on a single BlockDriverState subtree, 535 * and suspend block driver's internal I/O until next request arrives. 536 * 537 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 538 * AioContext. 539 */ 540 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 541 { 542 assert(qemu_in_coroutine()); 543 bdrv_drained_begin(bs); 544 bdrv_drained_end(bs); 545 } 546 547 void bdrv_drain(BlockDriverState *bs) 548 { 549 bdrv_drained_begin(bs); 550 bdrv_drained_end(bs); 551 } 552 553 static void bdrv_drain_assert_idle(BlockDriverState *bs) 554 { 555 BdrvChild *child, *next; 556 557 assert(atomic_read(&bs->in_flight) == 0); 558 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 559 bdrv_drain_assert_idle(child->bs); 560 } 561 } 562 563 unsigned int bdrv_drain_all_count = 0; 564 565 static bool bdrv_drain_all_poll(void) 566 { 567 BlockDriverState *bs = NULL; 568 bool result = false; 569 570 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 571 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 572 while ((bs = bdrv_next_all_states(bs))) { 573 AioContext *aio_context = bdrv_get_aio_context(bs); 574 aio_context_acquire(aio_context); 575 result |= bdrv_drain_poll(bs, false, NULL, true); 576 aio_context_release(aio_context); 577 } 578 579 return result; 580 } 581 582 /* 583 * Wait for pending requests to complete across all BlockDriverStates 584 * 585 * This function does not flush data to disk, use bdrv_flush_all() for that 586 * after calling this function. 587 * 588 * This pauses all block jobs and disables external clients. It must 589 * be paired with bdrv_drain_all_end(). 590 * 591 * NOTE: no new block jobs or BlockDriverStates can be created between 592 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 593 */ 594 void bdrv_drain_all_begin(void) 595 { 596 BlockDriverState *bs = NULL; 597 598 if (qemu_in_coroutine()) { 599 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 600 return; 601 } 602 603 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 604 * loop AioContext, so make sure we're in the main context. */ 605 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 606 assert(bdrv_drain_all_count < INT_MAX); 607 bdrv_drain_all_count++; 608 609 /* Quiesce all nodes, without polling in-flight requests yet. The graph 610 * cannot change during this loop. */ 611 while ((bs = bdrv_next_all_states(bs))) { 612 AioContext *aio_context = bdrv_get_aio_context(bs); 613 614 aio_context_acquire(aio_context); 615 bdrv_do_drained_begin(bs, false, NULL, true, false); 616 aio_context_release(aio_context); 617 } 618 619 /* Now poll the in-flight requests */ 620 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 621 622 while ((bs = bdrv_next_all_states(bs))) { 623 bdrv_drain_assert_idle(bs); 624 } 625 } 626 627 void bdrv_drain_all_end(void) 628 { 629 BlockDriverState *bs = NULL; 630 int drained_end_counter = 0; 631 632 while ((bs = bdrv_next_all_states(bs))) { 633 AioContext *aio_context = bdrv_get_aio_context(bs); 634 635 aio_context_acquire(aio_context); 636 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 637 aio_context_release(aio_context); 638 } 639 640 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 641 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0); 642 643 assert(bdrv_drain_all_count > 0); 644 bdrv_drain_all_count--; 645 } 646 647 void bdrv_drain_all(void) 648 { 649 bdrv_drain_all_begin(); 650 bdrv_drain_all_end(); 651 } 652 653 /** 654 * Remove an active request from the tracked requests list 655 * 656 * This function should be called when a tracked request is completing. 657 */ 658 static void tracked_request_end(BdrvTrackedRequest *req) 659 { 660 if (req->serialising) { 661 atomic_dec(&req->bs->serialising_in_flight); 662 } 663 664 qemu_co_mutex_lock(&req->bs->reqs_lock); 665 QLIST_REMOVE(req, list); 666 qemu_co_queue_restart_all(&req->wait_queue); 667 qemu_co_mutex_unlock(&req->bs->reqs_lock); 668 } 669 670 /** 671 * Add an active request to the tracked requests list 672 */ 673 static void tracked_request_begin(BdrvTrackedRequest *req, 674 BlockDriverState *bs, 675 int64_t offset, 676 uint64_t bytes, 677 enum BdrvTrackedRequestType type) 678 { 679 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes); 680 681 *req = (BdrvTrackedRequest){ 682 .bs = bs, 683 .offset = offset, 684 .bytes = bytes, 685 .type = type, 686 .co = qemu_coroutine_self(), 687 .serialising = false, 688 .overlap_offset = offset, 689 .overlap_bytes = bytes, 690 }; 691 692 qemu_co_queue_init(&req->wait_queue); 693 694 qemu_co_mutex_lock(&bs->reqs_lock); 695 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 696 qemu_co_mutex_unlock(&bs->reqs_lock); 697 } 698 699 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) 700 { 701 int64_t overlap_offset = req->offset & ~(align - 1); 702 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align) 703 - overlap_offset; 704 705 if (!req->serialising) { 706 atomic_inc(&req->bs->serialising_in_flight); 707 req->serialising = true; 708 } 709 710 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 711 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 712 } 713 714 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req) 715 { 716 /* 717 * If the request is serialising, overlap_offset and overlap_bytes are set, 718 * so we can check if the request is aligned. Otherwise, don't care and 719 * return false. 720 */ 721 722 return req->serialising && (req->offset == req->overlap_offset) && 723 (req->bytes == req->overlap_bytes); 724 } 725 726 /** 727 * Round a region to cluster boundaries 728 */ 729 void bdrv_round_to_clusters(BlockDriverState *bs, 730 int64_t offset, int64_t bytes, 731 int64_t *cluster_offset, 732 int64_t *cluster_bytes) 733 { 734 BlockDriverInfo bdi; 735 736 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 737 *cluster_offset = offset; 738 *cluster_bytes = bytes; 739 } else { 740 int64_t c = bdi.cluster_size; 741 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 742 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 743 } 744 } 745 746 static int bdrv_get_cluster_size(BlockDriverState *bs) 747 { 748 BlockDriverInfo bdi; 749 int ret; 750 751 ret = bdrv_get_info(bs, &bdi); 752 if (ret < 0 || bdi.cluster_size == 0) { 753 return bs->bl.request_alignment; 754 } else { 755 return bdi.cluster_size; 756 } 757 } 758 759 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 760 int64_t offset, uint64_t bytes) 761 { 762 /* aaaa bbbb */ 763 if (offset >= req->overlap_offset + req->overlap_bytes) { 764 return false; 765 } 766 /* bbbb aaaa */ 767 if (req->overlap_offset >= offset + bytes) { 768 return false; 769 } 770 return true; 771 } 772 773 void bdrv_inc_in_flight(BlockDriverState *bs) 774 { 775 atomic_inc(&bs->in_flight); 776 } 777 778 void bdrv_wakeup(BlockDriverState *bs) 779 { 780 aio_wait_kick(); 781 } 782 783 void bdrv_dec_in_flight(BlockDriverState *bs) 784 { 785 atomic_dec(&bs->in_flight); 786 bdrv_wakeup(bs); 787 } 788 789 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) 790 { 791 BlockDriverState *bs = self->bs; 792 BdrvTrackedRequest *req; 793 bool retry; 794 bool waited = false; 795 796 if (!atomic_read(&bs->serialising_in_flight)) { 797 return false; 798 } 799 800 do { 801 retry = false; 802 qemu_co_mutex_lock(&bs->reqs_lock); 803 QLIST_FOREACH(req, &bs->tracked_requests, list) { 804 if (req == self || (!req->serialising && !self->serialising)) { 805 continue; 806 } 807 if (tracked_request_overlaps(req, self->overlap_offset, 808 self->overlap_bytes)) 809 { 810 /* Hitting this means there was a reentrant request, for 811 * example, a block driver issuing nested requests. This must 812 * never happen since it means deadlock. 813 */ 814 assert(qemu_coroutine_self() != req->co); 815 816 /* If the request is already (indirectly) waiting for us, or 817 * will wait for us as soon as it wakes up, then just go on 818 * (instead of producing a deadlock in the former case). */ 819 if (!req->waiting_for) { 820 self->waiting_for = req; 821 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); 822 self->waiting_for = NULL; 823 retry = true; 824 waited = true; 825 break; 826 } 827 } 828 } 829 qemu_co_mutex_unlock(&bs->reqs_lock); 830 } while (retry); 831 832 return waited; 833 } 834 835 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 836 size_t size) 837 { 838 if (size > BDRV_REQUEST_MAX_BYTES) { 839 return -EIO; 840 } 841 842 if (!bdrv_is_inserted(bs)) { 843 return -ENOMEDIUM; 844 } 845 846 if (offset < 0) { 847 return -EIO; 848 } 849 850 return 0; 851 } 852 853 typedef struct RwCo { 854 BdrvChild *child; 855 int64_t offset; 856 QEMUIOVector *qiov; 857 bool is_write; 858 int ret; 859 BdrvRequestFlags flags; 860 } RwCo; 861 862 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 863 { 864 RwCo *rwco = opaque; 865 866 if (!rwco->is_write) { 867 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, 868 rwco->qiov->size, rwco->qiov, 869 rwco->flags); 870 } else { 871 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, 872 rwco->qiov->size, rwco->qiov, 873 rwco->flags); 874 } 875 aio_wait_kick(); 876 } 877 878 /* 879 * Process a vectored synchronous request using coroutines 880 */ 881 static int bdrv_prwv_co(BdrvChild *child, int64_t offset, 882 QEMUIOVector *qiov, bool is_write, 883 BdrvRequestFlags flags) 884 { 885 Coroutine *co; 886 RwCo rwco = { 887 .child = child, 888 .offset = offset, 889 .qiov = qiov, 890 .is_write = is_write, 891 .ret = NOT_DONE, 892 .flags = flags, 893 }; 894 895 if (qemu_in_coroutine()) { 896 /* Fast-path if already in coroutine context */ 897 bdrv_rw_co_entry(&rwco); 898 } else { 899 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); 900 bdrv_coroutine_enter(child->bs, co); 901 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 902 } 903 return rwco.ret; 904 } 905 906 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 907 int bytes, BdrvRequestFlags flags) 908 { 909 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes); 910 911 return bdrv_prwv_co(child, offset, &qiov, true, 912 BDRV_REQ_ZERO_WRITE | flags); 913 } 914 915 /* 916 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 917 * The operation is sped up by checking the block status and only writing 918 * zeroes to the device if they currently do not return zeroes. Optional 919 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 920 * BDRV_REQ_FUA). 