xref: /openbmc/qemu/block/io.c (revision 136cb9cc)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41 
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44 
45 static void bdrv_parent_cb_resize(BlockDriverState *bs);
46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
47     int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48 
49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
50 {
51     BdrvChild *c, *next;
52 
53     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54         if (c == ignore) {
55             continue;
56         }
57         bdrv_parent_drained_begin_single(c);
58     }
59 }
60 
61 void bdrv_parent_drained_end_single(BdrvChild *c)
62 {
63     GLOBAL_STATE_CODE();
64 
65     assert(c->quiesced_parent);
66     c->quiesced_parent = false;
67 
68     if (c->klass->drained_end) {
69         c->klass->drained_end(c);
70     }
71 }
72 
73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
74 {
75     BdrvChild *c;
76 
77     QLIST_FOREACH(c, &bs->parents, next_parent) {
78         if (c == ignore) {
79             continue;
80         }
81         bdrv_parent_drained_end_single(c);
82     }
83 }
84 
85 bool bdrv_parent_drained_poll_single(BdrvChild *c)
86 {
87     if (c->klass->drained_poll) {
88         return c->klass->drained_poll(c);
89     }
90     return false;
91 }
92 
93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
94                                      bool ignore_bds_parents)
95 {
96     BdrvChild *c, *next;
97     bool busy = false;
98 
99     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
100         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
101             continue;
102         }
103         busy |= bdrv_parent_drained_poll_single(c);
104     }
105 
106     return busy;
107 }
108 
109 void bdrv_parent_drained_begin_single(BdrvChild *c)
110 {
111     GLOBAL_STATE_CODE();
112 
113     assert(!c->quiesced_parent);
114     c->quiesced_parent = true;
115 
116     if (c->klass->drained_begin) {
117         c->klass->drained_begin(c);
118     }
119 }
120 
121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
122 {
123     dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
124                                   src->pdiscard_alignment);
125     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
126     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
127     dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
128                                         src->max_hw_transfer);
129     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130                                  src->opt_mem_alignment);
131     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132                                  src->min_mem_alignment);
133     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134     dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
135 }
136 
137 typedef struct BdrvRefreshLimitsState {
138     BlockDriverState *bs;
139     BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141 
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144     BdrvRefreshLimitsState *s = opaque;
145 
146     s->bs->bl = s->old_bl;
147 }
148 
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150     .abort = bdrv_refresh_limits_abort,
151     .clean = g_free,
152 };
153 
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157     ERRP_GUARD();
158     BlockDriver *drv = bs->drv;
159     BdrvChild *c;
160     bool have_limits;
161 
162     GLOBAL_STATE_CODE();
163 
164     if (tran) {
165         BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166         *s = (BdrvRefreshLimitsState) {
167             .bs = bs,
168             .old_bl = bs->bl,
169         };
170         tran_add(tran, &bdrv_refresh_limits_drv, s);
171     }
172 
173     memset(&bs->bl, 0, sizeof(bs->bl));
174 
175     if (!drv) {
176         return;
177     }
178 
179     /* Default alignment based on whether driver has byte interface */
180     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181                                 drv->bdrv_aio_preadv ||
182                                 drv->bdrv_co_preadv_part) ? 1 : 512;
183 
184     /* Take some limits from the children as a default */
185     have_limits = false;
186     QLIST_FOREACH(c, &bs->children, next) {
187         if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
188         {
189             bdrv_merge_limits(&bs->bl, &c->bs->bl);
190             have_limits = true;
191         }
192 
193         if (c->role & BDRV_CHILD_FILTERED) {
194             bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
195         }
196     }
197 
198     if (!have_limits) {
199         bs->bl.min_mem_alignment = 512;
200         bs->bl.opt_mem_alignment = qemu_real_host_page_size();
201 
202         /* Safe default since most protocols use readv()/writev()/etc */
203         bs->bl.max_iov = IOV_MAX;
204     }
205 
206     /* Then let the driver override it */
207     if (drv->bdrv_refresh_limits) {
208         drv->bdrv_refresh_limits(bs, errp);
209         if (*errp) {
210             return;
211         }
212     }
213 
214     if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
215         error_setg(errp, "Driver requires too large request alignment");
216     }
217 }
218 
219 /**
220  * The copy-on-read flag is actually a reference count so multiple users may
221  * use the feature without worrying about clobbering its previous state.
222  * Copy-on-read stays enabled until all users have called to disable it.
223  */
224 void bdrv_enable_copy_on_read(BlockDriverState *bs)
225 {
226     IO_CODE();
227     qatomic_inc(&bs->copy_on_read);
228 }
229 
230 void bdrv_disable_copy_on_read(BlockDriverState *bs)
231 {
232     int old = qatomic_fetch_dec(&bs->copy_on_read);
233     IO_CODE();
234     assert(old >= 1);
235 }
236 
237 typedef struct {
238     Coroutine *co;
239     BlockDriverState *bs;
240     bool done;
241     bool begin;
242     bool poll;
243     BdrvChild *parent;
244 } BdrvCoDrainData;
245 
246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
248                      bool ignore_bds_parents)
249 {
250     GLOBAL_STATE_CODE();
251 
252     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
253         return true;
254     }
255 
256     if (qatomic_read(&bs->in_flight)) {
257         return true;
258     }
259 
260     return false;
261 }
262 
263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
264                                       BdrvChild *ignore_parent)
265 {
266     return bdrv_drain_poll(bs, ignore_parent, false);
267 }
268 
269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
270                                   bool poll);
271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
272 
273 static void bdrv_co_drain_bh_cb(void *opaque)
274 {
275     BdrvCoDrainData *data = opaque;
276     Coroutine *co = data->co;
277     BlockDriverState *bs = data->bs;
278 
279     if (bs) {
280         AioContext *ctx = bdrv_get_aio_context(bs);
281         aio_context_acquire(ctx);
282         bdrv_dec_in_flight(bs);
283         if (data->begin) {
284             bdrv_do_drained_begin(bs, data->parent, data->poll);
285         } else {
286             assert(!data->poll);
287             bdrv_do_drained_end(bs, data->parent);
288         }
289         aio_context_release(ctx);
290     } else {
291         assert(data->begin);
292         bdrv_drain_all_begin();
293     }
294 
295     data->done = true;
296     aio_co_wake(co);
297 }
298 
299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
300                                                 bool begin,
301                                                 BdrvChild *parent,
302                                                 bool poll)
303 {
304     BdrvCoDrainData data;
305     Coroutine *self = qemu_coroutine_self();
306     AioContext *ctx = bdrv_get_aio_context(bs);
307     AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
308 
309     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
310      * other coroutines run if they were queued by aio_co_enter(). */
311 
312     assert(qemu_in_coroutine());
313     data = (BdrvCoDrainData) {
314         .co = self,
315         .bs = bs,
316         .done = false,
317         .begin = begin,
318         .parent = parent,
319         .poll = poll,
320     };
321 
322     if (bs) {
323         bdrv_inc_in_flight(bs);
324     }
325 
326     /*
327      * Temporarily drop the lock across yield or we would get deadlocks.
328      * bdrv_co_drain_bh_cb() reaquires the lock as needed.
329      *
330      * When we yield below, the lock for the current context will be
331      * released, so if this is actually the lock that protects bs, don't drop
332      * it a second time.
333      */
334     if (ctx != co_ctx) {
335         aio_context_release(ctx);
336     }
337     replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
338                                      bdrv_co_drain_bh_cb, &data);
339 
340     qemu_coroutine_yield();
341     /* If we are resumed from some other event (such as an aio completion or a
342      * timer callback), it is a bug in the caller that should be fixed. */
343     assert(data.done);
344 
345     /* Reaquire the AioContext of bs if we dropped it */
346     if (ctx != co_ctx) {
347         aio_context_acquire(ctx);
348     }
349 }
350 
351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
352                                   bool poll)
353 {
354     IO_OR_GS_CODE();
355 
356     if (qemu_in_coroutine()) {
357         bdrv_co_yield_to_drain(bs, true, parent, poll);
358         return;
359     }
360 
361     GLOBAL_STATE_CODE();
362 
363     /* Stop things in parent-to-child order */
364     if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
365         bdrv_parent_drained_begin(bs, parent);
366         if (bs->drv && bs->drv->bdrv_drain_begin) {
367             bs->drv->bdrv_drain_begin(bs);
368         }
369     }
370 
371     /*
372      * Wait for drained requests to finish.
373      *
374      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
375      * call is needed so things in this AioContext can make progress even
376      * though we don't return to the main AioContext loop - this automatically
377      * includes other nodes in the same AioContext and therefore all child
378      * nodes.
379      */
380     if (poll) {
381         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
382     }
383 }
384 
385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
386 {
387     bdrv_do_drained_begin(bs, parent, false);
388 }
389 
390 void bdrv_drained_begin(BlockDriverState *bs)
391 {
392     IO_OR_GS_CODE();
393     bdrv_do_drained_begin(bs, NULL, true);
394 }
395 
396 /**
397  * This function does not poll, nor must any of its recursively called
398  * functions.
399  */
400 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
401 {
402     int old_quiesce_counter;
403 
404     IO_OR_GS_CODE();
405 
406     if (qemu_in_coroutine()) {
407         bdrv_co_yield_to_drain(bs, false, parent, false);
408         return;
409     }
410     assert(bs->quiesce_counter > 0);
411     GLOBAL_STATE_CODE();
412 
413     /* Re-enable things in child-to-parent order */
414     old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
415     if (old_quiesce_counter == 1) {
416         if (bs->drv && bs->drv->bdrv_drain_end) {
417             bs->drv->bdrv_drain_end(bs);
418         }
419         bdrv_parent_drained_end(bs, parent);
420     }
421 }
422 
423 void bdrv_drained_end(BlockDriverState *bs)
424 {
425     IO_OR_GS_CODE();
426     bdrv_do_drained_end(bs, NULL);
427 }
428 
429 void bdrv_drain(BlockDriverState *bs)
430 {
431     IO_OR_GS_CODE();
432     bdrv_drained_begin(bs);
433     bdrv_drained_end(bs);
434 }
435 
436 static void bdrv_drain_assert_idle(BlockDriverState *bs)
437 {
438     BdrvChild *child, *next;
439 
440     assert(qatomic_read(&bs->in_flight) == 0);
441     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
442         bdrv_drain_assert_idle(child->bs);
443     }
444 }
445 
446 unsigned int bdrv_drain_all_count = 0;
447 
448 static bool bdrv_drain_all_poll(void)
449 {
450     BlockDriverState *bs = NULL;
451     bool result = false;
452     GLOBAL_STATE_CODE();
453 
454     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
455      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
456     while ((bs = bdrv_next_all_states(bs))) {
457         AioContext *aio_context = bdrv_get_aio_context(bs);
458         aio_context_acquire(aio_context);
459         result |= bdrv_drain_poll(bs, NULL, true);
460         aio_context_release(aio_context);
461     }
462 
463     return result;
464 }
465 
466 /*
467  * Wait for pending requests to complete across all BlockDriverStates
468  *
469  * This function does not flush data to disk, use bdrv_flush_all() for that
470  * after calling this function.
471  *
472  * This pauses all block jobs and disables external clients. It must
473  * be paired with bdrv_drain_all_end().
474  *
475  * NOTE: no new block jobs or BlockDriverStates can be created between
476  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
477  */
478 void bdrv_drain_all_begin_nopoll(void)
479 {
480     BlockDriverState *bs = NULL;
481     GLOBAL_STATE_CODE();
482 
483     /*
484      * bdrv queue is managed by record/replay,
485      * waiting for finishing the I/O requests may
486      * be infinite
487      */
488     if (replay_events_enabled()) {
489         return;
490     }
491 
492     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
493      * loop AioContext, so make sure we're in the main context. */
494     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
495     assert(bdrv_drain_all_count < INT_MAX);
496     bdrv_drain_all_count++;
497 
498     /* Quiesce all nodes, without polling in-flight requests yet. The graph
499      * cannot change during this loop. */
500     while ((bs = bdrv_next_all_states(bs))) {
501         AioContext *aio_context = bdrv_get_aio_context(bs);
502 
503         aio_context_acquire(aio_context);
504         bdrv_do_drained_begin(bs, NULL, false);
505         aio_context_release(aio_context);
506     }
507 }
508 
509 void bdrv_drain_all_begin(void)
510 {
511     BlockDriverState *bs = NULL;
512 
513     if (qemu_in_coroutine()) {
514         bdrv_co_yield_to_drain(NULL, true, NULL, true);
515         return;
516     }
517 
518     /*
519      * bdrv queue is managed by record/replay,
520      * waiting for finishing the I/O requests may
521      * be infinite
522      */
523     if (replay_events_enabled()) {
524         return;
525     }
526 
527     bdrv_drain_all_begin_nopoll();
528 
529     /* Now poll the in-flight requests */
530     AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
531 
532     while ((bs = bdrv_next_all_states(bs))) {
533         bdrv_drain_assert_idle(bs);
534     }
535 }
536 
537 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
538 {
539     GLOBAL_STATE_CODE();
540 
541     g_assert(bs->quiesce_counter > 0);
542     g_assert(!bs->refcnt);
543 
544     while (bs->quiesce_counter) {
545         bdrv_do_drained_end(bs, NULL);
546     }
547 }
548 
549 void bdrv_drain_all_end(void)
550 {
551     BlockDriverState *bs = NULL;
552     GLOBAL_STATE_CODE();
553 
554     /*
555      * bdrv queue is managed by record/replay,
556      * waiting for finishing the I/O requests may
557      * be endless
558      */
559     if (replay_events_enabled()) {
560         return;
561     }
562 
563     while ((bs = bdrv_next_all_states(bs))) {
564         AioContext *aio_context = bdrv_get_aio_context(bs);
565 
566         aio_context_acquire(aio_context);
567         bdrv_do_drained_end(bs, NULL);
568         aio_context_release(aio_context);
569     }
570 
571     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
572     assert(bdrv_drain_all_count > 0);
573     bdrv_drain_all_count--;
574 }
575 
576 void bdrv_drain_all(void)
577 {
578     GLOBAL_STATE_CODE();
579     bdrv_drain_all_begin();
580     bdrv_drain_all_end();
581 }
582 
583 /**
584  * Remove an active request from the tracked requests list
585  *
586  * This function should be called when a tracked request is completing.
