xref: /openbmc/qemu/block/io.c (revision 06d4c71f)
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "sysemu/replay.h"
37 
38 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
39 
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42 
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45     int64_t offset, int bytes, BdrvRequestFlags flags);
46 
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48                                       bool ignore_bds_parents)
49 {
50     BdrvChild *c, *next;
51 
52     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
54             continue;
55         }
56         bdrv_parent_drained_begin_single(c, false);
57     }
58 }
59 
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61                                                    int *drained_end_counter)
62 {
63     assert(c->parent_quiesce_counter > 0);
64     c->parent_quiesce_counter--;
65     if (c->klass->drained_end) {
66         c->klass->drained_end(c, drained_end_counter);
67     }
68 }
69 
70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72     int drained_end_counter = 0;
73     bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74     BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0);
75 }
76 
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78                                     bool ignore_bds_parents,
79                                     int *drained_end_counter)
80 {
81     BdrvChild *c;
82 
83     QLIST_FOREACH(c, &bs->parents, next_parent) {
84         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
85             continue;
86         }
87         bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
88     }
89 }
90 
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 {
93     if (c->klass->drained_poll) {
94         return c->klass->drained_poll(c);
95     }
96     return false;
97 }
98 
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100                                      bool ignore_bds_parents)
101 {
102     BdrvChild *c, *next;
103     bool busy = false;
104 
105     QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106         if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
107             continue;
108         }
109         busy |= bdrv_parent_drained_poll_single(c);
110     }
111 
112     return busy;
113 }
114 
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 {
117     c->parent_quiesce_counter++;
118     if (c->klass->drained_begin) {
119         c->klass->drained_begin(c);
120     }
121     if (poll) {
122         BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
123     }
124 }
125 
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 {
128     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
131                                  src->opt_mem_alignment);
132     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
133                                  src->min_mem_alignment);
134     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
135 }
136 
137 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
138 {
139     BlockDriver *drv = bs->drv;
140     Error *local_err = NULL;
141 
142     memset(&bs->bl, 0, sizeof(bs->bl));
143 
144     if (!drv) {
145         return;
146     }
147 
148     /* Default alignment based on whether driver has byte interface */
149     bs->bl.request_alignment = (drv->bdrv_co_preadv ||
150                                 drv->bdrv_aio_preadv ||
151                                 drv->bdrv_co_preadv_part) ? 1 : 512;
152 
153     /* Take some limits from the children as a default */
154     if (bs->file) {
155         bdrv_refresh_limits(bs->file->bs, &local_err);
156         if (local_err) {
157             error_propagate(errp, local_err);
158             return;
159         }
160         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
161     } else {
162         bs->bl.min_mem_alignment = 512;
163         bs->bl.opt_mem_alignment = qemu_real_host_page_size;
164 
165         /* Safe default since most protocols use readv()/writev()/etc */
166         bs->bl.max_iov = IOV_MAX;
167     }
168 
169     if (bs->backing) {
170         bdrv_refresh_limits(bs->backing->bs, &local_err);
171         if (local_err) {
172             error_propagate(errp, local_err);
173             return;
174         }
175         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
176     }
177 
178     /* Then let the driver override it */
179     if (drv->bdrv_refresh_limits) {
180         drv->bdrv_refresh_limits(bs, errp);
181     }
182 }
183 
184 /**
185  * The copy-on-read flag is actually a reference count so multiple users may
186  * use the feature without worrying about clobbering its previous state.
187  * Copy-on-read stays enabled until all users have called to disable it.
188  */
189 void bdrv_enable_copy_on_read(BlockDriverState *bs)
190 {
191     atomic_inc(&bs->copy_on_read);
192 }
193 
194 void bdrv_disable_copy_on_read(BlockDriverState *bs)
195 {
196     int old = atomic_fetch_dec(&bs->copy_on_read);
197     assert(old >= 1);
198 }
199 
200 typedef struct {
201     Coroutine *co;
202     BlockDriverState *bs;
203     bool done;
204     bool begin;
205     bool recursive;
206     bool poll;
207     BdrvChild *parent;
208     bool ignore_bds_parents;
209     int *drained_end_counter;
210 } BdrvCoDrainData;
211 
212 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
213 {
214     BdrvCoDrainData *data = opaque;
215     BlockDriverState *bs = data->bs;
216 
217     if (data->begin) {
218         bs->drv->bdrv_co_drain_begin(bs);
219     } else {
220         bs->drv->bdrv_co_drain_end(bs);
221     }
222 
223     /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
224     atomic_mb_set(&data->done, true);
225     if (!data->begin) {
226         atomic_dec(data->drained_end_counter);
227     }
228     bdrv_dec_in_flight(bs);
229 
230     g_free(data);
231 }
232 
233 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
234 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
235                               int *drained_end_counter)
236 {
237     BdrvCoDrainData *data;
238 
239     if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
240             (!begin && !bs->drv->bdrv_co_drain_end)) {
241         return;
242     }
243 
244     data = g_new(BdrvCoDrainData, 1);
245     *data = (BdrvCoDrainData) {
246         .bs = bs,
247         .done = false,
248         .begin = begin,
249         .drained_end_counter = drained_end_counter,
250     };
251 
252     if (!begin) {
253         atomic_inc(drained_end_counter);
254     }
255 
256     /* Make sure the driver callback completes during the polling phase for
257      * drain_begin. */
258     bdrv_inc_in_flight(bs);
259     data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
260     aio_co_schedule(bdrv_get_aio_context(bs), data->co);
261 }
262 
263 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
264 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
265                      BdrvChild *ignore_parent, bool ignore_bds_parents)
266 {
267     BdrvChild *child, *next;
268 
269     if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
270         return true;
271     }
272 
273     if (atomic_read(&bs->in_flight)) {
274         return true;
275     }
276 
277     if (recursive) {
278         assert(!ignore_bds_parents);
279         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
280             if (bdrv_drain_poll(child->bs, recursive, child, false)) {
281                 return true;
282             }
283         }
284     }
285 
286     return false;
287 }
288 
289 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
290                                       BdrvChild *ignore_parent)
291 {
292     return bdrv_drain_poll(bs, recursive, ignore_parent, false);
293 }
294 
295 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
296                                   BdrvChild *parent, bool ignore_bds_parents,
297                                   bool poll);
298 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
299                                 BdrvChild *parent, bool ignore_bds_parents,
300                                 int *drained_end_counter);
301 
302 static void bdrv_co_drain_bh_cb(void *opaque)
303 {
304     BdrvCoDrainData *data = opaque;
305     Coroutine *co = data->co;
306     BlockDriverState *bs = data->bs;
307 
308     if (bs) {
309         AioContext *ctx = bdrv_get_aio_context(bs);
310         AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
311 
312         /*
313          * When the coroutine yielded, the lock for its home context was
314          * released, so we need to re-acquire it here. If it explicitly
315          * acquired a different context, the lock is still held and we don't
316          * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
317          */
318         if (ctx == co_ctx) {
319             aio_context_acquire(ctx);
320         }
321         bdrv_dec_in_flight(bs);
322         if (data->begin) {
323             assert(!data->drained_end_counter);
324             bdrv_do_drained_begin(bs, data->recursive, data->parent,
325                                   data->ignore_bds_parents, data->poll);
326         } else {
327             assert(!data->poll);
328             bdrv_do_drained_end(bs, data->recursive, data->parent,
329                                 data->ignore_bds_parents,
330                                 data->drained_end_counter);
331         }
332         if (ctx == co_ctx) {
333             aio_context_release(ctx);
334         }
335     } else {
336         assert(data->begin);
337         bdrv_drain_all_begin();
338     }
339 
340     data->done = true;
341     aio_co_wake(co);
342 }
343 
344 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
345                                                 bool begin, bool recursive,
346                                                 BdrvChild *parent,
347                                                 bool ignore_bds_parents,
348                                                 bool poll,
349                                                 int *drained_end_counter)
350 {
351     BdrvCoDrainData data;
352 
353     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
354      * other coroutines run if they were queued by aio_co_enter(). */
355 
356     assert(qemu_in_coroutine());
357     data = (BdrvCoDrainData) {
358         .co = qemu_coroutine_self(),
359         .bs = bs,
360         .done = false,
361         .begin = begin,
362         .recursive = recursive,
363         .parent = parent,
364         .ignore_bds_parents = ignore_bds_parents,
365         .poll = poll,
366         .drained_end_counter = drained_end_counter,
367     };
368 
369     if (bs) {
370         bdrv_inc_in_flight(bs);
371     }
372     replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs),
373                                      bdrv_co_drain_bh_cb, &data);
374 
375     qemu_coroutine_yield();
376     /* If we are resumed from some other event (such as an aio completion or a
377      * timer callback), it is a bug in the caller that should be fixed. */
378     assert(data.done);
379 }
380 
381 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
382                                    BdrvChild *parent, bool ignore_bds_parents)
383 {
384     assert(!qemu_in_coroutine());
385 
386     /* Stop things in parent-to-child order */
387     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
388         aio_disable_external(bdrv_get_aio_context(bs));
389     }
390 
391     bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
392     bdrv_drain_invoke(bs, true, NULL);
393 }
394 
395 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
396                                   BdrvChild *parent, bool ignore_bds_parents,
397                                   bool poll)
398 {
399     BdrvChild *child, *next;
400 
401     if (qemu_in_coroutine()) {
402         bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
403                                poll, NULL);
404         return;
405     }
406 
407     bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
408 
409     if (recursive) {
410         assert(!ignore_bds_parents);
411         bs->recursive_quiesce_counter++;
412         QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
413             bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
414                                   false);
415         }
416     }
417 
418     /*
419      * Wait for drained requests to finish.
420      *
421      * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
422      * call is needed so things in this AioContext can make progress even
423      * though we don't return to the main AioContext loop - this automatically
424      * includes other nodes in the same AioContext and therefore all child
425      * nodes.
426      */
427     if (poll) {
428         assert(!ignore_bds_parents);
429         BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
430     }
431 }
432 
433 void bdrv_drained_begin(BlockDriverState *bs)
434 {
435     bdrv_do_drained_begin(bs, false, NULL, false, true);
436 }
437 
438 void bdrv_subtree_drained_begin(BlockDriverState *bs)
439 {
440     bdrv_do_drained_begin(bs, true, NULL, false, true);
441 }
442 
443 /**
444  * This function does not poll, nor must any of its recursively called
445  * functions.  The *drained_end_counter pointee will be incremented
446  * once for every background operation scheduled, and decremented once
447  * the operation settles.  Therefore, the pointer must remain valid
448  * until the pointee reaches 0.  That implies that whoever sets up the
449  * pointee has to poll until it is 0.
450  *
451  * We use atomic operations to access *drained_end_counter, because
452  * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
453  *     @bs may contain nodes in different AioContexts,
454  * (2) bdrv_drain_all_end() uses the same counter for all nodes,
455  *     regardless of which AioContext they are in.
456  */
457 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
458                                 BdrvChild *parent, bool ignore_bds_parents,
459                                 int *drained_end_counter)
460 {
461     BdrvChild *child;
462     int old_quiesce_counter;
463 
464     assert(drained_end_counter != NULL);
465 
466     if (qemu_in_coroutine()) {
467         bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
468                                false, drained_end_counter);
469         return;
470     }
471     assert(bs->quiesce_counter > 0);
472 
473     /* Re-enable things in child-to-parent order */
474     bdrv_drain_invoke(bs, false, drained_end_counter);
475     bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
476                             drained_end_counter);
477 
478     old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
479     if (old_quiesce_counter == 1) {
480         aio_enable_external(bdrv_get_aio_context(bs));
481     }
482 
483     if (recursive) {
484         assert(!ignore_bds_parents);
485         bs->recursive_quiesce_counter--;
486         QLIST_FOREACH(child, &bs->children, next) {
487             bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
488                                 drained_end_counter);
489         }
490     }
491 }
492 
493 void bdrv_drained_end(BlockDriverState *bs)
494 {
495     int drained_end_counter = 0;
496     bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
497     BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
498 }
499 
500 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
501 {
502     bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
503 }
504 
505 void bdrv_subtree_drained_end(BlockDriverState *bs)
506 {
507     int drained_end_counter = 0;
508     bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
509     BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
510 }
511 
512 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
513 {
514     int i;
515 
516     for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
517         bdrv_do_drained_begin(child->bs, true, child, false, true);
518     }
519 }
520 
521 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
522 {
523     int drained_end_counter = 0;
524     int i;
525 
526     for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
527         bdrv_do_drained_end(child->bs, true, child, false,
528                             &drained_end_counter);
529     }
530 
531     BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0);
532 }
533 
534 /*
535  * Wait for pending requests to complete on a single BlockDriverState subtree,
536  * and suspend block driver's internal I/O until next request arrives.
