1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "system/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "system/replay.h" 41 #include "qemu/units.h" 42 43 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 44 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 45 46 /* Maximum read size for checking if data reads as zero, in bytes */ 47 #define MAX_ZERO_CHECK_BUFFER (128 * KiB) 48 49 static void coroutine_fn GRAPH_RDLOCK 50 bdrv_parent_cb_resize(BlockDriverState *bs); 51 52 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 53 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 54 55 static void GRAPH_RDLOCK 56 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 57 { 58 BdrvChild *c, *next; 59 IO_OR_GS_CODE(); 60 assert_bdrv_graph_readable(); 61 62 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 63 if (c == ignore) { 64 continue; 65 } 66 bdrv_parent_drained_begin_single(c); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 GLOBAL_STATE_CODE(); 73 74 assert(c->quiesced_parent); 75 c->quiesced_parent = false; 76 77 if (c->klass->drained_end) { 78 c->klass->drained_end(c); 79 } 80 } 81 82 static void GRAPH_RDLOCK 83 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 84 { 85 BdrvChild *c; 86 IO_OR_GS_CODE(); 87 assert_bdrv_graph_readable(); 88 89 QLIST_FOREACH(c, &bs->parents, next_parent) { 90 if (c == ignore) { 91 continue; 92 } 93 bdrv_parent_drained_end_single(c); 94 } 95 } 96 97 bool bdrv_parent_drained_poll_single(BdrvChild *c) 98 { 99 IO_OR_GS_CODE(); 100 101 if (c->klass->drained_poll) { 102 return c->klass->drained_poll(c); 103 } 104 return false; 105 } 106 107 static bool GRAPH_RDLOCK 108 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 109 bool ignore_bds_parents) 110 { 111 BdrvChild *c, *next; 112 bool busy = false; 113 IO_OR_GS_CODE(); 114 assert_bdrv_graph_readable(); 115 116 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 117 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 118 continue; 119 } 120 busy |= bdrv_parent_drained_poll_single(c); 121 } 122 123 return busy; 124 } 125 126 void bdrv_parent_drained_begin_single(BdrvChild *c) 127 { 128 GLOBAL_STATE_CODE(); 129 130 assert(!c->quiesced_parent); 131 c->quiesced_parent = true; 132 133 if (c->klass->drained_begin) { 134 /* called with rdlock taken, but it doesn't really need it. */ 135 c->klass->drained_begin(c); 136 } 137 } 138 139 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 140 { 141 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 142 src->pdiscard_alignment); 143 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 144 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 145 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 146 src->max_hw_transfer); 147 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 148 src->opt_mem_alignment); 149 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 150 src->min_mem_alignment); 151 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 152 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 153 } 154 155 typedef struct BdrvRefreshLimitsState { 156 BlockDriverState *bs; 157 BlockLimits old_bl; 158 } BdrvRefreshLimitsState; 159 160 static void bdrv_refresh_limits_abort(void *opaque) 161 { 162 BdrvRefreshLimitsState *s = opaque; 163 164 s->bs->bl = s->old_bl; 165 } 166 167 static TransactionActionDrv bdrv_refresh_limits_drv = { 168 .abort = bdrv_refresh_limits_abort, 169 .clean = g_free, 170 }; 171 172 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 173 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 174 { 175 ERRP_GUARD(); 176 BlockDriver *drv = bs->drv; 177 BdrvChild *c; 178 bool have_limits; 179 180 GLOBAL_STATE_CODE(); 181 182 if (tran) { 183 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 184 *s = (BdrvRefreshLimitsState) { 185 .bs = bs, 186 .old_bl = bs->bl, 187 }; 188 tran_add(tran, &bdrv_refresh_limits_drv, s); 189 } 190 191 memset(&bs->bl, 0, sizeof(bs->bl)); 192 193 if (!drv) { 194 return; 195 } 196 197 /* Default alignment based on whether driver has byte interface */ 198 bs->bl.request_alignment = (drv->bdrv_co_preadv || 199 drv->bdrv_aio_preadv || 200 drv->bdrv_co_preadv_part) ? 1 : 512; 201 202 /* Take some limits from the children as a default */ 203 have_limits = false; 204 QLIST_FOREACH(c, &bs->children, next) { 205 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 206 { 207 bdrv_merge_limits(&bs->bl, &c->bs->bl); 208 have_limits = true; 209 } 210 211 if (c->role & BDRV_CHILD_FILTERED) { 212 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 213 } 214 } 215 216 if (!have_limits) { 217 bs->bl.min_mem_alignment = 512; 218 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 219 220 /* Safe default since most protocols use readv()/writev()/etc */ 221 bs->bl.max_iov = IOV_MAX; 222 } 223 224 /* Then let the driver override it */ 225 if (drv->bdrv_refresh_limits) { 226 drv->bdrv_refresh_limits(bs, errp); 227 if (*errp) { 228 return; 229 } 230 } 231 232 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 233 error_setg(errp, "Driver requires too large request alignment"); 234 } 235 } 236 237 /** 238 * The copy-on-read flag is actually a reference count so multiple users may 239 * use the feature without worrying about clobbering its previous state. 240 * Copy-on-read stays enabled until all users have called to disable it. 241 */ 242 void bdrv_enable_copy_on_read(BlockDriverState *bs) 243 { 244 IO_CODE(); 245 qatomic_inc(&bs->copy_on_read); 246 } 247 248 void bdrv_disable_copy_on_read(BlockDriverState *bs) 249 { 250 int old = qatomic_fetch_dec(&bs->copy_on_read); 251 IO_CODE(); 252 assert(old >= 1); 253 } 254 255 typedef struct { 256 Coroutine *co; 257 BlockDriverState *bs; 258 bool done; 259 bool begin; 260 bool poll; 261 BdrvChild *parent; 262 } BdrvCoDrainData; 263 264 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 265 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 266 bool ignore_bds_parents) 267 { 268 GLOBAL_STATE_CODE(); 269 270 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 271 return true; 272 } 273 274 if (qatomic_read(&bs->in_flight)) { 275 return true; 276 } 277 278 return false; 279 } 280 281 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 282 BdrvChild *ignore_parent) 283 { 284 GLOBAL_STATE_CODE(); 285 GRAPH_RDLOCK_GUARD_MAINLOOP(); 286 287 return bdrv_drain_poll(bs, ignore_parent, false); 288 } 289 290 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 291 bool poll); 292 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 293 294 static void bdrv_co_drain_bh_cb(void *opaque) 295 { 296 BdrvCoDrainData *data = opaque; 297 Coroutine *co = data->co; 298 BlockDriverState *bs = data->bs; 299 300 if (bs) { 301 bdrv_dec_in_flight(bs); 302 if (data->begin) { 303 bdrv_do_drained_begin(bs, data->parent, data->poll); 304 } else { 305 assert(!data->poll); 306 bdrv_do_drained_end(bs, data->parent); 307 } 308 } else { 309 assert(data->begin); 310 bdrv_drain_all_begin(); 311 } 312 313 data->done = true; 314 aio_co_wake(co); 315 } 316 317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 318 bool begin, 319 BdrvChild *parent, 320 bool poll) 321 { 322 BdrvCoDrainData data; 323 Coroutine *self = qemu_coroutine_self(); 324 325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 326 * other coroutines run if they were queued by aio_co_enter(). */ 327 328 assert(qemu_in_coroutine()); 329 data = (BdrvCoDrainData) { 330 .co = self, 331 .bs = bs, 332 .done = false, 333 .begin = begin, 334 .parent = parent, 335 .poll = poll, 336 }; 337 338 if (bs) { 339 bdrv_inc_in_flight(bs); 340 } 341 342 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 343 bdrv_co_drain_bh_cb, &data); 344 345 qemu_coroutine_yield(); 346 /* If we are resumed from some other event (such as an aio completion or a 347 * timer callback), it is a bug in the caller that should be fixed. */ 348 assert(data.done); 349 } 350 351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 352 bool poll) 353 { 354 IO_OR_GS_CODE(); 355 356 if (qemu_in_coroutine()) { 357 bdrv_co_yield_to_drain(bs, true, parent, poll); 358 return; 359 } 360 361 GLOBAL_STATE_CODE(); 362 363 /* Stop things in parent-to-child order */ 364 if (bs->quiesce_counter++ == 0) { 365 GRAPH_RDLOCK_GUARD_MAINLOOP(); 366 bdrv_parent_drained_begin(bs, parent); 367 if (bs->drv && bs->drv->bdrv_drain_begin) { 368 bs->drv->bdrv_drain_begin(bs); 369 } 370 } 371 372 /* 373 * Wait for drained requests to finish. 374 * 375 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 376 * call is needed so things in this AioContext can make progress even 377 * though we don't return to the main AioContext loop - this automatically 378 * includes other nodes in the same AioContext and therefore all child 379 * nodes. 380 */ 381 if (poll) { 382 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 383 } 384 } 385 386 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 387 { 388 bdrv_do_drained_begin(bs, parent, false); 389 } 390 391 void coroutine_mixed_fn 392 bdrv_drained_begin(BlockDriverState *bs) 393 { 394 IO_OR_GS_CODE(); 395 bdrv_do_drained_begin(bs, NULL, true); 396 } 397 398 /** 399 * This function does not poll, nor must any of its recursively called 400 * functions. 401 */ 402 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 403 { 404 IO_OR_GS_CODE(); 405 406 if (qemu_in_coroutine()) { 407 bdrv_co_yield_to_drain(bs, false, parent, false); 408 return; 409 } 410 411 /* At this point, we should be always running in the main loop. */ 412 GLOBAL_STATE_CODE(); 413 assert(bs->quiesce_counter > 0); 414 415 /* Re-enable things in child-to-parent order */ 416 if (--bs->quiesce_counter == 0) { 417 GRAPH_RDLOCK_GUARD_MAINLOOP(); 418 if (bs->drv && bs->drv->bdrv_drain_end) { 419 bs->drv->bdrv_drain_end(bs); 420 } 421 bdrv_parent_drained_end(bs, parent); 422 } 423 } 424 425 void bdrv_drained_end(BlockDriverState *bs) 426 { 427 IO_OR_GS_CODE(); 428 bdrv_do_drained_end(bs, NULL); 429 } 430 431 void bdrv_drain(BlockDriverState *bs) 432 { 433 IO_OR_GS_CODE(); 434 bdrv_drained_begin(bs); 435 bdrv_drained_end(bs); 436 } 437 438 static void bdrv_drain_assert_idle(BlockDriverState *bs) 439 { 440 BdrvChild *child, *next; 441 GLOBAL_STATE_CODE(); 442 GRAPH_RDLOCK_GUARD_MAINLOOP(); 443 444 assert(qatomic_read(&bs->in_flight) == 0); 445 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 446 bdrv_drain_assert_idle(child->bs); 447 } 448 } 449 450 unsigned int bdrv_drain_all_count = 0; 451 452 static bool bdrv_drain_all_poll(void) 453 { 454 BlockDriverState *bs = NULL; 455 bool result = false; 456 457 GLOBAL_STATE_CODE(); 458 GRAPH_RDLOCK_GUARD_MAINLOOP(); 459 460 /* 461 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL, 462 * so iterating bdrv_next_all_states() is safe. 463 */ 464 while ((bs = bdrv_next_all_states(bs))) { 465 result |= bdrv_drain_poll(bs, NULL, true); 466 } 467 468 return result; 469 } 470 471 /* 472 * Wait for pending requests to complete across all BlockDriverStates 473 * 474 * This function does not flush data to disk, use bdrv_flush_all() for that 475 * after calling this function. 476 * 477 * This pauses all block jobs and disables external clients. It must 478 * be paired with bdrv_drain_all_end(). 479 * 480 * NOTE: no new block jobs or BlockDriverStates can be created between 481 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 482 */ 483 void bdrv_drain_all_begin_nopoll(void) 484 { 485 BlockDriverState *bs = NULL; 486 GLOBAL_STATE_CODE(); 487 488 /* 489 * bdrv queue is managed by record/replay, 490 * waiting for finishing the I/O requests may 491 * be infinite 492 */ 493 if (replay_events_enabled()) { 494 return; 495 } 496 497 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 498 * loop AioContext, so make sure we're in the main context. */ 499 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 500 assert(bdrv_drain_all_count < INT_MAX); 501 bdrv_drain_all_count++; 502 503 /* Quiesce all nodes, without polling in-flight requests yet. The graph 504 * cannot change during this loop. */ 505 while ((bs = bdrv_next_all_states(bs))) { 506 bdrv_do_drained_begin(bs, NULL, false); 507 } 508 } 509 510 void coroutine_mixed_fn bdrv_drain_all_begin(void) 511 { 512 BlockDriverState *bs = NULL; 513 514 if (qemu_in_coroutine()) { 515 bdrv_co_yield_to_drain(NULL, true, NULL, true); 516 return; 517 } 518 519 /* 520 * bdrv queue is managed by record/replay, 521 * waiting for finishing the I/O requests may 522 * be infinite 523 */ 524 if (replay_events_enabled()) { 525 return; 526 } 527 528 bdrv_drain_all_begin_nopoll(); 529 530 /* Now poll the in-flight requests */ 531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 532 533 while ((bs = bdrv_next_all_states(bs))) { 534 bdrv_drain_assert_idle(bs); 535 } 536 } 537 538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 539 { 540 GLOBAL_STATE_CODE(); 541 542 g_assert(bs->quiesce_counter > 0); 543 g_assert(!bs->refcnt); 544 545 while (bs->quiesce_counter) { 546 bdrv_do_drained_end(bs, NULL); 547 } 548 } 549 550 void bdrv_drain_all_end(void) 551 { 552 BlockDriverState *bs = NULL; 553 GLOBAL_STATE_CODE(); 554 555 /* 556 * bdrv queue is managed by record/replay, 557 * waiting for finishing the I/O requests may 558 * be endless 559 */ 560 if (replay_events_enabled()) { 561 return; 562 } 563 564 while ((bs = bdrv_next_all_states(bs))) { 565 bdrv_do_drained_end(bs, NULL); 566 } 567 568 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 569 assert(bdrv_drain_all_count > 0); 570 bdrv_drain_all_count--; 571 } 572 573 void bdrv_drain_all(void) 574 { 575 GLOBAL_STATE_CODE(); 576 bdrv_drain_all_begin(); 577 bdrv_drain_all_end(); 578 } 579 580 /** 581 * Remove an active request from the tracked requests list 582 * 583 * This function should be called when a tracked request is completing. 