1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/dirty-bitmap.h" 34 #include "block/write-threshold.h" 35 #include "qemu/cutils.h" 36 #include "qemu/memalign.h" 37 #include "qapi/error.h" 38 #include "qemu/error-report.h" 39 #include "qemu/main-loop.h" 40 #include "sysemu/replay.h" 41 42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 44 45 static void bdrv_parent_cb_resize(BlockDriverState *bs); 46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 47 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 48 49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 50 { 51 BdrvChild *c, *next; 52 53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 54 if (c == ignore) { 55 continue; 56 } 57 bdrv_parent_drained_begin_single(c); 58 } 59 } 60 61 void bdrv_parent_drained_end_single(BdrvChild *c) 62 { 63 GLOBAL_STATE_CODE(); 64 65 assert(c->quiesced_parent); 66 c->quiesced_parent = false; 67 68 if (c->klass->drained_end) { 69 c->klass->drained_end(c); 70 } 71 } 72 73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 74 { 75 BdrvChild *c; 76 77 QLIST_FOREACH(c, &bs->parents, next_parent) { 78 if (c == ignore) { 79 continue; 80 } 81 bdrv_parent_drained_end_single(c); 82 } 83 } 84 85 bool bdrv_parent_drained_poll_single(BdrvChild *c) 86 { 87 if (c->klass->drained_poll) { 88 return c->klass->drained_poll(c); 89 } 90 return false; 91 } 92 93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 94 bool ignore_bds_parents) 95 { 96 BdrvChild *c, *next; 97 bool busy = false; 98 99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 101 continue; 102 } 103 busy |= bdrv_parent_drained_poll_single(c); 104 } 105 106 return busy; 107 } 108 109 void bdrv_parent_drained_begin_single(BdrvChild *c) 110 { 111 GLOBAL_STATE_CODE(); 112 113 assert(!c->quiesced_parent); 114 c->quiesced_parent = true; 115 116 if (c->klass->drained_begin) { 117 c->klass->drained_begin(c); 118 } 119 } 120 121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 122 { 123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 124 src->pdiscard_alignment); 125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 128 src->max_hw_transfer); 129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 130 src->opt_mem_alignment); 131 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 132 src->min_mem_alignment); 133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 135 } 136 137 typedef struct BdrvRefreshLimitsState { 138 BlockDriverState *bs; 139 BlockLimits old_bl; 140 } BdrvRefreshLimitsState; 141 142 static void bdrv_refresh_limits_abort(void *opaque) 143 { 144 BdrvRefreshLimitsState *s = opaque; 145 146 s->bs->bl = s->old_bl; 147 } 148 149 static TransactionActionDrv bdrv_refresh_limits_drv = { 150 .abort = bdrv_refresh_limits_abort, 151 .clean = g_free, 152 }; 153 154 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 156 { 157 ERRP_GUARD(); 158 BlockDriver *drv = bs->drv; 159 BdrvChild *c; 160 bool have_limits; 161 162 GLOBAL_STATE_CODE(); 163 164 if (tran) { 165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 166 *s = (BdrvRefreshLimitsState) { 167 .bs = bs, 168 .old_bl = bs->bl, 169 }; 170 tran_add(tran, &bdrv_refresh_limits_drv, s); 171 } 172 173 memset(&bs->bl, 0, sizeof(bs->bl)); 174 175 if (!drv) { 176 return; 177 } 178 179 /* Default alignment based on whether driver has byte interface */ 180 bs->bl.request_alignment = (drv->bdrv_co_preadv || 181 drv->bdrv_aio_preadv || 182 drv->bdrv_co_preadv_part) ? 1 : 512; 183 184 /* Take some limits from the children as a default */ 185 have_limits = false; 186 QLIST_FOREACH(c, &bs->children, next) { 187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 188 { 189 bdrv_merge_limits(&bs->bl, &c->bs->bl); 190 have_limits = true; 191 } 192 193 if (c->role & BDRV_CHILD_FILTERED) { 194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length; 195 } 196 } 197 198 if (!have_limits) { 199 bs->bl.min_mem_alignment = 512; 200 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 201 202 /* Safe default since most protocols use readv()/writev()/etc */ 203 bs->bl.max_iov = IOV_MAX; 204 } 205 206 /* Then let the driver override it */ 207 if (drv->bdrv_refresh_limits) { 208 drv->bdrv_refresh_limits(bs, errp); 209 if (*errp) { 210 return; 211 } 212 } 213 214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 215 error_setg(errp, "Driver requires too large request alignment"); 216 } 217 } 218 219 /** 220 * The copy-on-read flag is actually a reference count so multiple users may 221 * use the feature without worrying about clobbering its previous state. 222 * Copy-on-read stays enabled until all users have called to disable it. 223 */ 224 void bdrv_enable_copy_on_read(BlockDriverState *bs) 225 { 226 IO_CODE(); 227 qatomic_inc(&bs->copy_on_read); 228 } 229 230 void bdrv_disable_copy_on_read(BlockDriverState *bs) 231 { 232 int old = qatomic_fetch_dec(&bs->copy_on_read); 233 IO_CODE(); 234 assert(old >= 1); 235 } 236 237 typedef struct { 238 Coroutine *co; 239 BlockDriverState *bs; 240 bool done; 241 bool begin; 242 bool poll; 243 BdrvChild *parent; 244 } BdrvCoDrainData; 245 246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 248 bool ignore_bds_parents) 249 { 250 GLOBAL_STATE_CODE(); 251 252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 253 return true; 254 } 255 256 if (qatomic_read(&bs->in_flight)) { 257 return true; 258 } 259 260 return false; 261 } 262 263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 264 BdrvChild *ignore_parent) 265 { 266 return bdrv_drain_poll(bs, ignore_parent, false); 267 } 268 269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 270 bool poll); 271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 272 273 static void bdrv_co_drain_bh_cb(void *opaque) 274 { 275 BdrvCoDrainData *data = opaque; 276 Coroutine *co = data->co; 277 BlockDriverState *bs = data->bs; 278 279 if (bs) { 280 AioContext *ctx = bdrv_get_aio_context(bs); 281 aio_context_acquire(ctx); 282 bdrv_dec_in_flight(bs); 283 if (data->begin) { 284 bdrv_do_drained_begin(bs, data->parent, data->poll); 285 } else { 286 assert(!data->poll); 287 bdrv_do_drained_end(bs, data->parent); 288 } 289 aio_context_release(ctx); 290 } else { 291 assert(data->begin); 292 bdrv_drain_all_begin(); 293 } 294 295 data->done = true; 296 aio_co_wake(co); 297 } 298 299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 300 bool begin, 301 BdrvChild *parent, 302 bool poll) 303 { 304 BdrvCoDrainData data; 305 Coroutine *self = qemu_coroutine_self(); 306 AioContext *ctx = bdrv_get_aio_context(bs); 307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 308 309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 310 * other coroutines run if they were queued by aio_co_enter(). */ 311 312 assert(qemu_in_coroutine()); 313 data = (BdrvCoDrainData) { 314 .co = self, 315 .bs = bs, 316 .done = false, 317 .begin = begin, 318 .parent = parent, 319 .poll = poll, 320 }; 321 322 if (bs) { 323 bdrv_inc_in_flight(bs); 324 } 325 326 /* 327 * Temporarily drop the lock across yield or we would get deadlocks. 328 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 329 * 330 * When we yield below, the lock for the current context will be 331 * released, so if this is actually the lock that protects bs, don't drop 332 * it a second time. 333 */ 334 if (ctx != co_ctx) { 335 aio_context_release(ctx); 336 } 337 replay_bh_schedule_oneshot_event(qemu_get_aio_context(), 338 bdrv_co_drain_bh_cb, &data); 339 340 qemu_coroutine_yield(); 341 /* If we are resumed from some other event (such as an aio completion or a 342 * timer callback), it is a bug in the caller that should be fixed. */ 343 assert(data.done); 344 345 /* Reaquire the AioContext of bs if we dropped it */ 346 if (ctx != co_ctx) { 347 aio_context_acquire(ctx); 348 } 349 } 350 351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 352 bool poll) 353 { 354 IO_OR_GS_CODE(); 355 356 if (qemu_in_coroutine()) { 357 bdrv_co_yield_to_drain(bs, true, parent, poll); 358 return; 359 } 360 361 GLOBAL_STATE_CODE(); 362 363 /* Stop things in parent-to-child order */ 364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 365 bdrv_parent_drained_begin(bs, parent); 366 if (bs->drv && bs->drv->bdrv_drain_begin) { 367 bs->drv->bdrv_drain_begin(bs); 368 } 369 } 370 371 /* 372 * Wait for drained requests to finish. 373 * 374 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 375 * call is needed so things in this AioContext can make progress even 376 * though we don't return to the main AioContext loop - this automatically 377 * includes other nodes in the same AioContext and therefore all child 378 * nodes. 379 */ 380 if (poll) { 381 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 382 } 383 } 384 385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 386 { 387 bdrv_do_drained_begin(bs, parent, false); 388 } 389 390 void bdrv_drained_begin(BlockDriverState *bs) 391 { 392 IO_OR_GS_CODE(); 393 bdrv_do_drained_begin(bs, NULL, true); 394 } 395 396 /** 397 * This function does not poll, nor must any of its recursively called 398 * functions. 399 */ 400 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 401 { 402 int old_quiesce_counter; 403 404 IO_OR_GS_CODE(); 405 406 if (qemu_in_coroutine()) { 407 bdrv_co_yield_to_drain(bs, false, parent, false); 408 return; 409 } 410 assert(bs->quiesce_counter > 0); 411 GLOBAL_STATE_CODE(); 412 413 /* Re-enable things in child-to-parent order */ 414 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 415 if (old_quiesce_counter == 1) { 416 if (bs->drv && bs->drv->bdrv_drain_end) { 417 bs->drv->bdrv_drain_end(bs); 418 } 419 bdrv_parent_drained_end(bs, parent); 420 } 421 } 422 423 void bdrv_drained_end(BlockDriverState *bs) 424 { 425 IO_OR_GS_CODE(); 426 bdrv_do_drained_end(bs, NULL); 427 } 428 429 void bdrv_drain(BlockDriverState *bs) 430 { 431 IO_OR_GS_CODE(); 432 bdrv_drained_begin(bs); 433 bdrv_drained_end(bs); 434 } 435 436 static void bdrv_drain_assert_idle(BlockDriverState *bs) 437 { 438 BdrvChild *child, *next; 439 440 assert(qatomic_read(&bs->in_flight) == 0); 441 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 442 bdrv_drain_assert_idle(child->bs); 443 } 444 } 445 446 unsigned int bdrv_drain_all_count = 0; 447 448 static bool bdrv_drain_all_poll(void) 449 { 450 BlockDriverState *bs = NULL; 451 bool result = false; 452 GLOBAL_STATE_CODE(); 453 454 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 455 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 456 while ((bs = bdrv_next_all_states(bs))) { 457 AioContext *aio_context = bdrv_get_aio_context(bs); 458 aio_context_acquire(aio_context); 459 result |= bdrv_drain_poll(bs, NULL, true); 460 aio_context_release(aio_context); 461 } 462 463 return result; 464 } 465 466 /* 467 * Wait for pending requests to complete across all BlockDriverStates 468 * 469 * This function does not flush data to disk, use bdrv_flush_all() for that 470 * after calling this function. 471 * 472 * This pauses all block jobs and disables external clients. It must 473 * be paired with bdrv_drain_all_end(). 