587  */
588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
589 {
590     if (req->serialising) {
591         qatomic_dec(&req->bs->serialising_in_flight);
592     }
593 
594     qemu_co_mutex_lock(&req->bs->reqs_lock);
595     QLIST_REMOVE(req, list);
596     qemu_co_queue_restart_all(&req->wait_queue);
597     qemu_co_mutex_unlock(&req->bs->reqs_lock);
598 }
599 
600 /**
601  * Add an active request to the tracked requests list
602  */
603 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
604                                                BlockDriverState *bs,
605                                                int64_t offset,
606                                                int64_t bytes,
607                                                enum BdrvTrackedRequestType type)
608 {
609     bdrv_check_request(offset, bytes, &error_abort);
610 
611     *req = (BdrvTrackedRequest){
612         .bs = bs,
613         .offset         = offset,
614         .bytes          = bytes,
615         .type           = type,
616         .co             = qemu_coroutine_self(),
617         .serialising    = false,
618         .overlap_offset = offset,
619         .overlap_bytes  = bytes,
620     };
621 
622     qemu_co_queue_init(&req->wait_queue);
623 
624     qemu_co_mutex_lock(&bs->reqs_lock);
625     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
626     qemu_co_mutex_unlock(&bs->reqs_lock);
627 }
628 
629 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
630                                      int64_t offset, int64_t bytes)
631 {
632     bdrv_check_request(offset, bytes, &error_abort);
633 
634     /*        aaaa   bbbb */
635     if (offset >= req->overlap_offset + req->overlap_bytes) {
636         return false;
637     }
638     /* bbbb   aaaa        */
639     if (req->overlap_offset >= offset + bytes) {
640         return false;
641     }
642     return true;
643 }
644 
645 /* Called with self->bs->reqs_lock held */
646 static coroutine_fn BdrvTrackedRequest *
647 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
648 {
649     BdrvTrackedRequest *req;
650 
651     QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
652         if (req == self || (!req->serialising && !self->serialising)) {
653             continue;
654         }
655         if (tracked_request_overlaps(req, self->overlap_offset,
656                                      self->overlap_bytes))
657         {
658             /*
659              * Hitting this means there was a reentrant request, for
660              * example, a block driver issuing nested requests.  This must
661              * never happen since it means deadlock.
662              */
663             assert(qemu_coroutine_self() != req->co);
664 
665             /*
666              * If the request is already (indirectly) waiting for us, or
667              * will wait for us as soon as it wakes up, then just go on
668              * (instead of producing a deadlock in the former case).
669              */
670             if (!req->waiting_for) {
671                 return req;
672             }
673         }
674     }
675 
676     return NULL;
677 }
678 
679 /* Called with self->bs->reqs_lock held */
680 static void coroutine_fn
681 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
682 {
683     BdrvTrackedRequest *req;
684 
685     while ((req = bdrv_find_conflicting_request(self))) {
686         self->waiting_for = req;
687         qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
688         self->waiting_for = NULL;
689     }
690 }
691 
692 /* Called with req->bs->reqs_lock held */
693 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
694                                             uint64_t align)
695 {
696     int64_t overlap_offset = req->offset & ~(align - 1);
697     int64_t overlap_bytes =
698         ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
699 
700     bdrv_check_request(req->offset, req->bytes, &error_abort);
701 
702     if (!req->serialising) {
703         qatomic_inc(&req->bs->serialising_in_flight);
704         req->serialising = true;
705     }
706 
707     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
708     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
709 }
710 
711 /**
712  * Return the tracked request on @bs for the current coroutine, or
713  * NULL if there is none.
714  */
715 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
716 {
717     BdrvTrackedRequest *req;
718     Coroutine *self = qemu_coroutine_self();
719     IO_CODE();
720 
721     QLIST_FOREACH(req, &bs->tracked_requests, list) {
722         if (req->co == self) {
723             return req;
724         }
725     }
726 
727     return NULL;
728 }
729 
730 /**
731  * Round a region to cluster boundaries
732  */
733 void coroutine_fn GRAPH_RDLOCK
734 bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
735                        int64_t *cluster_offset, int64_t *cluster_bytes)
736 {
737     BlockDriverInfo bdi;
738     IO_CODE();
739     if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
740         *cluster_offset = offset;
741         *cluster_bytes = bytes;
742     } else {
743         int64_t c = bdi.cluster_size;
744         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
745         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
746     }
747 }
748 
749 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
750 {
751     BlockDriverInfo bdi;
752     int ret;
753 
754     ret = bdrv_co_get_info(bs, &bdi);
755     if (ret < 0 || bdi.cluster_size == 0) {
756         return bs->bl.request_alignment;
757     } else {
758         return bdi.cluster_size;
759     }
760 }
761 
762 void bdrv_inc_in_flight(BlockDriverState *bs)
763 {
764     IO_CODE();
765     qatomic_inc(&bs->in_flight);
766 }
767 
768 void bdrv_wakeup(BlockDriverState *bs)
769 {
770     IO_CODE();
771     aio_wait_kick();
772 }
773 
774 void bdrv_dec_in_flight(BlockDriverState *bs)
775 {
776     IO_CODE();
777     qatomic_dec(&bs->in_flight);
778     bdrv_wakeup(bs);
779 }
780 
781 static void coroutine_fn
782 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
783 {
784     BlockDriverState *bs = self->bs;
785 
786     if (!qatomic_read(&bs->serialising_in_flight)) {
787         return;
788     }
789 
790     qemu_co_mutex_lock(&bs->reqs_lock);
791     bdrv_wait_serialising_requests_locked(self);
792     qemu_co_mutex_unlock(&bs->reqs_lock);
793 }
794 
795 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
796                                                 uint64_t align)
797 {
798     IO_CODE();
799 
800     qemu_co_mutex_lock(&req->bs->reqs_lock);
801 
802     tracked_request_set_serialising(req, align);
803     bdrv_wait_serialising_requests_locked(req);
804 
805     qemu_co_mutex_unlock(&req->bs->reqs_lock);
806 }
807 
808 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
809                             QEMUIOVector *qiov, size_t qiov_offset,
810                             Error **errp)
811 {
812     /*
813      * Check generic offset/bytes correctness
814      */
815 
816     if (offset < 0) {
817         error_setg(errp, "offset is negative: %" PRIi64, offset);
818         return -EIO;
819     }
820 
821     if (bytes < 0) {
822         error_setg(errp, "bytes is negative: %" PRIi64, bytes);
823         return -EIO;
824     }
825 
826     if (bytes > BDRV_MAX_LENGTH) {
827         error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
828                    bytes, BDRV_MAX_LENGTH);
829         return -EIO;
830     }
831 
832     if (offset > BDRV_MAX_LENGTH) {
833         error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
834                    offset, BDRV_MAX_LENGTH);
835         return -EIO;
836     }
837 
838     if (offset > BDRV_MAX_LENGTH - bytes) {
839         error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
840                    "exceeds maximum(%" PRIi64 ")", offset, bytes,
841                    BDRV_MAX_LENGTH);
842         return -EIO;
843     }
844 
845     if (!qiov) {
846         return 0;
847     }
848 
849     /*
850      * Check qiov and qiov_offset
851      */
852 
853     if (qiov_offset > qiov->size) {
854         error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
855                    qiov_offset, qiov->size);
856         return -EIO;
857     }
858 
859     if (bytes > qiov->size - qiov_offset) {
860         error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
861                    "vector size(%zu)", bytes, qiov_offset, qiov->size);
862         return -EIO;
863     }
864 
865     return 0;
866 }
867 
868 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
869 {
870     return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
871 }
872 
873 static int bdrv_check_request32(int64_t offset, int64_t bytes,
874                                 QEMUIOVector *qiov, size_t qiov_offset)
875 {
876     int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
877     if (ret < 0) {
878         return ret;
879     }
880 
881     if (bytes > BDRV_REQUEST_MAX_BYTES) {
882         return -EIO;
883     }
884 
885     return 0;
886 }
887 
888 /*
889  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
890  * The operation is sped up by checking the block status and only writing
891  * zeroes to the device if they currently do not return zeroes. Optional
892  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
893  * BDRV_REQ_FUA).
894  *
895  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
896  */
897 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
898 {
899     int ret;
900     int64_t target_size, bytes, offset = 0;
901     BlockDriverState *bs = child->bs;
902     IO_CODE();
903 
904     target_size = bdrv_getlength(bs);
905     if (target_size < 0) {
906         return target_size;
907     }
908 
909     for (;;) {
910         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
911         if (bytes <= 0) {
912             return 0;
913         }
914         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
915         if (ret < 0) {
916             return ret;
917         }
918         if (ret & BDRV_BLOCK_ZERO) {
919             offset += bytes;
920             continue;
921         }
922         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
923         if (ret < 0) {
924             return ret;
925         }
926         offset += bytes;
927     }
928 }
929 
930 /*
931  * Writes to the file and ensures that no writes are reordered across this
932  * request (acts as a barrier)
933  *
934  * Returns 0 on success, -errno in error cases.
935  */
936 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
937                                      int64_t bytes, const void *buf,
938                                      BdrvRequestFlags flags)
939 {
940     int ret;
941     IO_CODE();
942     assert_bdrv_graph_readable();
943 
944     ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
945     if (ret < 0) {
946         return ret;
947     }
948 
949     ret = bdrv_co_flush(child->bs);
950     if (ret < 0) {
951         return ret;
952     }
953 
954     return 0;
955 }
956 
957 typedef struct CoroutineIOCompletion {
958     Coroutine *coroutine;
959     int ret;
960 } CoroutineIOCompletion;
961 
962 static void bdrv_co_io_em_complete(void *opaque, int ret)
963 {
964     CoroutineIOCompletion *co = opaque;
965 
966     co->ret = ret;
967     aio_co_wake(co->coroutine);
968 }
969 
970 static int coroutine_fn GRAPH_RDLOCK
971 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
972                    QEMUIOVector *qiov, size_t qiov_offset, int flags)
973 {
974     BlockDriver *drv = bs->drv;
975     int64_t sector_num;
976     unsigned int nb_sectors;
977     QEMUIOVector local_qiov;
978     int ret;
979     assert_bdrv_graph_readable();
980 
981     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
982     assert(!(flags & ~bs->supported_read_flags));
983 
984     if (!drv) {
985         return -ENOMEDIUM;
986     }
987 
988     if (drv->bdrv_co_preadv_part) {
989         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
990                                         flags);
991     }
992 
993     if (qiov_offset > 0 || bytes != qiov->size) {
994         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
995         qiov = &local_qiov;
996     }
997 
998     if (drv->bdrv_co_preadv) {
999         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1000         goto out;
1001     }
1002 
1003     if (drv->bdrv_aio_preadv) {
1004         BlockAIOCB *acb;
1005         CoroutineIOCompletion co = {
1006             .coroutine = qemu_coroutine_self(),
1007         };
1008 
1009         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1010                                    bdrv_co_io_em_complete, &co);
1011         if (acb == NULL) {
1012             ret = -EIO;
1013             goto out;
1014         } else {
1015             qemu_coroutine_yield();
1016             ret = co.ret;
1017             goto out;
1018         }
1019     }
1020 
1021     sector_num = offset >> BDRV_SECTOR_BITS;
1022     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1023 
1024     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1025     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1026     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1027     assert(drv->bdrv_co_readv);
1028 
1029     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1030 
1031 out:
1032     if (qiov == &local_qiov) {
1033         qemu_iovec_destroy(&local_qiov);
1034     }
1035 
1036     return ret;
1037 }
1038 
1039 static int coroutine_fn GRAPH_RDLOCK
1040 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1041                     QEMUIOVector *qiov, size_t qiov_offset,
1042                     BdrvRequestFlags flags)
1043 {
1044     BlockDriver *drv = bs->drv;
1045     bool emulate_fua = false;
1046     int64_t sector_num;
1047     unsigned int nb_sectors;
1048     QEMUIOVector local_qiov;
1049     int ret;
1050     assert_bdrv_graph_readable();
1051 
1052     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1053 
1054     if (!drv) {
1055         return -ENOMEDIUM;
1056     }
1057 
1058     if ((flags & BDRV_REQ_FUA) &&
1059         (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1060         flags &= ~BDRV_REQ_FUA;
1061         emulate_fua = true;
1062     }
1063 
1064     flags &= bs->supported_write_flags;
1065 
1066     if (drv->bdrv_co_pwritev_part) {
1067         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1068                                         flags);
1069         goto emulate_flags;
1070     }
1071 
1072     if (qiov_offset > 0 || bytes != qiov->size) {
1073         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1074         qiov = &local_qiov;
1075     }
1076 
1077     if (drv->bdrv_co_pwritev) {
1078         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1079         goto emulate_flags;
1080     }
1081 
1082     if (drv->bdrv_aio_pwritev) {
1083         BlockAIOCB *acb;
1084         CoroutineIOCompletion co = {
1085             .coroutine = qemu_coroutine_self(),
1086         };
1087 
1088         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1089                                     bdrv_co_io_em_complete, &co);
1090         if (acb == NULL) {
1091             ret = -EIO;
1092         } else {
1093             qemu_coroutine_yield();
1094             ret = co.ret;
1095         }
1096         goto emulate_flags;
1097     }
1098 
1099     sector_num = offset >> BDRV_SECTOR_BITS;
1100     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1101 
1102     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1103     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1104     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1105 
1106     assert(drv->bdrv_co_writev);
1107     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1108 
1109 emulate_flags:
1110     if (ret == 0 && emulate_fua) {
1111         ret = bdrv_co_flush(bs);
1112     }
1113 
1114     if (qiov == &local_qiov) {
1115         qemu_iovec_destroy(&local_qiov);
1116     }
1117 
1118     return ret;
1119 }
1120 
1121 static int coroutine_fn GRAPH_RDLOCK
1122 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1123                                int64_t bytes, QEMUIOVector *qiov,
1124                                size_t qiov_offset)
1125 {
1126     BlockDriver *drv = bs->drv;
1127     QEMUIOVector local_qiov;
1128     int ret;
1129     assert_bdrv_graph_readable();
1130 
1131     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1132 
1133     if (!drv) {
1134         return -ENOMEDIUM;
1135     }
1136 
1137     if (!block_driver_can_compress(drv)) {
1138         return -ENOTSUP;
1139     }
1140 
1141     if (drv->bdrv_co_pwritev_compressed_part) {
1142         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1143                                                     qiov, qiov_offset);
1144     }
1145 
1146     if (qiov_offset == 0) {
1147         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1148     }
1149 
1150     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1151     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1152     qemu_iovec_destroy(&local_qiov);
1153 
1154     return ret;
1155 }
1156 
1157 static int coroutine_fn GRAPH_RDLOCK
1158 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1159                          QEMUIOVector *qiov, size_t qiov_offset, int flags)
1160 {
1161     BlockDriverState *bs = child->bs;
1162 
1163     /* Perform I/O through a temporary buffer so that users who scribble over
1164      * their read buffer while the operation is in progress do not end up
1165      * modifying the image file.  This is critical for zero-copy guest I/O
1166      * where anything might happen inside guest memory.