584 */ 585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 586 { 587 if (req->serialising) { 588 qatomic_dec(&req->bs->serialising_in_flight); 589 } 590 591 qemu_mutex_lock(&req->bs->reqs_lock); 592 QLIST_REMOVE(req, list); 593 qemu_mutex_unlock(&req->bs->reqs_lock); 594 595 /* 596 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called 597 * anymore because the request has been removed from the list, so it's safe 598 * to restart the queue outside reqs_lock to minimize the critical section. 599 */ 600 qemu_co_queue_restart_all(&req->wait_queue); 601 } 602 603 /** 604 * Add an active request to the tracked requests list 605 */ 606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 607 BlockDriverState *bs, 608 int64_t offset, 609 int64_t bytes, 610 enum BdrvTrackedRequestType type) 611 { 612 bdrv_check_request(offset, bytes, &error_abort); 613 614 *req = (BdrvTrackedRequest){ 615 .bs = bs, 616 .offset = offset, 617 .bytes = bytes, 618 .type = type, 619 .co = qemu_coroutine_self(), 620 .serialising = false, 621 .overlap_offset = offset, 622 .overlap_bytes = bytes, 623 }; 624 625 qemu_co_queue_init(&req->wait_queue); 626 627 qemu_mutex_lock(&bs->reqs_lock); 628 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 629 qemu_mutex_unlock(&bs->reqs_lock); 630 } 631 632 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 633 int64_t offset, int64_t bytes) 634 { 635 bdrv_check_request(offset, bytes, &error_abort); 636 637 /* aaaa bbbb */ 638 if (offset >= req->overlap_offset + req->overlap_bytes) { 639 return false; 640 } 641 /* bbbb aaaa */ 642 if (req->overlap_offset >= offset + bytes) { 643 return false; 644 } 645 return true; 646 } 647 648 /* Called with self->bs->reqs_lock held */ 649 static coroutine_fn BdrvTrackedRequest * 650 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 651 { 652 BdrvTrackedRequest *req; 653 654 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 655 if (req == self || (!req->serialising && !self->serialising)) { 656 continue; 657 } 658 if (tracked_request_overlaps(req, self->overlap_offset, 659 self->overlap_bytes)) 660 { 661 /* 662 * Hitting this means there was a reentrant request, for 663 * example, a block driver issuing nested requests. This must 664 * never happen since it means deadlock. 665 */ 666 assert(qemu_coroutine_self() != req->co); 667 668 /* 669 * If the request is already (indirectly) waiting for us, or 670 * will wait for us as soon as it wakes up, then just go on 671 * (instead of producing a deadlock in the former case). 672 */ 673 if (!req->waiting_for) { 674 return req; 675 } 676 } 677 } 678 679 return NULL; 680 } 681 682 /* Called with self->bs->reqs_lock held */ 683 static void coroutine_fn 684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 685 { 686 BdrvTrackedRequest *req; 687 688 while ((req = bdrv_find_conflicting_request(self))) { 689 self->waiting_for = req; 690 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 691 self->waiting_for = NULL; 692 } 693 } 694 695 /* Called with req->bs->reqs_lock held */ 696 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 697 uint64_t align) 698 { 699 int64_t overlap_offset = req->offset & ~(align - 1); 700 int64_t overlap_bytes = 701 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 702 703 bdrv_check_request(req->offset, req->bytes, &error_abort); 704 705 if (!req->serialising) { 706 qatomic_inc(&req->bs->serialising_in_flight); 707 req->serialising = true; 708 } 709 710 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 711 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 712 } 713 714 /** 715 * Return the tracked request on @bs for the current coroutine, or 716 * NULL if there is none. 717 */ 718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 719 { 720 BdrvTrackedRequest *req; 721 Coroutine *self = qemu_coroutine_self(); 722 IO_CODE(); 723 724 QLIST_FOREACH(req, &bs->tracked_requests, list) { 725 if (req->co == self) { 726 return req; 727 } 728 } 729 730 return NULL; 731 } 732 733 /** 734 * Round a region to subcluster (if supported) or cluster boundaries 735 */ 736 void coroutine_fn GRAPH_RDLOCK 737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 738 int64_t *align_offset, int64_t *align_bytes) 739 { 740 BlockDriverInfo bdi; 741 IO_CODE(); 742 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) { 743 *align_offset = offset; 744 *align_bytes = bytes; 745 } else { 746 int64_t c = bdi.subcluster_size; 747 *align_offset = QEMU_ALIGN_DOWN(offset, c); 748 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c); 749 } 750 } 751 752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 753 { 754 BlockDriverInfo bdi; 755 int ret; 756 757 ret = bdrv_co_get_info(bs, &bdi); 758 if (ret < 0 || bdi.cluster_size == 0) { 759 return bs->bl.request_alignment; 760 } else { 761 return bdi.cluster_size; 762 } 763 } 764 765 void bdrv_inc_in_flight(BlockDriverState *bs) 766 { 767 IO_CODE(); 768 qatomic_inc(&bs->in_flight); 769 } 770 771 void bdrv_wakeup(BlockDriverState *bs) 772 { 773 IO_CODE(); 774 aio_wait_kick(); 775 } 776 777 void bdrv_dec_in_flight(BlockDriverState *bs) 778 { 779 IO_CODE(); 780 qatomic_dec(&bs->in_flight); 781 bdrv_wakeup(bs); 782 } 783 784 static void coroutine_fn 785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 786 { 787 BlockDriverState *bs = self->bs; 788 789 if (!qatomic_read(&bs->serialising_in_flight)) { 790 return; 791 } 792 793 qemu_mutex_lock(&bs->reqs_lock); 794 bdrv_wait_serialising_requests_locked(self); 795 qemu_mutex_unlock(&bs->reqs_lock); 796 } 797 798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 799 uint64_t align) 800 { 801 IO_CODE(); 802 803 qemu_mutex_lock(&req->bs->reqs_lock); 804 805 tracked_request_set_serialising(req, align); 806 bdrv_wait_serialising_requests_locked(req); 807 808 qemu_mutex_unlock(&req->bs->reqs_lock); 809 } 810 811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 812 QEMUIOVector *qiov, size_t qiov_offset, 813 Error **errp) 814 { 815 /* 816 * Check generic offset/bytes correctness 817 */ 818 819 if (offset < 0) { 820 error_setg(errp, "offset is negative: %" PRIi64, offset); 821 return -EIO; 822 } 823 824 if (bytes < 0) { 825 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 826 return -EIO; 827 } 828 829 if (bytes > BDRV_MAX_LENGTH) { 830 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 831 bytes, BDRV_MAX_LENGTH); 832 return -EIO; 833 } 834 835 if (offset > BDRV_MAX_LENGTH) { 836 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 837 offset, BDRV_MAX_LENGTH); 838 return -EIO; 839 } 840 841 if (offset > BDRV_MAX_LENGTH - bytes) { 842 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 843 "exceeds maximum(%" PRIi64 ")", offset, bytes, 844 BDRV_MAX_LENGTH); 845 return -EIO; 846 } 847 848 if (!qiov) { 849 return 0; 850 } 851 852 /* 853 * Check qiov and qiov_offset 854 */ 855 856 if (qiov_offset > qiov->size) { 857 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 858 qiov_offset, qiov->size); 859 return -EIO; 860 } 861 862 if (bytes > qiov->size - qiov_offset) { 863 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 864 "vector size(%zu)", bytes, qiov_offset, qiov->size); 865 return -EIO; 866 } 867 868 return 0; 869 } 870 871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 872 { 873 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 874 } 875 876 static int bdrv_check_request32(int64_t offset, int64_t bytes, 877 QEMUIOVector *qiov, size_t qiov_offset) 878 { 879 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 880 if (ret < 0) { 881 return ret; 882 } 883 884 if (bytes > BDRV_REQUEST_MAX_BYTES) { 885 return -EIO; 886 } 887 888 return 0; 889 } 890 891 /* 892 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 893 * The operation is sped up by checking the block status and only writing 894 * zeroes to the device if they currently do not return zeroes. Optional 895 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 896 * BDRV_REQ_FUA). 897 * 898 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 899 */ 900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 901 { 902 int ret; 903 int64_t target_size, bytes, offset = 0; 904 BlockDriverState *bs = child->bs; 905 IO_CODE(); 906 907 target_size = bdrv_getlength(bs); 908 if (target_size < 0) { 909 return target_size; 910 } 911 912 for (;;) { 913 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 914 if (bytes <= 0) { 915 return 0; 916 } 917 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 918 if (ret < 0) { 919 return ret; 920 } 921 if (ret & BDRV_BLOCK_ZERO) { 922 offset += bytes; 923 continue; 924 } 925 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 926 if (ret < 0) { 927 return ret; 928 } 929 offset += bytes; 930 } 931 } 932 933 /* 934 * Writes to the file and ensures that no writes are reordered across this 935 * request (acts as a barrier) 936 * 937 * Returns 0 on success, -errno in error cases. 938 */ 939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 940 int64_t bytes, const void *buf, 941 BdrvRequestFlags flags) 942 { 943 int ret; 944 IO_CODE(); 945 assert_bdrv_graph_readable(); 946 947 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 948 if (ret < 0) { 949 return ret; 950 } 951 952 ret = bdrv_co_flush(child->bs); 953 if (ret < 0) { 954 return ret; 955 } 956 957 return 0; 958 } 959 960 typedef struct CoroutineIOCompletion { 961 Coroutine *coroutine; 962 int ret; 963 } CoroutineIOCompletion; 964 965 static void bdrv_co_io_em_complete(void *opaque, int ret) 966 { 967 CoroutineIOCompletion *co = opaque; 968 969 co->ret = ret; 970 aio_co_wake(co->coroutine); 971 } 972 973 static int coroutine_fn GRAPH_RDLOCK 974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 975 QEMUIOVector *qiov, size_t qiov_offset, int flags) 976 { 977 BlockDriver *drv = bs->drv; 978 int64_t sector_num; 979 unsigned int nb_sectors; 980 QEMUIOVector local_qiov; 981 int ret; 982 assert_bdrv_graph_readable(); 983 984 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 985 assert(!(flags & ~bs->supported_read_flags)); 986 987 if (!drv) { 988 return -ENOMEDIUM; 989 } 990 991 if (drv->bdrv_co_preadv_part) { 992 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 993 flags); 994 } 995 996 if (qiov_offset > 0 || bytes != qiov->size) { 997 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 998 qiov = &local_qiov; 999 } 1000 1001 if (drv->bdrv_co_preadv) { 1002 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1003 goto out; 1004 } 1005 1006 if (drv->bdrv_aio_preadv) { 1007 BlockAIOCB *acb; 1008 CoroutineIOCompletion co = { 1009 .coroutine = qemu_coroutine_self(), 1010 }; 1011 1012 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1013 bdrv_co_io_em_complete, &co); 1014 if (acb == NULL) { 1015 ret = -EIO; 1016 goto out; 1017 } else { 1018 qemu_coroutine_yield(); 1019 ret = co.ret; 1020 goto out; 1021 } 1022 } 1023 1024 sector_num = offset >> BDRV_SECTOR_BITS; 1025 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1026 1027 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1028 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1029 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1030 assert(drv->bdrv_co_readv); 1031 1032 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1033 1034 out: 1035 if (qiov == &local_qiov) { 1036 qemu_iovec_destroy(&local_qiov); 1037 } 1038 1039 return ret; 1040 } 1041 1042 static int coroutine_fn GRAPH_RDLOCK 1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1044 QEMUIOVector *qiov, size_t qiov_offset, 1045 BdrvRequestFlags flags) 1046 { 1047 BlockDriver *drv = bs->drv; 1048 bool emulate_fua = false; 1049 int64_t sector_num; 1050 unsigned int nb_sectors; 1051 QEMUIOVector local_qiov; 1052 int ret; 1053 assert_bdrv_graph_readable(); 1054 1055 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1056 1057 if (!drv) { 1058 return -ENOMEDIUM; 1059 } 1060 1061 if (bs->open_flags & BDRV_O_NO_FLUSH) { 1062 flags &= ~BDRV_REQ_FUA; 1063 } 1064 1065 if ((flags & BDRV_REQ_FUA) && 1066 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1067 flags &= ~BDRV_REQ_FUA; 1068 emulate_fua = true; 1069 } 1070 1071 flags &= bs->supported_write_flags; 1072 1073 if (drv->bdrv_co_pwritev_part) { 1074 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1075 flags); 1076 goto emulate_flags; 1077 } 1078 1079 if (qiov_offset > 0 || bytes != qiov->size) { 1080 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1081 qiov = &local_qiov; 1082 } 1083 1084 if (drv->bdrv_co_pwritev) { 1085 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1086 goto emulate_flags; 1087 } 1088 1089 if (drv->bdrv_aio_pwritev) { 1090 BlockAIOCB *acb; 1091 CoroutineIOCompletion co = { 1092 .coroutine = qemu_coroutine_self(), 1093 }; 1094 1095 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1096 