474 * 475 * NOTE: no new block jobs or BlockDriverStates can be created between 476 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 477 */ 478 void bdrv_drain_all_begin_nopoll(void) 479 { 480 BlockDriverState *bs = NULL; 481 GLOBAL_STATE_CODE(); 482 483 /* 484 * bdrv queue is managed by record/replay, 485 * waiting for finishing the I/O requests may 486 * be infinite 487 */ 488 if (replay_events_enabled()) { 489 return; 490 } 491 492 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 493 * loop AioContext, so make sure we're in the main context. */ 494 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 495 assert(bdrv_drain_all_count < INT_MAX); 496 bdrv_drain_all_count++; 497 498 /* Quiesce all nodes, without polling in-flight requests yet. The graph 499 * cannot change during this loop. */ 500 while ((bs = bdrv_next_all_states(bs))) { 501 AioContext *aio_context = bdrv_get_aio_context(bs); 502 503 aio_context_acquire(aio_context); 504 bdrv_do_drained_begin(bs, NULL, false); 505 aio_context_release(aio_context); 506 } 507 } 508 509 void bdrv_drain_all_begin(void) 510 { 511 BlockDriverState *bs = NULL; 512 513 if (qemu_in_coroutine()) { 514 bdrv_co_yield_to_drain(NULL, true, NULL, true); 515 return; 516 } 517 518 /* 519 * bdrv queue is managed by record/replay, 520 * waiting for finishing the I/O requests may 521 * be infinite 522 */ 523 if (replay_events_enabled()) { 524 return; 525 } 526 527 bdrv_drain_all_begin_nopoll(); 528 529 /* Now poll the in-flight requests */ 530 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll()); 531 532 while ((bs = bdrv_next_all_states(bs))) { 533 bdrv_drain_assert_idle(bs); 534 } 535 } 536 537 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 538 { 539 GLOBAL_STATE_CODE(); 540 541 g_assert(bs->quiesce_counter > 0); 542 g_assert(!bs->refcnt); 543 544 while (bs->quiesce_counter) { 545 bdrv_do_drained_end(bs, NULL); 546 } 547 } 548 549 void bdrv_drain_all_end(void) 550 { 551 BlockDriverState *bs = NULL; 552 GLOBAL_STATE_CODE(); 553 554 /* 555 * bdrv queue is managed by record/replay, 556 * waiting for finishing the I/O requests may 557 * be endless 558 */ 559 if (replay_events_enabled()) { 560 return; 561 } 562 563 while ((bs = bdrv_next_all_states(bs))) { 564 AioContext *aio_context = bdrv_get_aio_context(bs); 565 566 aio_context_acquire(aio_context); 567 bdrv_do_drained_end(bs, NULL); 568 aio_context_release(aio_context); 569 } 570 571 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 572 assert(bdrv_drain_all_count > 0); 573 bdrv_drain_all_count--; 574 } 575 576 void bdrv_drain_all(void) 577 { 578 GLOBAL_STATE_CODE(); 579 bdrv_drain_all_begin(); 580 bdrv_drain_all_end(); 581 } 582 583 /** 584 * Remove an active request from the tracked requests list 585 * 586 * This function should be called when a tracked request is completing. 587 */ 588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 589 { 590 if (req->serialising) { 591 qatomic_dec(&req->bs->serialising_in_flight); 592 } 593 594 qemu_co_mutex_lock(&req->bs->reqs_lock); 595 QLIST_REMOVE(req, list); 596 qemu_co_queue_restart_all(&req->wait_queue); 597 qemu_co_mutex_unlock(&req->bs->reqs_lock); 598 } 599 600 /** 601 * Add an active request to the tracked requests list 602 */ 603 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 604 BlockDriverState *bs, 605 int64_t offset, 606 int64_t bytes, 607 enum BdrvTrackedRequestType type) 608 { 609 bdrv_check_request(offset, bytes, &error_abort); 610 611 *req = (BdrvTrackedRequest){ 612 .bs = bs, 613 .offset = offset, 614 .bytes = bytes, 615 .type = type, 616 .co = qemu_coroutine_self(), 617 .serialising = false, 618 .overlap_offset = offset, 619 .overlap_bytes = bytes, 620 }; 621 622 qemu_co_queue_init(&req->wait_queue); 623 624 qemu_co_mutex_lock(&bs->reqs_lock); 625 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 626 qemu_co_mutex_unlock(&bs->reqs_lock); 627 } 628 629 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 630 int64_t offset, int64_t bytes) 631 { 632 bdrv_check_request(offset, bytes, &error_abort); 633 634 /* aaaa bbbb */ 635 if (offset >= req->overlap_offset + req->overlap_bytes) { 636 return false; 637 } 638 /* bbbb aaaa */ 639 if (req->overlap_offset >= offset + bytes) { 640 return false; 641 } 642 return true; 643 } 644 645 /* Called with self->bs->reqs_lock held */ 646 static coroutine_fn BdrvTrackedRequest * 647 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 648 { 649 BdrvTrackedRequest *req; 650 651 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 652 if (req == self || (!req->serialising && !self->serialising)) { 653 continue; 654 } 655 if (tracked_request_overlaps(req, self->overlap_offset, 656 self->overlap_bytes)) 657 { 658 /* 659 * Hitting this means there was a reentrant request, for 660 * example, a block driver issuing nested requests. This must 661 * never happen since it means deadlock. 662 */ 663 assert(qemu_coroutine_self() != req->co); 664 665 /* 666 * If the request is already (indirectly) waiting for us, or 667 * will wait for us as soon as it wakes up, then just go on 668 * (instead of producing a deadlock in the former case). 669 */ 670 if (!req->waiting_for) { 671 return req; 672 } 673 } 674 } 675 676 return NULL; 677 } 678 679 /* Called with self->bs->reqs_lock held */ 680 static void coroutine_fn 681 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 682 { 683 BdrvTrackedRequest *req; 684 685 while ((req = bdrv_find_conflicting_request(self))) { 686 self->waiting_for = req; 687 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 688 self->waiting_for = NULL; 689 } 690 } 691 692 /* Called with req->bs->reqs_lock held */ 693 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 694 uint64_t align) 695 { 696 int64_t overlap_offset = req->offset & ~(align - 1); 697 int64_t overlap_bytes = 698 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 699 700 bdrv_check_request(req->offset, req->bytes, &error_abort); 701 702 if (!req->serialising) { 703 qatomic_inc(&req->bs->serialising_in_flight); 704 req->serialising = true; 705 } 706 707 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 708 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 709 } 710 711 /** 712 * Return the tracked request on @bs for the current coroutine, or 713 * NULL if there is none. 714 */ 715 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 716 { 717 BdrvTrackedRequest *req; 718 Coroutine *self = qemu_coroutine_self(); 719 IO_CODE(); 720 721 QLIST_FOREACH(req, &bs->tracked_requests, list) { 722 if (req->co == self) { 723 return req; 724 } 725 } 726 727 return NULL; 728 } 729 730 /** 731 * Round a region to cluster boundaries 732 */ 733 void coroutine_fn GRAPH_RDLOCK 734 bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes, 735 int64_t *cluster_offset, int64_t *cluster_bytes) 736 { 737 BlockDriverInfo bdi; 738 IO_CODE(); 739 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 740 *cluster_offset = offset; 741 *cluster_bytes = bytes; 742 } else { 743 int64_t c = bdi.cluster_size; 744 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 745 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 746 } 747 } 748 749 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs) 750 { 751 BlockDriverInfo bdi; 752 int ret; 753 754 ret = bdrv_co_get_info(bs, &bdi); 755 if (ret < 0 || bdi.cluster_size == 0) { 756 return bs->bl.request_alignment; 757 } else { 758 return bdi.cluster_size; 759 } 760 } 761 762 void bdrv_inc_in_flight(BlockDriverState *bs) 763 { 764 IO_CODE(); 765 qatomic_inc(&bs->in_flight); 766 } 767 768 void bdrv_wakeup(BlockDriverState *bs) 769 { 770 IO_CODE(); 771 aio_wait_kick(); 772 } 773 774 void bdrv_dec_in_flight(BlockDriverState *bs) 775 { 776 IO_CODE(); 777 qatomic_dec(&bs->in_flight); 778 bdrv_wakeup(bs); 779 } 780 781 static void coroutine_fn 782 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 783 { 784 BlockDriverState *bs = self->bs; 785 786 if (!qatomic_read(&bs->serialising_in_flight)) { 787 return; 788 } 789 790 qemu_co_mutex_lock(&bs->reqs_lock); 791 bdrv_wait_serialising_requests_locked(self); 792 qemu_co_mutex_unlock(&bs->reqs_lock); 793 } 794 795 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 796 uint64_t align) 797 { 798 IO_CODE(); 799 800 qemu_co_mutex_lock(&req->bs->reqs_lock); 801 802 tracked_request_set_serialising(req, align); 803 bdrv_wait_serialising_requests_locked(req); 804 805 qemu_co_mutex_unlock(&req->bs->reqs_lock); 806 } 807 808 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 809 QEMUIOVector *qiov, size_t qiov_offset, 810 Error **errp) 811 { 812 /* 813 * Check generic offset/bytes correctness 814 */ 815 816 if (offset < 0) { 817 error_setg(errp, "offset is negative: %" PRIi64, offset); 818 return -EIO; 819 } 820 821 if (bytes < 0) { 822 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 823 return -EIO; 824 } 825 826 if (bytes > BDRV_MAX_LENGTH) { 827 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 828 bytes, BDRV_MAX_LENGTH); 829 return -EIO; 830 } 831 832 if (offset > BDRV_MAX_LENGTH) { 833 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 834 offset, BDRV_MAX_LENGTH); 835 return -EIO; 836 } 837 838 if (offset > BDRV_MAX_LENGTH - bytes) { 839 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 840 "exceeds maximum(%" PRIi64 ")", offset, bytes, 841 BDRV_MAX_LENGTH); 842 return -EIO; 843 } 844 845 if (!qiov) { 846 return 0; 847 } 848 849 /* 850 * Check qiov and qiov_offset 851 */ 852 853 if (qiov_offset > qiov->size) { 854 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 855 qiov_offset, qiov->size); 856 return -EIO; 857 } 858 859 if (bytes > qiov->size - qiov_offset) { 860 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 861 "vector size(%zu)", bytes, qiov_offset, qiov->size); 862 return -EIO; 863 } 864 865 return 0; 866 } 867 868 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 869 { 870 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 871 } 872 873 static int bdrv_check_request32(int64_t offset, int64_t bytes, 874 QEMUIOVector *qiov, size_t qiov_offset) 875 { 876 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 877 if (ret < 0) { 878 return ret; 879 } 880 881 if (bytes > BDRV_REQUEST_MAX_BYTES) { 882 return -EIO; 883 } 884 885 return 0; 886 } 887 888 /* 889 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 890 * The operation is sped up by checking the block status and only writing 891 * zeroes to the device if they currently do not return zeroes. Optional 892 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 893 * BDRV_REQ_FUA). 894 * 895 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 896 */ 897 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 898 { 899 int ret; 900 int64_t target_size, bytes, offset = 0; 901 BlockDriverState *bs = child->bs; 902 IO_CODE(); 903 904 target_size = bdrv_getlength(bs); 905 if (target_size < 0) { 906 return target_size; 907 } 908 909 for (;;) { 910 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 911 if (bytes <= 0) { 912 return 0; 913 } 914 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 915 if (ret < 0) { 916 return ret; 917 } 918 if (ret & BDRV_BLOCK_ZERO) { 919 offset += bytes; 920 continue; 921 } 922 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 923 if (ret < 0) { 924 return ret; 925 } 926 offset += bytes; 927 } 928 } 929 930 /* 931 * Writes to the file and ensures that no writes are reordered across this 932 * request (acts as a barrier) 933 * 934 * Returns 0 on success, -errno in error cases. 