1167      */
1168     void *bounce_buffer = NULL;
1169 
1170     BlockDriver *drv = bs->drv;
1171     int64_t cluster_offset;
1172     int64_t cluster_bytes;
1173     int64_t skip_bytes;
1174     int ret;
1175     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1176                                     BDRV_REQUEST_MAX_BYTES);
1177     int64_t progress = 0;
1178     bool skip_write;
1179 
1180     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1181 
1182     if (!drv) {
1183         return -ENOMEDIUM;
1184     }
1185 
1186     /*
1187      * Do not write anything when the BDS is inactive.  That is not
1188      * allowed, and it would not help.
1189      */
1190     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1191 
1192     /* FIXME We cannot require callers to have write permissions when all they
1193      * are doing is a read request. If we did things right, write permissions
1194      * would be obtained anyway, but internally by the copy-on-read code. As
1195      * long as it is implemented here rather than in a separate filter driver,
1196      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1197      * it could request permissions. Therefore we have to bypass the permission
1198      * system for the moment. */
1199     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1200 
1201     /* Cover entire cluster so no additional backing file I/O is required when
1202      * allocating cluster in the image file.  Note that this value may exceed
1203      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1204      * is one reason we loop rather than doing it all at once.
1205      */
1206     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1207     skip_bytes = offset - cluster_offset;
1208 
1209     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1210                                    cluster_offset, cluster_bytes);
1211 
1212     while (cluster_bytes) {
1213         int64_t pnum;
1214 
1215         if (skip_write) {
1216             ret = 1; /* "already allocated", so nothing will be copied */
1217             pnum = MIN(cluster_bytes, max_transfer);
1218         } else {
1219             ret = bdrv_is_allocated(bs, cluster_offset,
1220                                     MIN(cluster_bytes, max_transfer), &pnum);
1221             if (ret < 0) {
1222                 /*
1223                  * Safe to treat errors in querying allocation as if
1224                  * unallocated; we'll probably fail again soon on the
1225                  * read, but at least that will set a decent errno.
1226                  */
1227                 pnum = MIN(cluster_bytes, max_transfer);
1228             }
1229 
1230             /* Stop at EOF if the image ends in the middle of the cluster */
1231             if (ret == 0 && pnum == 0) {
1232                 assert(progress >= bytes);
1233                 break;
1234             }
1235 
1236             assert(skip_bytes < pnum);
1237         }
1238 
1239         if (ret <= 0) {
1240             QEMUIOVector local_qiov;
1241 
1242             /* Must copy-on-read; use the bounce buffer */
1243             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1244             if (!bounce_buffer) {
1245                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1246                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1247                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1248 
1249                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1250                 if (!bounce_buffer) {
1251                     ret = -ENOMEM;
1252                     goto err;
1253                 }
1254             }
1255             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1256 
1257             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1258                                      &local_qiov, 0, 0);
1259             if (ret < 0) {
1260                 goto err;
1261             }
1262 
1263             bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1264             if (drv->bdrv_co_pwrite_zeroes &&
1265                 buffer_is_zero(bounce_buffer, pnum)) {
1266                 /* FIXME: Should we (perhaps conditionally) be setting
1267                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1268                  * that still correctly reads as zero? */
1269                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1270                                                BDRV_REQ_WRITE_UNCHANGED);
1271             } else {
1272                 /* This does not change the data on the disk, it is not
1273                  * necessary to flush even in cache=writethrough mode.
1274                  */
1275                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1276                                           &local_qiov, 0,
1277                                           BDRV_REQ_WRITE_UNCHANGED);
1278             }
1279 
1280             if (ret < 0) {
1281                 /* It might be okay to ignore write errors for guest
1282                  * requests.  If this is a deliberate copy-on-read
1283                  * then we don't want to ignore the error.  Simply
1284                  * report it in all cases.
1285                  */
1286                 goto err;
1287             }
1288 
1289             if (!(flags & BDRV_REQ_PREFETCH)) {
1290                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1291                                     bounce_buffer + skip_bytes,
1292                                     MIN(pnum - skip_bytes, bytes - progress));
1293             }
1294         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1295             /* Read directly into the destination */
1296             ret = bdrv_driver_preadv(bs, offset + progress,
1297                                      MIN(pnum - skip_bytes, bytes - progress),
1298                                      qiov, qiov_offset + progress, 0);
1299             if (ret < 0) {
1300                 goto err;
1301             }
1302         }
1303 
1304         cluster_offset += pnum;
1305         cluster_bytes -= pnum;
1306         progress += pnum - skip_bytes;
1307         skip_bytes = 0;
1308     }
1309     ret = 0;
1310 
1311 err:
1312     qemu_vfree(bounce_buffer);
1313     return ret;
1314 }
1315 
1316 /*
1317  * Forwards an already correctly aligned request to the BlockDriver. This
1318  * handles copy on read, zeroing after EOF, and fragmentation of large
1319  * reads; any other features must be implemented by the caller.
1320  */
1321 static int coroutine_fn GRAPH_RDLOCK
1322 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1323                     int64_t offset, int64_t bytes, int64_t align,
1324                     QEMUIOVector *qiov, size_t qiov_offset, int flags)
1325 {
1326     BlockDriverState *bs = child->bs;
1327     int64_t total_bytes, max_bytes;
1328     int ret = 0;
1329     int64_t bytes_remaining = bytes;
1330     int max_transfer;
1331 
1332     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1333     assert(is_power_of_2(align));
1334     assert((offset & (align - 1)) == 0);
1335     assert((bytes & (align - 1)) == 0);
1336     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1337     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1338                                    align);
1339 
1340     /*
1341      * TODO: We would need a per-BDS .supported_read_flags and
1342      * potential fallback support, if we ever implement any read flags
1343      * to pass through to drivers.  For now, there aren't any
1344      * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1345      */
1346     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1347                        BDRV_REQ_REGISTERED_BUF)));
1348 
1349     /* Handle Copy on Read and associated serialisation */
1350     if (flags & BDRV_REQ_COPY_ON_READ) {
1351         /* If we touch the same cluster it counts as an overlap.  This
1352          * guarantees that allocating writes will be serialized and not race
1353          * with each other for the same cluster.  For example, in copy-on-read
1354          * it ensures that the CoR read and write operations are atomic and
1355          * guest writes cannot interleave between them. */
1356         bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1357     } else {
1358         bdrv_wait_serialising_requests(req);
1359     }
1360 
1361     if (flags & BDRV_REQ_COPY_ON_READ) {
1362         int64_t pnum;
1363 
1364         /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1365         flags &= ~BDRV_REQ_COPY_ON_READ;
1366 
1367         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1368         if (ret < 0) {
1369             goto out;
1370         }
1371 
1372         if (!ret || pnum != bytes) {
1373             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1374                                            qiov, qiov_offset, flags);
1375             goto out;
1376         } else if (flags & BDRV_REQ_PREFETCH) {
1377             goto out;
1378         }
1379     }
1380 
1381     /* Forward the request to the BlockDriver, possibly fragmenting it */
1382     total_bytes = bdrv_co_getlength(bs);
1383     if (total_bytes < 0) {
1384         ret = total_bytes;
1385         goto out;
1386     }
1387 
1388     assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1389 
1390     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1391     if (bytes <= max_bytes && bytes <= max_transfer) {
1392         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1393         goto out;
1394     }
1395 
1396     while (bytes_remaining) {
1397         int64_t num;
1398 
1399         if (max_bytes) {
1400             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1401             assert(num);
1402 
1403             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1404                                      num, qiov,
1405                                      qiov_offset + bytes - bytes_remaining,
1406                                      flags);
1407             max_bytes -= num;
1408         } else {
1409             num = bytes_remaining;
1410             ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1411                                     0, bytes_remaining);
1412         }
1413         if (ret < 0) {
1414             goto out;
1415         }
1416         bytes_remaining -= num;
1417     }
1418 
1419 out:
1420     return ret < 0 ? ret : 0;
1421 }
1422 
1423 /*
1424  * Request padding
1425  *
1426  *  |<---- align ----->|                     |<----- align ---->|
1427  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1428  *  |          |       |                     |     |            |
1429  * -*----------$-------*-------- ... --------*-----$------------*---
1430  *  |          |       |                     |     |            |
1431  *  |          offset  |                     |     end          |
1432  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1433  *  [buf   ... )                             [tail_buf          )
1434  *
1435  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1436  * is placed at the beginning of @buf and @tail at the @end.
1437  *
1438  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1439  * around tail, if tail exists.
1440  *
1441  * @merge_reads is true for small requests,
1442  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1443  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1444  *
1445  * @write is true for write requests, false for read requests.
1446  *
1447  * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1448  * merge existing vector elements into a single one.  @collapse_bounce_buf acts
1449  * as the bounce buffer in such cases.  @pre_collapse_qiov has the pre-collapse
1450  * I/O vector elements so for read requests, the data can be copied back after
1451  * the read is done.