bdrv_co_io_em_complete, &co); 1097 if (acb == NULL) { 1098 ret = -EIO; 1099 } else { 1100 qemu_coroutine_yield(); 1101 ret = co.ret; 1102 } 1103 goto emulate_flags; 1104 } 1105 1106 sector_num = offset >> BDRV_SECTOR_BITS; 1107 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1108 1109 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1110 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1111 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1112 1113 assert(drv->bdrv_co_writev); 1114 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1115 1116 emulate_flags: 1117 if (ret == 0 && emulate_fua) { 1118 ret = bdrv_co_flush(bs); 1119 } 1120 1121 if (qiov == &local_qiov) { 1122 qemu_iovec_destroy(&local_qiov); 1123 } 1124 1125 return ret; 1126 } 1127 1128 static int coroutine_fn GRAPH_RDLOCK 1129 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1130 int64_t bytes, QEMUIOVector *qiov, 1131 size_t qiov_offset) 1132 { 1133 BlockDriver *drv = bs->drv; 1134 QEMUIOVector local_qiov; 1135 int ret; 1136 assert_bdrv_graph_readable(); 1137 1138 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1139 1140 if (!drv) { 1141 return -ENOMEDIUM; 1142 } 1143 1144 if (!block_driver_can_compress(drv)) { 1145 return -ENOTSUP; 1146 } 1147 1148 if (drv->bdrv_co_pwritev_compressed_part) { 1149 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1150 qiov, qiov_offset); 1151 } 1152 1153 if (qiov_offset == 0) { 1154 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1155 } 1156 1157 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1158 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1159 qemu_iovec_destroy(&local_qiov); 1160 1161 return ret; 1162 } 1163 1164 static int coroutine_fn GRAPH_RDLOCK 1165 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1166 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1167 { 1168 BlockDriverState *bs = child->bs; 1169 1170 /* Perform I/O through a temporary buffer so that users who scribble over 1171 * their read buffer while the operation is in progress do not end up 1172 * modifying the image file. This is critical for zero-copy guest I/O 1173 * where anything might happen inside guest memory. 1174 */ 1175 void *bounce_buffer = NULL; 1176 1177 BlockDriver *drv = bs->drv; 1178 int64_t align_offset; 1179 int64_t align_bytes; 1180 int64_t skip_bytes; 1181 int ret; 1182 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1183 BDRV_REQUEST_MAX_BYTES); 1184 int64_t progress = 0; 1185 bool skip_write; 1186 1187 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1188 1189 if (!drv) { 1190 return -ENOMEDIUM; 1191 } 1192 1193 /* 1194 * Do not write anything when the BDS is inactive. That is not 1195 * allowed, and it would not help. 1196 */ 1197 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1198 1199 /* FIXME We cannot require callers to have write permissions when all they 1200 * are doing is a read request. If we did things right, write permissions 1201 * would be obtained anyway, but internally by the copy-on-read code. As 1202 * long as it is implemented here rather than in a separate filter driver, 1203 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1204 * it could request permissions. Therefore we have to bypass the permission 1205 * system for the moment. */ 1206 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1207 1208 /* Cover entire cluster so no additional backing file I/O is required when 1209 * allocating cluster in the image file. Note that this value may exceed 1210 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1211 * is one reason we loop rather than doing it all at once. 1212 */ 1213 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes); 1214 skip_bytes = offset - align_offset; 1215 1216 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1217 align_offset, align_bytes); 1218 1219 while (align_bytes) { 1220 int64_t pnum; 1221 1222 if (skip_write) { 1223 ret = 1; /* "already allocated", so nothing will be copied */ 1224 pnum = MIN(align_bytes, max_transfer); 1225 } else { 1226 ret = bdrv_co_is_allocated(bs, align_offset, 1227 MIN(align_bytes, max_transfer), &pnum); 1228 if (ret < 0) { 1229 /* 1230 * Safe to treat errors in querying allocation as if 1231 * unallocated; we'll probably fail again soon on the 1232 * read, but at least that will set a decent errno. 1233 */ 1234 pnum = MIN(align_bytes, max_transfer); 1235 } 1236 1237 /* Stop at EOF if the image ends in the middle of the cluster */ 1238 if (ret == 0 && pnum == 0) { 1239 assert(progress >= bytes); 1240 break; 1241 } 1242 1243 assert(skip_bytes < pnum); 1244 } 1245 1246 if (ret <= 0) { 1247 QEMUIOVector local_qiov; 1248 1249 /* Must copy-on-read; use the bounce buffer */ 1250 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1251 if (!bounce_buffer) { 1252 int64_t max_we_need = MAX(pnum, align_bytes - pnum); 1253 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1254 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1255 1256 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1257 if (!bounce_buffer) { 1258 ret = -ENOMEM; 1259 goto err; 1260 } 1261 } 1262 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1263 1264 ret = bdrv_driver_preadv(bs, align_offset, pnum, 1265 &local_qiov, 0, 0); 1266 if (ret < 0) { 1267 goto err; 1268 } 1269 1270 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1271 if (drv->bdrv_co_pwrite_zeroes && 1272 buffer_is_zero(bounce_buffer, pnum)) { 1273 /* FIXME: Should we (perhaps conditionally) be setting 1274 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1275 * that still correctly reads as zero? */ 1276 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum, 1277 BDRV_REQ_WRITE_UNCHANGED); 1278 } else { 1279 /* This does not change the data on the disk, it is not 1280 * necessary to flush even in cache=writethrough mode. 1281 */ 1282 ret = bdrv_driver_pwritev(bs, align_offset, pnum, 1283 &local_qiov, 0, 1284 BDRV_REQ_WRITE_UNCHANGED); 1285 } 1286 1287 if (ret < 0) { 1288 /* It might be okay to ignore write errors for guest 1289 * requests. If this is a deliberate copy-on-read 1290 * then we don't want to ignore the error. Simply 1291 * report it in all cases. 1292 */ 1293 goto err; 1294 } 1295 1296 if (!(flags & BDRV_REQ_PREFETCH)) { 1297 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1298 bounce_buffer + skip_bytes, 1299 MIN(pnum - skip_bytes, bytes - progress)); 1300 } 1301 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1302 /* Read directly into the destination */ 1303 ret = bdrv_driver_preadv(bs, offset + progress, 1304 MIN(pnum - skip_bytes, bytes - progress), 1305 qiov, qiov_offset + progress, 0); 1306 if (ret < 0) { 1307 goto err; 1308 } 1309 } 1310 1311 align_offset += pnum; 1312 align_bytes -= pnum; 1313 progress += pnum - skip_bytes; 1314 skip_bytes = 0; 1315 } 1316 ret = 0; 1317 1318 err: 1319 qemu_vfree(bounce_buffer); 1320 return ret; 1321 } 1322 1323 /* 1324 * Forwards an already correctly aligned request to the BlockDriver. This 1325 * handles copy on read, zeroing after EOF, and fragmentation of large 1326 * reads; any other features must be implemented by the caller. 1327 */ 1328 static int coroutine_fn GRAPH_RDLOCK 1329 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1330 int64_t offset, int64_t bytes, int64_t align, 1331 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1332 { 1333 BlockDriverState *bs = child->bs; 1334 int64_t total_bytes, max_bytes; 1335 int ret = 0; 1336 int64_t bytes_remaining = bytes; 1337 int max_transfer; 1338 1339 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1340 assert(is_power_of_2(align)); 1341 assert((offset & (align - 1)) == 0); 1342 assert((bytes & (align - 1)) == 0); 1343 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1344 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1345 align); 1346 1347 /* 1348 * TODO: We would need a per-BDS .supported_read_flags and 1349 * potential fallback support, if we ever implement any read flags 1350 * to pass through to drivers. For now, there aren't any 1351 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1352 */ 1353 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1354 BDRV_REQ_REGISTERED_BUF))); 1355 1356 /* Handle Copy on Read and associated serialisation */ 1357 if (flags & BDRV_REQ_COPY_ON_READ) { 1358 /* If we touch the same cluster it counts as an overlap. This 1359 * guarantees that allocating writes will be serialized and not race 1360 * with each other for the same cluster. For example, in copy-on-read 1361 * it ensures that the CoR read and write operations are atomic and 1362 * guest writes cannot interleave between them. */ 1363 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1364 } else { 1365 bdrv_wait_serialising_requests(req); 1366 } 1367 1368 if (flags & BDRV_REQ_COPY_ON_READ) { 1369 int64_t pnum; 1370 1371 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1372 flags &= ~BDRV_REQ_COPY_ON_READ; 1373 1374 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum); 1375 if (ret < 0) { 1376 goto out; 1377 } 1378 1379 if (!ret || pnum != bytes) { 1380 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1381 qiov, qiov_offset, flags); 1382 goto out; 1383 } else if (flags & BDRV_REQ_PREFETCH) { 1384 goto out; 1385 } 1386 } 1387 1388 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1389 total_bytes = bdrv_co_getlength(bs); 1390 if (total_bytes < 0) { 1391 ret = total_bytes; 1392 goto out; 1393 } 1394 1395 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1396 1397 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1398 if (bytes <= max_bytes && bytes <= max_transfer) { 1399 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1400 goto out; 1401 } 1402 1403 while (bytes_remaining) { 1404 int64_t num; 1405 1406 if (max_bytes) { 1407 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1408 assert(num); 1409 1410 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1411 num, qiov, 1412 qiov_offset + bytes - bytes_remaining, 1413 flags); 1414 max_bytes -= num; 1415 } else { 1416 num = bytes_remaining; 1417 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1418 0, bytes_remaining); 1419 } 1420 if (ret < 0) { 1421 goto out; 1422 } 1423 bytes_remaining -= num; 1424 } 1425 1426 out: 1427 return ret < 0 ? ret : 0; 1428 } 1429 1430 /* 1431 * Request padding 1432 * 1433 * |<---- align ----->| |<----- align ---->| 1434 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1435 * | | | | | | 1436 * -*----------$-------*-------- ... --------*-----$------------*--- 1437 * | | | | | | 1438 * | offset | | end | 1439 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1440 * [buf ... ) [tail_buf ) 1441 * 1442 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1443 * is placed at the beginning of @buf and @tail at the @end. 1444 * 1445 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1446 * around tail, if tail exists. 1447 * 1448 * @merge_reads is true for small requests, 1449 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1450 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1451 * 1452 * @write is true for write requests, false for read requests. 1453 * 1454 * If padding makes the vector too long (exceeding IOV_MAX), then we need to 1455 * merge existing vector elements into a single one. @collapse_bounce_buf acts 1456 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse 1457 * I/O vector elements so for read requests, the data can be copied back after 1458 * the read is done. 1459 */ 1460 typedef struct BdrvRequestPadding { 1461 uint8_t *buf; 1462 size_t buf_len; 1463 uint8_t *tail_buf; 1464 size_t head; 1465 size_t tail; 1466 bool merge_reads; 1467 bool write; 1468 QEMUIOVector local_qiov; 1469 1470 uint8_t *collapse_bounce_buf; 1471 size_t collapse_len; 1472 QEMUIOVector pre_collapse_qiov; 1473 } BdrvRequestPadding; 1474 1475 static bool bdrv_init_padding(BlockDriverState *bs, 1476 int64_t offset, int64_t bytes, 1477 bool write, 1478 BdrvRequestPadding *pad) 1479 { 1480 int64_t align = bs->bl.request_alignment; 1481 int64_t sum; 1482 1483 bdrv_check_request(offset, bytes, &error_abort); 1484 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1485 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1486 1487 memset(pad, 0, sizeof(*pad)); 1488 1489 pad->head = offset & (align - 1); 1490 pad->tail = ((offset + bytes) & (align - 1)); 1491 if (pad->tail) { 1492 pad->tail = align - pad->tail; 1493 } 1494 1495 if (!pad->head && !pad->tail) { 1496 return false; 1497 } 1498 1499 assert(bytes); /* Nothing good in aligning zero-length requests */ 1500 1501 sum = pad->head + bytes + pad->tail; 1502 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1503 pad->buf = qemu_blockalign(bs, pad->buf_len); 1504 pad->merge_reads = sum == pad->buf_len; 1505 if (pad->tail) { 1506 pad->tail_buf = pad->buf + pad->buf_len - align; 1507 } 1508 1509 pad->write = write; 1510 1511 return true; 1512 } 1513 1514 static int coroutine_fn GRAPH_RDLOCK 1515 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1516 BdrvRequestPadding *pad, bool zero_middle) 1517 { 1518 QEMUIOVector local_qiov; 1519 BlockDriverState *bs = child->bs; 1520 uint64_t align = bs->bl.request_alignment; 1521 int ret; 1522 1523 assert(req->serialising && pad->buf); 1524 1525 if (pad->head || pad->merge_reads) { 1526 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1527 1528 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1529 1530 if (pad->head) { 1531 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1532 } 1533 if (pad->merge_reads && pad->tail) { 1534 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1535 } 1536 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1537 align, &local_qiov, 0, 0); 1538 if (ret < 0) { 1539 return ret; 1540 } 1541 if (pad->head) { 1542 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1543 } 1544 if (pad->merge_reads && pad->tail) { 1545 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1546 } 1547 1548 if (pad->merge_reads) { 1549 goto zero_mem; 1550 } 1551 } 1552 1553 if (pad->tail) { 1554 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1555 1556 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1557 ret = bdrv_aligned_preadv( 1558 child, req, 1559 req->overlap_offset + req->overlap_bytes - align, 1560 align, align, &local_qiov, 0, 0); 1561 if (ret < 0) { 1562 return ret; 1563 } 1564 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1565 } 1566 1567 zero_mem: 1568 if (zero_middle) { 1569 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1570 } 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * Free *pad's associated buffers, and perform any necessary finalization steps. 