921 * 922 * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). 923 */ 924 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 925 { 926 int ret; 927 int64_t target_size, bytes, offset = 0; 928 BlockDriverState *bs = child->bs; 929 930 target_size = bdrv_getlength(bs); 931 if (target_size < 0) { 932 return target_size; 933 } 934 935 for (;;) { 936 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 937 if (bytes <= 0) { 938 return 0; 939 } 940 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 941 if (ret < 0) { 942 return ret; 943 } 944 if (ret & BDRV_BLOCK_ZERO) { 945 offset += bytes; 946 continue; 947 } 948 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 949 if (ret < 0) { 950 return ret; 951 } 952 offset += bytes; 953 } 954 } 955 956 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 957 { 958 int ret; 959 960 ret = bdrv_prwv_co(child, offset, qiov, false, 0); 961 if (ret < 0) { 962 return ret; 963 } 964 965 return qiov->size; 966 } 967 968 /* See bdrv_pwrite() for the return codes */ 969 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) 970 { 971 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 972 973 if (bytes < 0) { 974 return -EINVAL; 975 } 976 977 return bdrv_preadv(child, offset, &qiov); 978 } 979 980 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) 981 { 982 int ret; 983 984 ret = bdrv_prwv_co(child, offset, qiov, true, 0); 985 if (ret < 0) { 986 return ret; 987 } 988 989 return qiov->size; 990 } 991 992 /* Return no. of bytes on success or < 0 on error. Important errors are: 993 -EIO generic I/O error (may happen for all errors) 994 -ENOMEDIUM No media inserted. 995 -EINVAL Invalid offset or number of bytes 996 -EACCES Trying to write a read-only device 997 */ 998 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) 999 { 1000 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1001 1002 if (bytes < 0) { 1003 return -EINVAL; 1004 } 1005 1006 return bdrv_pwritev(child, offset, &qiov); 1007 } 1008 1009 /* 1010 * Writes to the file and ensures that no writes are reordered across this 1011 * request (acts as a barrier) 1012 * 1013 * Returns 0 on success, -errno in error cases. 1014 */ 1015 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1016 const void *buf, int count) 1017 { 1018 int ret; 1019 1020 ret = bdrv_pwrite(child, offset, buf, count); 1021 if (ret < 0) { 1022 return ret; 1023 } 1024 1025 ret = bdrv_flush(child->bs); 1026 if (ret < 0) { 1027 return ret; 1028 } 1029 1030 return 0; 1031 } 1032 1033 typedef struct CoroutineIOCompletion { 1034 Coroutine *coroutine; 1035 int ret; 1036 } CoroutineIOCompletion; 1037 1038 static void bdrv_co_io_em_complete(void *opaque, int ret) 1039 { 1040 CoroutineIOCompletion *co = opaque; 1041 1042 co->ret = ret; 1043 aio_co_wake(co->coroutine); 1044 } 1045 1046 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1047 uint64_t offset, uint64_t bytes, 1048 QEMUIOVector *qiov, 1049 size_t qiov_offset, int flags) 1050 { 1051 BlockDriver *drv = bs->drv; 1052 int64_t sector_num; 1053 unsigned int nb_sectors; 1054 QEMUIOVector local_qiov; 1055 int ret; 1056 1057 assert(!(flags & ~BDRV_REQ_MASK)); 1058 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1059 1060 if (!drv) { 1061 return -ENOMEDIUM; 1062 } 1063 1064 if (drv->bdrv_co_preadv_part) { 1065 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1066 flags); 1067 } 1068 1069 if (qiov_offset > 0 || bytes != qiov->size) { 1070 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1071 qiov = &local_qiov; 1072 } 1073 1074 if (drv->bdrv_co_preadv) { 1075 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1076 goto out; 1077 } 1078 1079 if (drv->bdrv_aio_preadv) { 1080 BlockAIOCB *acb; 1081 CoroutineIOCompletion co = { 1082 .coroutine = qemu_coroutine_self(), 1083 }; 1084 1085 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1086 bdrv_co_io_em_complete, &co); 1087 if (acb == NULL) { 1088 ret = -EIO; 1089 goto out; 1090 } else { 1091 qemu_coroutine_yield(); 1092 ret = co.ret; 1093 goto out; 1094 } 1095 } 1096 1097 sector_num = offset >> BDRV_SECTOR_BITS; 1098 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1099 1100 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1101 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1102 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1103 assert(drv->bdrv_co_readv); 1104 1105 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1106 1107 out: 1108 if (qiov == &local_qiov) { 1109 qemu_iovec_destroy(&local_qiov); 1110 } 1111 1112 return ret; 1113 } 1114 1115 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1116 uint64_t offset, uint64_t bytes, 1117 QEMUIOVector *qiov, 1118 size_t qiov_offset, int flags) 1119 { 1120 BlockDriver *drv = bs->drv; 1121 int64_t sector_num; 1122 unsigned int nb_sectors; 1123 QEMUIOVector local_qiov; 1124 int ret; 1125 1126 assert(!(flags & ~BDRV_REQ_MASK)); 1127 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1128 1129 if (!drv) { 1130 return -ENOMEDIUM; 1131 } 1132 1133 if (drv->bdrv_co_pwritev_part) { 1134 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1135 flags & bs->supported_write_flags); 1136 flags &= ~bs->supported_write_flags; 1137 goto emulate_flags; 1138 } 1139 1140 if (qiov_offset > 0 || bytes != qiov->size) { 1141 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1142 qiov = &local_qiov; 1143 } 1144 1145 if (drv->bdrv_co_pwritev) { 1146 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1147 flags & bs->supported_write_flags); 1148 flags &= ~bs->supported_write_flags; 1149 goto emulate_flags; 1150 } 1151 1152 if (drv->bdrv_aio_pwritev) { 1153 BlockAIOCB *acb; 1154 CoroutineIOCompletion co = { 1155 .coroutine = qemu_coroutine_self(), 1156 }; 1157 1158 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1159 flags & bs->supported_write_flags, 1160 bdrv_co_io_em_complete, &co); 1161 flags &= ~bs->supported_write_flags; 1162 if (acb == NULL) { 1163 ret = -EIO; 1164 } else { 1165 qemu_coroutine_yield(); 1166 ret = co.ret; 1167 } 1168 goto emulate_flags; 1169 } 1170 1171 sector_num = offset >> BDRV_SECTOR_BITS; 1172 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1173 1174 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); 1175 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); 1176 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1177 1178 assert(drv->bdrv_co_writev); 1179 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1180 flags & bs->supported_write_flags); 1181 flags &= ~bs->supported_write_flags; 1182 1183 emulate_flags: 1184 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1185 ret = bdrv_co_flush(bs); 1186 } 1187 1188 if (qiov == &local_qiov) { 1189 qemu_iovec_destroy(&local_qiov); 1190 } 1191 1192 return ret; 1193 } 1194 1195 static int coroutine_fn 1196 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, 1197 uint64_t bytes, QEMUIOVector *qiov, 1198 size_t qiov_offset) 1199 { 1200 BlockDriver *drv = bs->drv; 1201 QEMUIOVector local_qiov; 1202 int ret; 1203 1204 if (!drv) { 1205 return -ENOMEDIUM; 1206 } 1207 1208 if (!block_driver_can_compress(drv)) { 1209 return -ENOTSUP; 1210 } 1211 1212 if (drv->bdrv_co_pwritev_compressed_part) { 1213 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1214 qiov, qiov_offset); 1215 } 1216 1217 if (qiov_offset == 0) { 1218 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1219 } 1220 1221 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1222 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1223 qemu_iovec_destroy(&local_qiov); 1224 1225 return ret; 1226 } 1227 1228 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1229 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1230 size_t qiov_offset, int flags) 1231 { 1232 BlockDriverState *bs = child->bs; 1233 1234 /* Perform I/O through a temporary buffer so that users who scribble over 1235 * their read buffer while the operation is in progress do not end up 1236 * modifying the image file. This is critical for zero-copy guest I/O 1237 * where anything might happen inside guest memory. 1238 */ 1239 void *bounce_buffer = NULL; 1240 1241 BlockDriver *drv = bs->drv; 1242 int64_t cluster_offset; 1243 int64_t cluster_bytes; 1244 size_t skip_bytes; 1245 int ret; 1246 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1247 BDRV_REQUEST_MAX_BYTES); 1248 unsigned int progress = 0; 1249 1250 if (!drv) { 1251 return -ENOMEDIUM; 1252 } 1253 1254 /* FIXME We cannot require callers to have write permissions when all they 1255 * are doing is a read request. If we did things right, write permissions 1256 * would be obtained anyway, but internally by the copy-on-read code. As 1257 * long as it is implemented here rather than in a separate filter driver, 1258 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1259 * it could request permissions. Therefore we have to bypass the permission 1260 * system for the moment. */ 1261 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1262 1263 /* Cover entire cluster so no additional backing file I/O is required when 1264 * allocating cluster in the image file. Note that this value may exceed 1265 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1266 * is one reason we loop rather than doing it all at once. 1267 */ 1268 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1269 skip_bytes = offset - cluster_offset; 1270 1271 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1272 cluster_offset, cluster_bytes); 1273 1274 while (cluster_bytes) { 1275 int64_t pnum; 1276 1277 ret = bdrv_is_allocated(bs, cluster_offset, 1278 MIN(cluster_bytes, max_transfer), &pnum); 1279 if (ret < 0) { 1280 /* Safe to treat errors in querying allocation as if 1281 * unallocated; we'll probably fail again soon on the 1282 * read, but at least that will set a decent errno. 