537  *
538  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
539  * AioContext.
540  */
541 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
542 {
543     assert(qemu_in_coroutine());
544     bdrv_drained_begin(bs);
545     bdrv_drained_end(bs);
546 }
547 
548 void bdrv_drain(BlockDriverState *bs)
549 {
550     bdrv_drained_begin(bs);
551     bdrv_drained_end(bs);
552 }
553 
554 static void bdrv_drain_assert_idle(BlockDriverState *bs)
555 {
556     BdrvChild *child, *next;
557 
558     assert(atomic_read(&bs->in_flight) == 0);
559     QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
560         bdrv_drain_assert_idle(child->bs);
561     }
562 }
563 
564 unsigned int bdrv_drain_all_count = 0;
565 
566 static bool bdrv_drain_all_poll(void)
567 {
568     BlockDriverState *bs = NULL;
569     bool result = false;
570 
571     /* bdrv_drain_poll() can't make changes to the graph and we are holding the
572      * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
573     while ((bs = bdrv_next_all_states(bs))) {
574         AioContext *aio_context = bdrv_get_aio_context(bs);
575         aio_context_acquire(aio_context);
576         result |= bdrv_drain_poll(bs, false, NULL, true);
577         aio_context_release(aio_context);
578     }
579 
580     return result;
581 }
582 
583 /*
584  * Wait for pending requests to complete across all BlockDriverStates
585  *
586  * This function does not flush data to disk, use bdrv_flush_all() for that
587  * after calling this function.
588  *
589  * This pauses all block jobs and disables external clients. It must
590  * be paired with bdrv_drain_all_end().
591  *
592  * NOTE: no new block jobs or BlockDriverStates can be created between
593  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
594  */
595 void bdrv_drain_all_begin(void)
596 {
597     BlockDriverState *bs = NULL;
598 
599     if (qemu_in_coroutine()) {
600         bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
601         return;
602     }
603 
604     /*
605      * bdrv queue is managed by record/replay,
606      * waiting for finishing the I/O requests may
607      * be infinite
608      */
609     if (replay_events_enabled()) {
610         return;
611     }
612 
613     /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
614      * loop AioContext, so make sure we're in the main context. */
615     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
616     assert(bdrv_drain_all_count < INT_MAX);
617     bdrv_drain_all_count++;
618 
619     /* Quiesce all nodes, without polling in-flight requests yet. The graph
620      * cannot change during this loop. */
621     while ((bs = bdrv_next_all_states(bs))) {
622         AioContext *aio_context = bdrv_get_aio_context(bs);
623 
624         aio_context_acquire(aio_context);
625         bdrv_do_drained_begin(bs, false, NULL, true, false);
626         aio_context_release(aio_context);
627     }
628 
629     /* Now poll the in-flight requests */
630     AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
631 
632     while ((bs = bdrv_next_all_states(bs))) {
633         bdrv_drain_assert_idle(bs);
634     }
635 }
636 
637 void bdrv_drain_all_end(void)
638 {
639     BlockDriverState *bs = NULL;
640     int drained_end_counter = 0;
641 
642     /*
643      * bdrv queue is managed by record/replay,
644      * waiting for finishing the I/O requests may
645      * be endless
646      */
647     if (replay_events_enabled()) {
648         return;
649     }
650 
651     while ((bs = bdrv_next_all_states(bs))) {
652         AioContext *aio_context = bdrv_get_aio_context(bs);
653 
654         aio_context_acquire(aio_context);
655         bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
656         aio_context_release(aio_context);
657     }
658 
659     assert(qemu_get_current_aio_context() == qemu_get_aio_context());
660     AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0);
661 
662     assert(bdrv_drain_all_count > 0);
663     bdrv_drain_all_count--;
664 }
665 
666 void bdrv_drain_all(void)
667 {
668     bdrv_drain_all_begin();
669     bdrv_drain_all_end();
670 }
671 
672 /**
673  * Remove an active request from the tracked requests list
674  *
675  * This function should be called when a tracked request is completing.
676  */
677 static void tracked_request_end(BdrvTrackedRequest *req)
678 {
679     if (req->serialising) {
680         atomic_dec(&req->bs->serialising_in_flight);
681     }
682 
683     qemu_co_mutex_lock(&req->bs->reqs_lock);
684     QLIST_REMOVE(req, list);
685     qemu_co_queue_restart_all(&req->wait_queue);
686     qemu_co_mutex_unlock(&req->bs->reqs_lock);
687 }
688 
689 /**
690  * Add an active request to the tracked requests list
691  */
692 static void tracked_request_begin(BdrvTrackedRequest *req,
693                                   BlockDriverState *bs,
694                                   int64_t offset,
695                                   uint64_t bytes,
696                                   enum BdrvTrackedRequestType type)
697 {
698     assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
699 
700     *req = (BdrvTrackedRequest){
701         .bs = bs,
702         .offset         = offset,
703         .bytes          = bytes,
704         .type           = type,
705         .co             = qemu_coroutine_self(),
706         .serialising    = false,
707         .overlap_offset = offset,
708         .overlap_bytes  = bytes,
709     };
710 
711     qemu_co_queue_init(&req->wait_queue);
712 
713     qemu_co_mutex_lock(&bs->reqs_lock);
714     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
715     qemu_co_mutex_unlock(&bs->reqs_lock);
716 }
717 
718 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
719                                      int64_t offset, uint64_t bytes)
720 {
721     /*        aaaa   bbbb */
722     if (offset >= req->overlap_offset + req->overlap_bytes) {
723         return false;
724     }
725     /* bbbb   aaaa        */
726     if (req->overlap_offset >= offset + bytes) {
727         return false;
728     }
729     return true;
730 }
731 
732 static bool coroutine_fn
733 bdrv_wait_serialising_requests_locked(BlockDriverState *bs,
734                                       BdrvTrackedRequest *self)
735 {
736     BdrvTrackedRequest *req;
737     bool retry;
738     bool waited = false;
739 
740     do {
741         retry = false;
742         QLIST_FOREACH(req, &bs->tracked_requests, list) {
743             if (req == self || (!req->serialising && !self->serialising)) {
744                 continue;
745             }
746             if (tracked_request_overlaps(req, self->overlap_offset,
747                                          self->overlap_bytes))
748             {
749                 /* Hitting this means there was a reentrant request, for
750                  * example, a block driver issuing nested requests.  This must
751                  * never happen since it means deadlock.
752                  */
753                 assert(qemu_coroutine_self() != req->co);
754 
755                 /* If the request is already (indirectly) waiting for us, or
756                  * will wait for us as soon as it wakes up, then just go on
757                  * (instead of producing a deadlock in the former case). */
758                 if (!req->waiting_for) {
759                     self->waiting_for = req;
760                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
761                     self->waiting_for = NULL;
762                     retry = true;
763                     waited = true;
764                     break;
765                 }
766             }
767         }
768     } while (retry);
769     return waited;
770 }
771 
772 bool bdrv_mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
773 {
774     BlockDriverState *bs = req->bs;
775     int64_t overlap_offset = req->offset & ~(align - 1);
776     uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
777                                - overlap_offset;
778     bool waited;
779 
780     qemu_co_mutex_lock(&bs->reqs_lock);
781     if (!req->serialising) {
782         atomic_inc(&req->bs->serialising_in_flight);
783         req->serialising = true;
784     }
785 
786     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
787     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
788     waited = bdrv_wait_serialising_requests_locked(bs, req);
789     qemu_co_mutex_unlock(&bs->reqs_lock);
790     return waited;
791 }
792 
793 /**
794  * Return the tracked request on @bs for the current coroutine, or
795  * NULL if there is none.
796  */
797 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
798 {
799     BdrvTrackedRequest *req;
800     Coroutine *self = qemu_coroutine_self();
801 
802     QLIST_FOREACH(req, &bs->tracked_requests, list) {
803         if (req->co == self) {
804             return req;
805         }
806     }
807 
808     return NULL;
809 }
810 
811 /**
812  * Round a region to cluster boundaries
813  */
814 void bdrv_round_to_clusters(BlockDriverState *bs,
815                             int64_t offset, int64_t bytes,
816                             int64_t *cluster_offset,
817                             int64_t *cluster_bytes)
818 {
819     BlockDriverInfo bdi;
820 
821     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
822         *cluster_offset = offset;
823         *cluster_bytes = bytes;
824     } else {
825         int64_t c = bdi.cluster_size;
826         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
827         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
828     }
829 }
830 
831 static int bdrv_get_cluster_size(BlockDriverState *bs)
832 {
833     BlockDriverInfo bdi;
834     int ret;
835 
836     ret = bdrv_get_info(bs, &bdi);
837     if (ret < 0 || bdi.cluster_size == 0) {
838         return bs->bl.request_alignment;
839     } else {
840         return bdi.cluster_size;
841     }
842 }
843 
844 void bdrv_inc_in_flight(BlockDriverState *bs)
845 {
846     atomic_inc(&bs->in_flight);
847 }
848 
849 void bdrv_wakeup(BlockDriverState *bs)
850 {
851     aio_wait_kick();
852 }
853 
854 void bdrv_dec_in_flight(BlockDriverState *bs)
855 {
856     atomic_dec(&bs->in_flight);
857     bdrv_wakeup(bs);
858 }
859 
860 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
861 {
862     BlockDriverState *bs = self->bs;
863     bool waited = false;
864 
865     if (!atomic_read(&bs->serialising_in_flight)) {
866         return false;
867     }
868 
869     qemu_co_mutex_lock(&bs->reqs_lock);
870     waited = bdrv_wait_serialising_requests_locked(bs, self);
871     qemu_co_mutex_unlock(&bs->reqs_lock);
872 
873     return waited;
874 }
875 
876 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
877                                    size_t size)
878 {
879     if (size > BDRV_REQUEST_MAX_BYTES) {
880         return -EIO;
881     }
882 
883     if (!bdrv_is_inserted(bs)) {
884         return -ENOMEDIUM;
885     }
886 
887     if (offset < 0) {
888         return -EIO;
889     }
890 
891     return 0;
892 }
893 
894 typedef struct RwCo {
895     BdrvChild *child;
896     int64_t offset;
897     QEMUIOVector *qiov;
898     bool is_write;
899     int ret;
900     BdrvRequestFlags flags;
901 } RwCo;
902 
903 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
904 {
905     RwCo *rwco = opaque;
906 
907     if (!rwco->is_write) {
908         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
909                                    rwco->qiov->size, rwco->qiov,
910                                    rwco->flags);
911     } else {
912         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
913                                     rwco->qiov->size, rwco->qiov,
914                                     rwco->flags);
915     }
916     aio_wait_kick();
917 }
918 
919 /*
920  * Process a vectored synchronous request using coroutines
921  */
922 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
923                         QEMUIOVector *qiov, bool is_write,
924                         BdrvRequestFlags flags)
925 {
926     Coroutine *co;
927     RwCo rwco = {
928         .child = child,
929         .offset = offset,
930         .qiov = qiov,
931         .is_write = is_write,
932         .ret = NOT_DONE,
933         .flags = flags,
934     };
935 
936     if (qemu_in_coroutine()) {
937         /* Fast-path if already in coroutine context */
938         bdrv_rw_co_entry(&rwco);
939     } else {
940         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
941         bdrv_coroutine_enter(child->bs, co);
942         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
943     }
944     return rwco.ret;
945 }
946 
947 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
948                        int bytes, BdrvRequestFlags flags)
949 {
950     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
951 
952     return bdrv_prwv_co(child, offset, &qiov, true,
953                         BDRV_REQ_ZERO_WRITE | flags);
954 }
955 
956 /*
957  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
958  * The operation is sped up by checking the block status and only writing
959  * zeroes to the device if they currently do not return zeroes. Optional
960  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
961  * BDRV_REQ_FUA).