1577 */ 1578 static void bdrv_padding_finalize(BdrvRequestPadding *pad) 1579 { 1580 if (pad->collapse_bounce_buf) { 1581 if (!pad->write) { 1582 /* 1583 * If padding required elements in the vector to be collapsed into a 1584 * bounce buffer, copy the bounce buffer content back 1585 */ 1586 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0, 1587 pad->collapse_bounce_buf, pad->collapse_len); 1588 } 1589 qemu_vfree(pad->collapse_bounce_buf); 1590 qemu_iovec_destroy(&pad->pre_collapse_qiov); 1591 } 1592 if (pad->buf) { 1593 qemu_vfree(pad->buf); 1594 qemu_iovec_destroy(&pad->local_qiov); 1595 } 1596 memset(pad, 0, sizeof(*pad)); 1597 } 1598 1599 /* 1600 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while 1601 * ensuring that the resulting vector will not exceed IOV_MAX elements. 1602 * 1603 * To ensure this, when necessary, the first two or three elements of @iov are 1604 * merged into pad->collapse_bounce_buf and replaced by a reference to that 1605 * bounce buffer in pad->local_qiov. 1606 * 1607 * After performing a read request, the data from the bounce buffer must be 1608 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()). 1609 */ 1610 static int bdrv_create_padded_qiov(BlockDriverState *bs, 1611 BdrvRequestPadding *pad, 1612 struct iovec *iov, int niov, 1613 size_t iov_offset, size_t bytes) 1614 { 1615 int padded_niov, surplus_count, collapse_count; 1616 1617 /* Assert this invariant */ 1618 assert(niov <= IOV_MAX); 1619 1620 /* 1621 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error 1622 * to the guest is not ideal, but there is little else we can do. At least 1623 * this will practically never happen on 64-bit systems. 1624 */ 1625 if (SIZE_MAX - pad->head < bytes || 1626 SIZE_MAX - pad->head - bytes < pad->tail) 1627 { 1628 return -EINVAL; 1629 } 1630 1631 /* Length of the resulting IOV if we just concatenated everything */ 1632 padded_niov = !!pad->head + niov + !!pad->tail; 1633 1634 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX)); 1635 1636 if (pad->head) { 1637 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head); 1638 } 1639 1640 /* 1641 * If padded_niov > IOV_MAX, we cannot just concatenate everything. 1642 * Instead, merge the first two or three elements of @iov to reduce the 1643 * number of vector elements as necessary. 1644 */ 1645 if (padded_niov > IOV_MAX) { 1646 /* 1647 * Only head and tail can have lead to the number of entries exceeding 1648 * IOV_MAX, so we can exceed it by the head and tail at most. We need 1649 * to reduce the number of elements by `surplus_count`, so we merge that 1650 * many elements plus one into one element. 1651 */ 1652 surplus_count = padded_niov - IOV_MAX; 1653 assert(surplus_count <= !!pad->head + !!pad->tail); 1654 collapse_count = surplus_count + 1; 1655 1656 /* 1657 * Move the elements to collapse into `pad->pre_collapse_qiov`, then 1658 * advance `iov` (and associated variables) by those elements. 1659 */ 1660 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count); 1661 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov, 1662 collapse_count, iov_offset, SIZE_MAX); 1663 iov += collapse_count; 1664 iov_offset = 0; 1665 niov -= collapse_count; 1666 bytes -= pad->pre_collapse_qiov.size; 1667 1668 /* 1669 * Construct the bounce buffer to match the length of the to-collapse 1670 * vector elements, and for write requests, initialize it with the data 1671 * from those elements. Then add it to `pad->local_qiov`. 1672 */ 1673 pad->collapse_len = pad->pre_collapse_qiov.size; 1674 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len); 1675 if (pad->write) { 1676 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0, 1677 pad->collapse_bounce_buf, pad->collapse_len); 1678 } 1679 qemu_iovec_add(&pad->local_qiov, 1680 pad->collapse_bounce_buf, pad->collapse_len); 1681 } 1682 1683 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes); 1684 1685 if (pad->tail) { 1686 qemu_iovec_add(&pad->local_qiov, 1687 pad->buf + pad->buf_len - pad->tail, pad->tail); 1688 } 1689 1690 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX)); 1691 return 0; 1692 } 1693 1694 /* 1695 * bdrv_pad_request 1696 * 1697 * Exchange request parameters with padded request if needed. Don't include RMW 1698 * read of padding, bdrv_padding_rmw_read() should be called separately if 1699 * needed. 1700 * 1701 * @write is true for write requests, false for read requests. 1702 * 1703 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1704 * - on function start they represent original request 1705 * - on failure or when padding is not needed they are unchanged 1706 * - on success when padding is needed they represent padded request 1707 */ 1708 static int bdrv_pad_request(BlockDriverState *bs, 1709 QEMUIOVector **qiov, size_t *qiov_offset, 1710 int64_t *offset, int64_t *bytes, 1711 bool write, 1712 BdrvRequestPadding *pad, bool *padded, 1713 BdrvRequestFlags *flags) 1714 { 1715 int ret; 1716 struct iovec *sliced_iov; 1717 int sliced_niov; 1718 size_t sliced_head, sliced_tail; 1719 1720 /* Should have been checked by the caller already */ 1721 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset); 1722 if (ret < 0) { 1723 return ret; 1724 } 1725 1726 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) { 1727 if (padded) { 1728 *padded = false; 1729 } 1730 return 0; 1731 } 1732 1733 /* 1734 * For prefetching in stream_populate(), no qiov is passed along, because 1735 * only copy-on-read matters. 1736 */ 1737 if (*qiov) { 1738 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes, 1739 &sliced_head, &sliced_tail, 1740 &sliced_niov); 1741 1742 /* Guaranteed by bdrv_check_request32() */ 1743 assert(*bytes <= SIZE_MAX); 1744 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov, 1745 sliced_head, *bytes); 1746 if (ret < 0) { 1747 bdrv_padding_finalize(pad); 1748 return ret; 1749 } 1750 *qiov = &pad->local_qiov; 1751 *qiov_offset = 0; 1752 } 1753 1754 *bytes += pad->head + pad->tail; 1755 *offset -= pad->head; 1756 if (padded) { 1757 *padded = true; 1758 } 1759 if (flags) { 1760 /* Can't use optimization hint with bounce buffer */ 1761 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1762 } 1763 1764 return 0; 1765 } 1766 1767 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1768 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1769 BdrvRequestFlags flags) 1770 { 1771 IO_CODE(); 1772 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1773 } 1774 1775 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1776 int64_t offset, int64_t bytes, 1777 QEMUIOVector *qiov, size_t qiov_offset, 1778 BdrvRequestFlags flags) 1779 { 1780 BlockDriverState *bs = child->bs; 1781 BdrvTrackedRequest req; 1782 BdrvRequestPadding pad; 1783 int ret; 1784 IO_CODE(); 1785 1786 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1787 1788 if (!bdrv_co_is_inserted(bs)) { 1789 return -ENOMEDIUM; 1790 } 1791 1792 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1793 if (ret < 0) { 1794 return ret; 1795 } 1796 1797 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1798 /* 1799 * Aligning zero request is nonsense. Even if driver has special meaning 1800 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1801 * it to driver due to request_alignment. 1802 * 1803 * Still, no reason to return an error if someone do unaligned 1804 * zero-length read occasionally. 1805 */ 1806 return 0; 1807 } 1808 1809 bdrv_inc_in_flight(bs); 1810 1811 /* Don't do copy-on-read if we read data before write operation */ 1812 if (qatomic_read(&bs->copy_on_read)) { 1813 flags |= BDRV_REQ_COPY_ON_READ; 1814 } 1815 1816 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false, 1817 &pad, NULL, &flags); 1818 if (ret < 0) { 1819 goto fail; 1820 } 1821 1822 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1823 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1824 bs->bl.request_alignment, 1825 qiov, qiov_offset, flags); 1826 tracked_request_end(&req); 1827 bdrv_padding_finalize(&pad); 1828 1829 fail: 1830 bdrv_dec_in_flight(bs); 1831 1832 return ret; 1833 } 1834 1835 static int coroutine_fn GRAPH_RDLOCK 1836 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1837 BdrvRequestFlags flags) 1838 { 1839 BlockDriver *drv = bs->drv; 1840 QEMUIOVector qiov; 1841 void *buf = NULL; 1842 int ret = 0; 1843 bool need_flush = false; 1844 int head = 0; 1845 int tail = 0; 1846 1847 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1848 INT64_MAX); 1849 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1850 bs->bl.request_alignment); 1851 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1852 1853 assert_bdrv_graph_readable(); 1854 bdrv_check_request(offset, bytes, &error_abort); 1855 1856 if (!drv) { 1857 return -ENOMEDIUM; 1858 } 1859 1860 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1861 return -ENOTSUP; 1862 } 1863 1864 /* By definition there is no user buffer so this flag doesn't make sense */ 1865 if (flags & BDRV_REQ_REGISTERED_BUF) { 1866 return -EINVAL; 1867 } 1868 1869 /* If opened with discard=off we should never unmap. */ 1870 if (!(bs->open_flags & BDRV_O_UNMAP)) { 1871 flags &= ~BDRV_REQ_MAY_UNMAP; 1872 } 1873 1874 /* Invalidate the cached block-status data range if this write overlaps */ 1875 bdrv_bsc_invalidate_range(bs, offset, bytes); 1876 1877 assert(alignment % bs->bl.request_alignment == 0); 1878 head = offset % alignment; 1879 tail = (offset + bytes) % alignment; 1880 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1881 assert(max_write_zeroes >= bs->bl.request_alignment); 1882 1883 while (bytes > 0 && !ret) { 1884 int64_t num = bytes; 1885 1886 /* Align request. Block drivers can expect the "bulk" of the request 1887 * to be aligned, and that unaligned requests do not cross cluster 1888 * boundaries. 1889 */ 1890 if (head) { 1891 /* Make a small request up to the first aligned sector. For 1892 * convenience, limit this request to max_transfer even if 1893 * we don't need to fall back to writes. */ 1894 num = MIN(MIN(bytes, max_transfer), alignment - head); 1895 head = (head + num) % alignment; 1896 assert(num < max_write_zeroes); 1897 } else if (tail && num > alignment) { 1898 /* Shorten the request to the last aligned sector. */ 1899 num -= tail; 1900 } 1901 1902 /* limit request size */ 1903 if (num > max_write_zeroes) { 1904 num = max_write_zeroes; 1905 } 1906 1907 ret = -ENOTSUP; 1908 /* First try the efficient write zeroes operation */ 1909 if (drv->bdrv_co_pwrite_zeroes) { 1910 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1911 flags & bs->supported_zero_flags); 1912 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1913 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1914 need_flush = true; 1915 } 1916 } else { 1917 assert(!bs->supported_zero_flags); 1918 } 1919 1920 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1921 /* Fall back to bounce buffer if write zeroes is unsupported */ 1922 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1923 1924 if ((flags & BDRV_REQ_FUA) && 1925 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1926 /* No need for bdrv_driver_pwrite() to do a fallback 1927 * flush on each chunk; use just one at the end */ 1928 write_flags &= ~BDRV_REQ_FUA; 1929 need_flush = true; 1930 } 1931 num = MIN(num, max_transfer); 1932 if (buf == NULL) { 1933 buf = qemu_try_blockalign0(bs, num); 1934 if (buf == NULL) { 1935 ret = -ENOMEM; 1936 goto fail; 1937 } 1938 } 1939 qemu_iovec_init_buf(&qiov, buf, num); 1940 1941 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1942 1943 /* Keep bounce buffer around if it is big enough for all 1944 * all future requests. 