1283 */ 1284 pnum = MIN(cluster_bytes, max_transfer); 1285 } 1286 1287 /* Stop at EOF if the image ends in the middle of the cluster */ 1288 if (ret == 0 && pnum == 0) { 1289 assert(progress >= bytes); 1290 break; 1291 } 1292 1293 assert(skip_bytes < pnum); 1294 1295 if (ret <= 0) { 1296 QEMUIOVector local_qiov; 1297 1298 /* Must copy-on-read; use the bounce buffer */ 1299 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1300 if (!bounce_buffer) { 1301 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1302 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1303 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1304 1305 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1306 if (!bounce_buffer) { 1307 ret = -ENOMEM; 1308 goto err; 1309 } 1310 } 1311 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1312 1313 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1314 &local_qiov, 0, 0); 1315 if (ret < 0) { 1316 goto err; 1317 } 1318 1319 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1320 if (drv->bdrv_co_pwrite_zeroes && 1321 buffer_is_zero(bounce_buffer, pnum)) { 1322 /* FIXME: Should we (perhaps conditionally) be setting 1323 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1324 * that still correctly reads as zero? */ 1325 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1326 BDRV_REQ_WRITE_UNCHANGED); 1327 } else { 1328 /* This does not change the data on the disk, it is not 1329 * necessary to flush even in cache=writethrough mode. 1330 */ 1331 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1332 &local_qiov, 0, 1333 BDRV_REQ_WRITE_UNCHANGED); 1334 } 1335 1336 if (ret < 0) { 1337 /* It might be okay to ignore write errors for guest 1338 * requests. If this is a deliberate copy-on-read 1339 * then we don't want to ignore the error. Simply 1340 * report it in all cases. 1341 */ 1342 goto err; 1343 } 1344 1345 if (!(flags & BDRV_REQ_PREFETCH)) { 1346 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1347 bounce_buffer + skip_bytes, 1348 pnum - skip_bytes); 1349 } 1350 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1351 /* Read directly into the destination */ 1352 ret = bdrv_driver_preadv(bs, offset + progress, 1353 MIN(pnum - skip_bytes, bytes - progress), 1354 qiov, qiov_offset + progress, 0); 1355 if (ret < 0) { 1356 goto err; 1357 } 1358 } 1359 1360 cluster_offset += pnum; 1361 cluster_bytes -= pnum; 1362 progress += pnum - skip_bytes; 1363 skip_bytes = 0; 1364 } 1365 ret = 0; 1366 1367 err: 1368 qemu_vfree(bounce_buffer); 1369 return ret; 1370 } 1371 1372 /* 1373 * Forwards an already correctly aligned request to the BlockDriver. This 1374 * handles copy on read, zeroing after EOF, and fragmentation of large 1375 * reads; any other features must be implemented by the caller. 1376 */ 1377 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1378 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1379 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1380 { 1381 BlockDriverState *bs = child->bs; 1382 int64_t total_bytes, max_bytes; 1383 int ret = 0; 1384 uint64_t bytes_remaining = bytes; 1385 int max_transfer; 1386 1387 assert(is_power_of_2(align)); 1388 assert((offset & (align - 1)) == 0); 1389 assert((bytes & (align - 1)) == 0); 1390 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1391 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1392 align); 1393 1394 /* TODO: We would need a per-BDS .supported_read_flags and 1395 * potential fallback support, if we ever implement any read flags 1396 * to pass through to drivers. For now, there aren't any 1397 * passthrough flags. */ 1398 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ | 1399 BDRV_REQ_PREFETCH))); 1400 1401 /* Handle Copy on Read and associated serialisation */ 1402 if (flags & BDRV_REQ_COPY_ON_READ) { 1403 /* If we touch the same cluster it counts as an overlap. This 1404 * guarantees that allocating writes will be serialized and not race 1405 * with each other for the same cluster. For example, in copy-on-read 1406 * it ensures that the CoR read and write operations are atomic and 1407 * guest writes cannot interleave between them. */ 1408 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1409 } 1410 1411 /* BDRV_REQ_SERIALISING is only for write operation */ 1412 assert(!(flags & BDRV_REQ_SERIALISING)); 1413 1414 if (!(flags & BDRV_REQ_NO_SERIALISING)) { 1415 wait_serialising_requests(req); 1416 } 1417 1418 if (flags & BDRV_REQ_COPY_ON_READ) { 1419 int64_t pnum; 1420 1421 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1422 if (ret < 0) { 1423 goto out; 1424 } 1425 1426 if (!ret || pnum != bytes) { 1427 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1428 qiov, qiov_offset, flags); 1429 goto out; 1430 } else if (flags & BDRV_REQ_PREFETCH) { 1431 goto out; 1432 } 1433 } 1434 1435 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1436 total_bytes = bdrv_getlength(bs); 1437 if (total_bytes < 0) { 1438 ret = total_bytes; 1439 goto out; 1440 } 1441 1442 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1443 if (bytes <= max_bytes && bytes <= max_transfer) { 1444 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0); 1445 goto out; 1446 } 1447 1448 while (bytes_remaining) { 1449 int num; 1450 1451 if (max_bytes) { 1452 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1453 assert(num); 1454 1455 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1456 num, qiov, bytes - bytes_remaining, 0); 1457 max_bytes -= num; 1458 } else { 1459 num = bytes_remaining; 1460 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, 1461 bytes_remaining); 1462 } 1463 if (ret < 0) { 1464 goto out; 1465 } 1466 bytes_remaining -= num; 1467 } 1468 1469 out: 1470 return ret < 0 ? ret : 0; 1471 } 1472 1473 /* 1474 * Request padding 1475 * 1476 * |<---- align ----->| |<----- align ---->| 1477 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1478 * | | | | | | 1479 * -*----------$-------*-------- ... --------*-----$------------*--- 1480 * | | | | | | 1481 * | offset | | end | 1482 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1483 * [buf ... ) [tail_buf ) 1484 * 1485 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1486 * is placed at the beginning of @buf and @tail at the @end. 1487 * 1488 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1489 * around tail, if tail exists. 1490 * 1491 * @merge_reads is true for small requests, 1492 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1493 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1494 */ 1495 typedef struct BdrvRequestPadding { 1496 uint8_t *buf; 1497 size_t buf_len; 1498 uint8_t *tail_buf; 1499 size_t head; 1500 size_t tail; 1501 bool merge_reads; 1502 QEMUIOVector local_qiov; 1503 } BdrvRequestPadding; 1504 1505 static bool bdrv_init_padding(BlockDriverState *bs, 1506 int64_t offset, int64_t bytes, 1507 BdrvRequestPadding *pad) 1508 { 1509 uint64_t align = bs->bl.request_alignment; 1510 size_t sum; 1511 1512 memset(pad, 0, sizeof(*pad)); 1513 1514 pad->head = offset & (align - 1); 1515 pad->tail = ((offset + bytes) & (align - 1)); 1516 if (pad->tail) { 1517 pad->tail = align - pad->tail; 1518 } 1519 1520 if ((!pad->head && !pad->tail) || !bytes) { 1521 return false; 1522 } 1523 1524 sum = pad->head + bytes + pad->tail; 1525 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1526 pad->buf = qemu_blockalign(bs, pad->buf_len); 1527 pad->merge_reads = sum == pad->buf_len; 1528 if (pad->tail) { 1529 pad->tail_buf = pad->buf + pad->buf_len - align; 1530 } 1531 1532 return true; 1533 } 1534 1535 static int bdrv_padding_rmw_read(BdrvChild *child, 1536 BdrvTrackedRequest *req, 1537 BdrvRequestPadding *pad, 1538 bool zero_middle) 1539 { 1540 QEMUIOVector local_qiov; 1541 BlockDriverState *bs = child->bs; 1542 uint64_t align = bs->bl.request_alignment; 1543 int ret; 1544 1545 assert(req->serialising && pad->buf); 1546 1547 if (pad->head || pad->merge_reads) { 1548 uint64_t bytes = pad->merge_reads ? pad->buf_len : align; 1549 1550 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1551 1552 if (pad->head) { 1553 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1554 } 1555 if (pad->merge_reads && pad->tail) { 1556 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1557 } 1558 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1559 align, &local_qiov, 0, 0); 1560 if (ret < 0) { 1561 return ret; 1562 } 1563 if (pad->head) { 1564 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1565 } 1566 if (pad->merge_reads && pad->tail) { 1567 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1568 } 1569 1570 if (pad->merge_reads) { 1571 goto zero_mem; 1572 } 1573 } 1574 1575 if (pad->tail) { 1576 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1577 1578 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1579 ret = bdrv_aligned_preadv( 1580 child, req, 1581 req->overlap_offset + req->overlap_bytes - align, 1582 align, align, &local_qiov, 0, 0); 1583 if (ret < 0) { 1584 return ret; 1585 } 1586 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1587 } 1588 1589 zero_mem: 1590 if (zero_middle) { 1591 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1592 } 1593 1594 return 0; 1595 } 1596 1597 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1598 { 1599 if (pad->buf) { 1600 qemu_vfree(pad->buf); 1601 qemu_iovec_destroy(&pad->local_qiov); 1602 } 1603 } 1604 1605 /* 1606 * bdrv_pad_request 1607 * 1608 * Exchange request parameters with padded request if needed. Don't include RMW 1609 * read of padding, bdrv_padding_rmw_read() should be called separately if 1610 * needed. 