1452  */
1453 typedef struct BdrvRequestPadding {
1454     uint8_t *buf;
1455     size_t buf_len;
1456     uint8_t *tail_buf;
1457     size_t head;
1458     size_t tail;
1459     bool merge_reads;
1460     bool write;
1461     QEMUIOVector local_qiov;
1462 
1463     uint8_t *collapse_bounce_buf;
1464     size_t collapse_len;
1465     QEMUIOVector pre_collapse_qiov;
1466 } BdrvRequestPadding;
1467 
1468 static bool bdrv_init_padding(BlockDriverState *bs,
1469                               int64_t offset, int64_t bytes,
1470                               bool write,
1471                               BdrvRequestPadding *pad)
1472 {
1473     int64_t align = bs->bl.request_alignment;
1474     int64_t sum;
1475 
1476     bdrv_check_request(offset, bytes, &error_abort);
1477     assert(align <= INT_MAX); /* documented in block/block_int.h */
1478     assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1479 
1480     memset(pad, 0, sizeof(*pad));
1481 
1482     pad->head = offset & (align - 1);
1483     pad->tail = ((offset + bytes) & (align - 1));
1484     if (pad->tail) {
1485         pad->tail = align - pad->tail;
1486     }
1487 
1488     if (!pad->head && !pad->tail) {
1489         return false;
1490     }
1491 
1492     assert(bytes); /* Nothing good in aligning zero-length requests */
1493 
1494     sum = pad->head + bytes + pad->tail;
1495     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1496     pad->buf = qemu_blockalign(bs, pad->buf_len);
1497     pad->merge_reads = sum == pad->buf_len;
1498     if (pad->tail) {
1499         pad->tail_buf = pad->buf + pad->buf_len - align;
1500     }
1501 
1502     pad->write = write;
1503 
1504     return true;
1505 }
1506 
1507 static int coroutine_fn GRAPH_RDLOCK
1508 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1509                       BdrvRequestPadding *pad, bool zero_middle)
1510 {
1511     QEMUIOVector local_qiov;
1512     BlockDriverState *bs = child->bs;
1513     uint64_t align = bs->bl.request_alignment;
1514     int ret;
1515 
1516     assert(req->serialising && pad->buf);
1517 
1518     if (pad->head || pad->merge_reads) {
1519         int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1520 
1521         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1522 
1523         if (pad->head) {
1524             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1525         }
1526         if (pad->merge_reads && pad->tail) {
1527             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1528         }
1529         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1530                                   align, &local_qiov, 0, 0);
1531         if (ret < 0) {
1532             return ret;
1533         }
1534         if (pad->head) {
1535             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1536         }
1537         if (pad->merge_reads && pad->tail) {
1538             bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1539         }
1540 
1541         if (pad->merge_reads) {
1542             goto zero_mem;
1543         }
1544     }
1545 
1546     if (pad->tail) {
1547         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1548 
1549         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1550         ret = bdrv_aligned_preadv(
1551                 child, req,
1552                 req->overlap_offset + req->overlap_bytes - align,
1553                 align, align, &local_qiov, 0, 0);
1554         if (ret < 0) {
1555             return ret;
1556         }
1557         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1558     }
1559 
1560 zero_mem:
1561     if (zero_middle) {
1562         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1563     }
1564 
1565     return 0;
1566 }
1567 
1568 /**
1569  * Free *pad's associated buffers, and perform any necessary finalization steps.
1570  */
1571 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1572 {
1573     if (pad->collapse_bounce_buf) {
1574         if (!pad->write) {
1575             /*
1576              * If padding required elements in the vector to be collapsed into a
1577              * bounce buffer, copy the bounce buffer content back
1578              */
1579             qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1580                                 pad->collapse_bounce_buf, pad->collapse_len);
1581         }
1582         qemu_vfree(pad->collapse_bounce_buf);
1583         qemu_iovec_destroy(&pad->pre_collapse_qiov);
1584     }
1585     if (pad->buf) {
1586         qemu_vfree(pad->buf);
1587         qemu_iovec_destroy(&pad->local_qiov);
1588     }
1589     memset(pad, 0, sizeof(*pad));
1590 }
1591 
1592 /*
1593  * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1594  * ensuring that the resulting vector will not exceed IOV_MAX elements.
1595  *
1596  * To ensure this, when necessary, the first two or three elements of @iov are
1597  * merged into pad->collapse_bounce_buf and replaced by a reference to that
1598  * bounce buffer in pad->local_qiov.
1599  *
1600  * After performing a read request, the data from the bounce buffer must be
1601  * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1602  */
1603 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1604                                    BdrvRequestPadding *pad,
1605                                    struct iovec *iov, int niov,
1606                                    size_t iov_offset, size_t bytes)
1607 {
1608     int padded_niov, surplus_count, collapse_count;
1609 
1610     /* Assert this invariant */
1611     assert(niov <= IOV_MAX);
1612 
1613     /*
1614      * Cannot pad if resulting length would exceed SIZE_MAX.  Returning an error
1615      * to the guest is not ideal, but there is little else we can do.  At least
1616      * this will practically never happen on 64-bit systems.
1617      */
1618     if (SIZE_MAX - pad->head < bytes ||
1619         SIZE_MAX - pad->head - bytes < pad->tail)
1620     {
1621         return -EINVAL;
1622     }
1623 
1624     /* Length of the resulting IOV if we just concatenated everything */
1625     padded_niov = !!pad->head + niov + !!pad->tail;
1626 
1627     qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1628 
1629     if (pad->head) {
1630         qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1631     }
1632 
1633     /*
1634      * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1635      * Instead, merge the first two or three elements of @iov to reduce the
1636      * number of vector elements as necessary.
1637      */
1638     if (padded_niov > IOV_MAX) {
1639         /*
1640          * Only head and tail can have lead to the number of entries exceeding
1641          * IOV_MAX, so we can exceed it by the head and tail at most.  We need
1642          * to reduce the number of elements by `surplus_count`, so we merge that
1643          * many elements plus one into one element.
1644          */
1645         surplus_count = padded_niov - IOV_MAX;
1646         assert(surplus_count <= !!pad->head + !!pad->tail);
1647         collapse_count = surplus_count + 1;
1648 
1649         /*
1650          * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1651          * advance `iov` (and associated variables) by those elements.
1652          */
1653         qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1654         qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1655                               collapse_count, iov_offset, SIZE_MAX);
1656         iov += collapse_count;
1657         iov_offset = 0;
1658         niov -= collapse_count;
1659         bytes -= pad->pre_collapse_qiov.size;
1660 
1661         /*
1662          * Construct the bounce buffer to match the length of the to-collapse
1663          * vector elements, and for write requests, initialize it with the data
1664          * from those elements.  Then add it to `pad->local_qiov`.
1665          */
1666         pad->collapse_len = pad->pre_collapse_qiov.size;
1667         pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1668         if (pad->write) {
1669             qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1670                               pad->collapse_bounce_buf, pad->collapse_len);
1671         }
1672         qemu_iovec_add(&pad->local_qiov,
1673                        pad->collapse_bounce_buf, pad->collapse_len);
1674     }
1675 
1676     qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1677 
1678     if (pad->tail) {
1679         qemu_iovec_add(&pad->local_qiov,
1680                        pad->buf + pad->buf_len - pad->tail, pad->tail);
1681     }
1682 
1683     assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1684     return 0;
1685 }
1686 
1687 /*
1688  * bdrv_pad_request
1689  *
1690  * Exchange request parameters with padded request if needed. Don't include RMW
1691  * read of padding, bdrv_padding_rmw_read() should be called separately if
1692  * needed.
1693  *
1694  * @write is true for write requests, false for read requests.
1695  *
1696  * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1697  *  - on function start they represent original request
1698  *  - on failure or when padding is not needed they are unchanged
1699  *  - on success when padding is needed they represent padded request
1700  */
1701 static int bdrv_pad_request(BlockDriverState *bs,
1702                             QEMUIOVector **qiov, size_t *qiov_offset,
1703                             int64_t *offset, int64_t *bytes,
1704                             bool write,
1705                             BdrvRequestPadding *pad, bool *padded,
1706                             BdrvRequestFlags *flags)
1707 {
1708     int ret;
1709     struct iovec *sliced_iov;
1710     int sliced_niov;
1711     size_t sliced_head, sliced_tail;
1712 
1713     /* Should have been checked by the caller already */
1714     ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1715     if (ret < 0) {
1716         return ret;
1717     }
1718 
1719     if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1720         if (padded) {
1721             *padded = false;
1722         }
1723         return 0;
1724     }
1725 
1726     sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1727                                   &sliced_head, &sliced_tail,
1728                                   &sliced_niov);
1729 
1730     /* Guaranteed by bdrv_check_request32() */
1731     assert(*bytes <= SIZE_MAX);
1732     ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1733                                   sliced_head, *bytes);
1734     if (ret < 0) {
1735         bdrv_padding_finalize(pad);
1736         return ret;
1737     }
1738     *bytes += pad->head + pad->tail;
1739     *offset -= pad->head;
1740     *qiov = &pad->local_qiov;
1741     *qiov_offset = 0;
1742     if (padded) {
1743         *padded = true;
1744     }
1745     if (flags) {
1746         /* Can't use optimization hint with bounce buffer */
1747         *flags &= ~BDRV_REQ_REGISTERED_BUF;
1748     }
1749 
1750     return 0;
1751 }
1752 
1753 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1754     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1755     BdrvRequestFlags flags)
1756 {
1757     IO_CODE();
1758     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1759 }
1760 
1761 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1762     int64_t offset, int64_t bytes,
1763     QEMUIOVector *qiov, size_t qiov_offset,
1764     BdrvRequestFlags flags)
1765 {
1766     BlockDriverState *bs = child->bs;
1767     BdrvTrackedRequest req;
1768     BdrvRequestPadding pad;
1769     int ret;
1770     IO_CODE();
1771 
1772     trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1773 
1774     if (!bdrv_co_is_inserted(bs)) {
1775         return -ENOMEDIUM;
1776     }
1777 
1778     ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1779     if (ret < 0) {
1780         return ret;
1781     }
1782 
1783     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1784         /*
1785          * Aligning zero request is nonsense. Even if driver has special meaning
1786          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1787          * it to driver due to request_alignment.
1788          *
1789          * Still, no reason to return an error if someone do unaligned
1790          * zero-length read occasionally.
1791          */
1792         return 0;
1793     }
1794 
1795     bdrv_inc_in_flight(bs);
1796 
1797     /* Don't do copy-on-read if we read data before write operation */
1798     if (qatomic_read(&bs->copy_on_read)) {
1799         flags |= BDRV_REQ_COPY_ON_READ;
1800     }
1801 
1802     ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1803                            &pad, NULL, &flags);
1804     if (ret < 0) {
1805         goto fail;
1806     }
1807 
1808     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1809     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1810                               bs->bl.request_alignment,
1811                               qiov, qiov_offset, flags);
1812     tracked_request_end(&req);
1813     bdrv_padding_finalize(&pad);
1814 
1815 fail:
1816     bdrv_dec_in_flight(bs);
1817 
1818     return ret;
1819 }
1820 
1821 static int coroutine_fn GRAPH_RDLOCK
1822 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1823                          BdrvRequestFlags flags)
1824 {
1825     BlockDriver *drv = bs->drv;
1826     QEMUIOVector qiov;
1827     void *buf = NULL;
1828     int ret = 0;
1829     bool need_flush = false;
1830     int head = 0;
1831     int tail = 0;
1832 
1833     int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1834                                             INT64_MAX);
1835     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1836                         bs->bl.request_alignment);
1837     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1838 
1839     assert_bdrv_graph_readable();
1840     bdrv_check_request(offset, bytes, &error_abort);
1841 
1842     if (!drv) {
1843         return -ENOMEDIUM;
1844     }
1845 
1846     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1847         return -ENOTSUP;
1848     }
1849 
1850     /* By definition there is no user buffer so this flag doesn't make sense */
1851     if (flags & BDRV_REQ_REGISTERED_BUF) {
1852         return -EINVAL;
1853     }
1854 
1855     /* Invalidate the cached block-status data range if this write overlaps */
1856     bdrv_bsc_invalidate_range(bs, offset, bytes);
1857 
1858     assert(alignment % bs->bl.request_alignment == 0);
1859     head = offset % alignment;
1860     tail = (offset + bytes) % alignment;
1861     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1862     assert(max_write_zeroes >= bs->bl.request_alignment);
1863 
1864     while (bytes > 0 && !ret) {
1865         int64_t num = bytes;
1866 
1867         /* Align request.  Block drivers can expect the "bulk" of the request
1868          * to be aligned, and that unaligned requests do not cross cluster
1869          * boundaries.
1870          */
1871         if (head) {
1872             /* Make a small request up to the first aligned sector. For
1873              * convenience, limit this request to max_transfer even if
1874              * we don't need to fall back to writes.  */
1875             num = MIN(MIN(bytes, max_transfer), alignment - head);
1876             head = (head + num) % alignment;
1877             assert(num < max_write_zeroes);
1878         } else if (tail && num > alignment) {
1879             /* Shorten the request to the last aligned sector.  */
1880             num -= tail;
1881         }
1882 
1883         /* limit request size */
1884         if (num > max_write_zeroes) {
1885             num = max_write_zeroes;
1886         }
1887 
1888         ret = -ENOTSUP;
1889         /* First try the efficient write zeroes operation */
1890         if (drv->bdrv_co_pwrite_zeroes) {
1891             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1892                                              flags & bs->supported_zero_flags);
1893             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1894                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1895                 need_flush = true;
1896             }
1897         } else {
1898             assert(!bs->supported_zero_flags);
1899         }
1900 
1901         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1902             /* Fall back to bounce buffer if write zeroes is unsupported */
1903             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1904 
1905             if ((flags & BDRV_REQ_FUA) &&
1906                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1907                 /* No need for bdrv_driver_pwrite() to do a fallback
1908                  * flush on each chunk; use just one at the end */
1909                 write_flags &= ~BDRV_REQ_FUA;
1910                 need_flush = true;
1911             }
1912             num = MIN(num, max_transfer);
1913             if (buf == NULL) {
1914                 buf = qemu_try_blockalign0(bs, num);
1915                 if (buf == NULL) {
1916                     ret = -ENOMEM;
1917                     goto fail;
1918                 }
1919             }
1920             qemu_iovec_init_buf(&qiov, buf, num);
1921 
1922             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1923 
1924             /* Keep bounce buffer around if it is big enough for all
1925              * all future requests.