1945 */ 1946 if (num < max_transfer) { 1947 qemu_vfree(buf); 1948 buf = NULL; 1949 } 1950 } 1951 1952 offset += num; 1953 bytes -= num; 1954 } 1955 1956 fail: 1957 if (ret == 0 && need_flush) { 1958 ret = bdrv_co_flush(bs); 1959 } 1960 qemu_vfree(buf); 1961 return ret; 1962 } 1963 1964 static inline int coroutine_fn GRAPH_RDLOCK 1965 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1966 BdrvTrackedRequest *req, int flags) 1967 { 1968 BlockDriverState *bs = child->bs; 1969 1970 bdrv_check_request(offset, bytes, &error_abort); 1971 1972 if (bdrv_is_read_only(bs)) { 1973 return -EPERM; 1974 } 1975 1976 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1977 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1978 assert(!(flags & ~BDRV_REQ_MASK)); 1979 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1980 1981 if (flags & BDRV_REQ_SERIALISING) { 1982 QEMU_LOCK_GUARD(&bs->reqs_lock); 1983 1984 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1985 1986 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1987 return -EBUSY; 1988 } 1989 1990 bdrv_wait_serialising_requests_locked(req); 1991 } else { 1992 bdrv_wait_serialising_requests(req); 1993 } 1994 1995 assert(req->overlap_offset <= offset); 1996 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1997 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1998 child->perm & BLK_PERM_RESIZE); 1999 2000 switch (req->type) { 2001 case BDRV_TRACKED_WRITE: 2002 case BDRV_TRACKED_DISCARD: 2003 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2004 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2005 } else { 2006 assert(child->perm & BLK_PERM_WRITE); 2007 } 2008 bdrv_write_threshold_check_write(bs, offset, bytes); 2009 return 0; 2010 case BDRV_TRACKED_TRUNCATE: 2011 assert(child->perm & BLK_PERM_RESIZE); 2012 return 0; 2013 default: 2014 abort(); 2015 } 2016 } 2017 2018 static inline void coroutine_fn GRAPH_RDLOCK 2019 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2020 BdrvTrackedRequest *req, int ret) 2021 { 2022 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2023 BlockDriverState *bs = child->bs; 2024 2025 bdrv_check_request(offset, bytes, &error_abort); 2026 2027 qatomic_inc(&bs->write_gen); 2028 2029 /* 2030 * Discard cannot extend the image, but in error handling cases, such as 2031 * when reverting a qcow2 cluster allocation, the discarded range can pass 2032 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2033 * here. Instead, just skip it, since semantically a discard request 2034 * beyond EOF cannot expand the image anyway. 2035 */ 2036 if (ret == 0 && 2037 (req->type == BDRV_TRACKED_TRUNCATE || 2038 end_sector > bs->total_sectors) && 2039 req->type != BDRV_TRACKED_DISCARD) { 2040 bs->total_sectors = end_sector; 2041 bdrv_parent_cb_resize(bs); 2042 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2043 } 2044 if (req->bytes) { 2045 switch (req->type) { 2046 case BDRV_TRACKED_WRITE: 2047 stat64_max(&bs->wr_highest_offset, offset + bytes); 2048 /* fall through, to set dirty bits */ 2049 case BDRV_TRACKED_DISCARD: 2050 bdrv_set_dirty(bs, offset, bytes); 2051 break; 2052 default: 2053 break; 2054 } 2055 } 2056 } 2057 2058 /* 2059 * Forwards an already correctly aligned write request to the BlockDriver, 2060 * after possibly fragmenting it. 2061 */ 2062 static int coroutine_fn GRAPH_RDLOCK 2063 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 2064 int64_t offset, int64_t bytes, int64_t align, 2065 QEMUIOVector *qiov, size_t qiov_offset, 2066 BdrvRequestFlags flags) 2067 { 2068 BlockDriverState *bs = child->bs; 2069 BlockDriver *drv = bs->drv; 2070 int ret; 2071 2072 int64_t bytes_remaining = bytes; 2073 int max_transfer; 2074 2075 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2076 2077 if (!drv) { 2078 return -ENOMEDIUM; 2079 } 2080 2081 if (bdrv_has_readonly_bitmaps(bs)) { 2082 return -EPERM; 2083 } 2084 2085 assert(is_power_of_2(align)); 2086 assert((offset & (align - 1)) == 0); 2087 assert((bytes & (align - 1)) == 0); 2088 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2089 align); 2090 2091 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2092 2093 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2094 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2095 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2096 flags |= BDRV_REQ_ZERO_WRITE; 2097 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2098 flags |= BDRV_REQ_MAY_UNMAP; 2099 } 2100 2101 /* Can't use optimization hint with bufferless zero write */ 2102 flags &= ~BDRV_REQ_REGISTERED_BUF; 2103 } 2104 2105 if (ret < 0) { 2106 /* Do nothing, write notifier decided to fail this request */ 2107 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2108 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2109 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2110 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2111 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2112 qiov, qiov_offset); 2113 } else if (bytes <= max_transfer) { 2114 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2115 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2116 } else { 2117 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2118 while (bytes_remaining) { 2119 int num = MIN(bytes_remaining, max_transfer); 2120 int local_flags = flags; 2121 2122 assert(num); 2123 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2124 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2125 /* If FUA is going to be emulated by flush, we only 2126 * need to flush on the last iteration */ 2127 local_flags &= ~BDRV_REQ_FUA; 2128 } 2129 2130 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2131 num, qiov, 2132 qiov_offset + bytes - bytes_remaining, 2133 local_flags); 2134 if (ret < 0) { 2135 break; 2136 } 2137 bytes_remaining -= num; 2138 } 2139 } 2140 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 2141 2142 if (ret >= 0) { 2143 ret = 0; 2144 } 2145 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2146 2147 return ret; 2148 } 2149 2150 static int coroutine_fn GRAPH_RDLOCK 2151 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 2152 BdrvRequestFlags flags, BdrvTrackedRequest *req) 2153 { 2154 BlockDriverState *bs = child->bs; 2155 QEMUIOVector local_qiov; 2156 uint64_t align = bs->bl.request_alignment; 2157 int ret = 0; 2158 bool padding; 2159 BdrvRequestPadding pad; 2160 2161 /* This flag doesn't make sense for padding or zero writes */ 2162 flags &= ~BDRV_REQ_REGISTERED_BUF; 2163 2164 padding = bdrv_init_padding(bs, offset, bytes, true, &pad); 2165 if (padding) { 2166 assert(!(flags & BDRV_REQ_NO_WAIT)); 2167 bdrv_make_request_serialising(req, align); 2168 2169 bdrv_padding_rmw_read(child, req, &pad, true); 2170 2171 if (pad.head || pad.merge_reads) { 2172 int64_t aligned_offset = offset & ~(align - 1); 2173 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2174 2175 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2176 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2177 align, &local_qiov, 0, 2178 flags & ~BDRV_REQ_ZERO_WRITE); 2179 if (ret < 0 || pad.merge_reads) { 2180 /* Error or all work is done */ 2181 goto out; 2182 } 2183 offset += write_bytes - pad.head; 2184 bytes -= write_bytes - pad.head; 2185 } 2186 } 2187 2188 assert(!bytes || (offset & (align - 1)) == 0); 2189 if (bytes >= align) { 2190 /* Write the aligned part in the middle. */ 2191 int64_t aligned_bytes = bytes & ~(align - 1); 2192 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2193 NULL, 0, flags); 2194 if (ret < 0) { 2195 goto out; 2196 } 2197 bytes -= aligned_bytes; 2198 offset += aligned_bytes; 2199 } 2200 2201 assert(!bytes || (offset & (align - 1)) == 0); 2202 if (bytes) { 2203 assert(align == pad.tail + bytes); 2204 2205 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2206 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2207 &local_qiov, 0, 2208 flags & ~BDRV_REQ_ZERO_WRITE); 2209 } 2210 2211 out: 2212 bdrv_padding_finalize(&pad); 2213 2214 return ret; 2215 } 2216 2217 /* 2218 * Handle a write request in coroutine context 2219 */ 2220 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2221 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2222 BdrvRequestFlags flags) 2223 { 2224 IO_CODE(); 2225 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2226 } 2227 2228 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2229 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2230 BdrvRequestFlags flags) 2231 { 2232 BlockDriverState *bs = child->bs; 2233 BdrvTrackedRequest req; 2234 uint64_t align = bs->bl.request_alignment; 2235 BdrvRequestPadding pad; 2236 int ret; 2237 bool padded = false; 2238 IO_CODE(); 2239 2240 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2241 2242 if (!bdrv_co_is_inserted(bs)) { 2243 return -ENOMEDIUM; 2244 } 2245 2246 if (flags & BDRV_REQ_ZERO_WRITE) { 2247 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2248 } else { 2249 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2250 } 2251 if (ret < 0) { 2252 return ret; 2253 } 2254 2255 /* If the request is misaligned then we can't make it efficient */ 2256 if ((flags & BDRV_REQ_NO_FALLBACK) && 2257 !QEMU_IS_ALIGNED(offset | bytes, align)) 2258 { 2259 return -ENOTSUP; 2260 } 2261 2262 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2263 /* 2264 * Aligning zero request is nonsense. Even if driver has special meaning 2265 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2266 * it to driver due to request_alignment. 2267 * 2268 * Still, no reason to return an error if someone do unaligned 2269 * zero-length write occasionally. 2270 */ 2271 return 0; 2272 } 2273 2274 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2275 /* 2276 * Pad request for following read-modify-write cycle. 2277 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2278 * alignment only if there is no ZERO flag. 2279 */ 2280 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true, 2281 &pad, &padded, &flags); 2282 if (ret < 0) { 2283 return ret; 2284 } 2285 } 2286 2287 bdrv_inc_in_flight(bs); 2288 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2289 2290 if (flags & BDRV_REQ_ZERO_WRITE) { 2291 assert(!padded); 2292 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2293 goto out; 2294 } 2295 2296 if (padded) { 2297 /* 2298 * Request was unaligned to request_alignment and therefore 2299 * padded. We are going to do read-modify-write, and must 2300 * serialize the request to prevent interactions of the 2301 * widened region with other transactions. 2302 */ 2303 assert(!(flags & BDRV_REQ_NO_WAIT)); 2304 bdrv_make_request_serialising(&req, align); 2305 bdrv_padding_rmw_read(child, &req, &pad, false); 2306 } 2307 2308 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2309 qiov, qiov_offset, flags); 2310 2311 bdrv_padding_finalize(&pad); 2312 2313 out: 2314 tracked_request_end(&req); 2315 bdrv_dec_in_flight(bs); 2316 2317 return ret; 2318 } 2319 2320 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2321 int64_t bytes, BdrvRequestFlags flags) 2322 { 2323 IO_CODE(); 2324 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2325 assert_bdrv_graph_readable(); 2326 2327 return bdrv_co_pwritev(child, offset, bytes, NULL, 2328 BDRV_REQ_ZERO_WRITE | flags); 2329 } 2330 2331 /* 2332 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2333 */ 2334 int bdrv_flush_all(void) 2335 { 2336 BdrvNextIterator it; 2337 BlockDriverState *bs = NULL; 2338 int result = 0; 2339 2340 GLOBAL_STATE_CODE(); 2341 GRAPH_RDLOCK_GUARD_MAINLOOP(); 2342 2343 /* 2344 * bdrv queue is managed by record/replay, 2345 * creating new flush request for stopping 2346 * the VM may break the determinism 2347 */ 2348 if (replay_events_enabled()) { 2349 return result; 2350 } 2351 2352 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2353 int ret = bdrv_flush(bs); 2354 if (ret < 0 && !result) { 2355 result = ret; 2356 } 2357 } 2358 2359 return result; 2360 } 2361 2362 /* 2363 * Returns the allocation status of the specified sectors. 2364 * Drivers not implementing the functionality are assumed to not support 2365 * backing files, hence all their sectors are reported as allocated. 2366 * 2367 * 'mode' serves as a hint as to which results are favored; see the 2368 * BDRV_WANT_* macros for details. 2369 * 2370 * If 'offset' is beyond the end of the disk image the return value is 2371 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2372 * 2373 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2374 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2375 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2376 * 2377 * 'pnum' is set to the number of bytes (including and immediately 2378 * following the specified offset) that are easily known to be in the 2379 * same allocated/unallocated state. Note that a second call starting 2380 * at the original offset plus returned pnum may have the same status. 2381 * The returned value is non-zero on success except at end-of-file. 2382 * 2383 * Returns negative errno on failure. Otherwise, if the 2384 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2385 * set to the host mapping and BDS corresponding to the guest offset. 