1611 * 1612 * All parameters except @bs are in-out: they represent original request at 1613 * function call and padded (if padding needed) at function finish. 1614 * 1615 * Function always succeeds. 1616 */ 1617 static bool bdrv_pad_request(BlockDriverState *bs, 1618 QEMUIOVector **qiov, size_t *qiov_offset, 1619 int64_t *offset, unsigned int *bytes, 1620 BdrvRequestPadding *pad) 1621 { 1622 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1623 return false; 1624 } 1625 1626 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1627 *qiov, *qiov_offset, *bytes, 1628 pad->buf + pad->buf_len - pad->tail, pad->tail); 1629 *bytes += pad->head + pad->tail; 1630 *offset -= pad->head; 1631 *qiov = &pad->local_qiov; 1632 *qiov_offset = 0; 1633 1634 return true; 1635 } 1636 1637 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1638 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 1639 BdrvRequestFlags flags) 1640 { 1641 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1642 } 1643 1644 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1645 int64_t offset, unsigned int bytes, 1646 QEMUIOVector *qiov, size_t qiov_offset, 1647 BdrvRequestFlags flags) 1648 { 1649 BlockDriverState *bs = child->bs; 1650 BdrvTrackedRequest req; 1651 BdrvRequestPadding pad; 1652 int ret; 1653 1654 trace_bdrv_co_preadv(bs, offset, bytes, flags); 1655 1656 ret = bdrv_check_byte_request(bs, offset, bytes); 1657 if (ret < 0) { 1658 return ret; 1659 } 1660 1661 bdrv_inc_in_flight(bs); 1662 1663 /* Don't do copy-on-read if we read data before write operation */ 1664 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { 1665 flags |= BDRV_REQ_COPY_ON_READ; 1666 } 1667 1668 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad); 1669 1670 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1671 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1672 bs->bl.request_alignment, 1673 qiov, qiov_offset, flags); 1674 tracked_request_end(&req); 1675 bdrv_dec_in_flight(bs); 1676 1677 bdrv_padding_destroy(&pad); 1678 1679 return ret; 1680 } 1681 1682 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1683 int64_t offset, int bytes, BdrvRequestFlags flags) 1684 { 1685 BlockDriver *drv = bs->drv; 1686 QEMUIOVector qiov; 1687 void *buf = NULL; 1688 int ret = 0; 1689 bool need_flush = false; 1690 int head = 0; 1691 int tail = 0; 1692 1693 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); 1694 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1695 bs->bl.request_alignment); 1696 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1697 1698 if (!drv) { 1699 return -ENOMEDIUM; 1700 } 1701 1702 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1703 return -ENOTSUP; 1704 } 1705 1706 assert(alignment % bs->bl.request_alignment == 0); 1707 head = offset % alignment; 1708 tail = (offset + bytes) % alignment; 1709 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1710 assert(max_write_zeroes >= bs->bl.request_alignment); 1711 1712 while (bytes > 0 && !ret) { 1713 int num = bytes; 1714 1715 /* Align request. Block drivers can expect the "bulk" of the request 1716 * to be aligned, and that unaligned requests do not cross cluster 1717 * boundaries. 1718 */ 1719 if (head) { 1720 /* Make a small request up to the first aligned sector. For 1721 * convenience, limit this request to max_transfer even if 1722 * we don't need to fall back to writes. */ 1723 num = MIN(MIN(bytes, max_transfer), alignment - head); 1724 head = (head + num) % alignment; 1725 assert(num < max_write_zeroes); 1726 } else if (tail && num > alignment) { 1727 /* Shorten the request to the last aligned sector. */ 1728 num -= tail; 1729 } 1730 1731 /* limit request size */ 1732 if (num > max_write_zeroes) { 1733 num = max_write_zeroes; 1734 } 1735 1736 ret = -ENOTSUP; 1737 /* First try the efficient write zeroes operation */ 1738 if (drv->bdrv_co_pwrite_zeroes) { 1739 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1740 flags & bs->supported_zero_flags); 1741 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1742 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1743 need_flush = true; 1744 } 1745 } else { 1746 assert(!bs->supported_zero_flags); 1747 } 1748 1749 if (ret < 0 && !(flags & BDRV_REQ_NO_FALLBACK)) { 1750 /* Fall back to bounce buffer if write zeroes is unsupported */ 1751 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1752 1753 if ((flags & BDRV_REQ_FUA) && 1754 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1755 /* No need for bdrv_driver_pwrite() to do a fallback 1756 * flush on each chunk; use just one at the end */ 1757 write_flags &= ~BDRV_REQ_FUA; 1758 need_flush = true; 1759 } 1760 num = MIN(num, max_transfer); 1761 if (buf == NULL) { 1762 buf = qemu_try_blockalign0(bs, num); 1763 if (buf == NULL) { 1764 ret = -ENOMEM; 1765 goto fail; 1766 } 1767 } 1768 qemu_iovec_init_buf(&qiov, buf, num); 1769 1770 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1771 1772 /* Keep bounce buffer around if it is big enough for all 1773 * all future requests. 1774 */ 1775 if (num < max_transfer) { 1776 qemu_vfree(buf); 1777 buf = NULL; 1778 } 1779 } 1780 1781 offset += num; 1782 bytes -= num; 1783 } 1784 1785 fail: 1786 if (ret == 0 && need_flush) { 1787 ret = bdrv_co_flush(bs); 1788 } 1789 qemu_vfree(buf); 1790 return ret; 1791 } 1792 1793 static inline int coroutine_fn 1794 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes, 1795 BdrvTrackedRequest *req, int flags) 1796 { 1797 BlockDriverState *bs = child->bs; 1798 bool waited; 1799 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1800 1801 if (bs->read_only) { 1802 return -EPERM; 1803 } 1804 1805 /* BDRV_REQ_NO_SERIALISING is only for read operation */ 1806 assert(!(flags & BDRV_REQ_NO_SERIALISING)); 1807 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1808 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1809 assert(!(flags & ~BDRV_REQ_MASK)); 1810 1811 if (flags & BDRV_REQ_SERIALISING) { 1812 mark_request_serialising(req, bdrv_get_cluster_size(bs)); 1813 } 1814 1815 waited = wait_serialising_requests(req); 1816 1817 assert(!waited || !req->serialising || 1818 is_request_serialising_and_aligned(req)); 1819 assert(req->overlap_offset <= offset); 1820 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1821 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); 1822 1823 switch (req->type) { 1824 case BDRV_TRACKED_WRITE: 1825 case BDRV_TRACKED_DISCARD: 1826 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1827 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1828 } else { 1829 assert(child->perm & BLK_PERM_WRITE); 1830 } 1831 return notifier_with_return_list_notify(&bs->before_write_notifiers, 1832 req); 1833 case BDRV_TRACKED_TRUNCATE: 1834 assert(child->perm & BLK_PERM_RESIZE); 1835 return 0; 1836 default: 1837 abort(); 1838 } 1839 } 1840 1841 static inline void coroutine_fn 1842 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes, 1843 BdrvTrackedRequest *req, int ret) 1844 { 1845 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1846 BlockDriverState *bs = child->bs; 1847 1848 atomic_inc(&bs->write_gen); 1849 1850 /* 1851 * Discard cannot extend the image, but in error handling cases, such as 1852 * when reverting a qcow2 cluster allocation, the discarded range can pass 1853 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1854 * here. Instead, just skip it, since semantically a discard request 1855 * beyond EOF cannot expand the image anyway. 1856 */ 1857 if (ret == 0 && 1858 (req->type == BDRV_TRACKED_TRUNCATE || 1859 end_sector > bs->total_sectors) && 1860 req->type != BDRV_TRACKED_DISCARD) { 1861 bs->total_sectors = end_sector; 1862 bdrv_parent_cb_resize(bs); 1863 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1864 } 1865 if (req->bytes) { 1866 switch (req->type) { 1867 case BDRV_TRACKED_WRITE: 1868 stat64_max(&bs->wr_highest_offset, offset + bytes); 1869 /* fall through, to set dirty bits */ 1870 case BDRV_TRACKED_DISCARD: 1871 bdrv_set_dirty(bs, offset, bytes); 1872 break; 1873 default: 1874 break; 1875 } 1876 } 1877 } 1878 1879 /* 1880 * Forwards an already correctly aligned write request to the BlockDriver, 1881 * after possibly fragmenting it. 1882 */ 1883 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1884 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, 1885 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1886 { 1887 BlockDriverState *bs = child->bs; 1888 BlockDriver *drv = bs->drv; 1889 int ret; 1890 1891 uint64_t bytes_remaining = bytes; 1892 int max_transfer; 1893 1894 if (!drv) { 1895 return -ENOMEDIUM; 1896 } 1897 1898 if (bdrv_has_readonly_bitmaps(bs)) { 1899 return -EPERM; 1900 } 1901 1902 assert(is_power_of_2(align)); 1903 assert((offset & (align - 1)) == 0); 1904 assert((bytes & (align - 1)) == 0); 1905 assert(!qiov || qiov_offset + bytes <= qiov->size); 1906 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1907 align); 1908 1909 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1910 1911 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1912 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1913 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1914 flags |= BDRV_REQ_ZERO_WRITE; 1915 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1916 flags |= BDRV_REQ_MAY_UNMAP; 1917 } 1918 } 1919 1920 if (ret < 0) { 1921 /* Do nothing, write notifier decided to fail this request */ 1922 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1923 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1924 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1925 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1926 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1927 qiov, qiov_offset); 1928 } else if (bytes <= max_transfer) { 1929 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1930 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1931 } else { 1932 