962  *
963  * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
964  */
965 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
966 {
967     int ret;
968     int64_t target_size, bytes, offset = 0;
969     BlockDriverState *bs = child->bs;
970 
971     target_size = bdrv_getlength(bs);
972     if (target_size < 0) {
973         return target_size;
974     }
975 
976     for (;;) {
977         bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
978         if (bytes <= 0) {
979             return 0;
980         }
981         ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
982         if (ret < 0) {
983             return ret;
984         }
985         if (ret & BDRV_BLOCK_ZERO) {
986             offset += bytes;
987             continue;
988         }
989         ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
990         if (ret < 0) {
991             return ret;
992         }
993         offset += bytes;
994     }
995 }
996 
997 /* return < 0 if error. See bdrv_pwrite() for the return codes */
998 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
999 {
1000     int ret;
1001 
1002     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
1003     if (ret < 0) {
1004         return ret;
1005     }
1006 
1007     return qiov->size;
1008 }
1009 
1010 /* See bdrv_pwrite() for the return codes */
1011 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
1012 {
1013     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1014 
1015     if (bytes < 0) {
1016         return -EINVAL;
1017     }
1018 
1019     return bdrv_preadv(child, offset, &qiov);
1020 }
1021 
1022 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
1023 {
1024     int ret;
1025 
1026     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
1027     if (ret < 0) {
1028         return ret;
1029     }
1030 
1031     return qiov->size;
1032 }
1033 
1034 /* Return no. of bytes on success or < 0 on error. Important errors are:
1035   -EIO         generic I/O error (may happen for all errors)
1036   -ENOMEDIUM   No media inserted.
1037   -EINVAL      Invalid offset or number of bytes
1038   -EACCES      Trying to write a read-only device
1039 */
1040 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
1041 {
1042     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1043 
1044     if (bytes < 0) {
1045         return -EINVAL;
1046     }
1047 
1048     return bdrv_pwritev(child, offset, &qiov);
1049 }
1050 
1051 /*
1052  * Writes to the file and ensures that no writes are reordered across this
1053  * request (acts as a barrier)
1054  *
1055  * Returns 0 on success, -errno in error cases.
1056  */
1057 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1058                      const void *buf, int count)
1059 {
1060     int ret;
1061 
1062     ret = bdrv_pwrite(child, offset, buf, count);
1063     if (ret < 0) {
1064         return ret;
1065     }
1066 
1067     ret = bdrv_flush(child->bs);
1068     if (ret < 0) {
1069         return ret;
1070     }
1071 
1072     return 0;
1073 }
1074 
1075 typedef struct CoroutineIOCompletion {
1076     Coroutine *coroutine;
1077     int ret;
1078 } CoroutineIOCompletion;
1079 
1080 static void bdrv_co_io_em_complete(void *opaque, int ret)
1081 {
1082     CoroutineIOCompletion *co = opaque;
1083 
1084     co->ret = ret;
1085     aio_co_wake(co->coroutine);
1086 }
1087 
1088 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1089                                            uint64_t offset, uint64_t bytes,
1090                                            QEMUIOVector *qiov,
1091                                            size_t qiov_offset, int flags)
1092 {
1093     BlockDriver *drv = bs->drv;
1094     int64_t sector_num;
1095     unsigned int nb_sectors;
1096     QEMUIOVector local_qiov;
1097     int ret;
1098 
1099     assert(!(flags & ~BDRV_REQ_MASK));
1100     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1101 
1102     if (!drv) {
1103         return -ENOMEDIUM;
1104     }
1105 
1106     if (drv->bdrv_co_preadv_part) {
1107         return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1108                                         flags);
1109     }
1110 
1111     if (qiov_offset > 0 || bytes != qiov->size) {
1112         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1113         qiov = &local_qiov;
1114     }
1115 
1116     if (drv->bdrv_co_preadv) {
1117         ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1118         goto out;
1119     }
1120 
1121     if (drv->bdrv_aio_preadv) {
1122         BlockAIOCB *acb;
1123         CoroutineIOCompletion co = {
1124             .coroutine = qemu_coroutine_self(),
1125         };
1126 
1127         acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1128                                    bdrv_co_io_em_complete, &co);
1129         if (acb == NULL) {
1130             ret = -EIO;
1131             goto out;
1132         } else {
1133             qemu_coroutine_yield();
1134             ret = co.ret;
1135             goto out;
1136         }
1137     }
1138 
1139     sector_num = offset >> BDRV_SECTOR_BITS;
1140     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1141 
1142     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1143     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1144     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1145     assert(drv->bdrv_co_readv);
1146 
1147     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1148 
1149 out:
1150     if (qiov == &local_qiov) {
1151         qemu_iovec_destroy(&local_qiov);
1152     }
1153 
1154     return ret;
1155 }
1156 
1157 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1158                                             uint64_t offset, uint64_t bytes,
1159                                             QEMUIOVector *qiov,
1160                                             size_t qiov_offset, int flags)
1161 {
1162     BlockDriver *drv = bs->drv;
1163     int64_t sector_num;
1164     unsigned int nb_sectors;
1165     QEMUIOVector local_qiov;
1166     int ret;
1167 
1168     assert(!(flags & ~BDRV_REQ_MASK));
1169     assert(!(flags & BDRV_REQ_NO_FALLBACK));
1170 
1171     if (!drv) {
1172         return -ENOMEDIUM;
1173     }
1174 
1175     if (drv->bdrv_co_pwritev_part) {
1176         ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1177                                         flags & bs->supported_write_flags);
1178         flags &= ~bs->supported_write_flags;
1179         goto emulate_flags;
1180     }
1181 
1182     if (qiov_offset > 0 || bytes != qiov->size) {
1183         qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1184         qiov = &local_qiov;
1185     }
1186 
1187     if (drv->bdrv_co_pwritev) {
1188         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1189                                    flags & bs->supported_write_flags);
1190         flags &= ~bs->supported_write_flags;
1191         goto emulate_flags;
1192     }
1193 
1194     if (drv->bdrv_aio_pwritev) {
1195         BlockAIOCB *acb;
1196         CoroutineIOCompletion co = {
1197             .coroutine = qemu_coroutine_self(),
1198         };
1199 
1200         acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1201                                     flags & bs->supported_write_flags,
1202                                     bdrv_co_io_em_complete, &co);
1203         flags &= ~bs->supported_write_flags;
1204         if (acb == NULL) {
1205             ret = -EIO;
1206         } else {
1207             qemu_coroutine_yield();
1208             ret = co.ret;
1209         }
1210         goto emulate_flags;
1211     }
1212 
1213     sector_num = offset >> BDRV_SECTOR_BITS;
1214     nb_sectors = bytes >> BDRV_SECTOR_BITS;
1215 
1216     assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1217     assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1218     assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1219 
1220     assert(drv->bdrv_co_writev);
1221     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1222                               flags & bs->supported_write_flags);
1223     flags &= ~bs->supported_write_flags;
1224 
1225 emulate_flags:
1226     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1227         ret = bdrv_co_flush(bs);
1228     }
1229 
1230     if (qiov == &local_qiov) {
1231         qemu_iovec_destroy(&local_qiov);
1232     }
1233 
1234     return ret;
1235 }
1236 
1237 static int coroutine_fn
1238 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1239                                uint64_t bytes, QEMUIOVector *qiov,
1240                                size_t qiov_offset)
1241 {
1242     BlockDriver *drv = bs->drv;
1243     QEMUIOVector local_qiov;
1244     int ret;
1245 
1246     if (!drv) {
1247         return -ENOMEDIUM;
1248     }
1249 
1250     if (!block_driver_can_compress(drv)) {
1251         return -ENOTSUP;
1252     }
1253 
1254     if (drv->bdrv_co_pwritev_compressed_part) {
1255         return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1256                                                     qiov, qiov_offset);
1257     }
1258 
1259     if (qiov_offset == 0) {
1260         return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1261     }
1262 
1263     qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1264     ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1265     qemu_iovec_destroy(&local_qiov);
1266 
1267     return ret;
1268 }
1269 
1270 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1271         int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1272         size_t qiov_offset, int flags)
1273 {
1274     BlockDriverState *bs = child->bs;
1275 
1276     /* Perform I/O through a temporary buffer so that users who scribble over
1277      * their read buffer while the operation is in progress do not end up
1278      * modifying the image file.  This is critical for zero-copy guest I/O
1279      * where anything might happen inside guest memory.
1280      */
1281     void *bounce_buffer = NULL;
1282 
1283     BlockDriver *drv = bs->drv;
1284     int64_t cluster_offset;
1285     int64_t cluster_bytes;
1286     size_t skip_bytes;
1287     int ret;
1288     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1289                                     BDRV_REQUEST_MAX_BYTES);
1290     unsigned int progress = 0;
1291     bool skip_write;
1292 
1293     if (!drv) {
1294         return -ENOMEDIUM;
1295     }
1296 
1297     /*
1298      * Do not write anything when the BDS is inactive.  That is not
1299      * allowed, and it would not help.
1300      */
1301     skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1302 
1303     /* FIXME We cannot require callers to have write permissions when all they
1304      * are doing is a read request. If we did things right, write permissions
1305      * would be obtained anyway, but internally by the copy-on-read code. As
1306      * long as it is implemented here rather than in a separate filter driver,
1307      * the copy-on-read code doesn't have its own BdrvChild, however, for which
1308      * it could request permissions. Therefore we have to bypass the permission
1309      * system for the moment. */
1310     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1311 
1312     /* Cover entire cluster so no additional backing file I/O is required when
1313      * allocating cluster in the image file.  Note that this value may exceed
1314      * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1315      * is one reason we loop rather than doing it all at once.
1316      */
1317     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1318     skip_bytes = offset - cluster_offset;
1319 
1320     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1321                                    cluster_offset, cluster_bytes);
1322 
1323     while (cluster_bytes) {
1324         int64_t pnum;
1325 
1326         if (skip_write) {
1327             ret = 1; /* "already allocated", so nothing will be copied */
1328             pnum = MIN(cluster_bytes, max_transfer);
1329         } else {
1330             ret = bdrv_is_allocated(bs, cluster_offset,
1331                                     MIN(cluster_bytes, max_transfer), &pnum);
1332             if (ret < 0) {
1333                 /*
1334                  * Safe to treat errors in querying allocation as if
1335                  * unallocated; we'll probably fail again soon on the
1336                  * read, but at least that will set a decent errno.
1337                  */
1338                 pnum = MIN(cluster_bytes, max_transfer);
1339             }
1340 
1341             /* Stop at EOF if the image ends in the middle of the cluster */
1342             if (ret == 0 && pnum == 0) {
1343                 assert(progress >= bytes);
1344                 break;
1345             }
1346 
1347             assert(skip_bytes < pnum);
1348         }
1349 
1350         if (ret <= 0) {
1351             QEMUIOVector local_qiov;
1352 
1353             /* Must copy-on-read; use the bounce buffer */
1354             pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1355             if (!bounce_buffer) {
1356                 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1357                 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1358                 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1359 
1360                 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1361                 if (!bounce_buffer) {
1362                     ret = -ENOMEM;
1363                     goto err;
1364                 }
1365             }
1366             qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1367 
1368             ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1369                                      &local_qiov, 0, 0);
1370             if (ret < 0) {
1371                 goto err;
1372             }
1373 
1374             bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1375             if (drv->bdrv_co_pwrite_zeroes &&
1376                 buffer_is_zero(bounce_buffer, pnum)) {
1377                 /* FIXME: Should we (perhaps conditionally) be setting
1378                  * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1379                  * that still correctly reads as zero? */
1380                 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1381                                                BDRV_REQ_WRITE_UNCHANGED);
1382             } else {
1383                 /* This does not change the data on the disk, it is not
1384                  * necessary to flush even in cache=writethrough mode.
1385                  */
1386                 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1387                                           &local_qiov, 0,
1388                                           BDRV_REQ_WRITE_UNCHANGED);
1389             }
1390 
1391             if (ret < 0) {
1392                 /* It might be okay to ignore write errors for guest
1393                  * requests.  If this is a deliberate copy-on-read
1394                  * then we don't want to ignore the error.  Simply
1395                  * report it in all cases.