2386 */ 2387 static int coroutine_fn GRAPH_RDLOCK 2388 bdrv_co_do_block_status(BlockDriverState *bs, unsigned int mode, 2389 int64_t offset, int64_t bytes, 2390 int64_t *pnum, int64_t *map, BlockDriverState **file) 2391 { 2392 int64_t total_size; 2393 int64_t n; /* bytes */ 2394 int ret; 2395 int64_t local_map = 0; 2396 BlockDriverState *local_file = NULL; 2397 int64_t aligned_offset, aligned_bytes; 2398 uint32_t align; 2399 bool has_filtered_child; 2400 2401 assert(pnum); 2402 assert_bdrv_graph_readable(); 2403 *pnum = 0; 2404 total_size = bdrv_co_getlength(bs); 2405 if (total_size < 0) { 2406 ret = total_size; 2407 goto early_out; 2408 } 2409 2410 if (offset >= total_size) { 2411 ret = BDRV_BLOCK_EOF; 2412 goto early_out; 2413 } 2414 if (!bytes) { 2415 ret = 0; 2416 goto early_out; 2417 } 2418 2419 n = total_size - offset; 2420 if (n < bytes) { 2421 bytes = n; 2422 } 2423 2424 /* Must be non-NULL or bdrv_co_getlength() would have failed */ 2425 assert(bs->drv); 2426 has_filtered_child = bdrv_filter_child(bs); 2427 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2428 *pnum = bytes; 2429 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2430 if (offset + bytes == total_size) { 2431 ret |= BDRV_BLOCK_EOF; 2432 } 2433 if (bs->drv->protocol_name) { 2434 ret |= BDRV_BLOCK_OFFSET_VALID; 2435 local_map = offset; 2436 local_file = bs; 2437 } 2438 goto early_out; 2439 } 2440 2441 bdrv_inc_in_flight(bs); 2442 2443 /* Round out to request_alignment boundaries */ 2444 align = bs->bl.request_alignment; 2445 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2446 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2447 2448 if (bs->drv->bdrv_co_block_status) { 2449 /* 2450 * Use the block-status cache only for protocol nodes: Format 2451 * drivers are generally quick to inquire the status, but protocol 2452 * drivers often need to get information from outside of qemu, so 2453 * we do not have control over the actual implementation. There 2454 * have been cases where inquiring the status took an unreasonably 2455 * long time, and we can do nothing in qemu to fix it. 2456 * This is especially problematic for images with large data areas, 2457 * because finding the few holes in them and giving them special 2458 * treatment does not gain much performance. Therefore, we try to 2459 * cache the last-identified data region. 2460 * 2461 * Second, limiting ourselves to protocol nodes allows us to assume 2462 * the block status for data regions to be DATA | OFFSET_VALID, and 2463 * that the host offset is the same as the guest offset. 2464 * 2465 * Note that it is possible that external writers zero parts of 2466 * the cached regions without the cache being invalidated, and so 2467 * we may report zeroes as data. This is not catastrophic, 2468 * however, because reporting zeroes as data is fine. 2469 */ 2470 if (QLIST_EMPTY(&bs->children) && 2471 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2472 { 2473 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2474 local_file = bs; 2475 local_map = aligned_offset; 2476 } else { 2477 ret = bs->drv->bdrv_co_block_status(bs, mode, aligned_offset, 2478 aligned_bytes, pnum, &local_map, 2479 &local_file); 2480 2481 /* 2482 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2483 * the cache is queried above. Technically, we do not need to check 2484 * it here; the worst that can happen is that we fill the cache for 2485 * non-protocol nodes, and then it is never used. However, filling 2486 * the cache requires an RCU update, so double check here to avoid 2487 * such an update if possible. 2488 * 2489 * Check mode, because we only want to update the cache when we 2490 * have accurate information about what is zero and what is data. 2491 */ 2492 if (mode == BDRV_WANT_PRECISE && 2493 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2494 QLIST_EMPTY(&bs->children)) 2495 { 2496 /* 2497 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2498 * returned local_map value must be the same as the offset we 2499 * have passed (aligned_offset), and local_bs must be the node 2500 * itself. 2501 * Assert this, because we follow this rule when reading from 2502 * the cache (see the `local_file = bs` and 2503 * `local_map = aligned_offset` assignments above), and the 2504 * result the cache delivers must be the same as the driver 2505 * would deliver. 2506 */ 2507 assert(local_file == bs); 2508 assert(local_map == aligned_offset); 2509 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2510 } 2511 } 2512 } else { 2513 /* Default code for filters */ 2514 2515 local_file = bdrv_filter_bs(bs); 2516 assert(local_file); 2517 2518 *pnum = aligned_bytes; 2519 local_map = aligned_offset; 2520 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2521 } 2522 if (ret < 0) { 2523 *pnum = 0; 2524 goto out; 2525 } 2526 2527 /* 2528 * The driver's result must be a non-zero multiple of request_alignment. 2529 * Clamp pnum and adjust map to original request. 2530 */ 2531 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2532 align > offset - aligned_offset); 2533 if (ret & BDRV_BLOCK_RECURSE) { 2534 assert(ret & BDRV_BLOCK_DATA); 2535 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2536 assert(!(ret & BDRV_BLOCK_ZERO)); 2537 } 2538 2539 *pnum -= offset - aligned_offset; 2540 if (*pnum > bytes) { 2541 *pnum = bytes; 2542 } 2543 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2544 local_map += offset - aligned_offset; 2545 } 2546 2547 if (ret & BDRV_BLOCK_RAW) { 2548 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2549 ret = bdrv_co_do_block_status(local_file, mode, local_map, 2550 *pnum, pnum, &local_map, &local_file); 2551 goto out; 2552 } 2553 2554 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2555 ret |= BDRV_BLOCK_ALLOCATED; 2556 } else if (bs->drv->supports_backing) { 2557 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2558 2559 if (!cow_bs) { 2560 ret |= BDRV_BLOCK_ZERO; 2561 } else if (mode == BDRV_WANT_PRECISE) { 2562 int64_t size2 = bdrv_co_getlength(cow_bs); 2563 2564 if (size2 >= 0 && offset >= size2) { 2565 ret |= BDRV_BLOCK_ZERO; 2566 } 2567 } 2568 } 2569 2570 if (mode == BDRV_WANT_PRECISE && ret & BDRV_BLOCK_RECURSE && 2571 local_file && local_file != bs && 2572 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2573 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2574 int64_t file_pnum; 2575 int ret2; 2576 2577 ret2 = bdrv_co_do_block_status(local_file, mode, local_map, 2578 *pnum, &file_pnum, NULL, NULL); 2579 if (ret2 >= 0) { 2580 /* Ignore errors. This is just providing extra information, it 2581 * is useful but not necessary. 2582 */ 2583 if (ret2 & BDRV_BLOCK_EOF && 2584 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2585 /* 2586 * It is valid for the format block driver to read 2587 * beyond the end of the underlying file's current 2588 * size; such areas read as zero. 2589 */ 2590 ret |= BDRV_BLOCK_ZERO; 2591 } else { 2592 /* Limit request to the range reported by the protocol driver */ 2593 *pnum = file_pnum; 2594 ret |= (ret2 & BDRV_BLOCK_ZERO); 2595 } 2596 } 2597 2598 /* 2599 * Now that the recursive search was done, clear the flag. Otherwise, 2600 * with more complicated block graphs like snapshot-access -> 2601 * copy-before-write -> qcow2, where the return value will be propagated 2602 * further up to a parent bdrv_co_do_block_status() call, both the 2603 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is 2604 * not allowed. 2605 */ 2606 ret &= ~BDRV_BLOCK_RECURSE; 2607 } 2608 2609 out: 2610 bdrv_dec_in_flight(bs); 2611 if (ret >= 0 && offset + *pnum == total_size) { 2612 ret |= BDRV_BLOCK_EOF; 2613 } 2614 early_out: 2615 if (file) { 2616 *file = local_file; 2617 } 2618 if (map) { 2619 *map = local_map; 2620 } 2621 return ret; 2622 } 2623 2624 int coroutine_fn 2625 bdrv_co_common_block_status_above(BlockDriverState *bs, 2626 BlockDriverState *base, 2627 bool include_base, 2628 unsigned int mode, 2629 int64_t offset, 2630 int64_t bytes, 2631 int64_t *pnum, 2632 int64_t *map, 2633 BlockDriverState **file, 2634 int *depth) 2635 { 2636 int ret; 2637 BlockDriverState *p; 2638 int64_t eof = 0; 2639 int dummy; 2640 IO_CODE(); 2641 2642 assert(!include_base || base); /* Can't include NULL base */ 2643 assert_bdrv_graph_readable(); 2644 2645 if (!depth) { 2646 depth = &dummy; 2647 } 2648 *depth = 0; 2649 2650 if (!include_base && bs == base) { 2651 *pnum = bytes; 2652 return 0; 2653 } 2654 2655 ret = bdrv_co_do_block_status(bs, mode, offset, bytes, pnum, 2656 map, file); 2657 ++*depth; 2658 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2659 return ret; 2660 } 2661 2662 if (ret & BDRV_BLOCK_EOF) { 2663 eof = offset + *pnum; 2664 } 2665 2666 assert(*pnum <= bytes); 2667 bytes = *pnum; 2668 2669 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2670 p = bdrv_filter_or_cow_bs(p)) 2671 { 2672 ret = bdrv_co_do_block_status(p, mode, offset, bytes, pnum, 2673 map, file); 2674 ++*depth; 2675 if (ret < 0) { 2676 return ret; 2677 } 2678 if (*pnum == 0) { 2679 /* 2680 * The top layer deferred to this layer, and because this layer is 2681 * short, any zeroes that we synthesize beyond EOF behave as if they 2682 * were allocated at this layer. 2683 * 2684 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2685 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2686 * below. 2687 */ 2688 assert(ret & BDRV_BLOCK_EOF); 2689 *pnum = bytes; 2690 if (file) { 2691 *file = p; 2692 } 2693 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2694 break; 2695 } 2696 if (ret & BDRV_BLOCK_ALLOCATED) { 2697 /* 2698 * We've found the node and the status, we must break. 2699 * 2700 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2701 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2702 * below. 2703 */ 2704 ret &= ~BDRV_BLOCK_EOF; 2705 break; 2706 } 2707 2708 if (p == base) { 2709 assert(include_base); 2710 break; 2711 } 2712 2713 /* 2714 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2715 * let's continue the diving. 2716 */ 2717 assert(*pnum <= bytes); 2718 bytes = *pnum; 2719 } 2720 2721 if (offset + *pnum == eof) { 2722 ret |= BDRV_BLOCK_EOF; 2723 } 2724 2725 return ret; 2726 } 2727 2728 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2729 BlockDriverState *base, 2730 int64_t offset, int64_t bytes, 2731 int64_t *pnum, int64_t *map, 2732 BlockDriverState **file) 2733 { 2734 IO_CODE(); 2735 return bdrv_co_common_block_status_above(bs, base, false, 2736 BDRV_WANT_PRECISE, offset, 2737 bytes, pnum, map, file, NULL); 2738 } 2739 2740 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset, 2741 int64_t bytes, int64_t *pnum, 2742 int64_t *map, BlockDriverState **file) 2743 { 2744 IO_CODE(); 2745 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2746 offset, bytes, pnum, map, file); 2747 } 2748 2749 /* 2750 * Check @bs (and its backing chain) to see if the range defined 2751 * by @offset and @bytes is known to read as zeroes. 2752 * Return 1 if that is the case, 0 otherwise and -errno on error. 2753 * This test is meant to be fast rather than accurate so returning 0 2754 * does not guarantee non-zero data; but a return of 1 is reliable. 2755 */ 2756 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2757 int64_t bytes) 2758 { 2759 int ret; 2760 int64_t pnum; 2761 IO_CODE(); 2762 2763 while (bytes) { 2764 ret = bdrv_co_common_block_status_above(bs, NULL, false, 2765 BDRV_WANT_ZERO, offset, bytes, 2766 &pnum, NULL, NULL, NULL); 2767 2768 if (ret < 0) { 2769 return ret; 2770 } 2771 if (!(ret & BDRV_BLOCK_ZERO)) { 2772 return 0; 2773 } 2774 offset += pnum; 2775 bytes -= pnum; 2776 } 2777 2778 return 1; 2779 } 2780 2781 /* 2782 * Check @bs (and its backing chain) to see if the entire image is known 2783 * to read as zeroes. 2784 * Return 1 if that is the case, 0 otherwise and -errno on error. 2785 * This test is meant to be fast rather than accurate so returning 0 2786 * does not guarantee non-zero data; however, a return of 1 is reliable, 2787 * and this function can report 1 in more cases than bdrv_co_is_zero_fast. 2788 */ 2789 int coroutine_fn bdrv_co_is_all_zeroes(BlockDriverState *bs) 2790 { 2791 int ret; 2792 int64_t pnum, bytes; 2793 char *buf; 2794 QEMUIOVector local_qiov; 2795 IO_CODE(); 2796 2797 bytes = bdrv_co_getlength(bs); 2798 if (bytes < 0) { 2799 return bytes; 2800 } 2801 2802 /* First probe - see if the entire image reads as zero */ 2803 ret = bdrv_co_common_block_status_above(bs, NULL, false, BDRV_WANT_ZERO, 2804 0, bytes, &pnum, NULL, NULL, 2805 NULL); 2806 if (ret < 0) { 2807 return ret; 2808 } 2809 if (ret & BDRV_BLOCK_ZERO) { 2810 return bdrv_co_is_zero_fast(bs, pnum, bytes - pnum); 2811 } 2812 2813 /* 2814 * Because of the way 'blockdev-create' works, raw files tend to 2815 * be created with a non-sparse region at the front to make 2816 * alignment probing easier. If the block starts with only a 2817 * small allocated region, it is still worth the effort to see if 2818 * the rest of the image is still sparse, coupled with manually 2819 * reading the first region to see if it reads zero after all. 2820 */ 2821 if (pnum > MAX_ZERO_CHECK_BUFFER) { 2822 return 0; 2823 } 2824 ret = bdrv_co_is_zero_fast(bs, pnum, bytes - pnum); 2825 if (ret <= 0) { 2826 return ret; 2827 } 2828 /* Only the head of the image is unknown, and it's small. Read it. */ 2829 buf = qemu_blockalign(bs, pnum); 2830 qemu_iovec_init_buf(&local_qiov, buf, pnum); 2831 ret = bdrv_driver_preadv(bs, 0, pnum, &local_qiov, 0, 0); 2832 if (ret >= 0) { 2833 ret = buffer_is_zero(buf, pnum); 2834 } 2835 qemu_vfree(buf); 2836 return ret; 2837 } 2838 2839 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2840 int64_t bytes, int64_t *pnum) 2841 { 2842 int ret; 2843 int64_t dummy; 2844 IO_CODE(); 2845 2846 ret = bdrv_co_common_block_status_above(bs, bs, true, BDRV_WANT_ALLOCATED, 2847 offset, bytes, pnum ? pnum : &dummy, 2848 NULL, NULL, NULL); 2849 if (ret < 0) { 2850 return ret; 2851 } 2852 return !!