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1933 while (bytes_remaining) { 1934 int num = MIN(bytes_remaining, max_transfer); 1935 int local_flags = flags; 1936 1937 assert(num); 1938 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1939 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1940 /* If FUA is going to be emulated by flush, we only 1941 * need to flush on the last iteration */ 1942 local_flags &= ~BDRV_REQ_FUA; 1943 } 1944 1945 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1946 num, qiov, bytes - bytes_remaining, 1947 local_flags); 1948 if (ret < 0) { 1949 break; 1950 } 1951 bytes_remaining -= num; 1952 } 1953 } 1954 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1955 1956 if (ret >= 0) { 1957 ret = 0; 1958 } 1959 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1960 1961 return ret; 1962 } 1963 1964 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1965 int64_t offset, 1966 unsigned int bytes, 1967 BdrvRequestFlags flags, 1968 BdrvTrackedRequest *req) 1969 { 1970 BlockDriverState *bs = child->bs; 1971 QEMUIOVector local_qiov; 1972 uint64_t align = bs->bl.request_alignment; 1973 int ret = 0; 1974 bool padding; 1975 BdrvRequestPadding pad; 1976 1977 padding = bdrv_init_padding(bs, offset, bytes, &pad); 1978 if (padding) { 1979 mark_request_serialising(req, align); 1980 wait_serialising_requests(req); 1981 1982 bdrv_padding_rmw_read(child, req, &pad, true); 1983 1984 if (pad.head || pad.merge_reads) { 1985 int64_t aligned_offset = offset & ~(align - 1); 1986 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 1987 1988 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 1989 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 1990 align, &local_qiov, 0, 1991 flags & ~BDRV_REQ_ZERO_WRITE); 1992 if (ret < 0 || pad.merge_reads) { 1993 /* Error or all work is done */ 1994 goto out; 1995 } 1996 offset += write_bytes - pad.head; 1997 bytes -= write_bytes - pad.head; 1998 } 1999 } 2000 2001 assert(!bytes || (offset & (align - 1)) == 0); 2002 if (bytes >= align) { 2003 /* Write the aligned part in the middle. */ 2004 uint64_t aligned_bytes = bytes & ~(align - 1); 2005 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2006 NULL, 0, flags); 2007 if (ret < 0) { 2008 goto out; 2009 } 2010 bytes -= aligned_bytes; 2011 offset += aligned_bytes; 2012 } 2013 2014 assert(!bytes || (offset & (align - 1)) == 0); 2015 if (bytes) { 2016 assert(align == pad.tail + bytes); 2017 2018 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2019 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2020 &local_qiov, 0, 2021 flags & ~BDRV_REQ_ZERO_WRITE); 2022 } 2023 2024 out: 2025 bdrv_padding_destroy(&pad); 2026 2027 return ret; 2028 } 2029 2030 /* 2031 * Handle a write request in coroutine context 2032 */ 2033 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2034 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, 2035 BdrvRequestFlags flags) 2036 { 2037 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2038 } 2039 2040 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2041 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset, 2042 BdrvRequestFlags flags) 2043 { 2044 BlockDriverState *bs = child->bs; 2045 BdrvTrackedRequest req; 2046 uint64_t align = bs->bl.request_alignment; 2047 BdrvRequestPadding pad; 2048 int ret; 2049 2050 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); 2051 2052 if (!bs->drv) { 2053 return -ENOMEDIUM; 2054 } 2055 2056 ret = bdrv_check_byte_request(bs, offset, bytes); 2057 if (ret < 0) { 2058 return ret; 2059 } 2060 2061 bdrv_inc_in_flight(bs); 2062 /* 2063 * Align write if necessary by performing a read-modify-write cycle. 2064 * Pad qiov with the read parts and be sure to have a tracked request not 2065 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. 2066 */ 2067 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2068 2069 if (flags & BDRV_REQ_ZERO_WRITE) { 2070 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2071 goto out; 2072 } 2073 2074 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) { 2075 mark_request_serialising(&req, align); 2076 wait_serialising_requests(&req); 2077 bdrv_padding_rmw_read(child, &req, &pad, false); 2078 } 2079 2080 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2081 qiov, qiov_offset, flags); 2082 2083 bdrv_padding_destroy(&pad); 2084 2085 out: 2086 tracked_request_end(&req); 2087 bdrv_dec_in_flight(bs); 2088 2089 return ret; 2090 } 2091 2092 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2093 int bytes, BdrvRequestFlags flags) 2094 { 2095 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2096 2097 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2098 flags &= ~BDRV_REQ_MAY_UNMAP; 2099 } 2100 2101 return bdrv_co_pwritev(child, offset, bytes, NULL, 2102 BDRV_REQ_ZERO_WRITE | flags); 2103 } 2104 2105 /* 2106 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2107 */ 2108 int bdrv_flush_all(void) 2109 { 2110 BdrvNextIterator it; 2111 BlockDriverState *bs = NULL; 2112 int result = 0; 2113 2114 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2115 AioContext *aio_context = bdrv_get_aio_context(bs); 2116 int ret; 2117 2118 aio_context_acquire(aio_context); 2119 ret = bdrv_flush(bs); 2120 if (ret < 0 && !result) { 2121 result = ret; 2122 } 2123 aio_context_release(aio_context); 2124 } 2125 2126 return result; 2127 } 2128 2129 2130 typedef struct BdrvCoBlockStatusData { 2131 BlockDriverState *bs; 2132 BlockDriverState *base; 2133 bool want_zero; 2134 int64_t offset; 2135 int64_t bytes; 2136 int64_t *pnum; 2137 int64_t *map; 2138 BlockDriverState **file; 2139 int ret; 2140 bool done; 2141 } BdrvCoBlockStatusData; 2142 2143 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, 2144 bool want_zero, 2145 int64_t offset, 2146 int64_t bytes, 2147 int64_t *pnum, 2148 int64_t *map, 2149 BlockDriverState **file) 2150 { 2151 assert(bs->file && bs->file->bs); 2152 *pnum = bytes; 2153 *map = offset; 2154 *file = bs->file->bs; 2155 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2156 } 2157 2158 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, 2159 bool want_zero, 2160 int64_t offset, 2161 int64_t bytes, 2162 int64_t *pnum, 2163 int64_t *map, 2164 BlockDriverState **file) 2165 { 2166 assert(bs->backing && bs->backing->bs); 2167 *pnum = bytes; 2168 *map = offset; 2169 *file = bs->backing->bs; 2170 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2171 } 2172 2173 /* 2174 * Returns the allocation status of the specified sectors. 2175 * Drivers not implementing the functionality are assumed to not support 2176 * backing files, hence all their sectors are reported as allocated. 2177 * 2178 * If 'want_zero' is true, the caller is querying for mapping 2179 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2180 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2181 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2182 * 2183 * If 'offset' is beyond the end of the disk image the return value is 2184 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2185 * 2186 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2187 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2188 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2189 * 2190 * 'pnum' is set to the number of bytes (including and immediately 2191 * following the specified offset) that are easily known to be in the 2192 * same allocated/unallocated state. Note that a second call starting 2193 * at the original offset plus returned pnum may have the same status. 2194 * The returned value is non-zero on success except at end-of-file. 2195 * 2196 * Returns negative errno on failure. Otherwise, if the 2197 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2198 * set to the host mapping and BDS corresponding to the guest offset. 2199 */ 2200 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2201 bool want_zero, 2202 int64_t offset, int64_t bytes, 2203 int64_t *pnum, int64_t *map, 2204 BlockDriverState **file) 2205 { 2206 int64_t total_size; 2207 int64_t n; /* bytes */ 2208 int ret; 2209 int64_t local_map = 0; 2210 BlockDriverState *local_file = NULL; 2211 int64_t aligned_offset, aligned_bytes; 2212 uint32_t align; 2213 2214 assert(pnum); 2215 *pnum = 0; 2216 total_size = bdrv_getlength(bs); 2217 if (total_size < 0) { 2218 ret = total_size; 2219 goto early_out; 2220 } 2221 2222 if (offset >= total_size) { 2223 ret = BDRV_BLOCK_EOF; 2224 goto early_out; 2225 } 2226 if (!bytes) { 2227 ret = 0; 2228 goto early_out; 2229 } 2230 2231 n = total_size - offset; 2232 if (n < bytes) { 2233 bytes = n; 2234 } 2235 2236 /* Must be non-NULL or bdrv_getlength() would have failed */ 2237 assert(bs->drv); 2238 if (!bs->drv->bdrv_co_block_status) { 2239 *pnum = bytes; 2240 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2241 if (offset + bytes == total_size) { 2242 ret |= BDRV_BLOCK_EOF; 2243 } 2244 if (bs->drv->protocol_name) { 2245 ret |= BDRV_BLOCK_OFFSET_VALID; 2246 local_map = offset; 2247 local_file = bs; 2248 } 2249 goto early_out; 2250 } 2251 2252 bdrv_inc_in_flight(bs); 2253 2254 /* Round out to request_alignment boundaries */ 2255 align = bs->bl.request_alignment; 2256 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2257 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2258 2259 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2260 aligned_bytes, pnum, &local_map, 2261 &local_file); 2262 if (ret < 0) { 2263 *pnum = 0; 2264 goto out; 2265 } 2266 2267 /* 2268 * The driver's result must be a non-zero multiple of request_alignment. 2269 * Clamp pnum and adjust map to original request. 2270 */ 2271 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2272 align > offset - aligned_offset); 2273 if (ret & BDRV_BLOCK_RECURSE) { 2274 assert(ret & BDRV_BLOCK_DATA); 2275 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2276 assert(!