935 */ 936 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 937 int64_t bytes, const void *buf, 938 BdrvRequestFlags flags) 939 { 940 int ret; 941 IO_CODE(); 942 assert_bdrv_graph_readable(); 943 944 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 945 if (ret < 0) { 946 return ret; 947 } 948 949 ret = bdrv_co_flush(child->bs); 950 if (ret < 0) { 951 return ret; 952 } 953 954 return 0; 955 } 956 957 typedef struct CoroutineIOCompletion { 958 Coroutine *coroutine; 959 int ret; 960 } CoroutineIOCompletion; 961 962 static void bdrv_co_io_em_complete(void *opaque, int ret) 963 { 964 CoroutineIOCompletion *co = opaque; 965 966 co->ret = ret; 967 aio_co_wake(co->coroutine); 968 } 969 970 static int coroutine_fn GRAPH_RDLOCK 971 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes, 972 QEMUIOVector *qiov, size_t qiov_offset, int flags) 973 { 974 BlockDriver *drv = bs->drv; 975 int64_t sector_num; 976 unsigned int nb_sectors; 977 QEMUIOVector local_qiov; 978 int ret; 979 assert_bdrv_graph_readable(); 980 981 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 982 assert(!(flags & ~bs->supported_read_flags)); 983 984 if (!drv) { 985 return -ENOMEDIUM; 986 } 987 988 if (drv->bdrv_co_preadv_part) { 989 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 990 flags); 991 } 992 993 if (qiov_offset > 0 || bytes != qiov->size) { 994 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 995 qiov = &local_qiov; 996 } 997 998 if (drv->bdrv_co_preadv) { 999 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1000 goto out; 1001 } 1002 1003 if (drv->bdrv_aio_preadv) { 1004 BlockAIOCB *acb; 1005 CoroutineIOCompletion co = { 1006 .coroutine = qemu_coroutine_self(), 1007 }; 1008 1009 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1010 bdrv_co_io_em_complete, &co); 1011 if (acb == NULL) { 1012 ret = -EIO; 1013 goto out; 1014 } else { 1015 qemu_coroutine_yield(); 1016 ret = co.ret; 1017 goto out; 1018 } 1019 } 1020 1021 sector_num = offset >> BDRV_SECTOR_BITS; 1022 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1023 1024 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1025 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1026 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1027 assert(drv->bdrv_co_readv); 1028 1029 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1030 1031 out: 1032 if (qiov == &local_qiov) { 1033 qemu_iovec_destroy(&local_qiov); 1034 } 1035 1036 return ret; 1037 } 1038 1039 static int coroutine_fn GRAPH_RDLOCK 1040 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes, 1041 QEMUIOVector *qiov, size_t qiov_offset, 1042 BdrvRequestFlags flags) 1043 { 1044 BlockDriver *drv = bs->drv; 1045 bool emulate_fua = false; 1046 int64_t sector_num; 1047 unsigned int nb_sectors; 1048 QEMUIOVector local_qiov; 1049 int ret; 1050 assert_bdrv_graph_readable(); 1051 1052 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1053 1054 if (!drv) { 1055 return -ENOMEDIUM; 1056 } 1057 1058 if ((flags & BDRV_REQ_FUA) && 1059 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1060 flags &= ~BDRV_REQ_FUA; 1061 emulate_fua = true; 1062 } 1063 1064 flags &= bs->supported_write_flags; 1065 1066 if (drv->bdrv_co_pwritev_part) { 1067 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1068 flags); 1069 goto emulate_flags; 1070 } 1071 1072 if (qiov_offset > 0 || bytes != qiov->size) { 1073 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1074 qiov = &local_qiov; 1075 } 1076 1077 if (drv->bdrv_co_pwritev) { 1078 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1079 goto emulate_flags; 1080 } 1081 1082 if (drv->bdrv_aio_pwritev) { 1083 BlockAIOCB *acb; 1084 CoroutineIOCompletion co = { 1085 .coroutine = qemu_coroutine_self(), 1086 }; 1087 1088 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1089 bdrv_co_io_em_complete, &co); 1090 if (acb == NULL) { 1091 ret = -EIO; 1092 } else { 1093 qemu_coroutine_yield(); 1094 ret = co.ret; 1095 } 1096 goto emulate_flags; 1097 } 1098 1099 sector_num = offset >> BDRV_SECTOR_BITS; 1100 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1101 1102 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1103 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1104 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1105 1106 assert(drv->bdrv_co_writev); 1107 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1108 1109 emulate_flags: 1110 if (ret == 0 && emulate_fua) { 1111 ret = bdrv_co_flush(bs); 1112 } 1113 1114 if (qiov == &local_qiov) { 1115 qemu_iovec_destroy(&local_qiov); 1116 } 1117 1118 return ret; 1119 } 1120 1121 static int coroutine_fn GRAPH_RDLOCK 1122 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1123 int64_t bytes, QEMUIOVector *qiov, 1124 size_t qiov_offset) 1125 { 1126 BlockDriver *drv = bs->drv; 1127 QEMUIOVector local_qiov; 1128 int ret; 1129 assert_bdrv_graph_readable(); 1130 1131 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1132 1133 if (!drv) { 1134 return -ENOMEDIUM; 1135 } 1136 1137 if (!block_driver_can_compress(drv)) { 1138 return -ENOTSUP; 1139 } 1140 1141 if (drv->bdrv_co_pwritev_compressed_part) { 1142 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1143 qiov, qiov_offset); 1144 } 1145 1146 if (qiov_offset == 0) { 1147 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1148 } 1149 1150 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1151 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1152 qemu_iovec_destroy(&local_qiov); 1153 1154 return ret; 1155 } 1156 1157 static int coroutine_fn GRAPH_RDLOCK 1158 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes, 1159 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1160 { 1161 BlockDriverState *bs = child->bs; 1162 1163 /* Perform I/O through a temporary buffer so that users who scribble over 1164 * their read buffer while the operation is in progress do not end up 1165 * modifying the image file. This is critical for zero-copy guest I/O 1166 * where anything might happen inside guest memory. 1167 */ 1168 void *bounce_buffer = NULL; 1169 1170 BlockDriver *drv = bs->drv; 1171 int64_t cluster_offset; 1172 int64_t cluster_bytes; 1173 int64_t skip_bytes; 1174 int ret; 1175 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1176 BDRV_REQUEST_MAX_BYTES); 1177 int64_t progress = 0; 1178 bool skip_write; 1179 1180 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1181 1182 if (!drv) { 1183 return -ENOMEDIUM; 1184 } 1185 1186 /* 1187 * Do not write anything when the BDS is inactive. That is not 1188 * allowed, and it would not help. 1189 */ 1190 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1191 1192 /* FIXME We cannot require callers to have write permissions when all they 1193 * are doing is a read request. If we did things right, write permissions 1194 * would be obtained anyway, but internally by the copy-on-read code. As 1195 * long as it is implemented here rather than in a separate filter driver, 1196 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1197 * it could request permissions. Therefore we have to bypass the permission 1198 * system for the moment. */ 1199 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1200 1201 /* Cover entire cluster so no additional backing file I/O is required when 1202 * allocating cluster in the image file. Note that this value may exceed 1203 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1204 * is one reason we loop rather than doing it all at once. 1205 */ 1206 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1207 skip_bytes = offset - cluster_offset; 1208 1209 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1210 cluster_offset, cluster_bytes); 1211 1212 while (cluster_bytes) { 1213 int64_t pnum; 1214 1215 if (skip_write) { 1216 ret = 1; /* "already allocated", so nothing will be copied */ 1217 pnum = MIN(cluster_bytes, max_transfer); 1218 } else { 1219 ret = bdrv_is_allocated(bs, cluster_offset, 1220 MIN(cluster_bytes, max_transfer), &pnum); 1221 if (ret < 0) { 1222 /* 1223 * Safe to treat errors in querying allocation as if 1224 * unallocated; we'll probably fail again soon on the 1225 * read, but at least that will set a decent errno. 1226 */ 1227 pnum = MIN(cluster_bytes, max_transfer); 1228 } 1229 1230 /* Stop at EOF if the image ends in the middle of the cluster */ 1231 if (ret == 0 && pnum == 0) { 1232 assert(progress >= bytes); 1233 break; 1234 } 1235 1236 assert(skip_bytes < pnum); 1237 } 1238 1239 if (ret <= 0) { 1240 QEMUIOVector local_qiov; 1241 1242 /* Must copy-on-read; use the bounce buffer */ 1243 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1244 if (!bounce_buffer) { 1245 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1246 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1247 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1248 1249 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1250 if (!bounce_buffer) { 1251 ret = -ENOMEM; 1252 goto err; 1253 } 1254 } 1255 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1256 1257 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1258 &local_qiov, 0, 0); 1259 if (ret < 0) { 1260 goto err; 1261 } 1262 1263 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE); 1264 if (drv->bdrv_co_pwrite_zeroes && 1265 buffer_is_zero(bounce_buffer, pnum)) { 1266 /* FIXME: Should we (perhaps conditionally) be setting 1267 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1268 * that still correctly reads as zero? */ 1269 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1270 BDRV_REQ_WRITE_UNCHANGED); 1271 } else { 1272 /* This does not change the data on the disk, it is not 1273 * necessary to flush even in cache=writethrough mode. 1274 */ 1275 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1276 &local_qiov, 0, 1277 BDRV_REQ_WRITE_UNCHANGED); 1278 } 1279 1280 if (ret < 0) { 1281 /* It might be okay to ignore write errors for guest 1282 * requests. If this is a deliberate copy-on-read 1283 * then we don't want to ignore the error. Simply 1284 * report it in all cases. 1285 */ 1286 goto err; 1287 } 1288 1289 if (!(flags & BDRV_REQ_PREFETCH)) { 1290 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1291 bounce_buffer + skip_bytes, 1292 MIN(pnum - skip_bytes, bytes - progress)); 1293 } 1294 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1295 /* Read directly into the destination */ 1296 ret = bdrv_driver_preadv(bs, offset + progress, 1297 MIN(pnum - skip_bytes, bytes - progress), 1298 qiov, qiov_offset + progress, 0); 1299 if (ret < 0) { 1300 goto err; 1301 } 1302 } 1303 1304 cluster_offset += pnum; 1305 cluster_bytes -= pnum; 1306 progress += pnum - skip_bytes; 1307 skip_bytes = 0; 1308 } 1309 ret = 0; 1310 1311 err: 1312 qemu_vfree(bounce_buffer); 1313 return ret; 1314 } 1315 1316 /* 1317 * Forwards an already correctly aligned request to the BlockDriver. This 1318 * handles copy on read, zeroing after EOF, and fragmentation of large 1319 * reads; any other features must be implemented by the caller. 