1926              */
1927             if (num < max_transfer) {
1928                 qemu_vfree(buf);
1929                 buf = NULL;
1930             }
1931         }
1932 
1933         offset += num;
1934         bytes -= num;
1935     }
1936 
1937 fail:
1938     if (ret == 0 && need_flush) {
1939         ret = bdrv_co_flush(bs);
1940     }
1941     qemu_vfree(buf);
1942     return ret;
1943 }
1944 
1945 static inline int coroutine_fn GRAPH_RDLOCK
1946 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1947                           BdrvTrackedRequest *req, int flags)
1948 {
1949     BlockDriverState *bs = child->bs;
1950 
1951     bdrv_check_request(offset, bytes, &error_abort);
1952 
1953     if (bdrv_is_read_only(bs)) {
1954         return -EPERM;
1955     }
1956 
1957     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1958     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1959     assert(!(flags & ~BDRV_REQ_MASK));
1960     assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1961 
1962     if (flags & BDRV_REQ_SERIALISING) {
1963         QEMU_LOCK_GUARD(&bs->reqs_lock);
1964 
1965         tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1966 
1967         if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1968             return -EBUSY;
1969         }
1970 
1971         bdrv_wait_serialising_requests_locked(req);
1972     } else {
1973         bdrv_wait_serialising_requests(req);
1974     }
1975 
1976     assert(req->overlap_offset <= offset);
1977     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1978     assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1979            child->perm & BLK_PERM_RESIZE);
1980 
1981     switch (req->type) {
1982     case BDRV_TRACKED_WRITE:
1983     case BDRV_TRACKED_DISCARD:
1984         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1985             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1986         } else {
1987             assert(child->perm & BLK_PERM_WRITE);
1988         }
1989         bdrv_write_threshold_check_write(bs, offset, bytes);
1990         return 0;
1991     case BDRV_TRACKED_TRUNCATE:
1992         assert(child->perm & BLK_PERM_RESIZE);
1993         return 0;
1994     default:
1995         abort();
1996     }
1997 }
1998 
1999 static inline void coroutine_fn
2000 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2001                          BdrvTrackedRequest *req, int ret)
2002 {
2003     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2004     BlockDriverState *bs = child->bs;
2005 
2006     bdrv_check_request(offset, bytes, &error_abort);
2007 
2008     qatomic_inc(&bs->write_gen);
2009 
2010     /*
2011      * Discard cannot extend the image, but in error handling cases, such as
2012      * when reverting a qcow2 cluster allocation, the discarded range can pass
2013      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2014      * here. Instead, just skip it, since semantically a discard request
2015      * beyond EOF cannot expand the image anyway.
2016      */
2017     if (ret == 0 &&
2018         (req->type == BDRV_TRACKED_TRUNCATE ||
2019          end_sector > bs->total_sectors) &&
2020         req->type != BDRV_TRACKED_DISCARD) {
2021         bs->total_sectors = end_sector;
2022         bdrv_parent_cb_resize(bs);
2023         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2024     }
2025     if (req->bytes) {
2026         switch (req->type) {
2027         case BDRV_TRACKED_WRITE:
2028             stat64_max(&bs->wr_highest_offset, offset + bytes);
2029             /* fall through, to set dirty bits */
2030         case BDRV_TRACKED_DISCARD:
2031             bdrv_set_dirty(bs, offset, bytes);
2032             break;
2033         default:
2034             break;
2035         }
2036     }
2037 }
2038 
2039 /*
2040  * Forwards an already correctly aligned write request to the BlockDriver,
2041  * after possibly fragmenting it.
2042  */
2043 static int coroutine_fn GRAPH_RDLOCK
2044 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2045                      int64_t offset, int64_t bytes, int64_t align,
2046                      QEMUIOVector *qiov, size_t qiov_offset,
2047                      BdrvRequestFlags flags)
2048 {
2049     BlockDriverState *bs = child->bs;
2050     BlockDriver *drv = bs->drv;
2051     int ret;
2052 
2053     int64_t bytes_remaining = bytes;
2054     int max_transfer;
2055 
2056     bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2057 
2058     if (!drv) {
2059         return -ENOMEDIUM;
2060     }
2061 
2062     if (bdrv_has_readonly_bitmaps(bs)) {
2063         return -EPERM;
2064     }
2065 
2066     assert(is_power_of_2(align));
2067     assert((offset & (align - 1)) == 0);
2068     assert((bytes & (align - 1)) == 0);
2069     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2070                                    align);
2071 
2072     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2073 
2074     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2075         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2076         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2077         flags |= BDRV_REQ_ZERO_WRITE;
2078         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2079             flags |= BDRV_REQ_MAY_UNMAP;
2080         }
2081 
2082         /* Can't use optimization hint with bufferless zero write */
2083         flags &= ~BDRV_REQ_REGISTERED_BUF;
2084     }
2085 
2086     if (ret < 0) {
2087         /* Do nothing, write notifier decided to fail this request */
2088     } else if (flags & BDRV_REQ_ZERO_WRITE) {
2089         bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2090         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2091     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2092         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2093                                              qiov, qiov_offset);
2094     } else if (bytes <= max_transfer) {
2095         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2096         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2097     } else {
2098         bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2099         while (bytes_remaining) {
2100             int num = MIN(bytes_remaining, max_transfer);
2101             int local_flags = flags;
2102 
2103             assert(num);
2104             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2105                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2106                 /* If FUA is going to be emulated by flush, we only
2107                  * need to flush on the last iteration */
2108                 local_flags &= ~BDRV_REQ_FUA;
2109             }
2110 
2111             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2112                                       num, qiov,
2113                                       qiov_offset + bytes - bytes_remaining,
2114                                       local_flags);
2115             if (ret < 0) {
2116                 break;
2117             }
2118             bytes_remaining -= num;
2119         }
2120     }
2121     bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2122 
2123     if (ret >= 0) {
2124         ret = 0;
2125     }
2126     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2127 
2128     return ret;
2129 }
2130 
2131 static int coroutine_fn GRAPH_RDLOCK
2132 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2133                         BdrvRequestFlags flags, BdrvTrackedRequest *req)
2134 {
2135     BlockDriverState *bs = child->bs;
2136     QEMUIOVector local_qiov;
2137     uint64_t align = bs->bl.request_alignment;
2138     int ret = 0;
2139     bool padding;
2140     BdrvRequestPadding pad;
2141 
2142     /* This flag doesn't make sense for padding or zero writes */
2143     flags &= ~BDRV_REQ_REGISTERED_BUF;
2144 
2145     padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2146     if (padding) {
2147         assert(!(flags & BDRV_REQ_NO_WAIT));
2148         bdrv_make_request_serialising(req, align);
2149 
2150         bdrv_padding_rmw_read(child, req, &pad, true);
2151 
2152         if (pad.head || pad.merge_reads) {
2153             int64_t aligned_offset = offset & ~(align - 1);
2154             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2155 
2156             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2157             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2158                                        align, &local_qiov, 0,
2159                                        flags & ~BDRV_REQ_ZERO_WRITE);
2160             if (ret < 0 || pad.merge_reads) {
2161                 /* Error or all work is done */
2162                 goto out;
2163             }
2164             offset += write_bytes - pad.head;
2165             bytes -= write_bytes - pad.head;
2166         }
2167     }
2168 
2169     assert(!bytes || (offset & (align - 1)) == 0);
2170     if (bytes >= align) {
2171         /* Write the aligned part in the middle. */
2172         int64_t aligned_bytes = bytes & ~(align - 1);
2173         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2174                                    NULL, 0, flags);
2175         if (ret < 0) {
2176             goto out;
2177         }
2178         bytes -= aligned_bytes;
2179         offset += aligned_bytes;
2180     }
2181 
2182     assert(!bytes || (offset & (align - 1)) == 0);
2183     if (bytes) {
2184         assert(align == pad.tail + bytes);
2185 
2186         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2187         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2188                                    &local_qiov, 0,
2189                                    flags & ~BDRV_REQ_ZERO_WRITE);
2190     }
2191 
2192 out:
2193     bdrv_padding_finalize(&pad);
2194 
2195     return ret;
2196 }
2197 
2198 /*
2199  * Handle a write request in coroutine context
2200  */
2201 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2202     int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2203     BdrvRequestFlags flags)
2204 {
2205     IO_CODE();
2206     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2207 }
2208 
2209 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2210     int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2211     BdrvRequestFlags flags)
2212 {
2213     BlockDriverState *bs = child->bs;
2214     BdrvTrackedRequest req;
2215     uint64_t align = bs->bl.request_alignment;
2216     BdrvRequestPadding pad;
2217     int ret;
2218     bool padded = false;
2219     IO_CODE();
2220 
2221     trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2222 
2223     if (!bdrv_co_is_inserted(bs)) {
2224         return -ENOMEDIUM;
2225     }
2226 
2227     if (flags & BDRV_REQ_ZERO_WRITE) {
2228         ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2229     } else {
2230         ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2231     }
2232     if (ret < 0) {
2233         return ret;
2234     }
2235 
2236     /* If the request is misaligned then we can't make it efficient */
2237     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2238         !QEMU_IS_ALIGNED(offset | bytes, align))
2239     {
2240         return -ENOTSUP;
2241     }
2242 
2243     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2244         /*
2245          * Aligning zero request is nonsense. Even if driver has special meaning
2246          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2247          * it to driver due to request_alignment.
2248          *
2249          * Still, no reason to return an error if someone do unaligned
2250          * zero-length write occasionally.
2251          */
2252         return 0;
2253     }
2254 
2255     if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2256         /*
2257          * Pad request for following read-modify-write cycle.
2258          * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2259          * alignment only if there is no ZERO flag.
2260          */
2261         ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2262                                &pad, &padded, &flags);
2263         if (ret < 0) {
2264             return ret;
2265         }
2266     }
2267 
2268     bdrv_inc_in_flight(bs);
2269     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2270 
2271     if (flags & BDRV_REQ_ZERO_WRITE) {
2272         assert(!padded);
2273         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2274         goto out;
2275     }
2276 
2277     if (padded) {
2278         /*
2279          * Request was unaligned to request_alignment and therefore
2280          * padded.  We are going to do read-modify-write, and must
2281          * serialize the request to prevent interactions of the
2282          * widened region with other transactions.
2283          */
2284         assert(!(flags & BDRV_REQ_NO_WAIT));
2285         bdrv_make_request_serialising(&req, align);
2286         bdrv_padding_rmw_read(child, &req, &pad, false);
2287     }
2288 
2289     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2290                                qiov, qiov_offset, flags);
2291 
2292     bdrv_padding_finalize(&pad);
2293 
2294 out:
2295     tracked_request_end(&req);
2296     bdrv_dec_in_flight(bs);
2297 
2298     return ret;
2299 }
2300 
2301 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2302                                        int64_t bytes, BdrvRequestFlags flags)
2303 {
2304     IO_CODE();
2305     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2306     assert_bdrv_graph_readable();
2307 
2308     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2309         flags &= ~BDRV_REQ_MAY_UNMAP;
2310     }
2311 
2312     return bdrv_co_pwritev(child, offset, bytes, NULL,
2313                            BDRV_REQ_ZERO_WRITE | flags);
2314 }
2315 
2316 /*
2317  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2318  */
2319 int bdrv_flush_all(void)
2320 {
2321     BdrvNextIterator it;
2322     BlockDriverState *bs = NULL;
2323     int result = 0;
2324 
2325     GLOBAL_STATE_CODE();
2326 
2327     /*
2328      * bdrv queue is managed by record/replay,
2329      * creating new flush request for stopping
2330      * the VM may break the determinism
2331      */
2332     if (replay_events_enabled()) {
2333         return result;
2334     }
2335 
2336     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2337         AioContext *aio_context = bdrv_get_aio_context(bs);
2338         int ret;
2339 
2340         aio_context_acquire(aio_context);
2341         ret = bdrv_flush(bs);
2342         if (ret < 0 && !result) {
2343             result = ret;
2344         }
2345         aio_context_release(aio_context);
2346     }
2347 
2348     return result;
2349 }
2350 
2351 /*
2352  * Returns the allocation status of the specified sectors.
2353  * Drivers not implementing the functionality are assumed to not support
2354  * backing files, hence all their sectors are reported as allocated.
2355  *
2356  * If 'want_zero' is true, the caller is querying for mapping
2357  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2358  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2359  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2360  *
2361  * If 'offset' is beyond the end of the disk image the return value is
2362  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2363  *
2364  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2365  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2366  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2367  *
2368  * 'pnum' is set to the number of bytes (including and immediately
2369  * following the specified offset) that are easily known to be in the
2370  * same allocated/unallocated state.  Note that a second call starting
2371  * at the original offset plus returned pnum may have the same status.
2372  * The returned value is non-zero on success except at end-of-file.
2373  *
2374  * Returns negative errno on failure.  Otherwise, if the
2375  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2376  * set to the host mapping and BDS corresponding to the guest offset.