1396                  */
1397                 goto err;
1398             }
1399 
1400             if (!(flags & BDRV_REQ_PREFETCH)) {
1401                 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1402                                     bounce_buffer + skip_bytes,
1403                                     MIN(pnum - skip_bytes, bytes - progress));
1404             }
1405         } else if (!(flags & BDRV_REQ_PREFETCH)) {
1406             /* Read directly into the destination */
1407             ret = bdrv_driver_preadv(bs, offset + progress,
1408                                      MIN(pnum - skip_bytes, bytes - progress),
1409                                      qiov, qiov_offset + progress, 0);
1410             if (ret < 0) {
1411                 goto err;
1412             }
1413         }
1414 
1415         cluster_offset += pnum;
1416         cluster_bytes -= pnum;
1417         progress += pnum - skip_bytes;
1418         skip_bytes = 0;
1419     }
1420     ret = 0;
1421 
1422 err:
1423     qemu_vfree(bounce_buffer);
1424     return ret;
1425 }
1426 
1427 /*
1428  * Forwards an already correctly aligned request to the BlockDriver. This
1429  * handles copy on read, zeroing after EOF, and fragmentation of large
1430  * reads; any other features must be implemented by the caller.
1431  */
1432 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1433     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1434     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1435 {
1436     BlockDriverState *bs = child->bs;
1437     int64_t total_bytes, max_bytes;
1438     int ret = 0;
1439     uint64_t bytes_remaining = bytes;
1440     int max_transfer;
1441 
1442     assert(is_power_of_2(align));
1443     assert((offset & (align - 1)) == 0);
1444     assert((bytes & (align - 1)) == 0);
1445     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1446     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1447                                    align);
1448 
1449     /* TODO: We would need a per-BDS .supported_read_flags and
1450      * potential fallback support, if we ever implement any read flags
1451      * to pass through to drivers.  For now, there aren't any
1452      * passthrough flags.  */
1453     assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1454 
1455     /* Handle Copy on Read and associated serialisation */
1456     if (flags & BDRV_REQ_COPY_ON_READ) {
1457         /* If we touch the same cluster it counts as an overlap.  This
1458          * guarantees that allocating writes will be serialized and not race
1459          * with each other for the same cluster.  For example, in copy-on-read
1460          * it ensures that the CoR read and write operations are atomic and
1461          * guest writes cannot interleave between them. */
1462         bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs));
1463     } else {
1464         bdrv_wait_serialising_requests(req);
1465     }
1466 
1467     if (flags & BDRV_REQ_COPY_ON_READ) {
1468         int64_t pnum;
1469 
1470         ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1471         if (ret < 0) {
1472             goto out;
1473         }
1474 
1475         if (!ret || pnum != bytes) {
1476             ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1477                                            qiov, qiov_offset, flags);
1478             goto out;
1479         } else if (flags & BDRV_REQ_PREFETCH) {
1480             goto out;
1481         }
1482     }
1483 
1484     /* Forward the request to the BlockDriver, possibly fragmenting it */
1485     total_bytes = bdrv_getlength(bs);
1486     if (total_bytes < 0) {
1487         ret = total_bytes;
1488         goto out;
1489     }
1490 
1491     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1492     if (bytes <= max_bytes && bytes <= max_transfer) {
1493         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1494         goto out;
1495     }
1496 
1497     while (bytes_remaining) {
1498         int num;
1499 
1500         if (max_bytes) {
1501             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1502             assert(num);
1503 
1504             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1505                                      num, qiov, bytes - bytes_remaining, 0);
1506             max_bytes -= num;
1507         } else {
1508             num = bytes_remaining;
1509             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1510                                     bytes_remaining);
1511         }
1512         if (ret < 0) {
1513             goto out;
1514         }
1515         bytes_remaining -= num;
1516     }
1517 
1518 out:
1519     return ret < 0 ? ret : 0;
1520 }
1521 
1522 /*
1523  * Request padding
1524  *
1525  *  |<---- align ----->|                     |<----- align ---->|
1526  *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1527  *  |          |       |                     |     |            |
1528  * -*----------$-------*-------- ... --------*-----$------------*---
1529  *  |          |       |                     |     |            |
1530  *  |          offset  |                     |     end          |
1531  *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1532  *  [buf   ... )                             [tail_buf          )
1533  *
1534  * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1535  * is placed at the beginning of @buf and @tail at the @end.
1536  *
1537  * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1538  * around tail, if tail exists.
1539  *
1540  * @merge_reads is true for small requests,
1541  * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1542  * head and tail exist but @buf_len == align and @tail_buf == @buf.
1543  */
1544 typedef struct BdrvRequestPadding {
1545     uint8_t *buf;
1546     size_t buf_len;
1547     uint8_t *tail_buf;
1548     size_t head;
1549     size_t tail;
1550     bool merge_reads;
1551     QEMUIOVector local_qiov;
1552 } BdrvRequestPadding;
1553 
1554 static bool bdrv_init_padding(BlockDriverState *bs,
1555                               int64_t offset, int64_t bytes,
1556                               BdrvRequestPadding *pad)
1557 {
1558     uint64_t align = bs->bl.request_alignment;
1559     size_t sum;
1560 
1561     memset(pad, 0, sizeof(*pad));
1562 
1563     pad->head = offset & (align - 1);
1564     pad->tail = ((offset + bytes) & (align - 1));
1565     if (pad->tail) {
1566         pad->tail = align - pad->tail;
1567     }
1568 
1569     if (!pad->head && !pad->tail) {
1570         return false;
1571     }
1572 
1573     assert(bytes); /* Nothing good in aligning zero-length requests */
1574 
1575     sum = pad->head + bytes + pad->tail;
1576     pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1577     pad->buf = qemu_blockalign(bs, pad->buf_len);
1578     pad->merge_reads = sum == pad->buf_len;
1579     if (pad->tail) {
1580         pad->tail_buf = pad->buf + pad->buf_len - align;
1581     }
1582 
1583     return true;
1584 }
1585 
1586 static int bdrv_padding_rmw_read(BdrvChild *child,
1587                                  BdrvTrackedRequest *req,
1588                                  BdrvRequestPadding *pad,
1589                                  bool zero_middle)
1590 {
1591     QEMUIOVector local_qiov;
1592     BlockDriverState *bs = child->bs;
1593     uint64_t align = bs->bl.request_alignment;
1594     int ret;
1595 
1596     assert(req->serialising && pad->buf);
1597 
1598     if (pad->head || pad->merge_reads) {
1599         uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1600 
1601         qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1602 
1603         if (pad->head) {
1604             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1605         }
1606         if (pad->merge_reads && pad->tail) {
1607             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1608         }
1609         ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1610                                   align, &local_qiov, 0, 0);
1611         if (ret < 0) {
1612             return ret;
1613         }
1614         if (pad->head) {
1615             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1616         }
1617         if (pad->merge_reads && pad->tail) {
1618             bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1619         }
1620 
1621         if (pad->merge_reads) {
1622             goto zero_mem;
1623         }
1624     }
1625 
1626     if (pad->tail) {
1627         qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1628 
1629         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1630         ret = bdrv_aligned_preadv(
1631                 child, req,
1632                 req->overlap_offset + req->overlap_bytes - align,
1633                 align, align, &local_qiov, 0, 0);
1634         if (ret < 0) {
1635             return ret;
1636         }
1637         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1638     }
1639 
1640 zero_mem:
1641     if (zero_middle) {
1642         memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1643     }
1644 
1645     return 0;
1646 }
1647 
1648 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1649 {
1650     if (pad->buf) {
1651         qemu_vfree(pad->buf);
1652         qemu_iovec_destroy(&pad->local_qiov);
1653     }
1654 }
1655 
1656 /*
1657  * bdrv_pad_request
1658  *
1659  * Exchange request parameters with padded request if needed. Don't include RMW
1660  * read of padding, bdrv_padding_rmw_read() should be called separately if
1661  * needed.
1662  *
1663  * All parameters except @bs are in-out: they represent original request at
1664  * function call and padded (if padding needed) at function finish.
1665  *
1666  * Function always succeeds.
1667  */
1668 static bool bdrv_pad_request(BlockDriverState *bs,
1669                              QEMUIOVector **qiov, size_t *qiov_offset,
1670                              int64_t *offset, unsigned int *bytes,
1671                              BdrvRequestPadding *pad)
1672 {
1673     if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1674         return false;
1675     }
1676 
1677     qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1678                              *qiov, *qiov_offset, *bytes,
1679                              pad->buf + pad->buf_len - pad->tail, pad->tail);
1680     *bytes += pad->head + pad->tail;
1681     *offset -= pad->head;
1682     *qiov = &pad->local_qiov;
1683     *qiov_offset = 0;
1684 
1685     return true;
1686 }
1687 
1688 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1689     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1690     BdrvRequestFlags flags)
1691 {
1692     return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1693 }
1694 
1695 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1696     int64_t offset, unsigned int bytes,
1697     QEMUIOVector *qiov, size_t qiov_offset,
1698     BdrvRequestFlags flags)
1699 {
1700     BlockDriverState *bs = child->bs;
1701     BdrvTrackedRequest req;
1702     BdrvRequestPadding pad;
1703     int ret;
1704 
1705     trace_bdrv_co_preadv(bs, offset, bytes, flags);
1706 
1707     ret = bdrv_check_byte_request(bs, offset, bytes);
1708     if (ret < 0) {
1709         return ret;
1710     }
1711 
1712     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1713         /*
1714          * Aligning zero request is nonsense. Even if driver has special meaning
1715          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1716          * it to driver due to request_alignment.
1717          *
1718          * Still, no reason to return an error if someone do unaligned
1719          * zero-length read occasionally.
1720          */
1721         return 0;
1722     }
1723 
1724     bdrv_inc_in_flight(bs);
1725 
1726     /* Don't do copy-on-read if we read data before write operation */
1727     if (atomic_read(&bs->copy_on_read)) {
1728         flags |= BDRV_REQ_COPY_ON_READ;
1729     }
1730 
1731     bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1732 
1733     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1734     ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1735                               bs->bl.request_alignment,
1736                               qiov, qiov_offset, flags);
1737     tracked_request_end(&req);
1738     bdrv_dec_in_flight(bs);
1739 
1740     bdrv_padding_destroy(&pad);
1741 
1742     return ret;
1743 }
1744 
1745 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1746     int64_t offset, int bytes, BdrvRequestFlags flags)
1747 {
1748     BlockDriver *drv = bs->drv;
1749     QEMUIOVector qiov;
1750     void *buf = NULL;
1751     int ret = 0;
1752     bool need_flush = false;
1753     int head = 0;
1754     int tail = 0;
1755 
1756     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1757     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1758                         bs->bl.request_alignment);
1759     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1760 
1761     if (!drv) {
1762         return -ENOMEDIUM;
1763     }
1764 
1765     if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1766         return -ENOTSUP;
1767     }
1768 
1769     assert(alignment % bs->bl.request_alignment == 0);
1770     head = offset % alignment;
1771     tail = (offset + bytes) % alignment;
1772     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1773     assert(max_write_zeroes >= bs->bl.request_alignment);
1774 
1775     while (bytes > 0 && !ret) {
1776         int num = bytes;
1777 
1778         /* Align request.  Block drivers can expect the "bulk" of the request
1779          * to be aligned, and that unaligned requests do not cross cluster
1780          * boundaries.
1781          */
1782         if (head) {
1783             /* Make a small request up to the first aligned sector. For
1784              * convenience, limit this request to max_transfer even if
1785              * we don't need to fall back to writes.  */
1786             num = MIN(MIN(bytes, max_transfer), alignment - head);
1787             head = (head + num) % alignment;
1788             assert(num < max_write_zeroes);
1789         } else if (tail && num > alignment) {
1790             /* Shorten the request to the last aligned sector.  */
1791             num -= tail;
1792         }
1793 
1794         /* limit request size */
1795         if (num > max_write_zeroes) {
1796             num = max_write_zeroes;
1797         }
1798 
1799         ret = -ENOTSUP;
1800         /* First try the efficient write zeroes operation */
1801         if (drv->bdrv_co_pwrite_zeroes) {
1802             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1803                                              flags & bs->supported_zero_flags);
1804             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1805                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1806                 need_flush = true;
1807             }
1808         } else {
1809             assert(!bs->supported_zero_flags);
1810         }
1811 
1812         if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1813             /* Fall back to bounce buffer if write zeroes is unsupported */
1814             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1815 
1816             if ((flags & BDRV_REQ_FUA) &&
1817                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1818                 /* No need for bdrv_driver_pwrite() to do a fallback
1819                  * flush on each chunk; use just one at the end */
1820                 write_flags &= ~BDRV_REQ_FUA;
1821                 need_flush = true;
1822             }
1823             num = MIN(num, max_transfer);
1824             if (buf == NULL) {
1825                 buf = qemu_try_blockalign0(bs, num);
1826                 if (buf == NULL) {
1827                     ret = -ENOMEM;
1828                     goto fail;
1829                 }
1830             }
1831             qemu_iovec_init_buf(&qiov, buf, num);
1832 
1833             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1834 
1835             /* Keep bounce buffer around if it is big enough for all
1836              * all future requests.