1320 */ 1321 static int coroutine_fn GRAPH_RDLOCK 1322 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, 1323 int64_t offset, int64_t bytes, int64_t align, 1324 QEMUIOVector *qiov, size_t qiov_offset, int flags) 1325 { 1326 BlockDriverState *bs = child->bs; 1327 int64_t total_bytes, max_bytes; 1328 int ret = 0; 1329 int64_t bytes_remaining = bytes; 1330 int max_transfer; 1331 1332 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1333 assert(is_power_of_2(align)); 1334 assert((offset & (align - 1)) == 0); 1335 assert((bytes & (align - 1)) == 0); 1336 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1337 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1338 align); 1339 1340 /* 1341 * TODO: We would need a per-BDS .supported_read_flags and 1342 * potential fallback support, if we ever implement any read flags 1343 * to pass through to drivers. For now, there aren't any 1344 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1345 */ 1346 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1347 BDRV_REQ_REGISTERED_BUF))); 1348 1349 /* Handle Copy on Read and associated serialisation */ 1350 if (flags & BDRV_REQ_COPY_ON_READ) { 1351 /* If we touch the same cluster it counts as an overlap. This 1352 * guarantees that allocating writes will be serialized and not race 1353 * with each other for the same cluster. For example, in copy-on-read 1354 * it ensures that the CoR read and write operations are atomic and 1355 * guest writes cannot interleave between them. */ 1356 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1357 } else { 1358 bdrv_wait_serialising_requests(req); 1359 } 1360 1361 if (flags & BDRV_REQ_COPY_ON_READ) { 1362 int64_t pnum; 1363 1364 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1365 flags &= ~BDRV_REQ_COPY_ON_READ; 1366 1367 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1368 if (ret < 0) { 1369 goto out; 1370 } 1371 1372 if (!ret || pnum != bytes) { 1373 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1374 qiov, qiov_offset, flags); 1375 goto out; 1376 } else if (flags & BDRV_REQ_PREFETCH) { 1377 goto out; 1378 } 1379 } 1380 1381 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1382 total_bytes = bdrv_getlength(bs); 1383 if (total_bytes < 0) { 1384 ret = total_bytes; 1385 goto out; 1386 } 1387 1388 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1389 1390 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1391 if (bytes <= max_bytes && bytes <= max_transfer) { 1392 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1393 goto out; 1394 } 1395 1396 while (bytes_remaining) { 1397 int64_t num; 1398 1399 if (max_bytes) { 1400 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1401 assert(num); 1402 1403 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1404 num, qiov, 1405 qiov_offset + bytes - bytes_remaining, 1406 flags); 1407 max_bytes -= num; 1408 } else { 1409 num = bytes_remaining; 1410 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1411 0, bytes_remaining); 1412 } 1413 if (ret < 0) { 1414 goto out; 1415 } 1416 bytes_remaining -= num; 1417 } 1418 1419 out: 1420 return ret < 0 ? ret : 0; 1421 } 1422 1423 /* 1424 * Request padding 1425 * 1426 * |<---- align ----->| |<----- align ---->| 1427 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1428 * | | | | | | 1429 * -*----------$-------*-------- ... --------*-----$------------*--- 1430 * | | | | | | 1431 * | offset | | end | 1432 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1433 * [buf ... ) [tail_buf ) 1434 * 1435 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1436 * is placed at the beginning of @buf and @tail at the @end. 1437 * 1438 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1439 * around tail, if tail exists. 1440 * 1441 * @merge_reads is true for small requests, 1442 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1443 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1444 * 1445 * @write is true for write requests, false for read requests. 1446 * 1447 * If padding makes the vector too long (exceeding IOV_MAX), then we need to 1448 * merge existing vector elements into a single one. @collapse_bounce_buf acts 1449 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse 1450 * I/O vector elements so for read requests, the data can be copied back after 1451 * the read is done. 1452 */ 1453 typedef struct BdrvRequestPadding { 1454 uint8_t *buf; 1455 size_t buf_len; 1456 uint8_t *tail_buf; 1457 size_t head; 1458 size_t tail; 1459 bool merge_reads; 1460 bool write; 1461 QEMUIOVector local_qiov; 1462 1463 uint8_t *collapse_bounce_buf; 1464 size_t collapse_len; 1465 QEMUIOVector pre_collapse_qiov; 1466 } BdrvRequestPadding; 1467 1468 static bool bdrv_init_padding(BlockDriverState *bs, 1469 int64_t offset, int64_t bytes, 1470 bool write, 1471 BdrvRequestPadding *pad) 1472 { 1473 int64_t align = bs->bl.request_alignment; 1474 int64_t sum; 1475 1476 bdrv_check_request(offset, bytes, &error_abort); 1477 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1478 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1479 1480 memset(pad, 0, sizeof(*pad)); 1481 1482 pad->head = offset & (align - 1); 1483 pad->tail = ((offset + bytes) & (align - 1)); 1484 if (pad->tail) { 1485 pad->tail = align - pad->tail; 1486 } 1487 1488 if (!pad->head && !pad->tail) { 1489 return false; 1490 } 1491 1492 assert(bytes); /* Nothing good in aligning zero-length requests */ 1493 1494 sum = pad->head + bytes + pad->tail; 1495 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1496 pad->buf = qemu_blockalign(bs, pad->buf_len); 1497 pad->merge_reads = sum == pad->buf_len; 1498 if (pad->tail) { 1499 pad->tail_buf = pad->buf + pad->buf_len - align; 1500 } 1501 1502 pad->write = write; 1503 1504 return true; 1505 } 1506 1507 static int coroutine_fn GRAPH_RDLOCK 1508 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req, 1509 BdrvRequestPadding *pad, bool zero_middle) 1510 { 1511 QEMUIOVector local_qiov; 1512 BlockDriverState *bs = child->bs; 1513 uint64_t align = bs->bl.request_alignment; 1514 int ret; 1515 1516 assert(req->serialising && pad->buf); 1517 1518 if (pad->head || pad->merge_reads) { 1519 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1520 1521 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1522 1523 if (pad->head) { 1524 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1525 } 1526 if (pad->merge_reads && pad->tail) { 1527 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1528 } 1529 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1530 align, &local_qiov, 0, 0); 1531 if (ret < 0) { 1532 return ret; 1533 } 1534 if (pad->head) { 1535 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1536 } 1537 if (pad->merge_reads && pad->tail) { 1538 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1539 } 1540 1541 if (pad->merge_reads) { 1542 goto zero_mem; 1543 } 1544 } 1545 1546 if (pad->tail) { 1547 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1548 1549 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1550 ret = bdrv_aligned_preadv( 1551 child, req, 1552 req->overlap_offset + req->overlap_bytes - align, 1553 align, align, &local_qiov, 0, 0); 1554 if (ret < 0) { 1555 return ret; 1556 } 1557 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1558 } 1559 1560 zero_mem: 1561 if (zero_middle) { 1562 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1563 } 1564 1565 return 0; 1566 } 1567 1568 /** 1569 * Free *pad's associated buffers, and perform any necessary finalization steps. 1570 */ 1571 static void bdrv_padding_finalize(BdrvRequestPadding *pad) 1572 { 1573 if (pad->collapse_bounce_buf) { 1574 if (!pad->write) { 1575 /* 1576 * If padding required elements in the vector to be collapsed into a 1577 * bounce buffer, copy the bounce buffer content back 1578 */ 1579 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0, 1580 pad->collapse_bounce_buf, pad->collapse_len); 1581 } 1582 qemu_vfree(pad->collapse_bounce_buf); 1583 qemu_iovec_destroy(&pad->pre_collapse_qiov); 1584 } 1585 if (pad->buf) { 1586 qemu_vfree(pad->buf); 1587 qemu_iovec_destroy(&pad->local_qiov); 1588 } 1589 memset(pad, 0, sizeof(*pad)); 1590 } 1591 1592 /* 1593 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while 1594 * ensuring that the resulting vector will not exceed IOV_MAX elements. 1595 * 1596 * To ensure this, when necessary, the first two or three elements of @iov are 1597 * merged into pad->collapse_bounce_buf and replaced by a reference to that 1598 * bounce buffer in pad->local_qiov. 1599 * 1600 * After performing a read request, the data from the bounce buffer must be 1601 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()). 1602 */ 1603 static int bdrv_create_padded_qiov(BlockDriverState *bs, 1604 BdrvRequestPadding *pad, 1605 struct iovec *iov, int niov, 1606 size_t iov_offset, size_t bytes) 1607 { 1608 int padded_niov, surplus_count, collapse_count; 1609 1610 /* Assert this invariant */ 1611 assert(niov <= IOV_MAX); 1612 1613 /* 1614 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error 1615 * to the guest is not ideal, but there is little else we can do. At least 1616 * this will practically never happen on 64-bit systems. 1617 */ 1618 if (SIZE_MAX - pad->head < bytes || 1619 SIZE_MAX - pad->head - bytes < pad->tail) 1620 { 1621 return -EINVAL; 1622 } 1623 1624 /* Length of the resulting IOV if we just concatenated everything */ 1625 padded_niov = !!pad->head + niov + !!pad->tail; 1626 1627 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX)); 1628 1629 if (pad->head) { 1630 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head); 1631 } 1632 1633 /* 1634 * If padded_niov > IOV_MAX, we cannot just concatenate everything. 1635 * Instead, merge the first two or three elements of @iov to reduce the 1636 * number of vector elements as necessary. 1637 */ 1638 if (padded_niov > IOV_MAX) { 1639 /* 1640 * Only head and tail can have lead to the number of entries exceeding 1641 * IOV_MAX, so we can exceed it by the head and tail at most. We need 1642 * to reduce the number of elements by `surplus_count`, so we merge that 1643 * many elements plus one into one element. 1644 */ 1645 surplus_count = padded_niov - IOV_MAX; 1646 assert(surplus_count <= !!pad->head + !!pad->tail); 1647 collapse_count = surplus_count + 1; 1648 1649 /* 1650 * Move the elements to collapse into `pad->pre_collapse_qiov`, then 1651 * advance `iov` (and associated variables) by those elements. 1652 */ 1653 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count); 1654 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov, 1655 collapse_count, iov_offset, SIZE_MAX); 1656 iov += collapse_count; 1657 iov_offset = 0; 1658 niov -= collapse_count; 1659 bytes -= pad->pre_collapse_qiov.size; 1660 1661 /* 1662 * Construct the bounce buffer to match the length of the to-collapse 1663 * vector elements, and for write requests, initialize it with the data 1664 * from those elements. Then add it to `pad->local_qiov`. 