(ret & BDRV_BLOCK_ALLOCATED); 2853 } 2854 2855 /* 2856 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2857 * 2858 * Return a positive depth if (a prefix of) the given range is allocated 2859 * in any image between BASE and TOP (BASE is only included if include_base 2860 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2861 * BASE can be NULL to check if the given offset is allocated in any 2862 * image of the chain. Return 0 otherwise, or negative errno on 2863 * failure. 2864 * 2865 * 'pnum' is set to the number of bytes (including and immediately 2866 * following the specified offset) that are known to be in the same 2867 * allocated/unallocated state. Note that a subsequent call starting 2868 * at 'offset + *pnum' may return the same allocation status (in other 2869 * words, the result is not necessarily the maximum possible range); 2870 * but 'pnum' will only be 0 when end of file is reached. 2871 */ 2872 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs, 2873 BlockDriverState *base, 2874 bool include_base, int64_t offset, 2875 int64_t bytes, int64_t *pnum) 2876 { 2877 int depth; 2878 int ret; 2879 IO_CODE(); 2880 2881 ret = bdrv_co_common_block_status_above(bs, base, include_base, 2882 BDRV_WANT_ALLOCATED, 2883 offset, bytes, pnum, NULL, NULL, 2884 &depth); 2885 if (ret < 0) { 2886 return ret; 2887 } 2888 2889 if (ret & BDRV_BLOCK_ALLOCATED) { 2890 return depth; 2891 } 2892 return 0; 2893 } 2894 2895 int coroutine_fn 2896 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2897 { 2898 BlockDriver *drv = bs->drv; 2899 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2900 int ret; 2901 IO_CODE(); 2902 assert_bdrv_graph_readable(); 2903 2904 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2905 if (ret < 0) { 2906 return ret; 2907 } 2908 2909 if (!drv) { 2910 return -ENOMEDIUM; 2911 } 2912 2913 bdrv_inc_in_flight(bs); 2914 2915 if (drv->bdrv_co_load_vmstate) { 2916 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2917 } else if (child_bs) { 2918 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2919 } else { 2920 ret = -ENOTSUP; 2921 } 2922 2923 bdrv_dec_in_flight(bs); 2924 2925 return ret; 2926 } 2927 2928 int coroutine_fn 2929 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2930 { 2931 BlockDriver *drv = bs->drv; 2932 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2933 int ret; 2934 IO_CODE(); 2935 assert_bdrv_graph_readable(); 2936 2937 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2938 if (ret < 0) { 2939 return ret; 2940 } 2941 2942 if (!drv) { 2943 return -ENOMEDIUM; 2944 } 2945 2946 bdrv_inc_in_flight(bs); 2947 2948 if (drv->bdrv_co_save_vmstate) { 2949 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2950 } else if (child_bs) { 2951 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2952 } else { 2953 ret = -ENOTSUP; 2954 } 2955 2956 bdrv_dec_in_flight(bs); 2957 2958 return ret; 2959 } 2960 2961 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2962 int64_t pos, int size) 2963 { 2964 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2965 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2966 IO_CODE(); 2967 2968 return ret < 0 ? ret : size; 2969 } 2970 2971 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2972 int64_t pos, int size) 2973 { 2974 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2975 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2976 IO_CODE(); 2977 2978 return ret < 0 ? ret : size; 2979 } 2980 2981 /**************************************************************/ 2982 /* async I/Os */ 2983 2984 /** 2985 * Synchronously cancels an acb. Must be called with the BQL held and the acb 2986 * must be processed with the BQL held too (IOThreads are not allowed). 2987 * 2988 * Use bdrv_aio_cancel_async() instead when possible. 2989 */ 2990 void bdrv_aio_cancel(BlockAIOCB *acb) 2991 { 2992 GLOBAL_STATE_CODE(); 2993 qemu_aio_ref(acb); 2994 bdrv_aio_cancel_async(acb); 2995 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1); 2996 qemu_aio_unref(acb); 2997 } 2998 2999 /* Async version of aio cancel. The caller is not blocked if the acb implements 3000 * cancel_async, otherwise we do nothing and let the request normally complete. 3001 * In either case the completion callback must be called. */ 3002 void bdrv_aio_cancel_async(BlockAIOCB *acb) 3003 { 3004 IO_CODE(); 3005 if (acb->aiocb_info->cancel_async) { 3006 acb->aiocb_info->cancel_async(acb); 3007 } 3008 } 3009 3010 /**************************************************************/ 3011 /* Coroutine block device emulation */ 3012 3013 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 3014 { 3015 BdrvChild *primary_child = bdrv_primary_child(bs); 3016 BdrvChild *child; 3017 int current_gen; 3018 int ret = 0; 3019 IO_CODE(); 3020 3021 assert_bdrv_graph_readable(); 3022 bdrv_inc_in_flight(bs); 3023 3024 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 3025 bdrv_is_sg(bs)) { 3026 goto early_exit; 3027 } 3028 3029 qemu_mutex_lock(&bs->reqs_lock); 3030 current_gen = qatomic_read(&bs->write_gen); 3031 3032 /* Wait until any previous flushes are completed */ 3033 while (bs->active_flush_req) { 3034 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 3035 } 3036 3037 /* Flushes reach this point in nondecreasing current_gen order. */ 3038 bs->active_flush_req = true; 3039 qemu_mutex_unlock(&bs->reqs_lock); 3040 3041 /* Write back all layers by calling one driver function */ 3042 if (bs->drv->bdrv_co_flush) { 3043 ret = bs->drv->bdrv_co_flush(bs); 3044 goto out; 3045 } 3046 3047 /* Write back cached data to the OS even with cache=unsafe */ 3048 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3049 if (bs->drv->bdrv_co_flush_to_os) { 3050 ret = bs->drv->bdrv_co_flush_to_os(bs); 3051 if (ret < 0) { 3052 goto out; 3053 } 3054 } 3055 3056 /* But don't actually force it to the disk with cache=unsafe */ 3057 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3058 goto flush_children; 3059 } 3060 3061 /* Check if we really need to flush anything */ 3062 if (bs->flushed_gen == current_gen) { 3063 goto flush_children; 3064 } 3065 3066 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3067 if (!bs->drv) { 3068 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3069 * (even in case of apparent success) */ 3070 ret = -ENOMEDIUM; 3071 goto out; 3072 } 3073 if (bs->drv->bdrv_co_flush_to_disk) { 3074 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3075 } else if (bs->drv->bdrv_aio_flush) { 3076 BlockAIOCB *acb; 3077 CoroutineIOCompletion co = { 3078 .coroutine = qemu_coroutine_self(), 3079 }; 3080 3081 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3082 if (acb == NULL) { 3083 ret = -EIO; 3084 } else { 3085 qemu_coroutine_yield(); 3086 ret = co.ret; 3087 } 3088 } else { 3089 /* 3090 * Some block drivers always operate in either writethrough or unsafe 3091 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3092 * know how the server works (because the behaviour is hardcoded or 3093 * depends on server-side configuration), so we can't ensure that 3094 * everything is safe on disk. Returning an error doesn't work because 3095 * that would break guests even if the server operates in writethrough 3096 * mode. 3097 * 3098 * Let's hope the user knows what he's doing. 3099 */ 3100 ret = 0; 3101 } 3102 3103 if (ret < 0) { 3104 goto out; 3105 } 3106 3107 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3108 * in the case of cache=unsafe, so there are no useless flushes. 3109 */ 3110 flush_children: 3111 ret = 0; 3112 QLIST_FOREACH(child, &bs->children, next) { 3113 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3114 int this_child_ret = bdrv_co_flush(child->bs); 3115 if (!ret) { 3116 ret = this_child_ret; 3117 } 3118 } 3119 } 3120 3121 out: 3122 /* Notify any pending flushes that we have completed */ 3123 if (ret == 0) { 3124 bs->flushed_gen = current_gen; 3125 } 3126 3127 qemu_mutex_lock(&bs->reqs_lock); 3128 bs->active_flush_req = false; 3129 /* Return value is ignored - it's ok if wait queue is empty */ 3130 qemu_co_queue_next(&bs->flush_queue); 3131 qemu_mutex_unlock(&bs->reqs_lock); 3132 3133 early_exit: 3134 bdrv_dec_in_flight(bs); 3135 return ret; 3136 } 3137 3138 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3139 int64_t bytes) 3140 { 3141 BdrvTrackedRequest req; 3142 int ret; 3143 int64_t max_pdiscard; 3144 int head, tail, align; 3145 BlockDriverState *bs = child->bs; 3146 IO_CODE(); 3147 assert_bdrv_graph_readable(); 3148 3149 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 3150 return -ENOMEDIUM; 3151 } 3152 3153 if (bdrv_has_readonly_bitmaps(bs)) { 3154 return -EPERM; 3155 } 3156 3157 ret = bdrv_check_request(offset, bytes, NULL); 3158 if (ret < 0) { 3159 return ret; 3160 } 3161 3162 /* Do nothing if disabled. */ 3163 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3164 return 0; 3165 } 3166 3167 if (!bs->drv->bdrv_co_pdiscard) { 3168 return 0; 3169 } 3170 3171 /* Invalidate the cached block-status data range if this discard overlaps */ 3172 bdrv_bsc_invalidate_range(bs, offset, bytes); 3173 3174 /* 3175 * Discard is advisory, but some devices track and coalesce 3176 * unaligned requests, so we must pass everything down rather than 3177 * round here. Still, most devices reject unaligned requests with 3178 * -EINVAL or -ENOTSUP, so we must fragment the request accordingly. 3179 */ 3180 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3181 assert(align % bs->bl.request_alignment == 0); 3182 head = offset % align; 3183 tail = (offset + bytes) % align; 3184 3185 bdrv_inc_in_flight(bs); 3186 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3187 3188 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3189 if (ret < 0) { 3190 goto out; 3191 } 3192 3193 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3194 align); 3195 assert(max_pdiscard >= bs->bl.request_alignment); 3196 3197 while (bytes > 0) { 3198 int64_t num = bytes; 3199 3200 if (head) { 3201 /* Make small requests to get to alignment boundaries. */ 3202 num = MIN(bytes, align - head); 3203 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3204 num %= bs->bl.request_alignment; 3205 } 3206 head = (head + num) % align; 3207 assert(num < max_pdiscard); 3208 } else if (tail) { 3209 if (num > align) { 3210 /* Shorten the request to the last aligned cluster. */ 3211 num -= tail; 3212 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3213 tail > bs->bl.request_alignment) { 3214 tail %= bs->bl.request_alignment; 3215 num -= tail; 3216 } 3217 } 3218 /* limit request size */ 3219 if (num > max_pdiscard) { 3220 num = max_pdiscard; 3221 } 3222 3223 if (!bs->drv) { 3224 ret = -ENOMEDIUM; 3225 goto out; 3226 } 3227 3228 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3229 if (ret && ret != -ENOTSUP) { 3230 if (ret == -EINVAL && (offset % align != 0 || num % align != 0)) { 3231 /* Silently skip rejected unaligned head/tail requests */ 3232 } else { 3233 goto out; /* bail out */ 3234 } 3235 } 3236 3237 offset += num; 3238 bytes -= num; 3239 } 3240 ret = 0; 3241 out: 3242 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3243 tracked_request_end(&req); 3244 bdrv_dec_in_flight(bs); 3245 return ret; 3246 } 3247 3248 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3249 { 3250 BlockDriver *drv = bs->drv; 3251 CoroutineIOCompletion co = { 3252 .coroutine = qemu_coroutine_self(), 3253 }; 3254 BlockAIOCB *acb; 3255 IO_CODE(); 3256 assert_bdrv_graph_readable(); 3257 3258 bdrv_inc_in_flight(bs); 3259 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3260 co.ret = -ENOTSUP; 3261 goto out; 3262 } 3263 3264 if (drv->bdrv_co_ioctl) { 3265 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3266 } else { 3267 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3268 if (!acb) { 3269 co.ret = -ENOTSUP; 3270 goto out; 3271 } 3272 qemu_coroutine_yield(); 3273 } 3274 out: 3275 bdrv_dec_in_flight(bs); 3276 return co.ret; 3277 } 3278 3279 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3280 unsigned int *nr_zones, 3281 BlockZoneDescriptor *zones) 3282 { 3283 BlockDriver *drv = bs->drv; 3284 CoroutineIOCompletion co = { 3285 .coroutine = qemu_coroutine_self(), 3286 }; 3287 IO_CODE(); 3288 3289 bdrv_inc_in_flight(bs); 3290 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3291 co.ret = -ENOTSUP; 3292 goto out; 3293 } 3294 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3295 out: 3296 bdrv_dec_in_flight(bs); 3297 return co.ret; 3298 } 3299 3300 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3301 int64_t offset, int64_t len) 3302 { 3303 BlockDriver *drv = bs->drv; 3304 CoroutineIOCompletion co = { 3305 .coroutine = qemu_coroutine_self(), 3306 }; 3307 IO_CODE(); 3308 3309 bdrv_inc_in_flight(bs); 3310 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3311 co.ret = -ENOTSUP; 3312 goto out; 3313 } 3314 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3315 out: 3316 bdrv_dec_in_flight(bs); 3317 return co.ret; 3318 } 3319 3320 