(ret & BDRV_BLOCK_ZERO)); 2277 } 2278 2279 *pnum -= offset - aligned_offset; 2280 if (*pnum > bytes) { 2281 *pnum = bytes; 2282 } 2283 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2284 local_map += offset - aligned_offset; 2285 } 2286 2287 if (ret & BDRV_BLOCK_RAW) { 2288 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2289 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2290 *pnum, pnum, &local_map, &local_file); 2291 goto out; 2292 } 2293 2294 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2295 ret |= BDRV_BLOCK_ALLOCATED; 2296 } else if (want_zero) { 2297 if (bdrv_unallocated_blocks_are_zero(bs)) { 2298 ret |= BDRV_BLOCK_ZERO; 2299 } else if (bs->backing) { 2300 BlockDriverState *bs2 = bs->backing->bs; 2301 int64_t size2 = bdrv_getlength(bs2); 2302 2303 if (size2 >= 0 && offset >= size2) { 2304 ret |= BDRV_BLOCK_ZERO; 2305 } 2306 } 2307 } 2308 2309 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2310 local_file && local_file != bs && 2311 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2312 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2313 int64_t file_pnum; 2314 int ret2; 2315 2316 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2317 *pnum, &file_pnum, NULL, NULL); 2318 if (ret2 >= 0) { 2319 /* Ignore errors. This is just providing extra information, it 2320 * is useful but not necessary. 2321 */ 2322 if (ret2 & BDRV_BLOCK_EOF && 2323 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2324 /* 2325 * It is valid for the format block driver to read 2326 * beyond the end of the underlying file's current 2327 * size; such areas read as zero. 2328 */ 2329 ret |= BDRV_BLOCK_ZERO; 2330 } else { 2331 /* Limit request to the range reported by the protocol driver */ 2332 *pnum = file_pnum; 2333 ret |= (ret2 & BDRV_BLOCK_ZERO); 2334 } 2335 } 2336 } 2337 2338 out: 2339 bdrv_dec_in_flight(bs); 2340 if (ret >= 0 && offset + *pnum == total_size) { 2341 ret |= BDRV_BLOCK_EOF; 2342 } 2343 early_out: 2344 if (file) { 2345 *file = local_file; 2346 } 2347 if (map) { 2348 *map = local_map; 2349 } 2350 return ret; 2351 } 2352 2353 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2354 BlockDriverState *base, 2355 bool want_zero, 2356 int64_t offset, 2357 int64_t bytes, 2358 int64_t *pnum, 2359 int64_t *map, 2360 BlockDriverState **file) 2361 { 2362 BlockDriverState *p; 2363 int ret = 0; 2364 bool first = true; 2365 2366 assert(bs != base); 2367 for (p = bs; p != base; p = backing_bs(p)) { 2368 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2369 file); 2370 if (ret < 0) { 2371 break; 2372 } 2373 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { 2374 /* 2375 * Reading beyond the end of the file continues to read 2376 * zeroes, but we can only widen the result to the 2377 * unallocated length we learned from an earlier 2378 * iteration. 2379 */ 2380 *pnum = bytes; 2381 } 2382 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { 2383 break; 2384 } 2385 /* [offset, pnum] unallocated on this layer, which could be only 2386 * the first part of [offset, bytes]. */ 2387 bytes = MIN(bytes, *pnum); 2388 first = false; 2389 } 2390 return ret; 2391 } 2392 2393 /* Coroutine wrapper for bdrv_block_status_above() */ 2394 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) 2395 { 2396 BdrvCoBlockStatusData *data = opaque; 2397 2398 data->ret = bdrv_co_block_status_above(data->bs, data->base, 2399 data->want_zero, 2400 data->offset, data->bytes, 2401 data->pnum, data->map, data->file); 2402 data->done = true; 2403 aio_wait_kick(); 2404 } 2405 2406 /* 2407 * Synchronous wrapper around bdrv_co_block_status_above(). 2408 * 2409 * See bdrv_co_block_status_above() for details. 2410 */ 2411 static int bdrv_common_block_status_above(BlockDriverState *bs, 2412 BlockDriverState *base, 2413 bool want_zero, int64_t offset, 2414 int64_t bytes, int64_t *pnum, 2415 int64_t *map, 2416 BlockDriverState **file) 2417 { 2418 Coroutine *co; 2419 BdrvCoBlockStatusData data = { 2420 .bs = bs, 2421 .base = base, 2422 .want_zero = want_zero, 2423 .offset = offset, 2424 .bytes = bytes, 2425 .pnum = pnum, 2426 .map = map, 2427 .file = file, 2428 .done = false, 2429 }; 2430 2431 if (qemu_in_coroutine()) { 2432 /* Fast-path if already in coroutine context */ 2433 bdrv_block_status_above_co_entry(&data); 2434 } else { 2435 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); 2436 bdrv_coroutine_enter(bs, co); 2437 BDRV_POLL_WHILE(bs, !data.done); 2438 } 2439 return data.ret; 2440 } 2441 2442 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2443 int64_t offset, int64_t bytes, int64_t *pnum, 2444 int64_t *map, BlockDriverState **file) 2445 { 2446 return bdrv_common_block_status_above(bs, base, true, offset, bytes, 2447 pnum, map, file); 2448 } 2449 2450 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2451 int64_t *pnum, int64_t *map, BlockDriverState **file) 2452 { 2453 return bdrv_block_status_above(bs, backing_bs(bs), 2454 offset, bytes, pnum, map, file); 2455 } 2456 2457 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2458 int64_t bytes, int64_t *pnum) 2459 { 2460 int ret; 2461 int64_t dummy; 2462 2463 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, 2464 bytes, pnum ? pnum : &dummy, NULL, 2465 NULL); 2466 if (ret < 0) { 2467 return ret; 2468 } 2469 return !!(ret & BDRV_BLOCK_ALLOCATED); 2470 } 2471 2472 /* 2473 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2474 * 2475 * Return 1 if (a prefix of) the given range is allocated in any image 2476 * between BASE and TOP (BASE is only included if include_base is set). 2477 * BASE can be NULL to check if the given offset is allocated in any 2478 * image of the chain. Return 0 otherwise, or negative errno on 2479 * failure. 2480 * 2481 * 'pnum' is set to the number of bytes (including and immediately 2482 * following the specified offset) that are known to be in the same 2483 * allocated/unallocated state. Note that a subsequent call starting 2484 * at 'offset + *pnum' may return the same allocation status (in other 2485 * words, the result is not necessarily the maximum possible range); 2486 * but 'pnum' will only be 0 when end of file is reached. 2487 * 2488 */ 2489 int bdrv_is_allocated_above(BlockDriverState *top, 2490 BlockDriverState *base, 2491 bool include_base, int64_t offset, 2492 int64_t bytes, int64_t *pnum) 2493 { 2494 BlockDriverState *intermediate; 2495 int ret; 2496 int64_t n = bytes; 2497 2498 assert(base || !include_base); 2499 2500 intermediate = top; 2501 while (include_base || intermediate != base) { 2502 int64_t pnum_inter; 2503 int64_t size_inter; 2504 2505 assert(intermediate); 2506 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); 2507 if (ret < 0) { 2508 return ret; 2509 } 2510 if (ret) { 2511 *pnum = pnum_inter; 2512 return 1; 2513 } 2514 2515 size_inter = bdrv_getlength(intermediate); 2516 if (size_inter < 0) { 2517 return size_inter; 2518 } 2519 if (n > pnum_inter && 2520 (intermediate == top || offset + pnum_inter < size_inter)) { 2521 n = pnum_inter; 2522 } 2523 2524 if (intermediate == base) { 2525 break; 2526 } 2527 2528 intermediate = backing_bs(intermediate); 2529 } 2530 2531 *pnum = n; 2532 return 0; 2533 } 2534 2535 typedef struct BdrvVmstateCo { 2536 BlockDriverState *bs; 2537 QEMUIOVector *qiov; 2538 int64_t pos; 2539 bool is_read; 2540 int ret; 2541 } BdrvVmstateCo; 2542 2543 static int coroutine_fn 2544 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2545 bool is_read) 2546 { 2547 BlockDriver *drv = bs->drv; 2548 int ret = -ENOTSUP; 2549 2550 bdrv_inc_in_flight(bs); 2551 2552 if (!drv) { 2553 ret = -ENOMEDIUM; 2554 } else if (drv->bdrv_load_vmstate) { 2555 if (is_read) { 2556 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2557 } else { 2558 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2559 } 2560 } else if (bs->file) { 2561 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); 2562 } 2563 2564 bdrv_dec_in_flight(bs); 2565 return ret; 2566 } 2567 2568 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) 2569 { 2570 BdrvVmstateCo *co = opaque; 2571 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); 2572 aio_wait_kick(); 2573 } 2574 2575 static inline int 2576 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, 2577 bool is_read) 2578 { 2579 if (qemu_in_coroutine()) { 2580 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); 2581 } else { 2582 BdrvVmstateCo data = { 2583 .bs = bs, 2584 .qiov = qiov, 2585 .pos = pos, 2586 .is_read = is_read, 2587 .ret = -EINPROGRESS, 2588 }; 2589 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); 2590 2591 bdrv_coroutine_enter(bs, co); 2592 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); 2593 return data.ret; 2594 } 2595 } 2596 2597 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2598 int64_t pos, int size) 2599 { 2600 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2601 int ret; 2602 2603 ret = bdrv_writev_vmstate(bs, &qiov, pos); 2604 if (ret < 0) { 2605 return ret; 2606 } 2607 2608 return size; 2609 } 2610 2611 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2612 { 2613 return bdrv_rw_vmstate(bs, qiov, pos, false); 2614 } 2615 2616 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2617 int64_t pos, int size) 2618 { 2619 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2620 int ret; 2621 2622 ret = bdrv_readv_vmstate(bs, &qiov, pos); 2623 if (ret < 0) { 2624 return ret; 2625 } 2626 2627 return size; 2628 } 2629 2630 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2631 { 2632 return bdrv_rw_vmstate(bs, qiov, pos, true); 2633 } 2634 2635 /**************************************************************/ 2636 /* async I/Os */ 2637 2638 void bdrv_aio_cancel(BlockAIOCB *acb) 2639 { 2640 qemu_aio_ref(acb); 2641 bdrv_aio_cancel_async(acb); 2642 while (acb->refcnt > 1) { 2643 if (acb->aiocb_info->get_aio_context) { 2644 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2645 } else if (acb->bs) { 2646 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2647 * assert that we're not using an I/O thread. Thread-safe 2648 * code should use bdrv_aio_cancel_async exclusively. 