1837              */
1838             if (num < max_transfer) {
1839                 qemu_vfree(buf);
1840                 buf = NULL;
1841             }
1842         }
1843 
1844         offset += num;
1845         bytes -= num;
1846     }
1847 
1848 fail:
1849     if (ret == 0 && need_flush) {
1850         ret = bdrv_co_flush(bs);
1851     }
1852     qemu_vfree(buf);
1853     return ret;
1854 }
1855 
1856 static inline int coroutine_fn
1857 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1858                           BdrvTrackedRequest *req, int flags)
1859 {
1860     BlockDriverState *bs = child->bs;
1861     bool waited;
1862     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1863 
1864     if (bs->read_only) {
1865         return -EPERM;
1866     }
1867 
1868     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1869     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1870     assert(!(flags & ~BDRV_REQ_MASK));
1871 
1872     if (flags & BDRV_REQ_SERIALISING) {
1873         waited = bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs));
1874         /*
1875          * For a misaligned request we should have already waited earlier,
1876          * because we come after bdrv_padding_rmw_read which must be called
1877          * with the request already marked as serialising.
1878          */
1879         assert(!waited ||
1880                (req->offset == req->overlap_offset &&
1881                 req->bytes == req->overlap_bytes));
1882     } else {
1883         bdrv_wait_serialising_requests(req);
1884     }
1885 
1886     assert(req->overlap_offset <= offset);
1887     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1888     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1889 
1890     switch (req->type) {
1891     case BDRV_TRACKED_WRITE:
1892     case BDRV_TRACKED_DISCARD:
1893         if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1894             assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1895         } else {
1896             assert(child->perm & BLK_PERM_WRITE);
1897         }
1898         return notifier_with_return_list_notify(&bs->before_write_notifiers,
1899                                                 req);
1900     case BDRV_TRACKED_TRUNCATE:
1901         assert(child->perm & BLK_PERM_RESIZE);
1902         return 0;
1903     default:
1904         abort();
1905     }
1906 }
1907 
1908 static inline void coroutine_fn
1909 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1910                          BdrvTrackedRequest *req, int ret)
1911 {
1912     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1913     BlockDriverState *bs = child->bs;
1914 
1915     atomic_inc(&bs->write_gen);
1916 
1917     /*
1918      * Discard cannot extend the image, but in error handling cases, such as
1919      * when reverting a qcow2 cluster allocation, the discarded range can pass
1920      * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1921      * here. Instead, just skip it, since semantically a discard request
1922      * beyond EOF cannot expand the image anyway.
1923      */
1924     if (ret == 0 &&
1925         (req->type == BDRV_TRACKED_TRUNCATE ||
1926          end_sector > bs->total_sectors) &&
1927         req->type != BDRV_TRACKED_DISCARD) {
1928         bs->total_sectors = end_sector;
1929         bdrv_parent_cb_resize(bs);
1930         bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1931     }
1932     if (req->bytes) {
1933         switch (req->type) {
1934         case BDRV_TRACKED_WRITE:
1935             stat64_max(&bs->wr_highest_offset, offset + bytes);
1936             /* fall through, to set dirty bits */
1937         case BDRV_TRACKED_DISCARD:
1938             bdrv_set_dirty(bs, offset, bytes);
1939             break;
1940         default:
1941             break;
1942         }
1943     }
1944 }
1945 
1946 /*
1947  * Forwards an already correctly aligned write request to the BlockDriver,
1948  * after possibly fragmenting it.
1949  */
1950 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1951     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1952     int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1953 {
1954     BlockDriverState *bs = child->bs;
1955     BlockDriver *drv = bs->drv;
1956     int ret;
1957 
1958     uint64_t bytes_remaining = bytes;
1959     int max_transfer;
1960 
1961     if (!drv) {
1962         return -ENOMEDIUM;
1963     }
1964 
1965     if (bdrv_has_readonly_bitmaps(bs)) {
1966         return -EPERM;
1967     }
1968 
1969     assert(is_power_of_2(align));
1970     assert((offset & (align - 1)) == 0);
1971     assert((bytes & (align - 1)) == 0);
1972     assert(!qiov || qiov_offset + bytes <= qiov->size);
1973     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1974                                    align);
1975 
1976     ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1977 
1978     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1979         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1980         qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1981         flags |= BDRV_REQ_ZERO_WRITE;
1982         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1983             flags |= BDRV_REQ_MAY_UNMAP;
1984         }
1985     }
1986 
1987     if (ret < 0) {
1988         /* Do nothing, write notifier decided to fail this request */
1989     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1990         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1991         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1992     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1993         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1994                                              qiov, qiov_offset);
1995     } else if (bytes <= max_transfer) {
1996         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1997         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1998     } else {
1999         bdrv_debug_event(bs, BLKDBG_PWRITEV);
2000         while (bytes_remaining) {
2001             int num = MIN(bytes_remaining, max_transfer);
2002             int local_flags = flags;
2003 
2004             assert(num);
2005             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2006                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2007                 /* If FUA is going to be emulated by flush, we only
2008                  * need to flush on the last iteration */
2009                 local_flags &= ~BDRV_REQ_FUA;
2010             }
2011 
2012             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2013                                       num, qiov, bytes - bytes_remaining,
2014                                       local_flags);
2015             if (ret < 0) {
2016                 break;
2017             }
2018             bytes_remaining -= num;
2019         }
2020     }
2021     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2022 
2023     if (ret >= 0) {
2024         ret = 0;
2025     }
2026     bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2027 
2028     return ret;
2029 }
2030 
2031 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2032                                                 int64_t offset,
2033                                                 unsigned int bytes,
2034                                                 BdrvRequestFlags flags,
2035                                                 BdrvTrackedRequest *req)
2036 {
2037     BlockDriverState *bs = child->bs;
2038     QEMUIOVector local_qiov;
2039     uint64_t align = bs->bl.request_alignment;
2040     int ret = 0;
2041     bool padding;
2042     BdrvRequestPadding pad;
2043 
2044     padding = bdrv_init_padding(bs, offset, bytes, &pad);
2045     if (padding) {
2046         bdrv_mark_request_serialising(req, align);
2047 
2048         bdrv_padding_rmw_read(child, req, &pad, true);
2049 
2050         if (pad.head || pad.merge_reads) {
2051             int64_t aligned_offset = offset & ~(align - 1);
2052             int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2053 
2054             qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2055             ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2056                                        align, &local_qiov, 0,
2057                                        flags & ~BDRV_REQ_ZERO_WRITE);
2058             if (ret < 0 || pad.merge_reads) {
2059                 /* Error or all work is done */
2060                 goto out;
2061             }
2062             offset += write_bytes - pad.head;
2063             bytes -= write_bytes - pad.head;
2064         }
2065     }
2066 
2067     assert(!bytes || (offset & (align - 1)) == 0);
2068     if (bytes >= align) {
2069         /* Write the aligned part in the middle. */
2070         uint64_t aligned_bytes = bytes & ~(align - 1);
2071         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2072                                    NULL, 0, flags);
2073         if (ret < 0) {
2074             goto out;
2075         }
2076         bytes -= aligned_bytes;
2077         offset += aligned_bytes;
2078     }
2079 
2080     assert(!bytes || (offset & (align - 1)) == 0);
2081     if (bytes) {
2082         assert(align == pad.tail + bytes);
2083 
2084         qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2085         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2086                                    &local_qiov, 0,
2087                                    flags & ~BDRV_REQ_ZERO_WRITE);
2088     }
2089 
2090 out:
2091     bdrv_padding_destroy(&pad);
2092 
2093     return ret;
2094 }
2095 
2096 /*
2097  * Handle a write request in coroutine context
2098  */
2099 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2100     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2101     BdrvRequestFlags flags)
2102 {
2103     return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2104 }
2105 
2106 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2107     int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2108     BdrvRequestFlags flags)
2109 {
2110     BlockDriverState *bs = child->bs;
2111     BdrvTrackedRequest req;
2112     uint64_t align = bs->bl.request_alignment;
2113     BdrvRequestPadding pad;
2114     int ret;
2115 
2116     trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2117 
2118     if (!bs->drv) {
2119         return -ENOMEDIUM;
2120     }
2121 
2122     ret = bdrv_check_byte_request(bs, offset, bytes);
2123     if (ret < 0) {
2124         return ret;
2125     }
2126 
2127     /* If the request is misaligned then we can't make it efficient */
2128     if ((flags & BDRV_REQ_NO_FALLBACK) &&
2129         !QEMU_IS_ALIGNED(offset | bytes, align))
2130     {
2131         return -ENOTSUP;
2132     }
2133 
2134     if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2135         /*
2136          * Aligning zero request is nonsense. Even if driver has special meaning
2137          * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2138          * it to driver due to request_alignment.
2139          *
2140          * Still, no reason to return an error if someone do unaligned
2141          * zero-length write occasionally.
2142          */
2143         return 0;
2144     }
2145 
2146     bdrv_inc_in_flight(bs);
2147     /*
2148      * Align write if necessary by performing a read-modify-write cycle.
2149      * Pad qiov with the read parts and be sure to have a tracked request not
2150      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2151      */
2152     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2153 
2154     if (flags & BDRV_REQ_ZERO_WRITE) {
2155         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2156         goto out;
2157     }
2158 
2159     if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2160         bdrv_mark_request_serialising(&req, align);
2161         bdrv_padding_rmw_read(child, &req, &pad, false);
2162     }
2163 
2164     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2165                                qiov, qiov_offset, flags);
2166 
2167     bdrv_padding_destroy(&pad);
2168 
2169 out:
2170     tracked_request_end(&req);
2171     bdrv_dec_in_flight(bs);
2172 
2173     return ret;
2174 }
2175 
2176 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2177                                        int bytes, BdrvRequestFlags flags)
2178 {
2179     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2180 
2181     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2182         flags &= ~BDRV_REQ_MAY_UNMAP;
2183     }
2184 
2185     return bdrv_co_pwritev(child, offset, bytes, NULL,
2186                            BDRV_REQ_ZERO_WRITE | flags);
2187 }
2188 
2189 /*
2190  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2191  */
2192 int bdrv_flush_all(void)
2193 {
2194     BdrvNextIterator it;
2195     BlockDriverState *bs = NULL;
2196     int result = 0;
2197 
2198     /*
2199      * bdrv queue is managed by record/replay,
2200      * creating new flush request for stopping
2201      * the VM may break the determinism
2202      */
2203     if (replay_events_enabled()) {
2204         return result;
2205     }
2206 
2207     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2208         AioContext *aio_context = bdrv_get_aio_context(bs);
2209         int ret;
2210 
2211         aio_context_acquire(aio_context);
2212         ret = bdrv_flush(bs);
2213         if (ret < 0 && !result) {
2214             result = ret;
2215         }
2216         aio_context_release(aio_context);
2217     }
2218 
2219     return result;
2220 }
2221 
2222 
2223 typedef struct BdrvCoBlockStatusData {
2224     BlockDriverState *bs;
2225     BlockDriverState *base;
2226     bool want_zero;
2227     int64_t offset;
2228     int64_t bytes;
2229     int64_t *pnum;
2230     int64_t *map;
2231     BlockDriverState **file;
2232     int ret;
2233     bool done;
2234 } BdrvCoBlockStatusData;
2235 
2236 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2237                                                 bool want_zero,
2238                                                 int64_t offset,
2239                                                 int64_t bytes,
2240                                                 int64_t *pnum,
2241                                                 int64_t *map,
2242                                                 BlockDriverState **file)
2243 {
2244     assert(bs->file && bs->file->bs);
2245     *pnum = bytes;
2246     *map = offset;
2247     *file = bs->file->bs;
2248     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2249 }
2250 
2251 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2252                                                    bool want_zero,
2253                                                    int64_t offset,
2254                                                    int64_t bytes,
2255                                                    int64_t *pnum,
2256                                                    int64_t *map,
2257                                                    BlockDriverState **file)
2258 {
2259     assert(bs->backing && bs->backing->bs);
2260     *pnum = bytes;
2261     *map = offset;
2262     *file = bs->backing->bs;
2263     return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2264 }
2265 
2266 /*
2267  * Returns the allocation status of the specified sectors.