2377  */
2378 static int coroutine_fn GRAPH_RDLOCK
2379 bdrv_co_block_status(BlockDriverState *bs, bool want_zero,
2380                      int64_t offset, int64_t bytes,
2381                      int64_t *pnum, int64_t *map, BlockDriverState **file)
2382 {
2383     int64_t total_size;
2384     int64_t n; /* bytes */
2385     int ret;
2386     int64_t local_map = 0;
2387     BlockDriverState *local_file = NULL;
2388     int64_t aligned_offset, aligned_bytes;
2389     uint32_t align;
2390     bool has_filtered_child;
2391 
2392     assert(pnum);
2393     assert_bdrv_graph_readable();
2394     *pnum = 0;
2395     total_size = bdrv_co_getlength(bs);
2396     if (total_size < 0) {
2397         ret = total_size;
2398         goto early_out;
2399     }
2400 
2401     if (offset >= total_size) {
2402         ret = BDRV_BLOCK_EOF;
2403         goto early_out;
2404     }
2405     if (!bytes) {
2406         ret = 0;
2407         goto early_out;
2408     }
2409 
2410     n = total_size - offset;
2411     if (n < bytes) {
2412         bytes = n;
2413     }
2414 
2415     /* Must be non-NULL or bdrv_co_getlength() would have failed */
2416     assert(bs->drv);
2417     has_filtered_child = bdrv_filter_child(bs);
2418     if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2419         *pnum = bytes;
2420         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2421         if (offset + bytes == total_size) {
2422             ret |= BDRV_BLOCK_EOF;
2423         }
2424         if (bs->drv->protocol_name) {
2425             ret |= BDRV_BLOCK_OFFSET_VALID;
2426             local_map = offset;
2427             local_file = bs;
2428         }
2429         goto early_out;
2430     }
2431 
2432     bdrv_inc_in_flight(bs);
2433 
2434     /* Round out to request_alignment boundaries */
2435     align = bs->bl.request_alignment;
2436     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2437     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2438 
2439     if (bs->drv->bdrv_co_block_status) {
2440         /*
2441          * Use the block-status cache only for protocol nodes: Format
2442          * drivers are generally quick to inquire the status, but protocol
2443          * drivers often need to get information from outside of qemu, so
2444          * we do not have control over the actual implementation.  There
2445          * have been cases where inquiring the status took an unreasonably
2446          * long time, and we can do nothing in qemu to fix it.
2447          * This is especially problematic for images with large data areas,
2448          * because finding the few holes in them and giving them special
2449          * treatment does not gain much performance.  Therefore, we try to
2450          * cache the last-identified data region.
2451          *
2452          * Second, limiting ourselves to protocol nodes allows us to assume
2453          * the block status for data regions to be DATA | OFFSET_VALID, and
2454          * that the host offset is the same as the guest offset.
2455          *
2456          * Note that it is possible that external writers zero parts of
2457          * the cached regions without the cache being invalidated, and so
2458          * we may report zeroes as data.  This is not catastrophic,
2459          * however, because reporting zeroes as data is fine.
2460          */
2461         if (QLIST_EMPTY(&bs->children) &&
2462             bdrv_bsc_is_data(bs, aligned_offset, pnum))
2463         {
2464             ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2465             local_file = bs;
2466             local_map = aligned_offset;
2467         } else {
2468             ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2469                                                 aligned_bytes, pnum, &local_map,
2470                                                 &local_file);
2471 
2472             /*
2473              * Note that checking QLIST_EMPTY(&bs->children) is also done when
2474              * the cache is queried above.  Technically, we do not need to check
2475              * it here; the worst that can happen is that we fill the cache for
2476              * non-protocol nodes, and then it is never used.  However, filling
2477              * the cache requires an RCU update, so double check here to avoid
2478              * such an update if possible.
2479              *
2480              * Check want_zero, because we only want to update the cache when we
2481              * have accurate information about what is zero and what is data.
2482              */
2483             if (want_zero &&
2484                 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2485                 QLIST_EMPTY(&bs->children))
2486             {
2487                 /*
2488                  * When a protocol driver reports BLOCK_OFFSET_VALID, the
2489                  * returned local_map value must be the same as the offset we
2490                  * have passed (aligned_offset), and local_bs must be the node
2491                  * itself.
2492                  * Assert this, because we follow this rule when reading from
2493                  * the cache (see the `local_file = bs` and
2494                  * `local_map = aligned_offset` assignments above), and the
2495                  * result the cache delivers must be the same as the driver
2496                  * would deliver.
2497                  */
2498                 assert(local_file == bs);
2499                 assert(local_map == aligned_offset);
2500                 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2501             }
2502         }
2503     } else {
2504         /* Default code for filters */
2505 
2506         local_file = bdrv_filter_bs(bs);
2507         assert(local_file);
2508 
2509         *pnum = aligned_bytes;
2510         local_map = aligned_offset;
2511         ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2512     }
2513     if (ret < 0) {
2514         *pnum = 0;
2515         goto out;
2516     }
2517 
2518     /*
2519      * The driver's result must be a non-zero multiple of request_alignment.
2520      * Clamp pnum and adjust map to original request.
2521      */
2522     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2523            align > offset - aligned_offset);
2524     if (ret & BDRV_BLOCK_RECURSE) {
2525         assert(ret & BDRV_BLOCK_DATA);
2526         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2527         assert(!(ret & BDRV_BLOCK_ZERO));
2528     }
2529 
2530     *pnum -= offset - aligned_offset;
2531     if (*pnum > bytes) {
2532         *pnum = bytes;
2533     }
2534     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2535         local_map += offset - aligned_offset;
2536     }
2537 
2538     if (ret & BDRV_BLOCK_RAW) {
2539         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2540         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2541                                    *pnum, pnum, &local_map, &local_file);
2542         goto out;
2543     }
2544 
2545     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2546         ret |= BDRV_BLOCK_ALLOCATED;
2547     } else if (bs->drv->supports_backing) {
2548         BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2549 
2550         if (!cow_bs) {
2551             ret |= BDRV_BLOCK_ZERO;
2552         } else if (want_zero) {
2553             int64_t size2 = bdrv_co_getlength(cow_bs);
2554 
2555             if (size2 >= 0 && offset >= size2) {
2556                 ret |= BDRV_BLOCK_ZERO;
2557             }
2558         }
2559     }
2560 
2561     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2562         local_file && local_file != bs &&
2563         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2564         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2565         int64_t file_pnum;
2566         int ret2;
2567 
2568         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2569                                     *pnum, &file_pnum, NULL, NULL);
2570         if (ret2 >= 0) {
2571             /* Ignore errors.  This is just providing extra information, it
2572              * is useful but not necessary.
2573              */
2574             if (ret2 & BDRV_BLOCK_EOF &&
2575                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2576                 /*
2577                  * It is valid for the format block driver to read
2578                  * beyond the end of the underlying file's current
2579                  * size; such areas read as zero.
2580                  */
2581                 ret |= BDRV_BLOCK_ZERO;
2582             } else {
2583                 /* Limit request to the range reported by the protocol driver */
2584                 *pnum = file_pnum;
2585                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2586             }
2587         }
2588     }
2589 
2590 out:
2591     bdrv_dec_in_flight(bs);
2592     if (ret >= 0 && offset + *pnum == total_size) {
2593         ret |= BDRV_BLOCK_EOF;
2594     }
2595 early_out:
2596     if (file) {
2597         *file = local_file;
2598     }
2599     if (map) {
2600         *map = local_map;
2601     }
2602     return ret;
2603 }
2604 
2605 int coroutine_fn
2606 bdrv_co_common_block_status_above(BlockDriverState *bs,
2607                                   BlockDriverState *base,
2608                                   bool include_base,
2609                                   bool want_zero,
2610                                   int64_t offset,
2611                                   int64_t bytes,
2612                                   int64_t *pnum,
2613                                   int64_t *map,
2614                                   BlockDriverState **file,
2615                                   int *depth)
2616 {
2617     int ret;
2618     BlockDriverState *p;
2619     int64_t eof = 0;
2620     int dummy;
2621     IO_CODE();
2622 
2623     assert(!include_base || base); /* Can't include NULL base */
2624     assert_bdrv_graph_readable();
2625 
2626     if (!depth) {
2627         depth = &dummy;
2628     }
2629     *depth = 0;
2630 
2631     if (!include_base && bs == base) {
2632         *pnum = bytes;
2633         return 0;
2634     }
2635 
2636     ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2637     ++*depth;
2638     if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2639         return ret;
2640     }
2641 
2642     if (ret & BDRV_BLOCK_EOF) {
2643         eof = offset + *pnum;
2644     }
2645 
2646     assert(*pnum <= bytes);
2647     bytes = *pnum;
2648 
2649     for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2650          p = bdrv_filter_or_cow_bs(p))
2651     {
2652         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2653                                    file);
2654         ++*depth;
2655         if (ret < 0) {
2656             return ret;
2657         }
2658         if (*pnum == 0) {
2659             /*
2660              * The top layer deferred to this layer, and because this layer is
2661              * short, any zeroes that we synthesize beyond EOF behave as if they
2662              * were allocated at this layer.
2663              *
2664              * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2665              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2666              * below.
2667              */
2668             assert(ret & BDRV_BLOCK_EOF);
2669             *pnum = bytes;
2670             if (file) {
2671                 *file = p;
2672             }
2673             ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2674             break;
2675         }
2676         if (ret & BDRV_BLOCK_ALLOCATED) {
2677             /*
2678              * We've found the node and the status, we must break.
2679              *
2680              * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2681              * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2682              * below.
2683              */
2684             ret &= ~BDRV_BLOCK_EOF;
2685             break;
2686         }
2687 
2688         if (p == base) {
2689             assert(include_base);
2690             break;
2691         }
2692 
2693         /*
2694          * OK, [offset, offset + *pnum) region is unallocated on this layer,
2695          * let's continue the diving.
2696          */
2697         assert(*pnum <= bytes);
2698         bytes = *pnum;
2699     }
2700 
2701     if (offset + *pnum == eof) {
2702         ret |= BDRV_BLOCK_EOF;
2703     }
2704 
2705     return ret;
2706 }
2707 
2708 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2709                                             BlockDriverState *base,
2710                                             int64_t offset, int64_t bytes,
2711                                             int64_t *pnum, int64_t *map,
2712                                             BlockDriverState **file)
2713 {
2714     IO_CODE();
2715     return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2716                                              bytes, pnum, map, file, NULL);
2717 }
2718 
2719 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2720                             int64_t offset, int64_t bytes, int64_t *pnum,
2721                             int64_t *map, BlockDriverState **file)
2722 {
2723     IO_CODE();
2724     return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2725                                           pnum, map, file, NULL);
2726 }
2727 
2728 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2729                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2730 {
2731     IO_CODE();
2732     return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2733                                    offset, bytes, pnum, map, file);
2734 }
2735 
2736 /*
2737  * Check @bs (and its backing chain) to see if the range defined
2738  * by @offset and @bytes is known to read as zeroes.
2739  * Return 1 if that is the case, 0 otherwise and -errno on error.
2740  * This test is meant to be fast rather than accurate so returning 0
2741  * does not guarantee non-zero data.
2742  */
2743 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2744                                       int64_t bytes)
2745 {
2746     int ret;
2747     int64_t pnum = bytes;
2748     IO_CODE();
2749 
2750     if (!bytes) {
2751         return 1;
2752     }
2753 
2754     ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2755                                             bytes, &pnum, NULL, NULL, NULL);
2756 
2757     if (ret < 0) {
2758         return ret;
2759     }
2760 
2761     return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2762 }
2763 
2764 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2765                                       int64_t bytes, int64_t *pnum)
2766 {
2767     int ret;
2768     int64_t dummy;
2769     IO_CODE();
2770 
2771     ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2772                                             bytes, pnum ? pnum : &dummy, NULL,
2773                                             NULL, NULL);
2774     if (ret < 0) {
2775         return ret;
2776     }
2777     return !!(ret & BDRV_BLOCK_ALLOCATED);
2778 }
2779 
2780 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2781                       int64_t *pnum)
2782 {
2783     int ret;
2784     int64_t dummy;
2785     IO_CODE();
2786 
2787     ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2788                                          bytes, pnum ? pnum : &dummy, NULL,
2789                                          NULL, NULL);
2790     if (ret < 0) {
2791         return ret;
2792     }
2793     return !!(ret & BDRV_BLOCK_ALLOCATED);
2794 }
2795 
2796 /* See bdrv_is_allocated_above for documentation */
2797 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2798                                             BlockDriverState *base,
2799                                             bool include_base, int64_t offset,
2800                                             int64_t bytes, int64_t *pnum)
2801 {
2802     int depth;
2803     int ret;
2804     IO_CODE();
2805 
2806     ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2807                                             offset, bytes, pnum, NULL, NULL,
2808                                             &depth);
2809     if (ret < 0) {
2810         return ret;
2811     }
2812 
2813     if (ret & BDRV_BLOCK_ALLOCATED) {
2814         return depth;
2815     }
2816     return 0;
2817 }
2818 
2819 /*
2820  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2821  *
2822  * Return a positive depth if (a prefix of) the given range is allocated
2823  * in any image between BASE and TOP (BASE is only included if include_base
2824  * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2825  * BASE can be NULL to check if the given offset is allocated in any
2826  * image of the chain.  Return 0 otherwise, or negative errno on
2827  * failure.
2828  *
2829  * 'pnum' is set to the number of bytes (including and immediately
2830  * following the specified offset) that are known to be in the same
2831  * allocated/unallocated state.  Note that a subsequent call starting
2832  * at 'offset + *pnum' may return the same allocation status (in other
2833  * words, the result is not necessarily the maximum possible range);
2834  * but 'pnum' will only be 0 when end of file is reached.