1665 */ 1666 pad->collapse_len = pad->pre_collapse_qiov.size; 1667 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len); 1668 if (pad->write) { 1669 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0, 1670 pad->collapse_bounce_buf, pad->collapse_len); 1671 } 1672 qemu_iovec_add(&pad->local_qiov, 1673 pad->collapse_bounce_buf, pad->collapse_len); 1674 } 1675 1676 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes); 1677 1678 if (pad->tail) { 1679 qemu_iovec_add(&pad->local_qiov, 1680 pad->buf + pad->buf_len - pad->tail, pad->tail); 1681 } 1682 1683 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX)); 1684 return 0; 1685 } 1686 1687 /* 1688 * bdrv_pad_request 1689 * 1690 * Exchange request parameters with padded request if needed. Don't include RMW 1691 * read of padding, bdrv_padding_rmw_read() should be called separately if 1692 * needed. 1693 * 1694 * @write is true for write requests, false for read requests. 1695 * 1696 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1697 * - on function start they represent original request 1698 * - on failure or when padding is not needed they are unchanged 1699 * - on success when padding is needed they represent padded request 1700 */ 1701 static int bdrv_pad_request(BlockDriverState *bs, 1702 QEMUIOVector **qiov, size_t *qiov_offset, 1703 int64_t *offset, int64_t *bytes, 1704 bool write, 1705 BdrvRequestPadding *pad, bool *padded, 1706 BdrvRequestFlags *flags) 1707 { 1708 int ret; 1709 struct iovec *sliced_iov; 1710 int sliced_niov; 1711 size_t sliced_head, sliced_tail; 1712 1713 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1714 1715 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) { 1716 if (padded) { 1717 *padded = false; 1718 } 1719 return 0; 1720 } 1721 1722 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes, 1723 &sliced_head, &sliced_tail, 1724 &sliced_niov); 1725 1726 /* Guaranteed by bdrv_check_qiov_request() */ 1727 assert(*bytes <= SIZE_MAX); 1728 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov, 1729 sliced_head, *bytes); 1730 if (ret < 0) { 1731 bdrv_padding_finalize(pad); 1732 return ret; 1733 } 1734 *bytes += pad->head + pad->tail; 1735 *offset -= pad->head; 1736 *qiov = &pad->local_qiov; 1737 *qiov_offset = 0; 1738 if (padded) { 1739 *padded = true; 1740 } 1741 if (flags) { 1742 /* Can't use optimization hint with bounce buffer */ 1743 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1744 } 1745 1746 return 0; 1747 } 1748 1749 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1750 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1751 BdrvRequestFlags flags) 1752 { 1753 IO_CODE(); 1754 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1755 } 1756 1757 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1758 int64_t offset, int64_t bytes, 1759 QEMUIOVector *qiov, size_t qiov_offset, 1760 BdrvRequestFlags flags) 1761 { 1762 BlockDriverState *bs = child->bs; 1763 BdrvTrackedRequest req; 1764 BdrvRequestPadding pad; 1765 int ret; 1766 IO_CODE(); 1767 1768 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1769 1770 if (!bdrv_co_is_inserted(bs)) { 1771 return -ENOMEDIUM; 1772 } 1773 1774 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1775 if (ret < 0) { 1776 return ret; 1777 } 1778 1779 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1780 /* 1781 * Aligning zero request is nonsense. Even if driver has special meaning 1782 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1783 * it to driver due to request_alignment. 1784 * 1785 * Still, no reason to return an error if someone do unaligned 1786 * zero-length read occasionally. 1787 */ 1788 return 0; 1789 } 1790 1791 bdrv_inc_in_flight(bs); 1792 1793 /* Don't do copy-on-read if we read data before write operation */ 1794 if (qatomic_read(&bs->copy_on_read)) { 1795 flags |= BDRV_REQ_COPY_ON_READ; 1796 } 1797 1798 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false, 1799 &pad, NULL, &flags); 1800 if (ret < 0) { 1801 goto fail; 1802 } 1803 1804 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1805 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1806 bs->bl.request_alignment, 1807 qiov, qiov_offset, flags); 1808 tracked_request_end(&req); 1809 bdrv_padding_finalize(&pad); 1810 1811 fail: 1812 bdrv_dec_in_flight(bs); 1813 1814 return ret; 1815 } 1816 1817 static int coroutine_fn GRAPH_RDLOCK 1818 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes, 1819 BdrvRequestFlags flags) 1820 { 1821 BlockDriver *drv = bs->drv; 1822 QEMUIOVector qiov; 1823 void *buf = NULL; 1824 int ret = 0; 1825 bool need_flush = false; 1826 int head = 0; 1827 int tail = 0; 1828 1829 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1830 INT64_MAX); 1831 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1832 bs->bl.request_alignment); 1833 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1834 1835 assert_bdrv_graph_readable(); 1836 bdrv_check_request(offset, bytes, &error_abort); 1837 1838 if (!drv) { 1839 return -ENOMEDIUM; 1840 } 1841 1842 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1843 return -ENOTSUP; 1844 } 1845 1846 /* By definition there is no user buffer so this flag doesn't make sense */ 1847 if (flags & BDRV_REQ_REGISTERED_BUF) { 1848 return -EINVAL; 1849 } 1850 1851 /* Invalidate the cached block-status data range if this write overlaps */ 1852 bdrv_bsc_invalidate_range(bs, offset, bytes); 1853 1854 assert(alignment % bs->bl.request_alignment == 0); 1855 head = offset % alignment; 1856 tail = (offset + bytes) % alignment; 1857 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1858 assert(max_write_zeroes >= bs->bl.request_alignment); 1859 1860 while (bytes > 0 && !ret) { 1861 int64_t num = bytes; 1862 1863 /* Align request. Block drivers can expect the "bulk" of the request 1864 * to be aligned, and that unaligned requests do not cross cluster 1865 * boundaries. 1866 */ 1867 if (head) { 1868 /* Make a small request up to the first aligned sector. For 1869 * convenience, limit this request to max_transfer even if 1870 * we don't need to fall back to writes. */ 1871 num = MIN(MIN(bytes, max_transfer), alignment - head); 1872 head = (head + num) % alignment; 1873 assert(num < max_write_zeroes); 1874 } else if (tail && num > alignment) { 1875 /* Shorten the request to the last aligned sector. */ 1876 num -= tail; 1877 } 1878 1879 /* limit request size */ 1880 if (num > max_write_zeroes) { 1881 num = max_write_zeroes; 1882 } 1883 1884 ret = -ENOTSUP; 1885 /* First try the efficient write zeroes operation */ 1886 if (drv->bdrv_co_pwrite_zeroes) { 1887 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1888 flags & bs->supported_zero_flags); 1889 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1890 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1891 need_flush = true; 1892 } 1893 } else { 1894 assert(!bs->supported_zero_flags); 1895 } 1896 1897 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1898 /* Fall back to bounce buffer if write zeroes is unsupported */ 1899 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1900 1901 if ((flags & BDRV_REQ_FUA) && 1902 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1903 /* No need for bdrv_driver_pwrite() to do a fallback 1904 * flush on each chunk; use just one at the end */ 1905 write_flags &= ~BDRV_REQ_FUA; 1906 need_flush = true; 1907 } 1908 num = MIN(num, max_transfer); 1909 if (buf == NULL) { 1910 buf = qemu_try_blockalign0(bs, num); 1911 if (buf == NULL) { 1912 ret = -ENOMEM; 1913 goto fail; 1914 } 1915 } 1916 qemu_iovec_init_buf(&qiov, buf, num); 1917 1918 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1919 1920 /* Keep bounce buffer around if it is big enough for all 1921 * all future requests. 1922 */ 1923 if (num < max_transfer) { 1924 qemu_vfree(buf); 1925 buf = NULL; 1926 } 1927 } 1928 1929 offset += num; 1930 bytes -= num; 1931 } 1932 1933 fail: 1934 if (ret == 0 && need_flush) { 1935 ret = bdrv_co_flush(bs); 1936 } 1937 qemu_vfree(buf); 1938 return ret; 1939 } 1940 1941 static inline int coroutine_fn GRAPH_RDLOCK 1942 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1943 BdrvTrackedRequest *req, int flags) 1944 { 1945 BlockDriverState *bs = child->bs; 1946 1947 bdrv_check_request(offset, bytes, &error_abort); 1948 1949 if (bdrv_is_read_only(bs)) { 1950 return -EPERM; 1951 } 1952 1953 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1954 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1955 assert(!(flags & ~BDRV_REQ_MASK)); 1956 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1957 1958 if (flags & BDRV_REQ_SERIALISING) { 1959 QEMU_LOCK_GUARD(&bs->reqs_lock); 1960 1961 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1962 1963 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1964 return -EBUSY; 1965 } 1966 1967 bdrv_wait_serialising_requests_locked(req); 1968 } else { 1969 bdrv_wait_serialising_requests(req); 1970 } 1971 1972 assert(req->overlap_offset <= offset); 1973 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1974 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1975 child->perm & BLK_PERM_RESIZE); 1976 1977 switch (req->type) { 1978 case BDRV_TRACKED_WRITE: 1979 case BDRV_TRACKED_DISCARD: 1980 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1981 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1982 } else { 1983 assert(child->perm & BLK_PERM_WRITE); 1984 } 1985 bdrv_write_threshold_check_write(bs, offset, bytes); 1986 return 0; 1987 case BDRV_TRACKED_TRUNCATE: 1988 assert(child->perm & BLK_PERM_RESIZE); 1989 return 0; 1990 default: 1991 abort(); 1992 } 1993 } 1994 1995 static inline void coroutine_fn 1996 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 1997 BdrvTrackedRequest *req, int ret) 1998 { 1999 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2000 BlockDriverState *bs = child->bs; 2001 2002 bdrv_check_request(offset, bytes, &error_abort); 2003 2004 qatomic_inc(&bs->write_gen); 2005 2006 /* 2007 * Discard cannot extend the image, but in error handling cases, such as 2008 * when reverting a qcow2 cluster allocation, the discarded range can pass 2009 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2010 * here. Instead, just skip it, since semantically a discard request 2011 * beyond EOF cannot expand the image anyway. 