2268  * Drivers not implementing the functionality are assumed to not support
2269  * backing files, hence all their sectors are reported as allocated.
2270  *
2271  * If 'want_zero' is true, the caller is querying for mapping
2272  * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2273  * _ZERO where possible; otherwise, the result favors larger 'pnum',
2274  * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2275  *
2276  * If 'offset' is beyond the end of the disk image the return value is
2277  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2278  *
2279  * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2280  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2281  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2282  *
2283  * 'pnum' is set to the number of bytes (including and immediately
2284  * following the specified offset) that are easily known to be in the
2285  * same allocated/unallocated state.  Note that a second call starting
2286  * at the original offset plus returned pnum may have the same status.
2287  * The returned value is non-zero on success except at end-of-file.
2288  *
2289  * Returns negative errno on failure.  Otherwise, if the
2290  * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2291  * set to the host mapping and BDS corresponding to the guest offset.
2292  */
2293 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2294                                              bool want_zero,
2295                                              int64_t offset, int64_t bytes,
2296                                              int64_t *pnum, int64_t *map,
2297                                              BlockDriverState **file)
2298 {
2299     int64_t total_size;
2300     int64_t n; /* bytes */
2301     int ret;
2302     int64_t local_map = 0;
2303     BlockDriverState *local_file = NULL;
2304     int64_t aligned_offset, aligned_bytes;
2305     uint32_t align;
2306 
2307     assert(pnum);
2308     *pnum = 0;
2309     total_size = bdrv_getlength(bs);
2310     if (total_size < 0) {
2311         ret = total_size;
2312         goto early_out;
2313     }
2314 
2315     if (offset >= total_size) {
2316         ret = BDRV_BLOCK_EOF;
2317         goto early_out;
2318     }
2319     if (!bytes) {
2320         ret = 0;
2321         goto early_out;
2322     }
2323 
2324     n = total_size - offset;
2325     if (n < bytes) {
2326         bytes = n;
2327     }
2328 
2329     /* Must be non-NULL or bdrv_getlength() would have failed */
2330     assert(bs->drv);
2331     if (!bs->drv->bdrv_co_block_status) {
2332         *pnum = bytes;
2333         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2334         if (offset + bytes == total_size) {
2335             ret |= BDRV_BLOCK_EOF;
2336         }
2337         if (bs->drv->protocol_name) {
2338             ret |= BDRV_BLOCK_OFFSET_VALID;
2339             local_map = offset;
2340             local_file = bs;
2341         }
2342         goto early_out;
2343     }
2344 
2345     bdrv_inc_in_flight(bs);
2346 
2347     /* Round out to request_alignment boundaries */
2348     align = bs->bl.request_alignment;
2349     aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2350     aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2351 
2352     ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2353                                         aligned_bytes, pnum, &local_map,
2354                                         &local_file);
2355     if (ret < 0) {
2356         *pnum = 0;
2357         goto out;
2358     }
2359 
2360     /*
2361      * The driver's result must be a non-zero multiple of request_alignment.
2362      * Clamp pnum and adjust map to original request.
2363      */
2364     assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2365            align > offset - aligned_offset);
2366     if (ret & BDRV_BLOCK_RECURSE) {
2367         assert(ret & BDRV_BLOCK_DATA);
2368         assert(ret & BDRV_BLOCK_OFFSET_VALID);
2369         assert(!(ret & BDRV_BLOCK_ZERO));
2370     }
2371 
2372     *pnum -= offset - aligned_offset;
2373     if (*pnum > bytes) {
2374         *pnum = bytes;
2375     }
2376     if (ret & BDRV_BLOCK_OFFSET_VALID) {
2377         local_map += offset - aligned_offset;
2378     }
2379 
2380     if (ret & BDRV_BLOCK_RAW) {
2381         assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2382         ret = bdrv_co_block_status(local_file, want_zero, local_map,
2383                                    *pnum, pnum, &local_map, &local_file);
2384         goto out;
2385     }
2386 
2387     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2388         ret |= BDRV_BLOCK_ALLOCATED;
2389     } else if (want_zero) {
2390         if (bdrv_unallocated_blocks_are_zero(bs)) {
2391             ret |= BDRV_BLOCK_ZERO;
2392         } else if (bs->backing) {
2393             BlockDriverState *bs2 = bs->backing->bs;
2394             int64_t size2 = bdrv_getlength(bs2);
2395 
2396             if (size2 >= 0 && offset >= size2) {
2397                 ret |= BDRV_BLOCK_ZERO;
2398             }
2399         }
2400     }
2401 
2402     if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2403         local_file && local_file != bs &&
2404         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2405         (ret & BDRV_BLOCK_OFFSET_VALID)) {
2406         int64_t file_pnum;
2407         int ret2;
2408 
2409         ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2410                                     *pnum, &file_pnum, NULL, NULL);
2411         if (ret2 >= 0) {
2412             /* Ignore errors.  This is just providing extra information, it
2413              * is useful but not necessary.
2414              */
2415             if (ret2 & BDRV_BLOCK_EOF &&
2416                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2417                 /*
2418                  * It is valid for the format block driver to read
2419                  * beyond the end of the underlying file's current
2420                  * size; such areas read as zero.
2421                  */
2422                 ret |= BDRV_BLOCK_ZERO;
2423             } else {
2424                 /* Limit request to the range reported by the protocol driver */
2425                 *pnum = file_pnum;
2426                 ret |= (ret2 & BDRV_BLOCK_ZERO);
2427             }
2428         }
2429     }
2430 
2431 out:
2432     bdrv_dec_in_flight(bs);
2433     if (ret >= 0 && offset + *pnum == total_size) {
2434         ret |= BDRV_BLOCK_EOF;
2435     }
2436 early_out:
2437     if (file) {
2438         *file = local_file;
2439     }
2440     if (map) {
2441         *map = local_map;
2442     }
2443     return ret;
2444 }
2445 
2446 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2447                                                    BlockDriverState *base,
2448                                                    bool want_zero,
2449                                                    int64_t offset,
2450                                                    int64_t bytes,
2451                                                    int64_t *pnum,
2452                                                    int64_t *map,
2453                                                    BlockDriverState **file)
2454 {
2455     BlockDriverState *p;
2456     int ret = 0;
2457     bool first = true;
2458 
2459     assert(bs != base);
2460     for (p = bs; p != base; p = backing_bs(p)) {
2461         ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2462                                    file);
2463         if (ret < 0) {
2464             break;
2465         }
2466         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2467             /*
2468              * Reading beyond the end of the file continues to read
2469              * zeroes, but we can only widen the result to the
2470              * unallocated length we learned from an earlier
2471              * iteration.
2472              */
2473             *pnum = bytes;
2474         }
2475         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2476             break;
2477         }
2478         /* [offset, pnum] unallocated on this layer, which could be only
2479          * the first part of [offset, bytes].  */
2480         bytes = MIN(bytes, *pnum);
2481         first = false;
2482     }
2483     return ret;
2484 }
2485 
2486 /* Coroutine wrapper for bdrv_block_status_above() */
2487 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2488 {
2489     BdrvCoBlockStatusData *data = opaque;
2490 
2491     data->ret = bdrv_co_block_status_above(data->bs, data->base,
2492                                            data->want_zero,
2493                                            data->offset, data->bytes,
2494                                            data->pnum, data->map, data->file);
2495     data->done = true;
2496     aio_wait_kick();
2497 }
2498 
2499 /*
2500  * Synchronous wrapper around bdrv_co_block_status_above().
2501  *
2502  * See bdrv_co_block_status_above() for details.
2503  */
2504 static int bdrv_common_block_status_above(BlockDriverState *bs,
2505                                           BlockDriverState *base,
2506                                           bool want_zero, int64_t offset,
2507                                           int64_t bytes, int64_t *pnum,
2508                                           int64_t *map,
2509                                           BlockDriverState **file)
2510 {
2511     Coroutine *co;
2512     BdrvCoBlockStatusData data = {
2513         .bs = bs,
2514         .base = base,
2515         .want_zero = want_zero,
2516         .offset = offset,
2517         .bytes = bytes,
2518         .pnum = pnum,
2519         .map = map,
2520         .file = file,
2521         .done = false,
2522     };
2523 
2524     if (qemu_in_coroutine()) {
2525         /* Fast-path if already in coroutine context */
2526         bdrv_block_status_above_co_entry(&data);
2527     } else {
2528         co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2529         bdrv_coroutine_enter(bs, co);
2530         BDRV_POLL_WHILE(bs, !data.done);
2531     }
2532     return data.ret;
2533 }
2534 
2535 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2536                             int64_t offset, int64_t bytes, int64_t *pnum,
2537                             int64_t *map, BlockDriverState **file)
2538 {
2539     return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2540                                           pnum, map, file);
2541 }
2542 
2543 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2544                       int64_t *pnum, int64_t *map, BlockDriverState **file)
2545 {
2546     return bdrv_block_status_above(bs, backing_bs(bs),
2547                                    offset, bytes, pnum, map, file);
2548 }
2549 
2550 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2551                                    int64_t bytes, int64_t *pnum)
2552 {
2553     int ret;
2554     int64_t dummy;
2555 
2556     ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2557                                          bytes, pnum ? pnum : &dummy, NULL,
2558                                          NULL);
2559     if (ret < 0) {
2560         return ret;
2561     }
2562     return !!(ret & BDRV_BLOCK_ALLOCATED);
2563 }
2564 
2565 /*
2566  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2567  *
2568  * Return 1 if (a prefix of) the given range is allocated in any image
2569  * between BASE and TOP (BASE is only included if include_base is set).
2570  * BASE can be NULL to check if the given offset is allocated in any
2571  * image of the chain.  Return 0 otherwise, or negative errno on
2572  * failure.
2573  *
2574  * 'pnum' is set to the number of bytes (including and immediately
2575  * following the specified offset) that are known to be in the same
2576  * allocated/unallocated state.  Note that a subsequent call starting
2577  * at 'offset + *pnum' may return the same allocation status (in other
2578  * words, the result is not necessarily the maximum possible range);
2579  * but 'pnum' will only be 0 when end of file is reached.