2649 */ 2650 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2651 aio_poll(bdrv_get_aio_context(acb->bs), true); 2652 } else { 2653 abort(); 2654 } 2655 } 2656 qemu_aio_unref(acb); 2657 } 2658 2659 /* Async version of aio cancel. The caller is not blocked if the acb implements 2660 * cancel_async, otherwise we do nothing and let the request normally complete. 2661 * In either case the completion callback must be called. */ 2662 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2663 { 2664 if (acb->aiocb_info->cancel_async) { 2665 acb->aiocb_info->cancel_async(acb); 2666 } 2667 } 2668 2669 /**************************************************************/ 2670 /* Coroutine block device emulation */ 2671 2672 typedef struct FlushCo { 2673 BlockDriverState *bs; 2674 int ret; 2675 } FlushCo; 2676 2677 2678 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 2679 { 2680 FlushCo *rwco = opaque; 2681 2682 rwco->ret = bdrv_co_flush(rwco->bs); 2683 aio_wait_kick(); 2684 } 2685 2686 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2687 { 2688 int current_gen; 2689 int ret = 0; 2690 2691 bdrv_inc_in_flight(bs); 2692 2693 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2694 bdrv_is_sg(bs)) { 2695 goto early_exit; 2696 } 2697 2698 qemu_co_mutex_lock(&bs->reqs_lock); 2699 current_gen = atomic_read(&bs->write_gen); 2700 2701 /* Wait until any previous flushes are completed */ 2702 while (bs->active_flush_req) { 2703 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2704 } 2705 2706 /* Flushes reach this point in nondecreasing current_gen order. */ 2707 bs->active_flush_req = true; 2708 qemu_co_mutex_unlock(&bs->reqs_lock); 2709 2710 /* Write back all layers by calling one driver function */ 2711 if (bs->drv->bdrv_co_flush) { 2712 ret = bs->drv->bdrv_co_flush(bs); 2713 goto out; 2714 } 2715 2716 /* Write back cached data to the OS even with cache=unsafe */ 2717 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 2718 if (bs->drv->bdrv_co_flush_to_os) { 2719 ret = bs->drv->bdrv_co_flush_to_os(bs); 2720 if (ret < 0) { 2721 goto out; 2722 } 2723 } 2724 2725 /* But don't actually force it to the disk with cache=unsafe */ 2726 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2727 goto flush_parent; 2728 } 2729 2730 /* Check if we really need to flush anything */ 2731 if (bs->flushed_gen == current_gen) { 2732 goto flush_parent; 2733 } 2734 2735 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 2736 if (!bs->drv) { 2737 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2738 * (even in case of apparent success) */ 2739 ret = -ENOMEDIUM; 2740 goto out; 2741 } 2742 if (bs->drv->bdrv_co_flush_to_disk) { 2743 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2744 } else if (bs->drv->bdrv_aio_flush) { 2745 BlockAIOCB *acb; 2746 CoroutineIOCompletion co = { 2747 .coroutine = qemu_coroutine_self(), 2748 }; 2749 2750 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2751 if (acb == NULL) { 2752 ret = -EIO; 2753 } else { 2754 qemu_coroutine_yield(); 2755 ret = co.ret; 2756 } 2757 } else { 2758 /* 2759 * Some block drivers always operate in either writethrough or unsafe 2760 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2761 * know how the server works (because the behaviour is hardcoded or 2762 * depends on server-side configuration), so we can't ensure that 2763 * everything is safe on disk. Returning an error doesn't work because 2764 * that would break guests even if the server operates in writethrough 2765 * mode. 2766 * 2767 * Let's hope the user knows what he's doing. 2768 */ 2769 ret = 0; 2770 } 2771 2772 if (ret < 0) { 2773 goto out; 2774 } 2775 2776 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2777 * in the case of cache=unsafe, so there are no useless flushes. 2778 */ 2779 flush_parent: 2780 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; 2781 out: 2782 /* Notify any pending flushes that we have completed */ 2783 if (ret == 0) { 2784 bs->flushed_gen = current_gen; 2785 } 2786 2787 qemu_co_mutex_lock(&bs->reqs_lock); 2788 bs->active_flush_req = false; 2789 /* Return value is ignored - it's ok if wait queue is empty */ 2790 qemu_co_queue_next(&bs->flush_queue); 2791 qemu_co_mutex_unlock(&bs->reqs_lock); 2792 2793 early_exit: 2794 bdrv_dec_in_flight(bs); 2795 return ret; 2796 } 2797 2798 int bdrv_flush(BlockDriverState *bs) 2799 { 2800 Coroutine *co; 2801 FlushCo flush_co = { 2802 .bs = bs, 2803 .ret = NOT_DONE, 2804 }; 2805 2806 if (qemu_in_coroutine()) { 2807 /* Fast-path if already in coroutine context */ 2808 bdrv_flush_co_entry(&flush_co); 2809 } else { 2810 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); 2811 bdrv_coroutine_enter(bs, co); 2812 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); 2813 } 2814 2815 return flush_co.ret; 2816 } 2817 2818 typedef struct DiscardCo { 2819 BdrvChild *child; 2820 int64_t offset; 2821 int64_t bytes; 2822 int ret; 2823 } DiscardCo; 2824 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) 2825 { 2826 DiscardCo *rwco = opaque; 2827 2828 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes); 2829 aio_wait_kick(); 2830 } 2831 2832 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2833 int64_t bytes) 2834 { 2835 BdrvTrackedRequest req; 2836 int max_pdiscard, ret; 2837 int head, tail, align; 2838 BlockDriverState *bs = child->bs; 2839 2840 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2841 return -ENOMEDIUM; 2842 } 2843 2844 if (bdrv_has_readonly_bitmaps(bs)) { 2845 return -EPERM; 2846 } 2847 2848 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) { 2849 return -EIO; 2850 } 2851 2852 /* Do nothing if disabled. */ 2853 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2854 return 0; 2855 } 2856 2857 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2858 return 0; 2859 } 2860 2861 /* Discard is advisory, but some devices track and coalesce 2862 * unaligned requests, so we must pass everything down rather than 2863 * round here. Still, most devices will just silently ignore 2864 * unaligned requests (by returning -ENOTSUP), so we must fragment 2865 * the request accordingly. */ 2866 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2867 assert(align % bs->bl.request_alignment == 0); 2868 head = offset % align; 2869 tail = (offset + bytes) % align; 2870 2871 bdrv_inc_in_flight(bs); 2872 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2873 2874 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 2875 if (ret < 0) { 2876 goto out; 2877 } 2878 2879 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), 2880 align); 2881 assert(max_pdiscard >= bs->bl.request_alignment); 2882 2883 while (bytes > 0) { 2884 int64_t num = bytes; 2885 2886 if (head) { 2887 /* Make small requests to get to alignment boundaries. */ 2888 num = MIN(bytes, align - head); 2889 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 2890 num %= bs->bl.request_alignment; 2891 } 2892 head = (head + num) % align; 2893 assert(num < max_pdiscard); 2894 } else if (tail) { 2895 if (num > align) { 2896 /* Shorten the request to the last aligned cluster. */ 2897 num -= tail; 2898 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 2899 tail > bs->bl.request_alignment) { 2900 tail %= bs->bl.request_alignment; 2901 num -= tail; 2902 } 2903 } 2904 /* limit request size */ 2905 if (num > max_pdiscard) { 2906 num = max_pdiscard; 2907 } 2908 2909 if (!bs->drv) { 2910 ret = -ENOMEDIUM; 2911 goto out; 2912 } 2913 if (bs->drv->bdrv_co_pdiscard) { 2914 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 2915 } else { 2916 BlockAIOCB *acb; 2917 CoroutineIOCompletion co = { 2918 .coroutine = qemu_coroutine_self(), 2919 }; 2920 2921 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 2922 bdrv_co_io_em_complete, &co); 2923 if (acb == NULL) { 2924 ret = -EIO; 2925 goto out; 2926 } else { 2927 qemu_coroutine_yield(); 2928 ret = co.ret; 2929 } 2930 } 2931 if (ret && ret != -ENOTSUP) { 2932 goto out; 2933 } 2934 2935 offset += num; 2936 bytes -= num; 2937 } 2938 ret = 0; 2939 out: 2940 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 2941 tracked_request_end(&req); 2942 bdrv_dec_in_flight(bs); 2943 return ret; 2944 } 2945 2946 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes) 2947 { 2948 Coroutine *co; 2949 DiscardCo rwco = { 2950 .child = child, 2951 .offset = offset, 2952 .bytes = bytes, 2953 .ret = NOT_DONE, 2954 }; 2955 2956 if (qemu_in_coroutine()) { 2957 /* Fast-path if already in coroutine context */ 2958 bdrv_pdiscard_co_entry(&rwco); 2959 } else { 2960 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); 2961 bdrv_coroutine_enter(child->bs, co); 2962 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); 2963 } 2964 2965 return rwco.ret; 2966 } 2967 2968 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 2969 { 2970 BlockDriver *drv = bs->drv; 2971 CoroutineIOCompletion co = { 2972 .coroutine = qemu_coroutine_self(), 2973 }; 2974 BlockAIOCB *acb; 2975 2976 bdrv_inc_in_flight(bs); 2977 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 2978 co.ret = -ENOTSUP; 2979 goto out; 2980 } 2981 2982 if (drv->bdrv_co_ioctl) { 2983 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 2984 } else { 2985 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 2986 if (!acb) { 2987 co.ret = -ENOTSUP; 2988 goto out; 2989 } 2990 qemu_coroutine_yield(); 2991 } 2992 out: 2993 bdrv_dec_in_flight(bs); 2994 return co.ret; 2995 } 2996 2997 void *qemu_blockalign(BlockDriverState *bs, size_t size) 2998 { 2999 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3000 } 3001 3002 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3003 { 3004 return memset(qemu_blockalign(bs, size), 0, size); 3005 } 3006 3007 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3008 { 3009 size_t align = bdrv_opt_mem_align(bs); 3010 3011 /* Ensure that NULL is never returned on success */ 3012 assert(align > 0); 3013 if (size == 0) { 3014 size = align; 3015 } 3016 3017 return qemu_try_memalign(align, size); 3018 } 3019 3020 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3021 { 3022 void *mem = qemu_try_blockalign(bs, size); 3023 3024 if (mem) { 3025 memset(mem, 0, size); 3026 } 3027 3028 return mem; 3029 } 3030 3031 /* 3032 * Check if all memory in this vector is sector aligned. 