2012 */ 2013 if (ret == 0 && 2014 (req->type == BDRV_TRACKED_TRUNCATE || 2015 end_sector > bs->total_sectors) && 2016 req->type != BDRV_TRACKED_DISCARD) { 2017 bs->total_sectors = end_sector; 2018 bdrv_parent_cb_resize(bs); 2019 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2020 } 2021 if (req->bytes) { 2022 switch (req->type) { 2023 case BDRV_TRACKED_WRITE: 2024 stat64_max(&bs->wr_highest_offset, offset + bytes); 2025 /* fall through, to set dirty bits */ 2026 case BDRV_TRACKED_DISCARD: 2027 bdrv_set_dirty(bs, offset, bytes); 2028 break; 2029 default: 2030 break; 2031 } 2032 } 2033 } 2034 2035 /* 2036 * Forwards an already correctly aligned write request to the BlockDriver, 2037 * after possibly fragmenting it. 2038 */ 2039 static int coroutine_fn GRAPH_RDLOCK 2040 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, 2041 int64_t offset, int64_t bytes, int64_t align, 2042 QEMUIOVector *qiov, size_t qiov_offset, 2043 BdrvRequestFlags flags) 2044 { 2045 BlockDriverState *bs = child->bs; 2046 BlockDriver *drv = bs->drv; 2047 int ret; 2048 2049 int64_t bytes_remaining = bytes; 2050 int max_transfer; 2051 2052 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2053 2054 if (!drv) { 2055 return -ENOMEDIUM; 2056 } 2057 2058 if (bdrv_has_readonly_bitmaps(bs)) { 2059 return -EPERM; 2060 } 2061 2062 assert(is_power_of_2(align)); 2063 assert((offset & (align - 1)) == 0); 2064 assert((bytes & (align - 1)) == 0); 2065 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2066 align); 2067 2068 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2069 2070 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2071 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2072 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2073 flags |= BDRV_REQ_ZERO_WRITE; 2074 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2075 flags |= BDRV_REQ_MAY_UNMAP; 2076 } 2077 2078 /* Can't use optimization hint with bufferless zero write */ 2079 flags &= ~BDRV_REQ_REGISTERED_BUF; 2080 } 2081 2082 if (ret < 0) { 2083 /* Do nothing, write notifier decided to fail this request */ 2084 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2085 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2086 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2087 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2088 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2089 qiov, qiov_offset); 2090 } else if (bytes <= max_transfer) { 2091 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2092 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2093 } else { 2094 bdrv_co_debug_event(bs, BLKDBG_PWRITEV); 2095 while (bytes_remaining) { 2096 int num = MIN(bytes_remaining, max_transfer); 2097 int local_flags = flags; 2098 2099 assert(num); 2100 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2101 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2102 /* If FUA is going to be emulated by flush, we only 2103 * need to flush on the last iteration */ 2104 local_flags &= ~BDRV_REQ_FUA; 2105 } 2106 2107 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2108 num, qiov, 2109 qiov_offset + bytes - bytes_remaining, 2110 local_flags); 2111 if (ret < 0) { 2112 break; 2113 } 2114 bytes_remaining -= num; 2115 } 2116 } 2117 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE); 2118 2119 if (ret >= 0) { 2120 ret = 0; 2121 } 2122 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2123 2124 return ret; 2125 } 2126 2127 static int coroutine_fn GRAPH_RDLOCK 2128 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes, 2129 BdrvRequestFlags flags, BdrvTrackedRequest *req) 2130 { 2131 BlockDriverState *bs = child->bs; 2132 QEMUIOVector local_qiov; 2133 uint64_t align = bs->bl.request_alignment; 2134 int ret = 0; 2135 bool padding; 2136 BdrvRequestPadding pad; 2137 2138 /* This flag doesn't make sense for padding or zero writes */ 2139 flags &= ~BDRV_REQ_REGISTERED_BUF; 2140 2141 padding = bdrv_init_padding(bs, offset, bytes, true, &pad); 2142 if (padding) { 2143 assert(!(flags & BDRV_REQ_NO_WAIT)); 2144 bdrv_make_request_serialising(req, align); 2145 2146 bdrv_padding_rmw_read(child, req, &pad, true); 2147 2148 if (pad.head || pad.merge_reads) { 2149 int64_t aligned_offset = offset & ~(align - 1); 2150 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2151 2152 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2153 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2154 align, &local_qiov, 0, 2155 flags & ~BDRV_REQ_ZERO_WRITE); 2156 if (ret < 0 || pad.merge_reads) { 2157 /* Error or all work is done */ 2158 goto out; 2159 } 2160 offset += write_bytes - pad.head; 2161 bytes -= write_bytes - pad.head; 2162 } 2163 } 2164 2165 assert(!bytes || (offset & (align - 1)) == 0); 2166 if (bytes >= align) { 2167 /* Write the aligned part in the middle. */ 2168 int64_t aligned_bytes = bytes & ~(align - 1); 2169 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2170 NULL, 0, flags); 2171 if (ret < 0) { 2172 goto out; 2173 } 2174 bytes -= aligned_bytes; 2175 offset += aligned_bytes; 2176 } 2177 2178 assert(!bytes || (offset & (align - 1)) == 0); 2179 if (bytes) { 2180 assert(align == pad.tail + bytes); 2181 2182 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2183 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2184 &local_qiov, 0, 2185 flags & ~BDRV_REQ_ZERO_WRITE); 2186 } 2187 2188 out: 2189 bdrv_padding_finalize(&pad); 2190 2191 return ret; 2192 } 2193 2194 /* 2195 * Handle a write request in coroutine context 2196 */ 2197 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2198 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2199 BdrvRequestFlags flags) 2200 { 2201 IO_CODE(); 2202 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2203 } 2204 2205 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2206 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2207 BdrvRequestFlags flags) 2208 { 2209 BlockDriverState *bs = child->bs; 2210 BdrvTrackedRequest req; 2211 uint64_t align = bs->bl.request_alignment; 2212 BdrvRequestPadding pad; 2213 int ret; 2214 bool padded = false; 2215 IO_CODE(); 2216 2217 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2218 2219 if (!bdrv_co_is_inserted(bs)) { 2220 return -ENOMEDIUM; 2221 } 2222 2223 if (flags & BDRV_REQ_ZERO_WRITE) { 2224 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2225 } else { 2226 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2227 } 2228 if (ret < 0) { 2229 return ret; 2230 } 2231 2232 /* If the request is misaligned then we can't make it efficient */ 2233 if ((flags & BDRV_REQ_NO_FALLBACK) && 2234 !QEMU_IS_ALIGNED(offset | bytes, align)) 2235 { 2236 return -ENOTSUP; 2237 } 2238 2239 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2240 /* 2241 * Aligning zero request is nonsense. Even if driver has special meaning 2242 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2243 * it to driver due to request_alignment. 2244 * 2245 * Still, no reason to return an error if someone do unaligned 2246 * zero-length write occasionally. 2247 */ 2248 return 0; 2249 } 2250 2251 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2252 /* 2253 * Pad request for following read-modify-write cycle. 2254 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2255 * alignment only if there is no ZERO flag. 2256 */ 2257 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true, 2258 &pad, &padded, &flags); 2259 if (ret < 0) { 2260 return ret; 2261 } 2262 } 2263 2264 bdrv_inc_in_flight(bs); 2265 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2266 2267 if (flags & BDRV_REQ_ZERO_WRITE) { 2268 assert(!padded); 2269 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2270 goto out; 2271 } 2272 2273 if (padded) { 2274 /* 2275 * Request was unaligned to request_alignment and therefore 2276 * padded. We are going to do read-modify-write, and must 2277 * serialize the request to prevent interactions of the 2278 * widened region with other transactions. 2279 */ 2280 assert(!(flags & BDRV_REQ_NO_WAIT)); 2281 bdrv_make_request_serialising(&req, align); 2282 bdrv_padding_rmw_read(child, &req, &pad, false); 2283 } 2284 2285 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2286 qiov, qiov_offset, flags); 2287 2288 bdrv_padding_finalize(&pad); 2289 2290 out: 2291 tracked_request_end(&req); 2292 bdrv_dec_in_flight(bs); 2293 2294 return ret; 2295 } 2296 2297 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2298 int64_t bytes, BdrvRequestFlags flags) 2299 { 2300 IO_CODE(); 2301 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2302 assert_bdrv_graph_readable(); 2303 2304 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2305 flags &= ~BDRV_REQ_MAY_UNMAP; 2306 } 2307 2308 return bdrv_co_pwritev(child, offset, bytes, NULL, 2309 BDRV_REQ_ZERO_WRITE | flags); 2310 } 2311 2312 /* 2313 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2314 */ 2315 int bdrv_flush_all(void) 2316 { 2317 BdrvNextIterator it; 2318 BlockDriverState *bs = NULL; 2319 int result = 0; 2320 2321 GLOBAL_STATE_CODE(); 2322 2323 /* 2324 * bdrv queue is managed by record/replay, 2325 * creating new flush request for stopping 2326 * the VM may break the determinism 2327 */ 2328 if (replay_events_enabled()) { 2329 return result; 2330 } 2331 2332 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2333 AioContext *aio_context = bdrv_get_aio_context(bs); 2334 int ret; 2335 2336 aio_context_acquire(aio_context); 2337 ret = bdrv_flush(bs); 2338 if (ret < 0 && !result) { 2339 result = ret; 2340 } 2341 aio_context_release(aio_context); 2342 } 2343 2344 return result; 2345 } 2346 2347 /* 2348 * Returns the allocation status of the specified sectors. 2349 * Drivers not implementing the functionality are assumed to not support 2350 * backing files, hence all their sectors are reported as allocated. 2351 * 2352 * If 'want_zero' is true, the caller is querying for mapping 2353 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2354 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2355 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2356 * 2357 * If 'offset' is beyond the end of the disk image the return value is 2358 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2359 * 2360 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2361 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2362 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2363 * 2364 * 'pnum' is set to the number of bytes (including and immediately 2365 * following the specified offset) that are easily known to be in the 2366 * same allocated/unallocated state. Note that a second call starting 2367 * at the original offset plus returned pnum may have the same status. 2368 * The returned value is non-zero on success except at end-of-file. 2369 * 2370 * Returns negative errno on failure. Otherwise, if the 2371 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2372 * set to the host mapping and BDS corresponding to the guest offset. 