2835  */
2836 int bdrv_is_allocated_above(BlockDriverState *top,
2837                             BlockDriverState *base,
2838                             bool include_base, int64_t offset,
2839                             int64_t bytes, int64_t *pnum)
2840 {
2841     int depth;
2842     int ret;
2843     IO_CODE();
2844 
2845     ret = bdrv_common_block_status_above(top, base, include_base, false,
2846                                          offset, bytes, pnum, NULL, NULL,
2847                                          &depth);
2848     if (ret < 0) {
2849         return ret;
2850     }
2851 
2852     if (ret & BDRV_BLOCK_ALLOCATED) {
2853         return depth;
2854     }
2855     return 0;
2856 }
2857 
2858 int coroutine_fn
2859 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2860 {
2861     BlockDriver *drv = bs->drv;
2862     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2863     int ret;
2864     IO_CODE();
2865     assert_bdrv_graph_readable();
2866 
2867     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2868     if (ret < 0) {
2869         return ret;
2870     }
2871 
2872     if (!drv) {
2873         return -ENOMEDIUM;
2874     }
2875 
2876     bdrv_inc_in_flight(bs);
2877 
2878     if (drv->bdrv_co_load_vmstate) {
2879         ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2880     } else if (child_bs) {
2881         ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2882     } else {
2883         ret = -ENOTSUP;
2884     }
2885 
2886     bdrv_dec_in_flight(bs);
2887 
2888     return ret;
2889 }
2890 
2891 int coroutine_fn
2892 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2893 {
2894     BlockDriver *drv = bs->drv;
2895     BlockDriverState *child_bs = bdrv_primary_bs(bs);
2896     int ret;
2897     IO_CODE();
2898     assert_bdrv_graph_readable();
2899 
2900     ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2901     if (ret < 0) {
2902         return ret;
2903     }
2904 
2905     if (!drv) {
2906         return -ENOMEDIUM;
2907     }
2908 
2909     bdrv_inc_in_flight(bs);
2910 
2911     if (drv->bdrv_co_save_vmstate) {
2912         ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2913     } else if (child_bs) {
2914         ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2915     } else {
2916         ret = -ENOTSUP;
2917     }
2918 
2919     bdrv_dec_in_flight(bs);
2920 
2921     return ret;
2922 }
2923 
2924 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2925                       int64_t pos, int size)
2926 {
2927     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2928     int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2929     IO_CODE();
2930 
2931     return ret < 0 ? ret : size;
2932 }
2933 
2934 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2935                       int64_t pos, int size)
2936 {
2937     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2938     int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2939     IO_CODE();
2940 
2941     return ret < 0 ? ret : size;
2942 }
2943 
2944 /**************************************************************/
2945 /* async I/Os */
2946 
2947 void bdrv_aio_cancel(BlockAIOCB *acb)
2948 {
2949     IO_CODE();
2950     qemu_aio_ref(acb);
2951     bdrv_aio_cancel_async(acb);
2952     while (acb->refcnt > 1) {
2953         if (acb->aiocb_info->get_aio_context) {
2954             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2955         } else if (acb->bs) {
2956             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2957              * assert that we're not using an I/O thread.  Thread-safe
2958              * code should use bdrv_aio_cancel_async exclusively.
2959              */
2960             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2961             aio_poll(bdrv_get_aio_context(acb->bs), true);
2962         } else {
2963             abort();
2964         }
2965     }
2966     qemu_aio_unref(acb);
2967 }
2968 
2969 /* Async version of aio cancel. The caller is not blocked if the acb implements
2970  * cancel_async, otherwise we do nothing and let the request normally complete.
2971  * In either case the completion callback must be called. */
2972 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2973 {
2974     IO_CODE();
2975     if (acb->aiocb_info->cancel_async) {
2976         acb->aiocb_info->cancel_async(acb);
2977     }
2978 }
2979 
2980 /**************************************************************/
2981 /* Coroutine block device emulation */
2982 
2983 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2984 {
2985     BdrvChild *primary_child = bdrv_primary_child(bs);
2986     BdrvChild *child;
2987     int current_gen;
2988     int ret = 0;
2989     IO_CODE();
2990 
2991     assert_bdrv_graph_readable();
2992     bdrv_inc_in_flight(bs);
2993 
2994     if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2995         bdrv_is_sg(bs)) {
2996         goto early_exit;
2997     }
2998 
2999     qemu_co_mutex_lock(&bs->reqs_lock);
3000     current_gen = qatomic_read(&bs->write_gen);
3001 
3002     /* Wait until any previous flushes are completed */
3003     while (bs->active_flush_req) {
3004         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
3005     }
3006 
3007     /* Flushes reach this point in nondecreasing current_gen order.  */
3008     bs->active_flush_req = true;
3009     qemu_co_mutex_unlock(&bs->reqs_lock);
3010 
3011     /* Write back all layers by calling one driver function */
3012     if (bs->drv->bdrv_co_flush) {
3013         ret = bs->drv->bdrv_co_flush(bs);
3014         goto out;
3015     }
3016 
3017     /* Write back cached data to the OS even with cache=unsafe */
3018     BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
3019     if (bs->drv->bdrv_co_flush_to_os) {
3020         ret = bs->drv->bdrv_co_flush_to_os(bs);
3021         if (ret < 0) {
3022             goto out;
3023         }
3024     }
3025 
3026     /* But don't actually force it to the disk with cache=unsafe */
3027     if (bs->open_flags & BDRV_O_NO_FLUSH) {
3028         goto flush_children;
3029     }
3030 
3031     /* Check if we really need to flush anything */
3032     if (bs->flushed_gen == current_gen) {
3033         goto flush_children;
3034     }
3035 
3036     BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3037     if (!bs->drv) {
3038         /* bs->drv->bdrv_co_flush() might have ejected the BDS
3039          * (even in case of apparent success) */
3040         ret = -ENOMEDIUM;
3041         goto out;
3042     }
3043     if (bs->drv->bdrv_co_flush_to_disk) {
3044         ret = bs->drv->bdrv_co_flush_to_disk(bs);
3045     } else if (bs->drv->bdrv_aio_flush) {
3046         BlockAIOCB *acb;
3047         CoroutineIOCompletion co = {
3048             .coroutine = qemu_coroutine_self(),
3049         };
3050 
3051         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3052         if (acb == NULL) {
3053             ret = -EIO;
3054         } else {
3055             qemu_coroutine_yield();
3056             ret = co.ret;
3057         }
3058     } else {
3059         /*
3060          * Some block drivers always operate in either writethrough or unsafe
3061          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3062          * know how the server works (because the behaviour is hardcoded or
3063          * depends on server-side configuration), so we can't ensure that
3064          * everything is safe on disk. Returning an error doesn't work because
3065          * that would break guests even if the server operates in writethrough
3066          * mode.
3067          *
3068          * Let's hope the user knows what he's doing.
3069          */
3070         ret = 0;
3071     }
3072 
3073     if (ret < 0) {
3074         goto out;
3075     }
3076 
3077     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
3078      * in the case of cache=unsafe, so there are no useless flushes.
3079      */
3080 flush_children:
3081     ret = 0;
3082     QLIST_FOREACH(child, &bs->children, next) {
3083         if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3084             int this_child_ret = bdrv_co_flush(child->bs);
3085             if (!ret) {
3086                 ret = this_child_ret;
3087             }
3088         }
3089     }
3090 
3091 out:
3092     /* Notify any pending flushes that we have completed */
3093     if (ret == 0) {
3094         bs->flushed_gen = current_gen;
3095     }
3096 
3097     qemu_co_mutex_lock(&bs->reqs_lock);
3098     bs->active_flush_req = false;
3099     /* Return value is ignored - it's ok if wait queue is empty */
3100     qemu_co_queue_next(&bs->flush_queue);
3101     qemu_co_mutex_unlock(&bs->reqs_lock);
3102 
3103 early_exit:
3104     bdrv_dec_in_flight(bs);
3105     return ret;
3106 }
3107 
3108 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3109                                   int64_t bytes)
3110 {
3111     BdrvTrackedRequest req;
3112     int ret;
3113     int64_t max_pdiscard;
3114     int head, tail, align;
3115     BlockDriverState *bs = child->bs;
3116     IO_CODE();
3117     assert_bdrv_graph_readable();
3118 
3119     if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3120         return -ENOMEDIUM;
3121     }
3122 
3123     if (bdrv_has_readonly_bitmaps(bs)) {
3124         return -EPERM;
3125     }
3126 
3127     ret = bdrv_check_request(offset, bytes, NULL);
3128     if (ret < 0) {
3129         return ret;
3130     }
3131 
3132     /* Do nothing if disabled.  */
3133     if (!(bs->open_flags & BDRV_O_UNMAP)) {
3134         return 0;
3135     }
3136 
3137     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3138         return 0;
3139     }
3140 
3141     /* Invalidate the cached block-status data range if this discard overlaps */
3142     bdrv_bsc_invalidate_range(bs, offset, bytes);
3143 
3144     /* Discard is advisory, but some devices track and coalesce
3145      * unaligned requests, so we must pass everything down rather than
3146      * round here.  Still, most devices will just silently ignore
3147      * unaligned requests (by returning -ENOTSUP), so we must fragment
3148      * the request accordingly.  */
3149     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3150     assert(align % bs->bl.request_alignment == 0);
3151     head = offset % align;
3152     tail = (offset + bytes) % align;
3153 
3154     bdrv_inc_in_flight(bs);
3155     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3156 
3157     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3158     if (ret < 0) {
3159         goto out;
3160     }
3161 
3162     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3163                                    align);
3164     assert(max_pdiscard >= bs->bl.request_alignment);
3165 
3166     while (bytes > 0) {
3167         int64_t num = bytes;
3168 
3169         if (head) {
3170             /* Make small requests to get to alignment boundaries. */
3171             num = MIN(bytes, align - head);
3172             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3173                 num %= bs->bl.request_alignment;
3174             }
3175             head = (head + num) % align;
3176             assert(num < max_pdiscard);
3177         } else if (tail) {
3178             if (num > align) {
3179                 /* Shorten the request to the last aligned cluster.  */
3180                 num -= tail;
3181             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3182                        tail > bs->bl.request_alignment) {
3183                 tail %= bs->bl.request_alignment;
3184                 num -= tail;
3185             }
3186         }
3187         /* limit request size */
3188         if (num > max_pdiscard) {
3189             num = max_pdiscard;
3190         }
3191 
3192         if (!bs->drv) {
3193             ret = -ENOMEDIUM;
3194             goto out;
3195         }
3196         if (bs->drv->bdrv_co_pdiscard) {
3197             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3198         } else {
3199             BlockAIOCB *acb;
3200             CoroutineIOCompletion co = {
3201                 .coroutine = qemu_coroutine_self(),
3202             };
3203 
3204             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3205                                              bdrv_co_io_em_complete, &co);
3206             if (acb == NULL) {
3207                 ret = -EIO;
3208                 goto out;
3209             } else {
3210                 qemu_coroutine_yield();
3211                 ret = co.ret;
3212             }
3213         }
3214         if (ret && ret != -ENOTSUP) {
3215             goto out;
3216         }
3217 
3218         offset += num;
3219         bytes -= num;
3220     }
3221     ret = 0;
3222 out:
3223     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3224     tracked_request_end(&req);
3225     bdrv_dec_in_flight(bs);
3226     return ret;
3227 }
3228 
3229 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3230 {
3231     BlockDriver *drv = bs->drv;
3232     CoroutineIOCompletion co = {
3233         .coroutine = qemu_coroutine_self(),
3234     };
3235     BlockAIOCB *acb;
3236     IO_CODE();
3237     assert_bdrv_graph_readable();
3238 
3239     bdrv_inc_in_flight(bs);
3240     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3241         co.ret = -ENOTSUP;
3242         goto out;
3243     }
3244 
3245     if (drv->bdrv_co_ioctl) {
3246         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3247     } else {
3248         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3249         if (!acb) {
3250             co.ret = -ENOTSUP;
3251             goto out;
3252         }
3253         qemu_coroutine_yield();
3254     }
3255 out:
3256     bdrv_dec_in_flight(bs);
3257     return co.ret;
3258 }
3259 
3260 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3261                         unsigned int *nr_zones,
3262                         BlockZoneDescriptor *zones)
3263 {
3264     BlockDriver *drv = bs->drv;
3265     CoroutineIOCompletion co = {
3266             .coroutine = qemu_coroutine_self(),
3267     };
3268     IO_CODE();
3269 
3270     bdrv_inc_in_flight(bs);
3271     if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3272         co.ret = -ENOTSUP;
3273         goto out;
3274     }
3275     co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3276 out:
3277     bdrv_dec_in_flight(bs);
3278     return co.ret;
3279 }
3280 
3281 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3282         int64_t offset, int64_t len)
3283 {
3284     BlockDriver *drv = bs->drv;
3285     CoroutineIOCompletion co = {
3286             .coroutine = qemu_coroutine_self(),
3287     };
3288     IO_CODE();
3289 
3290     bdrv_inc_in_flight(bs);
3291     if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3292         co.ret = -ENOTSUP;
3293         goto out;
3294     }
3295     co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3296 out:
3297     bdrv_dec_in_flight(bs);
3298     return co.ret;
3299 }
3300 
3301 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3302                         QEMUIOVector *qiov,
3303                         BdrvRequestFlags flags)
3304 {
3305     int ret;
3306     BlockDriver *drv = bs->drv;
3307     CoroutineIOCompletion co = {
3308             .coroutine = qemu_coroutine_self(),
3309     };
3310     IO_CODE();
3311 
3312     ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3313     if (ret < 0) {
3314         return ret;
3315     }
3316 
3317     bdrv_inc_in_flight(bs);
3318     if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3319         co.ret = -ENOTSUP;
3320         goto out;
3321     }