2580  *
2581  */
2582 int bdrv_is_allocated_above(BlockDriverState *top,
2583                             BlockDriverState *base,
2584                             bool include_base, int64_t offset,
2585                             int64_t bytes, int64_t *pnum)
2586 {
2587     BlockDriverState *intermediate;
2588     int ret;
2589     int64_t n = bytes;
2590 
2591     assert(base || !include_base);
2592 
2593     intermediate = top;
2594     while (include_base || intermediate != base) {
2595         int64_t pnum_inter;
2596         int64_t size_inter;
2597 
2598         assert(intermediate);
2599         ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2600         if (ret < 0) {
2601             return ret;
2602         }
2603         if (ret) {
2604             *pnum = pnum_inter;
2605             return 1;
2606         }
2607 
2608         size_inter = bdrv_getlength(intermediate);
2609         if (size_inter < 0) {
2610             return size_inter;
2611         }
2612         if (n > pnum_inter &&
2613             (intermediate == top || offset + pnum_inter < size_inter)) {
2614             n = pnum_inter;
2615         }
2616 
2617         if (intermediate == base) {
2618             break;
2619         }
2620 
2621         intermediate = backing_bs(intermediate);
2622     }
2623 
2624     *pnum = n;
2625     return 0;
2626 }
2627 
2628 typedef struct BdrvVmstateCo {
2629     BlockDriverState    *bs;
2630     QEMUIOVector        *qiov;
2631     int64_t             pos;
2632     bool                is_read;
2633     int                 ret;
2634 } BdrvVmstateCo;
2635 
2636 static int coroutine_fn
2637 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2638                    bool is_read)
2639 {
2640     BlockDriver *drv = bs->drv;
2641     int ret = -ENOTSUP;
2642 
2643     bdrv_inc_in_flight(bs);
2644 
2645     if (!drv) {
2646         ret = -ENOMEDIUM;
2647     } else if (drv->bdrv_load_vmstate) {
2648         if (is_read) {
2649             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2650         } else {
2651             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2652         }
2653     } else if (bs->file) {
2654         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2655     }
2656 
2657     bdrv_dec_in_flight(bs);
2658     return ret;
2659 }
2660 
2661 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2662 {
2663     BdrvVmstateCo *co = opaque;
2664     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2665     aio_wait_kick();
2666 }
2667 
2668 static inline int
2669 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2670                 bool is_read)
2671 {
2672     if (qemu_in_coroutine()) {
2673         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2674     } else {
2675         BdrvVmstateCo data = {
2676             .bs         = bs,
2677             .qiov       = qiov,
2678             .pos        = pos,
2679             .is_read    = is_read,
2680             .ret        = -EINPROGRESS,
2681         };
2682         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2683 
2684         bdrv_coroutine_enter(bs, co);
2685         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2686         return data.ret;
2687     }
2688 }
2689 
2690 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2691                       int64_t pos, int size)
2692 {
2693     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2694     int ret;
2695 
2696     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2697     if (ret < 0) {
2698         return ret;
2699     }
2700 
2701     return size;
2702 }
2703 
2704 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2705 {
2706     return bdrv_rw_vmstate(bs, qiov, pos, false);
2707 }
2708 
2709 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2710                       int64_t pos, int size)
2711 {
2712     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2713     int ret;
2714 
2715     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2716     if (ret < 0) {
2717         return ret;
2718     }
2719 
2720     return size;
2721 }
2722 
2723 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2724 {
2725     return bdrv_rw_vmstate(bs, qiov, pos, true);
2726 }
2727 
2728 /**************************************************************/
2729 /* async I/Os */
2730 
2731 void bdrv_aio_cancel(BlockAIOCB *acb)
2732 {
2733     qemu_aio_ref(acb);
2734     bdrv_aio_cancel_async(acb);
2735     while (acb->refcnt > 1) {
2736         if (acb->aiocb_info->get_aio_context) {
2737             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2738         } else if (acb->bs) {
2739             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2740              * assert that we're not using an I/O thread.  Thread-safe
2741              * code should use bdrv_aio_cancel_async exclusively.
2742              */
2743             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2744             aio_poll(bdrv_get_aio_context(acb->bs), true);
2745         } else {
2746             abort();
2747         }
2748     }
2749     qemu_aio_unref(acb);
2750 }
2751 
2752 /* Async version of aio cancel. The caller is not blocked if the acb implements
2753  * cancel_async, otherwise we do nothing and let the request normally complete.
2754  * In either case the completion callback must be called. */
2755 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2756 {
2757     if (acb->aiocb_info->cancel_async) {
2758         acb->aiocb_info->cancel_async(acb);
2759     }
2760 }
2761 
2762 /**************************************************************/
2763 /* Coroutine block device emulation */
2764 
2765 typedef struct FlushCo {
2766     BlockDriverState *bs;
2767     int ret;
2768 } FlushCo;
2769 
2770 
2771 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2772 {
2773     FlushCo *rwco = opaque;
2774 
2775     rwco->ret = bdrv_co_flush(rwco->bs);
2776     aio_wait_kick();
2777 }
2778 
2779 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2780 {
2781     int current_gen;
2782     int ret = 0;
2783 
2784     bdrv_inc_in_flight(bs);
2785 
2786     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2787         bdrv_is_sg(bs)) {
2788         goto early_exit;
2789     }
2790 
2791     qemu_co_mutex_lock(&bs->reqs_lock);
2792     current_gen = atomic_read(&bs->write_gen);
2793 
2794     /* Wait until any previous flushes are completed */
2795     while (bs->active_flush_req) {
2796         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2797     }
2798 
2799     /* Flushes reach this point in nondecreasing current_gen order.  */
2800     bs->active_flush_req = true;
2801     qemu_co_mutex_unlock(&bs->reqs_lock);
2802 
2803     /* Write back all layers by calling one driver function */
2804     if (bs->drv->bdrv_co_flush) {
2805         ret = bs->drv->bdrv_co_flush(bs);
2806         goto out;
2807     }
2808 
2809     /* Write back cached data to the OS even with cache=unsafe */
2810     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2811     if (bs->drv->bdrv_co_flush_to_os) {
2812         ret = bs->drv->bdrv_co_flush_to_os(bs);
2813         if (ret < 0) {
2814             goto out;
2815         }
2816     }
2817 
2818     /* But don't actually force it to the disk with cache=unsafe */
2819     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2820         goto flush_parent;
2821     }
2822 
2823     /* Check if we really need to flush anything */
2824     if (bs->flushed_gen == current_gen) {
2825         goto flush_parent;
2826     }
2827 
2828     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2829     if (!bs->drv) {
2830         /* bs->drv->bdrv_co_flush() might have ejected the BDS
2831          * (even in case of apparent success) */
2832         ret = -ENOMEDIUM;
2833         goto out;
2834     }
2835     if (bs->drv->bdrv_co_flush_to_disk) {
2836         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2837     } else if (bs->drv->bdrv_aio_flush) {
2838         BlockAIOCB *acb;
2839         CoroutineIOCompletion co = {
2840             .coroutine = qemu_coroutine_self(),
2841         };
2842 
2843         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2844         if (acb == NULL) {
2845             ret = -EIO;
2846         } else {
2847             qemu_coroutine_yield();
2848             ret = co.ret;
2849         }
2850     } else {
2851         /*
2852          * Some block drivers always operate in either writethrough or unsafe
2853          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2854          * know how the server works (because the behaviour is hardcoded or
2855          * depends on server-side configuration), so we can't ensure that
2856          * everything is safe on disk. Returning an error doesn't work because
2857          * that would break guests even if the server operates in writethrough
2858          * mode.
2859          *
2860          * Let's hope the user knows what he's doing.
2861          */
2862         ret = 0;
2863     }
2864 
2865     if (ret < 0) {
2866         goto out;
2867     }
2868 
2869     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2870      * in the case of cache=unsafe, so there are no useless flushes.
2871      */
2872 flush_parent:
2873     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2874 out:
2875     /* Notify any pending flushes that we have completed */
2876     if (ret == 0) {
2877         bs->flushed_gen = current_gen;
2878     }
2879 
2880     qemu_co_mutex_lock(&bs->reqs_lock);
2881     bs->active_flush_req = false;
2882     /* Return value is ignored - it's ok if wait queue is empty */
2883     qemu_co_queue_next(&bs->flush_queue);
2884     qemu_co_mutex_unlock(&bs->reqs_lock);
2885 
2886 early_exit:
2887     bdrv_dec_in_flight(bs);
2888     return ret;
2889 }
2890 
2891 int bdrv_flush(BlockDriverState *bs)
2892 {
2893     Coroutine *co;
2894     FlushCo flush_co = {
2895         .bs = bs,
2896         .ret = NOT_DONE,
2897     };
2898 
2899     if (qemu_in_coroutine()) {
2900         /* Fast-path if already in coroutine context */
2901         bdrv_flush_co_entry(&flush_co);
2902     } else {
2903         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2904         bdrv_coroutine_enter(bs, co);
2905         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2906     }
2907 
2908     return flush_co.ret;
2909 }
2910 
2911 typedef struct DiscardCo {
2912     BdrvChild *child;
2913     int64_t offset;
2914     int64_t bytes;
2915     int ret;
2916 } DiscardCo;
2917 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2918 {
2919     DiscardCo *rwco = opaque;
2920 
2921     rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2922     aio_wait_kick();
2923 }
2924 
2925 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2926                                   int64_t bytes)
2927 {
2928     BdrvTrackedRequest req;
2929     int max_pdiscard, ret;
2930     int head, tail, align;
2931     BlockDriverState *bs = child->bs;
2932 
2933     if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2934         return -ENOMEDIUM;
2935     }
2936 
2937     if (bdrv_has_readonly_bitmaps(bs)) {
2938         return -EPERM;
2939     }
2940 
2941     if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
2942         return -EIO;
2943     }
2944 
2945     /* Do nothing if disabled.  */
2946     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2947         return 0;
2948     }
2949 
2950     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2951         return 0;
2952     }
2953 
2954     /* Discard is advisory, but some devices track and coalesce
2955      * unaligned requests, so we must pass everything down rather than
2956      * round here.  Still, most devices will just silently ignore
2957      * unaligned requests (by returning -ENOTSUP), so we must fragment
2958      * the request accordingly.  */
2959     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2960     assert(align % bs->bl.request_alignment == 0);
2961     head = offset % align;
2962     tail = (offset + bytes) % align;
2963 
2964     bdrv_inc_in_flight(bs);
2965     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2966 
2967     ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2968     if (ret < 0) {
2969         goto out;
2970     }
2971 
2972     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2973                                    align);
2974     assert(max_pdiscard >= bs->bl.request_alignment);
2975 
2976     while (bytes > 0) {
2977         int64_t num = bytes;
2978 
2979         if (head) {
2980             /* Make small requests to get to alignment boundaries. */
2981             num = MIN(bytes, align - head);
2982             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2983                 num %= bs->bl.request_alignment;
2984             }
2985             head = (head + num) % align;
2986             assert(num < max_pdiscard);
2987         } else if (tail) {
2988             if (num > align) {
2989                 /* Shorten the request to the last aligned cluster.  */
2990                 num -= tail;
2991             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2992                        tail > bs->bl.request_alignment) {
2993                 tail %= bs->bl.request_alignment;
2994                 num -= tail;
2995             }
2996         }
2997         /* limit request size */
2998         if (num > max_pdiscard) {
2999             num = max_pdiscard;
3000         }
3001 
3002         if (!bs->drv) {
3003             ret = -ENOMEDIUM;
3004             goto out;
3005         }
3006         if (bs->drv->bdrv_co_pdiscard) {
3007             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3008         } else {
3009             BlockAIOCB *acb;
3010             CoroutineIOCompletion co = {
3011                 .coroutine = qemu_coroutine_self(),
3012             };
3013 
3014             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3015                                              bdrv_co_io_em_complete, &co);
3016             if (acb == NULL) {
3017                 ret = -EIO;
3018                 goto out;
3019             } else {
3020                 qemu_coroutine_yield();
3021                 ret = co.ret;
3022             }
3023         }
3024         if (ret && ret != -ENOTSUP) {
3025             goto out;
3026         }
3027 
3028         offset += num;
3029         bytes -= num;
3030     }
3031     ret = 0;
3032 out:
3033     bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3034     tracked_request_end(&req);
3035     bdrv_dec_in_flight(bs);
3036     return ret;
3037 }
3038 
3039 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes)
3040 {
3041     Coroutine *co;
3042     DiscardCo rwco = {
3043         .child = child,
3044         .offset = offset,
3045         .bytes = bytes,
3046         .ret = NOT_DONE,
3047     };
3048 
3049     if (qemu_in_coroutine()) {
3050         /* Fast-path if already in coroutine context */
3051         bdrv_pdiscard_co_entry(&rwco);
3052     } else {
3053         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
3054         bdrv_coroutine_enter(child->bs, co);
3055         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
3056     }
3057 
3058     return rwco.ret;
3059 }
3060 
3061 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3062 {
3063     BlockDriver *drv = bs->drv;
3064     CoroutineIOCompletion co = {
3065         .coroutine = qemu_coroutine_self(),
3066     };
3067     BlockAIOCB *acb;
3068 
3069     bdrv_inc_in_flight(bs);
3070     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3071         co.ret = -ENOTSUP;
3072         goto out;
3073     }
3074 
3075     if (drv->bdrv_co_ioctl) {
3076         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3077     } else {
3078         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3079         if (!acb) {
3080             co.ret = -ENOTSUP;
3081             goto out;
3082         }
3083         qemu_coroutine_yield();
3084     }
3085 out:
3086     bdrv_dec_in_flight(bs);
3087     return co.ret;
3088 }
3089 
3090 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3091 {
3092     return qemu_memalign(bdrv_opt_mem_align(bs), size);
3093 }
3094 
3095 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3096 {
3097     return memset(qemu_blockalign(bs, size), 0, size);
3098 }
3099 
3100 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3101 {
3102     size_t align = bdrv_opt_mem_align(bs);
3103 
3104     /* Ensure that NULL is never returned on success */
3105     assert(align > 0);
3106     if (size == 0) {
3107         size = align;
3108     }
3109 
3110     return qemu_try_memalign(align, size);
3111 }
3112 
3113 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3114 {
3115     void *mem = qemu_try_blockalign(bs, size);
3116 
3117     if (mem) {
3118         memset(mem, 0, size);
3119     }
3120 
3121     return mem;
3122 }
3123 
3124 /*
3125  * Check if all memory in this vector is sector aligned.