2373 */ 2374 static int coroutine_fn GRAPH_RDLOCK 2375 bdrv_co_block_status(BlockDriverState *bs, bool want_zero, 2376 int64_t offset, int64_t bytes, 2377 int64_t *pnum, int64_t *map, BlockDriverState **file) 2378 { 2379 int64_t total_size; 2380 int64_t n; /* bytes */ 2381 int ret; 2382 int64_t local_map = 0; 2383 BlockDriverState *local_file = NULL; 2384 int64_t aligned_offset, aligned_bytes; 2385 uint32_t align; 2386 bool has_filtered_child; 2387 2388 assert(pnum); 2389 assert_bdrv_graph_readable(); 2390 *pnum = 0; 2391 total_size = bdrv_getlength(bs); 2392 if (total_size < 0) { 2393 ret = total_size; 2394 goto early_out; 2395 } 2396 2397 if (offset >= total_size) { 2398 ret = BDRV_BLOCK_EOF; 2399 goto early_out; 2400 } 2401 if (!bytes) { 2402 ret = 0; 2403 goto early_out; 2404 } 2405 2406 n = total_size - offset; 2407 if (n < bytes) { 2408 bytes = n; 2409 } 2410 2411 /* Must be non-NULL or bdrv_getlength() would have failed */ 2412 assert(bs->drv); 2413 has_filtered_child = bdrv_filter_child(bs); 2414 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2415 *pnum = bytes; 2416 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2417 if (offset + bytes == total_size) { 2418 ret |= BDRV_BLOCK_EOF; 2419 } 2420 if (bs->drv->protocol_name) { 2421 ret |= BDRV_BLOCK_OFFSET_VALID; 2422 local_map = offset; 2423 local_file = bs; 2424 } 2425 goto early_out; 2426 } 2427 2428 bdrv_inc_in_flight(bs); 2429 2430 /* Round out to request_alignment boundaries */ 2431 align = bs->bl.request_alignment; 2432 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2433 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2434 2435 if (bs->drv->bdrv_co_block_status) { 2436 /* 2437 * Use the block-status cache only for protocol nodes: Format 2438 * drivers are generally quick to inquire the status, but protocol 2439 * drivers often need to get information from outside of qemu, so 2440 * we do not have control over the actual implementation. There 2441 * have been cases where inquiring the status took an unreasonably 2442 * long time, and we can do nothing in qemu to fix it. 2443 * This is especially problematic for images with large data areas, 2444 * because finding the few holes in them and giving them special 2445 * treatment does not gain much performance. Therefore, we try to 2446 * cache the last-identified data region. 2447 * 2448 * Second, limiting ourselves to protocol nodes allows us to assume 2449 * the block status for data regions to be DATA | OFFSET_VALID, and 2450 * that the host offset is the same as the guest offset. 2451 * 2452 * Note that it is possible that external writers zero parts of 2453 * the cached regions without the cache being invalidated, and so 2454 * we may report zeroes as data. This is not catastrophic, 2455 * however, because reporting zeroes as data is fine. 2456 */ 2457 if (QLIST_EMPTY(&bs->children) && 2458 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2459 { 2460 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2461 local_file = bs; 2462 local_map = aligned_offset; 2463 } else { 2464 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2465 aligned_bytes, pnum, &local_map, 2466 &local_file); 2467 2468 /* 2469 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2470 * the cache is queried above. Technically, we do not need to check 2471 * it here; the worst that can happen is that we fill the cache for 2472 * non-protocol nodes, and then it is never used. However, filling 2473 * the cache requires an RCU update, so double check here to avoid 2474 * such an update if possible. 2475 * 2476 * Check want_zero, because we only want to update the cache when we 2477 * have accurate information about what is zero and what is data. 2478 */ 2479 if (want_zero && 2480 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2481 QLIST_EMPTY(&bs->children)) 2482 { 2483 /* 2484 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2485 * returned local_map value must be the same as the offset we 2486 * have passed (aligned_offset), and local_bs must be the node 2487 * itself. 2488 * Assert this, because we follow this rule when reading from 2489 * the cache (see the `local_file = bs` and 2490 * `local_map = aligned_offset` assignments above), and the 2491 * result the cache delivers must be the same as the driver 2492 * would deliver. 2493 */ 2494 assert(local_file == bs); 2495 assert(local_map == aligned_offset); 2496 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2497 } 2498 } 2499 } else { 2500 /* Default code for filters */ 2501 2502 local_file = bdrv_filter_bs(bs); 2503 assert(local_file); 2504 2505 *pnum = aligned_bytes; 2506 local_map = aligned_offset; 2507 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2508 } 2509 if (ret < 0) { 2510 *pnum = 0; 2511 goto out; 2512 } 2513 2514 /* 2515 * The driver's result must be a non-zero multiple of request_alignment. 2516 * Clamp pnum and adjust map to original request. 2517 */ 2518 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2519 align > offset - aligned_offset); 2520 if (ret & BDRV_BLOCK_RECURSE) { 2521 assert(ret & BDRV_BLOCK_DATA); 2522 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2523 assert(!(ret & BDRV_BLOCK_ZERO)); 2524 } 2525 2526 *pnum -= offset - aligned_offset; 2527 if (*pnum > bytes) { 2528 *pnum = bytes; 2529 } 2530 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2531 local_map += offset - aligned_offset; 2532 } 2533 2534 if (ret & BDRV_BLOCK_RAW) { 2535 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2536 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2537 *pnum, pnum, &local_map, &local_file); 2538 goto out; 2539 } 2540 2541 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2542 ret |= BDRV_BLOCK_ALLOCATED; 2543 } else if (bs->drv->supports_backing) { 2544 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2545 2546 if (!cow_bs) { 2547 ret |= BDRV_BLOCK_ZERO; 2548 } else if (want_zero) { 2549 int64_t size2 = bdrv_getlength(cow_bs); 2550 2551 if (size2 >= 0 && offset >= size2) { 2552 ret |= BDRV_BLOCK_ZERO; 2553 } 2554 } 2555 } 2556 2557 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2558 local_file && local_file != bs && 2559 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2560 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2561 int64_t file_pnum; 2562 int ret2; 2563 2564 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2565 *pnum, &file_pnum, NULL, NULL); 2566 if (ret2 >= 0) { 2567 /* Ignore errors. This is just providing extra information, it 2568 * is useful but not necessary. 2569 */ 2570 if (ret2 & BDRV_BLOCK_EOF && 2571 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2572 /* 2573 * It is valid for the format block driver to read 2574 * beyond the end of the underlying file's current 2575 * size; such areas read as zero. 2576 */ 2577 ret |= BDRV_BLOCK_ZERO; 2578 } else { 2579 /* Limit request to the range reported by the protocol driver */ 2580 *pnum = file_pnum; 2581 ret |= (ret2 & BDRV_BLOCK_ZERO); 2582 } 2583 } 2584 } 2585 2586 out: 2587 bdrv_dec_in_flight(bs); 2588 if (ret >= 0 && offset + *pnum == total_size) { 2589 ret |= BDRV_BLOCK_EOF; 2590 } 2591 early_out: 2592 if (file) { 2593 *file = local_file; 2594 } 2595 if (map) { 2596 *map = local_map; 2597 } 2598 return ret; 2599 } 2600 2601 int coroutine_fn 2602 bdrv_co_common_block_status_above(BlockDriverState *bs, 2603 BlockDriverState *base, 2604 bool include_base, 2605 bool want_zero, 2606 int64_t offset, 2607 int64_t bytes, 2608 int64_t *pnum, 2609 int64_t *map, 2610 BlockDriverState **file, 2611 int *depth) 2612 { 2613 int ret; 2614 BlockDriverState *p; 2615 int64_t eof = 0; 2616 int dummy; 2617 IO_CODE(); 2618 2619 assert(!include_base || base); /* Can't include NULL base */ 2620 assert_bdrv_graph_readable(); 2621 2622 if (!depth) { 2623 depth = &dummy; 2624 } 2625 *depth = 0; 2626 2627 if (!include_base && bs == base) { 2628 *pnum = bytes; 2629 return 0; 2630 } 2631 2632 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2633 ++*depth; 2634 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2635 return ret; 2636 } 2637 2638 if (ret & BDRV_BLOCK_EOF) { 2639 eof = offset + *pnum; 2640 } 2641 2642 assert(*pnum <= bytes); 2643 bytes = *pnum; 2644 2645 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2646 p = bdrv_filter_or_cow_bs(p)) 2647 { 2648 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2649 file); 2650 ++*depth; 2651 if (ret < 0) { 2652 return ret; 2653 } 2654 if (*pnum == 0) { 2655 /* 2656 * The top layer deferred to this layer, and because this layer is 2657 * short, any zeroes that we synthesize beyond EOF behave as if they 2658 * were allocated at this layer. 2659 * 2660 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2661 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2662 * below. 2663 */ 2664 assert(ret & BDRV_BLOCK_EOF); 2665 *pnum = bytes; 2666 if (file) { 2667 *file = p; 2668 } 2669 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2670 break; 2671 } 2672 if (ret & BDRV_BLOCK_ALLOCATED) { 2673 /* 2674 * We've found the node and the status, we must break. 2675 * 2676 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2677 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2678 * below. 2679 */ 2680 ret &= ~BDRV_BLOCK_EOF; 2681 break; 2682 } 2683 2684 if (p == base) { 2685 assert(include_base); 2686 break; 2687 } 2688 2689 /* 2690 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2691 * let's continue the diving. 2692 */ 2693 assert(*pnum <= bytes); 2694 bytes = *pnum; 2695 } 2696 2697 if (offset + *pnum == eof) { 2698 ret |= BDRV_BLOCK_EOF; 2699 } 2700 2701 return ret; 2702 } 2703 2704 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2705 BlockDriverState *base, 2706 int64_t offset, int64_t bytes, 2707 int64_t *pnum, int64_t *map, 2708 BlockDriverState **file) 2709 { 2710 IO_CODE(); 2711 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2712 bytes, pnum, map, file, NULL); 2713 } 2714 2715 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2716 int64_t offset, int64_t bytes, int64_t *pnum, 2717 int64_t *map, BlockDriverState **file) 2718 { 2719 IO_CODE(); 2720 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2721 pnum, map, file, NULL); 2722 } 2723 2724 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2725 int64_t *pnum, int64_t *map, BlockDriverState **file) 2726 { 2727 IO_CODE(); 2728 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2729 offset, bytes, pnum, map, file); 2730 } 2731 2732 /* 2733 * Check @bs (and its backing chain) to see if the range defined 2734 * by @offset and @bytes is known to read as zeroes. 2735 * Return 1 if that is the case, 0 otherwise and -errno on error. 2736 * This test is meant to be fast rather than accurate so returning 0 2737 * does not guarantee non-zero data. 2738 */ 2739 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2740 int64_t bytes) 2741 { 2742 int ret; 2743 int64_t pnum = bytes; 2744 IO_CODE(); 2745 2746 if (!bytes) { 2747 return 1; 2748 } 2749 2750 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2751 bytes, &pnum, NULL, NULL, NULL); 2752 2753 if (ret < 0) { 2754 return ret; 2755 } 2756 2757 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2758 } 2759 2760 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2761 int64_t bytes, int64_t *pnum) 2762 { 2763 int ret; 2764 int64_t dummy; 2765 IO_CODE(); 2766 2767 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2768 bytes, pnum ? pnum : &dummy, NULL, 2769 NULL, NULL); 2770 if (ret < 0) { 2771 return ret; 2772 } 2773 return !!(ret & BDRV_BLOCK_ALLOCATED); 2774 } 2775 2776 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, 2777 int64_t *pnum) 2778 { 2779 int ret; 2780 int64_t dummy; 2781 IO_CODE(); 2782 2783 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2784 bytes, pnum ? pnum : &dummy, NULL, 2785 NULL, NULL); 2786 if (ret < 0) { 2787 return ret; 2788 } 2789 return !!