3033 */ 3034 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3035 { 3036 int i; 3037 size_t alignment = bdrv_min_mem_align(bs); 3038 3039 for (i = 0; i < qiov->niov; i++) { 3040 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3041 return false; 3042 } 3043 if (qiov->iov[i].iov_len % alignment) { 3044 return false; 3045 } 3046 } 3047 3048 return true; 3049 } 3050 3051 void bdrv_add_before_write_notifier(BlockDriverState *bs, 3052 NotifierWithReturn *notifier) 3053 { 3054 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 3055 } 3056 3057 void bdrv_io_plug(BlockDriverState *bs) 3058 { 3059 BdrvChild *child; 3060 3061 QLIST_FOREACH(child, &bs->children, next) { 3062 bdrv_io_plug(child->bs); 3063 } 3064 3065 if (atomic_fetch_inc(&bs->io_plugged) == 0) { 3066 BlockDriver *drv = bs->drv; 3067 if (drv && drv->bdrv_io_plug) { 3068 drv->bdrv_io_plug(bs); 3069 } 3070 } 3071 } 3072 3073 void bdrv_io_unplug(BlockDriverState *bs) 3074 { 3075 BdrvChild *child; 3076 3077 assert(bs->io_plugged); 3078 if (atomic_fetch_dec(&bs->io_plugged) == 1) { 3079 BlockDriver *drv = bs->drv; 3080 if (drv && drv->bdrv_io_unplug) { 3081 drv->bdrv_io_unplug(bs); 3082 } 3083 } 3084 3085 QLIST_FOREACH(child, &bs->children, next) { 3086 bdrv_io_unplug(child->bs); 3087 } 3088 } 3089 3090 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3091 { 3092 BdrvChild *child; 3093 3094 if (bs->drv && bs->drv->bdrv_register_buf) { 3095 bs->drv->bdrv_register_buf(bs, host, size); 3096 } 3097 QLIST_FOREACH(child, &bs->children, next) { 3098 bdrv_register_buf(child->bs, host, size); 3099 } 3100 } 3101 3102 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3103 { 3104 BdrvChild *child; 3105 3106 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3107 bs->drv->bdrv_unregister_buf(bs, host); 3108 } 3109 QLIST_FOREACH(child, &bs->children, next) { 3110 bdrv_unregister_buf(child->bs, host); 3111 } 3112 } 3113 3114 static int coroutine_fn bdrv_co_copy_range_internal( 3115 BdrvChild *src, uint64_t src_offset, BdrvChild *dst, 3116 uint64_t dst_offset, uint64_t bytes, 3117 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3118 bool recurse_src) 3119 { 3120 BdrvTrackedRequest req; 3121 int ret; 3122 3123 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3124 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3125 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3126 3127 if (!dst || !dst->bs) { 3128 return -ENOMEDIUM; 3129 } 3130 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes); 3131 if (ret) { 3132 return ret; 3133 } 3134 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3135 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3136 } 3137 3138 if (!src || !src->bs) { 3139 return -ENOMEDIUM; 3140 } 3141 ret = bdrv_check_byte_request(src->bs, src_offset, bytes); 3142 if (ret) { 3143 return ret; 3144 } 3145 3146 if (!src->bs->drv->bdrv_co_copy_range_from 3147 || !dst->bs->drv->bdrv_co_copy_range_to 3148 || src->bs->encrypted || dst->bs->encrypted) { 3149 return -ENOTSUP; 3150 } 3151 3152 if (recurse_src) { 3153 bdrv_inc_in_flight(src->bs); 3154 tracked_request_begin(&req, src->bs, src_offset, bytes, 3155 BDRV_TRACKED_READ); 3156 3157 /* BDRV_REQ_SERIALISING is only for write operation */ 3158 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3159 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) { 3160 wait_serialising_requests(&req); 3161 } 3162 3163 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3164 src, src_offset, 3165 dst, dst_offset, 3166 bytes, 3167 read_flags, write_flags); 3168 3169 tracked_request_end(&req); 3170 bdrv_dec_in_flight(src->bs); 3171 } else { 3172 bdrv_inc_in_flight(dst->bs); 3173 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3174 BDRV_TRACKED_WRITE); 3175 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3176 write_flags); 3177 if (!ret) { 3178 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3179 src, src_offset, 3180 dst, dst_offset, 3181 bytes, 3182 read_flags, write_flags); 3183 } 3184 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3185 tracked_request_end(&req); 3186 bdrv_dec_in_flight(dst->bs); 3187 } 3188 3189 return ret; 3190 } 3191 3192 /* Copy range from @src to @dst. 3193 * 3194 * See the comment of bdrv_co_copy_range for the parameter and return value 3195 * semantics. */ 3196 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset, 3197 BdrvChild *dst, uint64_t dst_offset, 3198 uint64_t bytes, 3199 BdrvRequestFlags read_flags, 3200 BdrvRequestFlags write_flags) 3201 { 3202 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3203 read_flags, write_flags); 3204 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3205 bytes, read_flags, write_flags, true); 3206 } 3207 3208 /* Copy range from @src to @dst. 3209 * 3210 * See the comment of bdrv_co_copy_range for the parameter and return value 3211 * semantics. */ 3212 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset, 3213 BdrvChild *dst, uint64_t dst_offset, 3214 uint64_t bytes, 3215 BdrvRequestFlags read_flags, 3216 BdrvRequestFlags write_flags) 3217 { 3218 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3219 read_flags, write_flags); 3220 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3221 bytes, read_flags, write_flags, false); 3222 } 3223 3224 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset, 3225 BdrvChild *dst, uint64_t dst_offset, 3226 uint64_t bytes, BdrvRequestFlags read_flags, 3227 BdrvRequestFlags write_flags) 3228 { 3229 return bdrv_co_copy_range_from(src, src_offset, 3230 dst, dst_offset, 3231 bytes, read_flags, write_flags); 3232 } 3233 3234 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3235 { 3236 BdrvChild *c; 3237 QLIST_FOREACH(c, &bs->parents, next_parent) { 3238 if (c->role->resize) { 3239 c->role->resize(c); 3240 } 3241 } 3242 } 3243 3244 /** 3245 * Truncate file to 'offset' bytes (needed only for file protocols) 3246 */ 3247 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, 3248 PreallocMode prealloc, Error **errp) 3249 { 3250 BlockDriverState *bs = child->bs; 3251 BlockDriver *drv = bs->drv; 3252 BdrvTrackedRequest req; 3253 int64_t old_size, new_bytes; 3254 int ret; 3255 3256 3257 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3258 if (!drv) { 3259 error_setg(errp, "No medium inserted"); 3260 return -ENOMEDIUM; 3261 } 3262 if (offset < 0) { 3263 error_setg(errp, "Image size cannot be negative"); 3264 return -EINVAL; 3265 } 3266 3267 old_size = bdrv_getlength(bs); 3268 if (old_size < 0) { 3269 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3270 return old_size; 3271 } 3272 3273 if (offset > old_size) { 3274 new_bytes = offset - old_size; 3275 } else { 3276 new_bytes = 0; 3277 } 3278 3279 bdrv_inc_in_flight(bs); 3280 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3281 BDRV_TRACKED_TRUNCATE); 3282 3283 /* If we are growing the image and potentially using preallocation for the 3284 * new area, we need to make sure that no write requests are made to it 3285 * concurrently or they might be overwritten by preallocation. */ 3286 if (new_bytes) { 3287 mark_request_serialising(&req, 1); 3288 } 3289 if (bs->read_only) { 3290 error_setg(errp, "Image is read-only"); 3291 ret = -EACCES; 3292 goto out; 3293 } 3294 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3295 0); 3296 if (ret < 0) { 3297 error_setg_errno(errp, -ret, 3298 "Failed to prepare request for truncation"); 3299 goto out; 3300 } 3301 3302 if (!drv->bdrv_co_truncate) { 3303 if (bs->file && drv->is_filter) { 3304 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp); 3305 goto out; 3306 } 3307 error_setg(errp, "Image format driver does not support resize"); 3308 ret = -ENOTSUP; 3309 goto out; 3310 } 3311 3312 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp); 3313 if (ret < 0) { 3314 goto out; 3315 } 3316 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3317 if (ret < 0) { 3318 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3319 } else { 3320 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3321 } 3322 /* It's possible that truncation succeeded but refresh_total_sectors 3323 * failed, but the latter doesn't affect how we should finish the request. 3324 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3325 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3326 3327 out: 3328 tracked_request_end(&req); 3329 bdrv_dec_in_flight(bs); 3330 3331 return ret; 3332 } 3333 3334 typedef struct TruncateCo { 3335 BdrvChild *child; 3336 int64_t offset; 3337 PreallocMode prealloc; 3338 Error **errp; 3339 int ret; 3340 } TruncateCo; 3341 3342 static void coroutine_fn bdrv_truncate_co_entry(void *opaque) 3343 { 3344 TruncateCo *tco = opaque; 3345 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc, 3346 tco->errp); 3347 aio_wait_kick(); 3348 } 3349 3350 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc, 3351 Error **errp) 3352 { 3353 Coroutine *co; 3354 TruncateCo tco = { 3355 .child = child, 3356 .offset = offset, 3357 .prealloc = prealloc, 3358 .errp = errp, 3359 .ret = NOT_DONE, 3360 }; 3361 3362 if (qemu_in_coroutine()) { 3363 /* Fast-path if already in coroutine context */ 3364 bdrv_truncate_co_entry(&tco); 3365 } else { 3366 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco); 3367 bdrv_coroutine_enter(child->bs, co); 3368 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE); 3369 } 3370 3371 return tco.ret; 3372 } 3373