3322     co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3323 out:
3324     bdrv_dec_in_flight(bs);
3325     return co.ret;
3326 }
3327 
3328 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3329 {
3330     IO_CODE();
3331     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3332 }
3333 
3334 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3335 {
3336     IO_CODE();
3337     return memset(qemu_blockalign(bs, size), 0, size);
3338 }
3339 
3340 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3341 {
3342     size_t align = bdrv_opt_mem_align(bs);
3343     IO_CODE();
3344 
3345     /* Ensure that NULL is never returned on success */
3346     assert(align > 0);
3347     if (size == 0) {
3348         size = align;
3349     }
3350 
3351     return qemu_try_memalign(align, size);
3352 }
3353 
3354 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3355 {
3356     void *mem = qemu_try_blockalign(bs, size);
3357     IO_CODE();
3358 
3359     if (mem) {
3360         memset(mem, 0, size);
3361     }
3362 
3363     return mem;
3364 }
3365 
3366 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3367 static void GRAPH_RDLOCK
3368 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3369                            BdrvChild *final_child)
3370 {
3371     BdrvChild *child;
3372 
3373     GLOBAL_STATE_CODE();
3374     assert_bdrv_graph_readable();
3375 
3376     QLIST_FOREACH(child, &bs->children, next) {
3377         if (child == final_child) {
3378             break;
3379         }
3380 
3381         bdrv_unregister_buf(child->bs, host, size);
3382     }
3383 
3384     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3385         bs->drv->bdrv_unregister_buf(bs, host, size);
3386     }
3387 }
3388 
3389 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3390                        Error **errp)
3391 {
3392     BdrvChild *child;
3393 
3394     GLOBAL_STATE_CODE();
3395     GRAPH_RDLOCK_GUARD_MAINLOOP();
3396 
3397     if (bs->drv && bs->drv->bdrv_register_buf) {
3398         if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3399             return false;
3400         }
3401     }
3402     QLIST_FOREACH(child, &bs->children, next) {
3403         if (!bdrv_register_buf(child->bs, host, size, errp)) {
3404             bdrv_register_buf_rollback(bs, host, size, child);
3405             return false;
3406         }
3407     }
3408     return true;
3409 }
3410 
3411 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3412 {
3413     BdrvChild *child;
3414 
3415     GLOBAL_STATE_CODE();
3416     GRAPH_RDLOCK_GUARD_MAINLOOP();
3417 
3418     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3419         bs->drv->bdrv_unregister_buf(bs, host, size);
3420     }
3421     QLIST_FOREACH(child, &bs->children, next) {
3422         bdrv_unregister_buf(child->bs, host, size);
3423     }
3424 }
3425 
3426 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3427         BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3428         int64_t dst_offset, int64_t bytes,
3429         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3430         bool recurse_src)
3431 {
3432     BdrvTrackedRequest req;
3433     int ret;
3434     assert_bdrv_graph_readable();
3435 
3436     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3437     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3438     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3439     assert(!(read_flags & BDRV_REQ_NO_WAIT));
3440     assert(!(write_flags & BDRV_REQ_NO_WAIT));
3441 
3442     if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3443         return -ENOMEDIUM;
3444     }
3445     ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3446     if (ret) {
3447         return ret;
3448     }
3449     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3450         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3451     }
3452 
3453     if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3454         return -ENOMEDIUM;
3455     }
3456     ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3457     if (ret) {
3458         return ret;
3459     }
3460 
3461     if (!src->bs->drv->bdrv_co_copy_range_from
3462         || !dst->bs->drv->bdrv_co_copy_range_to
3463         || src->bs->encrypted || dst->bs->encrypted) {
3464         return -ENOTSUP;
3465     }
3466 
3467     if (recurse_src) {
3468         bdrv_inc_in_flight(src->bs);
3469         tracked_request_begin(&req, src->bs, src_offset, bytes,
3470                               BDRV_TRACKED_READ);
3471 
3472         /* BDRV_REQ_SERIALISING is only for write operation */
3473         assert(!(read_flags & BDRV_REQ_SERIALISING));
3474         bdrv_wait_serialising_requests(&req);
3475 
3476         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3477                                                     src, src_offset,
3478                                                     dst, dst_offset,
3479                                                     bytes,
3480                                                     read_flags, write_flags);
3481 
3482         tracked_request_end(&req);
3483         bdrv_dec_in_flight(src->bs);
3484     } else {
3485         bdrv_inc_in_flight(dst->bs);
3486         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3487                               BDRV_TRACKED_WRITE);
3488         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3489                                         write_flags);
3490         if (!ret) {
3491             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3492                                                       src, src_offset,
3493                                                       dst, dst_offset,
3494                                                       bytes,
3495                                                       read_flags, write_flags);
3496         }
3497         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3498         tracked_request_end(&req);
3499         bdrv_dec_in_flight(dst->bs);
3500     }
3501 
3502     return ret;
3503 }
3504 
3505 /* Copy range from @src to @dst.
3506  *
3507  * See the comment of bdrv_co_copy_range for the parameter and return value
3508  * semantics. */
3509 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3510                                          BdrvChild *dst, int64_t dst_offset,
3511                                          int64_t bytes,
3512                                          BdrvRequestFlags read_flags,
3513                                          BdrvRequestFlags write_flags)
3514 {
3515     IO_CODE();
3516     assert_bdrv_graph_readable();
3517     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3518                                   read_flags, write_flags);
3519     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3520                                        bytes, read_flags, write_flags, true);
3521 }
3522 
3523 /* Copy range from @src to @dst.
3524  *
3525  * See the comment of bdrv_co_copy_range for the parameter and return value
3526  * semantics. */
3527 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3528                                        BdrvChild *dst, int64_t dst_offset,
3529                                        int64_t bytes,
3530                                        BdrvRequestFlags read_flags,
3531                                        BdrvRequestFlags write_flags)
3532 {
3533     IO_CODE();
3534     assert_bdrv_graph_readable();
3535     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3536                                 read_flags, write_flags);
3537     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3538                                        bytes, read_flags, write_flags, false);
3539 }
3540 
3541 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3542                                     BdrvChild *dst, int64_t dst_offset,
3543                                     int64_t bytes, BdrvRequestFlags read_flags,
3544                                     BdrvRequestFlags write_flags)
3545 {
3546     IO_CODE();
3547     assert_bdrv_graph_readable();
3548 
3549     return bdrv_co_copy_range_from(src, src_offset,
3550                                    dst, dst_offset,
3551                                    bytes, read_flags, write_flags);
3552 }
3553 
3554 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3555 {
3556     BdrvChild *c;
3557     QLIST_FOREACH(c, &bs->parents, next_parent) {
3558         if (c->klass->resize) {
3559             c->klass->resize(c);
3560         }
3561     }
3562 }
3563 
3564 /**
3565  * Truncate file to 'offset' bytes (needed only for file protocols)
3566  *
3567  * If 'exact' is true, the file must be resized to exactly the given
3568  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3569  * 'offset' bytes in length.
3570  */
3571 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3572                                   PreallocMode prealloc, BdrvRequestFlags flags,
3573                                   Error **errp)
3574 {
3575     BlockDriverState *bs = child->bs;
3576     BdrvChild *filtered, *backing;
3577     BlockDriver *drv = bs->drv;
3578     BdrvTrackedRequest req;
3579     int64_t old_size, new_bytes;
3580     int ret;
3581     IO_CODE();
3582     assert_bdrv_graph_readable();
3583 
3584     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3585     if (!drv) {
3586         error_setg(errp, "No medium inserted");
3587         return -ENOMEDIUM;
3588     }
3589     if (offset < 0) {
3590         error_setg(errp, "Image size cannot be negative");
3591         return -EINVAL;
3592     }
3593 
3594     ret = bdrv_check_request(offset, 0, errp);
3595     if (ret < 0) {
3596         return ret;
3597     }
3598 
3599     old_size = bdrv_co_getlength(bs);
3600     if (old_size < 0) {
3601         error_setg_errno(errp, -old_size, "Failed to get old image size");
3602         return old_size;
3603     }
3604 
3605     if (bdrv_is_read_only(bs)) {
3606         error_setg(errp, "Image is read-only");
3607         return -EACCES;
3608     }
3609 
3610     if (offset > old_size) {
3611         new_bytes = offset - old_size;
3612     } else {
3613         new_bytes = 0;
3614     }
3615 
3616     bdrv_inc_in_flight(bs);
3617     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3618                           BDRV_TRACKED_TRUNCATE);
3619 
3620     /* If we are growing the image and potentially using preallocation for the
3621      * new area, we need to make sure that no write requests are made to it
3622      * concurrently or they might be overwritten by preallocation. */
3623     if (new_bytes) {
3624         bdrv_make_request_serialising(&req, 1);
3625     }
3626     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3627                                     0);
3628     if (ret < 0) {
3629         error_setg_errno(errp, -ret,
3630                          "Failed to prepare request for truncation");
3631         goto out;
3632     }
3633 
3634     filtered = bdrv_filter_child(bs);
3635     backing = bdrv_cow_child(bs);
3636 
3637     /*
3638      * If the image has a backing file that is large enough that it would
3639      * provide data for the new area, we cannot leave it unallocated because
3640      * then the backing file content would become visible. Instead, zero-fill
3641      * the new area.
3642      *
3643      * Note that if the image has a backing file, but was opened without the
3644      * backing file, taking care of keeping things consistent with that backing
3645      * file is the user's responsibility.
3646      */
3647     if (new_bytes && backing) {
3648         int64_t backing_len;
3649 
3650         backing_len = bdrv_co_getlength(backing->bs);
3651         if (backing_len < 0) {
3652             ret = backing_len;
3653             error_setg_errno(errp, -ret, "Could not get backing file size");
3654             goto out;
3655         }
3656 
3657         if (backing_len > old_size) {
3658             flags |= BDRV_REQ_ZERO_WRITE;
3659         }
3660     }
3661 
3662     if (drv->bdrv_co_truncate) {
3663         if (flags & ~bs->supported_truncate_flags) {
3664             error_setg(errp, "Block driver does not support requested flags");
3665             ret = -ENOTSUP;
3666             goto out;
3667         }
3668         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3669     } else if (filtered) {
3670         ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3671     } else {
3672         error_setg(errp, "Image format driver does not support resize");
3673         ret = -ENOTSUP;
3674         goto out;
3675     }
3676     if (ret < 0) {
3677         goto out;
3678     }
3679 
3680     ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3681     if (ret < 0) {
3682         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3683     } else {
3684         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3685     }
3686     /*
3687      * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3688      * failed, but the latter doesn't affect how we should finish the request.
3689      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3690      */
3691     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3692 
3693 out:
3694     tracked_request_end(&req);
3695     bdrv_dec_in_flight(bs);
3696 
3697     return ret;
3698 }
3699 
3700 void bdrv_cancel_in_flight(BlockDriverState *bs)
3701 {
3702     GLOBAL_STATE_CODE();
3703     if (!bs || !bs->drv) {
3704         return;
3705     }
3706 
3707     if (bs->drv->bdrv_cancel_in_flight) {
3708         bs->drv->bdrv_cancel_in_flight(bs);
3709     }
3710 }
3711 
3712 int coroutine_fn
3713 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3714                         QEMUIOVector *qiov, size_t qiov_offset)
3715 {
3716     BlockDriverState *bs = child->bs;
3717     BlockDriver *drv = bs->drv;
3718     int ret;
3719     IO_CODE();
3720     assert_bdrv_graph_readable();
3721 
3722     if (!drv) {
3723         return -ENOMEDIUM;
3724     }
3725 
3726     if (!drv->bdrv_co_preadv_snapshot) {
3727         return -ENOTSUP;
3728     }
3729 
3730     bdrv_inc_in_flight(bs);
3731     ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3732     bdrv_dec_in_flight(bs);
3733 
3734     return ret;
3735 }
3736 
3737 int coroutine_fn
3738 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3739                               bool want_zero, int64_t offset, int64_t bytes,
3740                               int64_t *pnum, int64_t *map,
3741                               BlockDriverState **file)
3742 {
3743     BlockDriver *drv = bs->drv;
3744     int ret;
3745     IO_CODE();
3746     assert_bdrv_graph_readable();
3747 
3748     if (!drv) {
3749         return -ENOMEDIUM;
3750     }
3751 
3752     if (!drv->bdrv_co_snapshot_block_status) {
3753         return -ENOTSUP;
3754     }
3755 
3756     bdrv_inc_in_flight(bs);
3757     ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3758                                              pnum, map, file);
3759     bdrv_dec_in_flight(bs);
3760 
3761     return ret;
3762 }
3763 
3764 int coroutine_fn
3765 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3766 {
3767     BlockDriver *drv = bs->drv;
3768     int ret;
3769     IO_CODE();
3770     assert_bdrv_graph_readable();
3771 
3772     if (!drv) {
3773         return -ENOMEDIUM;
3774     }
3775 
3776     if (!drv->bdrv_co_pdiscard_snapshot) {
3777         return -ENOTSUP;
3778     }
3779 
3780     bdrv_inc_in_flight(bs);
3781     ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3782     bdrv_dec_in_flight(bs);
3783 
3784     return ret;
3785 }
3786