3126  */
3127 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3128 {
3129     int i;
3130     size_t alignment = bdrv_min_mem_align(bs);
3131 
3132     for (i = 0; i < qiov->niov; i++) {
3133         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3134             return false;
3135         }
3136         if (qiov->iov[i].iov_len % alignment) {
3137             return false;
3138         }
3139     }
3140 
3141     return true;
3142 }
3143 
3144 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3145                                     NotifierWithReturn *notifier)
3146 {
3147     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3148 }
3149 
3150 void bdrv_io_plug(BlockDriverState *bs)
3151 {
3152     BdrvChild *child;
3153 
3154     QLIST_FOREACH(child, &bs->children, next) {
3155         bdrv_io_plug(child->bs);
3156     }
3157 
3158     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
3159         BlockDriver *drv = bs->drv;
3160         if (drv && drv->bdrv_io_plug) {
3161             drv->bdrv_io_plug(bs);
3162         }
3163     }
3164 }
3165 
3166 void bdrv_io_unplug(BlockDriverState *bs)
3167 {
3168     BdrvChild *child;
3169 
3170     assert(bs->io_plugged);
3171     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
3172         BlockDriver *drv = bs->drv;
3173         if (drv && drv->bdrv_io_unplug) {
3174             drv->bdrv_io_unplug(bs);
3175         }
3176     }
3177 
3178     QLIST_FOREACH(child, &bs->children, next) {
3179         bdrv_io_unplug(child->bs);
3180     }
3181 }
3182 
3183 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3184 {
3185     BdrvChild *child;
3186 
3187     if (bs->drv && bs->drv->bdrv_register_buf) {
3188         bs->drv->bdrv_register_buf(bs, host, size);
3189     }
3190     QLIST_FOREACH(child, &bs->children, next) {
3191         bdrv_register_buf(child->bs, host, size);
3192     }
3193 }
3194 
3195 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3196 {
3197     BdrvChild *child;
3198 
3199     if (bs->drv && bs->drv->bdrv_unregister_buf) {
3200         bs->drv->bdrv_unregister_buf(bs, host);
3201     }
3202     QLIST_FOREACH(child, &bs->children, next) {
3203         bdrv_unregister_buf(child->bs, host);
3204     }
3205 }
3206 
3207 static int coroutine_fn bdrv_co_copy_range_internal(
3208         BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3209         uint64_t dst_offset, uint64_t bytes,
3210         BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3211         bool recurse_src)
3212 {
3213     BdrvTrackedRequest req;
3214     int ret;
3215 
3216     /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3217     assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3218     assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3219 
3220     if (!dst || !dst->bs) {
3221         return -ENOMEDIUM;
3222     }
3223     ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3224     if (ret) {
3225         return ret;
3226     }
3227     if (write_flags & BDRV_REQ_ZERO_WRITE) {
3228         return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3229     }
3230 
3231     if (!src || !src->bs) {
3232         return -ENOMEDIUM;
3233     }
3234     ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3235     if (ret) {
3236         return ret;
3237     }
3238 
3239     if (!src->bs->drv->bdrv_co_copy_range_from
3240         || !dst->bs->drv->bdrv_co_copy_range_to
3241         || src->bs->encrypted || dst->bs->encrypted) {
3242         return -ENOTSUP;
3243     }
3244 
3245     if (recurse_src) {
3246         bdrv_inc_in_flight(src->bs);
3247         tracked_request_begin(&req, src->bs, src_offset, bytes,
3248                               BDRV_TRACKED_READ);
3249 
3250         /* BDRV_REQ_SERIALISING is only for write operation */
3251         assert(!(read_flags & BDRV_REQ_SERIALISING));
3252         bdrv_wait_serialising_requests(&req);
3253 
3254         ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3255                                                     src, src_offset,
3256                                                     dst, dst_offset,
3257                                                     bytes,
3258                                                     read_flags, write_flags);
3259 
3260         tracked_request_end(&req);
3261         bdrv_dec_in_flight(src->bs);
3262     } else {
3263         bdrv_inc_in_flight(dst->bs);
3264         tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3265                               BDRV_TRACKED_WRITE);
3266         ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3267                                         write_flags);
3268         if (!ret) {
3269             ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3270                                                       src, src_offset,
3271                                                       dst, dst_offset,
3272                                                       bytes,
3273                                                       read_flags, write_flags);
3274         }
3275         bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3276         tracked_request_end(&req);
3277         bdrv_dec_in_flight(dst->bs);
3278     }
3279 
3280     return ret;
3281 }
3282 
3283 /* Copy range from @src to @dst.
3284  *
3285  * See the comment of bdrv_co_copy_range for the parameter and return value
3286  * semantics. */
3287 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3288                                          BdrvChild *dst, uint64_t dst_offset,
3289                                          uint64_t bytes,
3290                                          BdrvRequestFlags read_flags,
3291                                          BdrvRequestFlags write_flags)
3292 {
3293     trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3294                                   read_flags, write_flags);
3295     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3296                                        bytes, read_flags, write_flags, true);
3297 }
3298 
3299 /* Copy range from @src to @dst.
3300  *
3301  * See the comment of bdrv_co_copy_range for the parameter and return value
3302  * semantics. */
3303 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3304                                        BdrvChild *dst, uint64_t dst_offset,
3305                                        uint64_t bytes,
3306                                        BdrvRequestFlags read_flags,
3307                                        BdrvRequestFlags write_flags)
3308 {
3309     trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3310                                 read_flags, write_flags);
3311     return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3312                                        bytes, read_flags, write_flags, false);
3313 }
3314 
3315 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3316                                     BdrvChild *dst, uint64_t dst_offset,
3317                                     uint64_t bytes, BdrvRequestFlags read_flags,
3318                                     BdrvRequestFlags write_flags)
3319 {
3320     return bdrv_co_copy_range_from(src, src_offset,
3321                                    dst, dst_offset,
3322                                    bytes, read_flags, write_flags);
3323 }
3324 
3325 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3326 {
3327     BdrvChild *c;
3328     QLIST_FOREACH(c, &bs->parents, next_parent) {
3329         if (c->klass->resize) {
3330             c->klass->resize(c);
3331         }
3332     }
3333 }
3334 
3335 /**
3336  * Truncate file to 'offset' bytes (needed only for file protocols)
3337  *
3338  * If 'exact' is true, the file must be resized to exactly the given
3339  * 'offset'.  Otherwise, it is sufficient for the node to be at least
3340  * 'offset' bytes in length.
3341  */
3342 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3343                                   PreallocMode prealloc, BdrvRequestFlags flags,
3344                                   Error **errp)
3345 {
3346     BlockDriverState *bs = child->bs;
3347     BlockDriver *drv = bs->drv;
3348     BdrvTrackedRequest req;
3349     int64_t old_size, new_bytes;
3350     int ret;
3351 
3352 
3353     /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3354     if (!drv) {
3355         error_setg(errp, "No medium inserted");
3356         return -ENOMEDIUM;
3357     }
3358     if (offset < 0) {
3359         error_setg(errp, "Image size cannot be negative");
3360         return -EINVAL;
3361     }
3362 
3363     old_size = bdrv_getlength(bs);
3364     if (old_size < 0) {
3365         error_setg_errno(errp, -old_size, "Failed to get old image size");
3366         return old_size;
3367     }
3368 
3369     if (offset > old_size) {
3370         new_bytes = offset - old_size;
3371     } else {
3372         new_bytes = 0;
3373     }
3374 
3375     bdrv_inc_in_flight(bs);
3376     tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3377                           BDRV_TRACKED_TRUNCATE);
3378 
3379     /* If we are growing the image and potentially using preallocation for the
3380      * new area, we need to make sure that no write requests are made to it
3381      * concurrently or they might be overwritten by preallocation. */
3382     if (new_bytes) {
3383         bdrv_mark_request_serialising(&req, 1);
3384     }
3385     if (bs->read_only) {
3386         error_setg(errp, "Image is read-only");
3387         ret = -EACCES;
3388         goto out;
3389     }
3390     ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3391                                     0);
3392     if (ret < 0) {
3393         error_setg_errno(errp, -ret,
3394                          "Failed to prepare request for truncation");
3395         goto out;
3396     }
3397 
3398     /*
3399      * If the image has a backing file that is large enough that it would
3400      * provide data for the new area, we cannot leave it unallocated because
3401      * then the backing file content would become visible. Instead, zero-fill
3402      * the new area.
3403      *
3404      * Note that if the image has a backing file, but was opened without the
3405      * backing file, taking care of keeping things consistent with that backing
3406      * file is the user's responsibility.
3407      */
3408     if (new_bytes && bs->backing) {
3409         int64_t backing_len;
3410 
3411         backing_len = bdrv_getlength(backing_bs(bs));
3412         if (backing_len < 0) {
3413             ret = backing_len;
3414             error_setg_errno(errp, -ret, "Could not get backing file size");
3415             goto out;
3416         }
3417 
3418         if (backing_len > old_size) {
3419             flags |= BDRV_REQ_ZERO_WRITE;
3420         }
3421     }
3422 
3423     if (drv->bdrv_co_truncate) {
3424         if (flags & ~bs->supported_truncate_flags) {
3425             error_setg(errp, "Block driver does not support requested flags");
3426             ret = -ENOTSUP;
3427             goto out;
3428         }
3429         ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3430     } else if (bs->file && drv->is_filter) {
3431         ret = bdrv_co_truncate(bs->file, offset, exact, prealloc, flags, errp);
3432     } else {
3433         error_setg(errp, "Image format driver does not support resize");
3434         ret = -ENOTSUP;
3435         goto out;
3436     }
3437     if (ret < 0) {
3438         goto out;
3439     }
3440 
3441     ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3442     if (ret < 0) {
3443         error_setg_errno(errp, -ret, "Could not refresh total sector count");
3444     } else {
3445         offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3446     }
3447     /* It's possible that truncation succeeded but refresh_total_sectors
3448      * failed, but the latter doesn't affect how we should finish the request.
3449      * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3450     bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3451 
3452 out:
3453     tracked_request_end(&req);
3454     bdrv_dec_in_flight(bs);
3455 
3456     return ret;
3457 }
3458 
3459 typedef struct TruncateCo {
3460     BdrvChild *child;
3461     int64_t offset;
3462     bool exact;
3463     PreallocMode prealloc;
3464     BdrvRequestFlags flags;
3465     Error **errp;
3466     int ret;
3467 } TruncateCo;
3468 
3469 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3470 {
3471     TruncateCo *tco = opaque;
3472     tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->exact,
3473                                 tco->prealloc, tco->flags, tco->errp);
3474     aio_wait_kick();
3475 }
3476 
3477 int bdrv_truncate(BdrvChild *child, int64_t offset, bool exact,
3478                   PreallocMode prealloc, BdrvRequestFlags flags, Error **errp)
3479 {
3480     Coroutine *co;
3481     TruncateCo tco = {
3482         .child      = child,
3483         .offset     = offset,
3484         .exact      = exact,
3485         .prealloc   = prealloc,
3486         .flags      = flags,
3487         .errp       = errp,
3488         .ret        = NOT_DONE,
3489     };
3490 
3491     if (qemu_in_coroutine()) {
3492         /* Fast-path if already in coroutine context */
3493         bdrv_truncate_co_entry(&tco);
3494     } else {
3495         co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3496         bdrv_coroutine_enter(child->bs, co);
3497         BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3498     }
3499 
3500     return tco.ret;
3501 }
3502