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3321 QEMUIOVector *qiov, 3322 BdrvRequestFlags flags) 3323 { 3324 int ret; 3325 BlockDriver *drv = bs->drv; 3326 CoroutineIOCompletion co = { 3327 .coroutine = qemu_coroutine_self(), 3328 }; 3329 IO_CODE(); 3330 3331 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3332 if (ret < 0) { 3333 return ret; 3334 } 3335 3336 bdrv_inc_in_flight(bs); 3337 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3338 co.ret = -ENOTSUP; 3339 goto out; 3340 } 3341 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3342 out: 3343 bdrv_dec_in_flight(bs); 3344 return co.ret; 3345 } 3346 3347 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3348 { 3349 IO_CODE(); 3350 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3351 } 3352 3353 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3354 { 3355 IO_CODE(); 3356 return memset(qemu_blockalign(bs, size), 0, size); 3357 } 3358 3359 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3360 { 3361 size_t align = bdrv_opt_mem_align(bs); 3362 IO_CODE(); 3363 3364 /* Ensure that NULL is never returned on success */ 3365 assert(align > 0); 3366 if (size == 0) { 3367 size = align; 3368 } 3369 3370 return qemu_try_memalign(align, size); 3371 } 3372 3373 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3374 { 3375 void *mem = qemu_try_blockalign(bs, size); 3376 IO_CODE(); 3377 3378 if (mem) { 3379 memset(mem, 0, size); 3380 } 3381 3382 return mem; 3383 } 3384 3385 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3386 static void GRAPH_RDLOCK 3387 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3388 BdrvChild *final_child) 3389 { 3390 BdrvChild *child; 3391 3392 GLOBAL_STATE_CODE(); 3393 assert_bdrv_graph_readable(); 3394 3395 QLIST_FOREACH(child, &bs->children, next) { 3396 if (child == final_child) { 3397 break; 3398 } 3399 3400 bdrv_unregister_buf(child->bs, host, size); 3401 } 3402 3403 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3404 bs->drv->bdrv_unregister_buf(bs, host, size); 3405 } 3406 } 3407 3408 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3409 Error **errp) 3410 { 3411 BdrvChild *child; 3412 3413 GLOBAL_STATE_CODE(); 3414 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3415 3416 if (bs->drv && bs->drv->bdrv_register_buf) { 3417 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3418 return false; 3419 } 3420 } 3421 QLIST_FOREACH(child, &bs->children, next) { 3422 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3423 bdrv_register_buf_rollback(bs, host, size, child); 3424 return false; 3425 } 3426 } 3427 return true; 3428 } 3429 3430 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3431 { 3432 BdrvChild *child; 3433 3434 GLOBAL_STATE_CODE(); 3435 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3436 3437 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3438 bs->drv->bdrv_unregister_buf(bs, host, size); 3439 } 3440 QLIST_FOREACH(child, &bs->children, next) { 3441 bdrv_unregister_buf(child->bs, host, size); 3442 } 3443 } 3444 3445 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3446 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3447 int64_t dst_offset, int64_t bytes, 3448 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3449 bool recurse_src) 3450 { 3451 BdrvTrackedRequest req; 3452 int ret; 3453 assert_bdrv_graph_readable(); 3454 3455 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3456 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3457 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3458 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3459 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3460 3461 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3462 return -ENOMEDIUM; 3463 } 3464 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3465 if (ret) { 3466 return ret; 3467 } 3468 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3469 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3470 } 3471 3472 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3473 return -ENOMEDIUM; 3474 } 3475 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3476 if (ret) { 3477 return ret; 3478 } 3479 3480 if (!src->bs->drv->bdrv_co_copy_range_from 3481 || !dst->bs->drv->bdrv_co_copy_range_to 3482 || src->bs->encrypted || dst->bs->encrypted) { 3483 return -ENOTSUP; 3484 } 3485 3486 if (recurse_src) { 3487 bdrv_inc_in_flight(src->bs); 3488 tracked_request_begin(&req, src->bs, src_offset, bytes, 3489 BDRV_TRACKED_READ); 3490 3491 /* BDRV_REQ_SERIALISING is only for write operation */ 3492 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3493 bdrv_wait_serialising_requests(&req); 3494 3495 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3496 src, src_offset, 3497 dst, dst_offset, 3498 bytes, 3499 read_flags, write_flags); 3500 3501 tracked_request_end(&req); 3502 bdrv_dec_in_flight(src->bs); 3503 } else { 3504 bdrv_inc_in_flight(dst->bs); 3505 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3506 BDRV_TRACKED_WRITE); 3507 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3508 write_flags); 3509 if (!ret) { 3510 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3511 src, src_offset, 3512 dst, dst_offset, 3513 bytes, 3514 read_flags, write_flags); 3515 } 3516 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3517 tracked_request_end(&req); 3518 bdrv_dec_in_flight(dst->bs); 3519 } 3520 3521 return ret; 3522 } 3523 3524 /* Copy range from @src to @dst. 3525 * 3526 * See the comment of bdrv_co_copy_range for the parameter and return value 3527 * semantics. */ 3528 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3529 BdrvChild *dst, int64_t dst_offset, 3530 int64_t bytes, 3531 BdrvRequestFlags read_flags, 3532 BdrvRequestFlags write_flags) 3533 { 3534 IO_CODE(); 3535 assert_bdrv_graph_readable(); 3536 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3537 read_flags, write_flags); 3538 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3539 bytes, read_flags, write_flags, true); 3540 } 3541 3542 /* Copy range from @src to @dst. 3543 * 3544 * See the comment of bdrv_co_copy_range for the parameter and return value 3545 * semantics. */ 3546 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3547 BdrvChild *dst, int64_t dst_offset, 3548 int64_t bytes, 3549 BdrvRequestFlags read_flags, 3550 BdrvRequestFlags write_flags) 3551 { 3552 IO_CODE(); 3553 assert_bdrv_graph_readable(); 3554 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3555 read_flags, write_flags); 3556 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3557 bytes, read_flags, write_flags, false); 3558 } 3559 3560 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3561 BdrvChild *dst, int64_t dst_offset, 3562 int64_t bytes, BdrvRequestFlags read_flags, 3563 BdrvRequestFlags write_flags) 3564 { 3565 IO_CODE(); 3566 assert_bdrv_graph_readable(); 3567 3568 return bdrv_co_copy_range_from(src, src_offset, 3569 dst, dst_offset, 3570 bytes, read_flags, write_flags); 3571 } 3572 3573 static void coroutine_fn GRAPH_RDLOCK 3574 bdrv_parent_cb_resize(BlockDriverState *bs) 3575 { 3576 BdrvChild *c; 3577 3578 assert_bdrv_graph_readable(); 3579 3580 QLIST_FOREACH(c, &bs->parents, next_parent) { 3581 if (c->klass->resize) { 3582 c->klass->resize(c); 3583 } 3584 } 3585 } 3586 3587 /** 3588 * Truncate file to 'offset' bytes (needed only for file protocols) 3589 * 3590 * If 'exact' is true, the file must be resized to exactly the given 3591 * 'offset'. Otherwise, it is sufficient for the node to be at least 3592 * 'offset' bytes in length. 3593 */ 3594 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3595 PreallocMode prealloc, BdrvRequestFlags flags, 3596 Error **errp) 3597 { 3598 BlockDriverState *bs = child->bs; 3599 BdrvChild *filtered, *backing; 3600 BlockDriver *drv = bs->drv; 3601 BdrvTrackedRequest req; 3602 int64_t old_size, new_bytes; 3603 int ret; 3604 IO_CODE(); 3605 assert_bdrv_graph_readable(); 3606 3607 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3608 if (!drv) { 3609 error_setg(errp, "No medium inserted"); 3610 return -ENOMEDIUM; 3611 } 3612 if (offset < 0) { 3613 error_setg(errp, "Image size cannot be negative"); 3614 return -EINVAL; 3615 } 3616 3617 ret = bdrv_check_request(offset, 0, errp); 3618 if (ret < 0) { 3619 return ret; 3620 } 3621 3622 old_size = bdrv_co_getlength(bs); 3623 if (old_size < 0) { 3624 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3625 return old_size; 3626 } 3627 3628 if (bdrv_is_read_only(bs)) { 3629 error_setg(errp, "Image is read-only"); 3630 return -EACCES; 3631 } 3632 3633 if (offset > old_size) { 3634 new_bytes = offset - old_size; 3635 } else { 3636 new_bytes = 0; 3637 } 3638 3639 bdrv_inc_in_flight(bs); 3640 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3641 BDRV_TRACKED_TRUNCATE); 3642 3643 /* If we are growing the image and potentially using preallocation for the 3644 * new area, we need to make sure that no write requests are made to it 3645 * concurrently or they might be overwritten by preallocation. */ 3646 if (new_bytes) { 3647 bdrv_make_request_serialising(&req, 1); 3648 } 3649 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3650 0); 3651 if (ret < 0) { 3652 error_setg_errno(errp, -ret, 3653 "Failed to prepare request for truncation"); 3654 goto out; 3655 } 3656 3657 filtered = bdrv_filter_child(bs); 3658 backing = bdrv_cow_child(bs); 3659 3660 /* 3661 * If the image has a backing file that is large enough that it would 3662 * provide data for the new area, we cannot leave it unallocated because 3663 * then the backing file content would become visible. Instead, zero-fill 3664 * the new area. 3665 * 3666 * Note that if the image has a backing file, but was opened without the 3667 * backing file, taking care of keeping things consistent with that backing 3668 * file is the user's responsibility. 3669 */ 3670 if (new_bytes && backing) { 3671 int64_t backing_len; 3672 3673 backing_len = bdrv_co_getlength(backing->bs); 3674 if (backing_len < 0) { 3675 ret = backing_len; 3676 error_setg_errno(errp, -ret, "Could not get backing file size"); 3677 goto out; 3678 } 3679 3680 if (backing_len > old_size) { 3681 flags |= BDRV_REQ_ZERO_WRITE; 3682 } 3683 } 3684 3685 if (drv->bdrv_co_truncate) { 3686 if (flags & ~bs->supported_truncate_flags) { 3687 error_setg(errp, "Block driver does not support requested flags"); 3688 ret = -ENOTSUP; 3689 goto out; 3690 } 3691 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3692 } else if (filtered) { 3693 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3694 } else { 3695 error_setg(errp, "Image format driver does not support resize"); 3696 ret = -ENOTSUP; 3697 goto out; 3698 } 3699 if (ret < 0) { 3700 goto out; 3701 } 3702 3703 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3704 if (ret < 0) { 3705 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3706 } else { 3707 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3708 } 3709 /* 3710 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3711 * failed, but the latter doesn't affect how we should finish the request. 3712 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3713 */ 3714 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3715 3716 out: 3717 tracked_request_end(&req); 3718 bdrv_dec_in_flight(bs); 3719 3720 return ret; 3721 } 3722 3723 void bdrv_cancel_in_flight(BlockDriverState *bs) 3724 { 3725 GLOBAL_STATE_CODE(); 3726 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3727 3728 if (!bs || !bs->drv) { 3729 return; 3730 } 3731 3732 if (bs->drv->bdrv_cancel_in_flight) { 3733 bs->drv->bdrv_cancel_in_flight(bs); 3734 } 3735 } 3736 3737 int coroutine_fn 3738 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3739 QEMUIOVector *qiov, size_t qiov_offset) 3740 { 3741 BlockDriverState *bs = child->bs; 3742 BlockDriver *drv = bs->drv; 3743 int ret; 3744 IO_CODE(); 3745 assert_bdrv_graph_readable(); 3746 3747 if (!drv) { 3748 return -ENOMEDIUM; 3749 } 3750 3751 if (!drv->bdrv_co_preadv_snapshot) { 3752 return -ENOTSUP; 3753 } 3754 3755 bdrv_inc_in_flight(bs); 3756 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3757 bdrv_dec_in_flight(bs); 3758 3759 return ret; 3760 } 3761 3762 int coroutine_fn 3763 bdrv_co_snapshot_block_status(BlockDriverState *bs, unsigned int mode, 3764 int64_t offset, int64_t bytes, 3765 int64_t *pnum, int64_t *map, 3766 BlockDriverState **file) 3767 { 3768 BlockDriver *drv = bs->drv; 3769 int ret; 3770 IO_CODE(); 3771 assert_bdrv_graph_readable(); 3772 3773 if (!drv) { 3774 return -ENOMEDIUM; 3775 } 3776 3777 if (!drv->bdrv_co_snapshot_block_status) { 3778 return -ENOTSUP; 3779 } 3780 3781 bdrv_inc_in_flight(bs); 3782 ret = drv->bdrv_co_snapshot_block_status(bs, mode, offset, bytes, 3783 pnum, map, file); 3784 bdrv_dec_in_flight(bs); 3785 3786 return ret; 3787 } 3788 3789 int coroutine_fn 3790 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3791 { 3792 BlockDriver *drv = bs->drv; 3793 int ret; 3794 IO_CODE(); 3795 assert_bdrv_graph_readable(); 3796 3797 if (!drv) { 3798 return -ENOMEDIUM; 3799 } 3800 3801 if (!drv->bdrv_co_pdiscard_snapshot) { 3802 return -ENOTSUP; 3803 } 3804 3805 bdrv_inc_in_flight(bs); 3806 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3807 bdrv_dec_in_flight(bs); 3808 3809 return ret; 3810 } 3811