(ret & BDRV_BLOCK_ALLOCATED); 2790 } 2791 2792 /* See bdrv_is_allocated_above for documentation */ 2793 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2794 BlockDriverState *base, 2795 bool include_base, int64_t offset, 2796 int64_t bytes, int64_t *pnum) 2797 { 2798 int depth; 2799 int ret; 2800 IO_CODE(); 2801 2802 ret = bdrv_co_common_block_status_above(top, base, include_base, false, 2803 offset, bytes, pnum, NULL, NULL, 2804 &depth); 2805 if (ret < 0) { 2806 return ret; 2807 } 2808 2809 if (ret & BDRV_BLOCK_ALLOCATED) { 2810 return depth; 2811 } 2812 return 0; 2813 } 2814 2815 /* 2816 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2817 * 2818 * Return a positive depth if (a prefix of) the given range is allocated 2819 * in any image between BASE and TOP (BASE is only included if include_base 2820 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2821 * BASE can be NULL to check if the given offset is allocated in any 2822 * image of the chain. Return 0 otherwise, or negative errno on 2823 * failure. 2824 * 2825 * 'pnum' is set to the number of bytes (including and immediately 2826 * following the specified offset) that are known to be in the same 2827 * allocated/unallocated state. Note that a subsequent call starting 2828 * at 'offset + *pnum' may return the same allocation status (in other 2829 * words, the result is not necessarily the maximum possible range); 2830 * but 'pnum' will only be 0 when end of file is reached. 2831 */ 2832 int bdrv_is_allocated_above(BlockDriverState *top, 2833 BlockDriverState *base, 2834 bool include_base, int64_t offset, 2835 int64_t bytes, int64_t *pnum) 2836 { 2837 int depth; 2838 int ret; 2839 IO_CODE(); 2840 2841 ret = bdrv_common_block_status_above(top, base, include_base, false, 2842 offset, bytes, pnum, NULL, NULL, 2843 &depth); 2844 if (ret < 0) { 2845 return ret; 2846 } 2847 2848 if (ret & BDRV_BLOCK_ALLOCATED) { 2849 return depth; 2850 } 2851 return 0; 2852 } 2853 2854 int coroutine_fn 2855 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2856 { 2857 BlockDriver *drv = bs->drv; 2858 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2859 int ret; 2860 IO_CODE(); 2861 assert_bdrv_graph_readable(); 2862 2863 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2864 if (ret < 0) { 2865 return ret; 2866 } 2867 2868 if (!drv) { 2869 return -ENOMEDIUM; 2870 } 2871 2872 bdrv_inc_in_flight(bs); 2873 2874 if (drv->bdrv_co_load_vmstate) { 2875 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos); 2876 } else if (child_bs) { 2877 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2878 } else { 2879 ret = -ENOTSUP; 2880 } 2881 2882 bdrv_dec_in_flight(bs); 2883 2884 return ret; 2885 } 2886 2887 int coroutine_fn 2888 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2889 { 2890 BlockDriver *drv = bs->drv; 2891 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2892 int ret; 2893 IO_CODE(); 2894 assert_bdrv_graph_readable(); 2895 2896 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2897 if (ret < 0) { 2898 return ret; 2899 } 2900 2901 if (!drv) { 2902 return -ENOMEDIUM; 2903 } 2904 2905 bdrv_inc_in_flight(bs); 2906 2907 if (drv->bdrv_co_save_vmstate) { 2908 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos); 2909 } else if (child_bs) { 2910 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2911 } else { 2912 ret = -ENOTSUP; 2913 } 2914 2915 bdrv_dec_in_flight(bs); 2916 2917 return ret; 2918 } 2919 2920 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2921 int64_t pos, int size) 2922 { 2923 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2924 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2925 IO_CODE(); 2926 2927 return ret < 0 ? ret : size; 2928 } 2929 2930 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2931 int64_t pos, int size) 2932 { 2933 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2934 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2935 IO_CODE(); 2936 2937 return ret < 0 ? ret : size; 2938 } 2939 2940 /**************************************************************/ 2941 /* async I/Os */ 2942 2943 void bdrv_aio_cancel(BlockAIOCB *acb) 2944 { 2945 IO_CODE(); 2946 qemu_aio_ref(acb); 2947 bdrv_aio_cancel_async(acb); 2948 while (acb->refcnt > 1) { 2949 if (acb->aiocb_info->get_aio_context) { 2950 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2951 } else if (acb->bs) { 2952 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2953 * assert that we're not using an I/O thread. Thread-safe 2954 * code should use bdrv_aio_cancel_async exclusively. 2955 */ 2956 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2957 aio_poll(bdrv_get_aio_context(acb->bs), true); 2958 } else { 2959 abort(); 2960 } 2961 } 2962 qemu_aio_unref(acb); 2963 } 2964 2965 /* Async version of aio cancel. The caller is not blocked if the acb implements 2966 * cancel_async, otherwise we do nothing and let the request normally complete. 2967 * In either case the completion callback must be called. */ 2968 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2969 { 2970 IO_CODE(); 2971 if (acb->aiocb_info->cancel_async) { 2972 acb->aiocb_info->cancel_async(acb); 2973 } 2974 } 2975 2976 /**************************************************************/ 2977 /* Coroutine block device emulation */ 2978 2979 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2980 { 2981 BdrvChild *primary_child = bdrv_primary_child(bs); 2982 BdrvChild *child; 2983 int current_gen; 2984 int ret = 0; 2985 IO_CODE(); 2986 2987 assert_bdrv_graph_readable(); 2988 bdrv_inc_in_flight(bs); 2989 2990 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) || 2991 bdrv_is_sg(bs)) { 2992 goto early_exit; 2993 } 2994 2995 qemu_co_mutex_lock(&bs->reqs_lock); 2996 current_gen = qatomic_read(&bs->write_gen); 2997 2998 /* Wait until any previous flushes are completed */ 2999 while (bs->active_flush_req) { 3000 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 3001 } 3002 3003 /* Flushes reach this point in nondecreasing current_gen order. */ 3004 bs->active_flush_req = true; 3005 qemu_co_mutex_unlock(&bs->reqs_lock); 3006 3007 /* Write back all layers by calling one driver function */ 3008 if (bs->drv->bdrv_co_flush) { 3009 ret = bs->drv->bdrv_co_flush(bs); 3010 goto out; 3011 } 3012 3013 /* Write back cached data to the OS even with cache=unsafe */ 3014 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3015 if (bs->drv->bdrv_co_flush_to_os) { 3016 ret = bs->drv->bdrv_co_flush_to_os(bs); 3017 if (ret < 0) { 3018 goto out; 3019 } 3020 } 3021 3022 /* But don't actually force it to the disk with cache=unsafe */ 3023 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3024 goto flush_children; 3025 } 3026 3027 /* Check if we really need to flush anything */ 3028 if (bs->flushed_gen == current_gen) { 3029 goto flush_children; 3030 } 3031 3032 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3033 if (!bs->drv) { 3034 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3035 * (even in case of apparent success) */ 3036 ret = -ENOMEDIUM; 3037 goto out; 3038 } 3039 if (bs->drv->bdrv_co_flush_to_disk) { 3040 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3041 } else if (bs->drv->bdrv_aio_flush) { 3042 BlockAIOCB *acb; 3043 CoroutineIOCompletion co = { 3044 .coroutine = qemu_coroutine_self(), 3045 }; 3046 3047 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3048 if (acb == NULL) { 3049 ret = -EIO; 3050 } else { 3051 qemu_coroutine_yield(); 3052 ret = co.ret; 3053 } 3054 } else { 3055 /* 3056 * Some block drivers always operate in either writethrough or unsafe 3057 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3058 * know how the server works (because the behaviour is hardcoded or 3059 * depends on server-side configuration), so we can't ensure that 3060 * everything is safe on disk. Returning an error doesn't work because 3061 * that would break guests even if the server operates in writethrough 3062 * mode. 3063 * 3064 * Let's hope the user knows what he's doing. 3065 */ 3066 ret = 0; 3067 } 3068 3069 if (ret < 0) { 3070 goto out; 3071 } 3072 3073 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3074 * in the case of cache=unsafe, so there are no useless flushes. 3075 */ 3076 flush_children: 3077 ret = 0; 3078 QLIST_FOREACH(child, &bs->children, next) { 3079 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3080 int this_child_ret = bdrv_co_flush(child->bs); 3081 if (!ret) { 3082 ret = this_child_ret; 3083 } 3084 } 3085 } 3086 3087 out: 3088 /* Notify any pending flushes that we have completed */ 3089 if (ret == 0) { 3090 bs->flushed_gen = current_gen; 3091 } 3092 3093 qemu_co_mutex_lock(&bs->reqs_lock); 3094 bs->active_flush_req = false; 3095 /* Return value is ignored - it's ok if wait queue is empty */ 3096 qemu_co_queue_next(&bs->flush_queue); 3097 qemu_co_mutex_unlock(&bs->reqs_lock); 3098 3099 early_exit: 3100 bdrv_dec_in_flight(bs); 3101 return ret; 3102 } 3103 3104 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3105 int64_t bytes) 3106 { 3107 BdrvTrackedRequest req; 3108 int ret; 3109 int64_t max_pdiscard; 3110 int head, tail, align; 3111 BlockDriverState *bs = child->bs; 3112 IO_CODE(); 3113 assert_bdrv_graph_readable(); 3114 3115 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) { 3116 return -ENOMEDIUM; 3117 } 3118 3119 if (bdrv_has_readonly_bitmaps(bs)) { 3120 return -EPERM; 3121 } 3122 3123 ret = bdrv_check_request(offset, bytes, NULL); 3124 if (ret < 0) { 3125 return ret; 3126 } 3127 3128 /* Do nothing if disabled. */ 3129 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3130 return 0; 3131 } 3132 3133 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3134 return 0; 3135 } 3136 3137 /* Invalidate the cached block-status data range if this discard overlaps */ 3138 bdrv_bsc_invalidate_range(bs, offset, bytes); 3139 3140 /* Discard is advisory, but some devices track and coalesce 3141 * unaligned requests, so we must pass everything down rather than 3142 * round here. Still, most devices will just silently ignore 3143 * unaligned requests (by returning -ENOTSUP), so we must fragment 3144 * the request accordingly. */ 3145 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3146 assert(align % bs->bl.request_alignment == 0); 3147 head = offset % align; 3148 tail = (offset + bytes) % align; 3149 3150 bdrv_inc_in_flight(bs); 3151 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3152 3153 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3154 if (ret < 0) { 3155 goto out; 3156 } 3157 3158 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3159 align); 3160 assert(max_pdiscard >= bs->bl.request_alignment); 3161 3162 while (bytes > 0) { 3163 int64_t num = bytes; 3164 3165 if (head) { 3166 /* Make small requests to get to alignment boundaries. */ 3167 num = MIN(bytes, align - head); 3168 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3169 num %= bs->bl.request_alignment; 3170 } 3171 head = (head + num) % align; 3172 assert(num < max_pdiscard); 3173 } else if (tail) { 3174 if (num > align) { 3175 /* Shorten the request to the last aligned cluster. */ 3176 num -= tail; 3177 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3178 tail > bs->bl.request_alignment) { 3179 tail %= bs->bl.request_alignment; 3180 num -= tail; 3181 } 3182 } 3183 /* limit request size */ 3184 if (num > max_pdiscard) { 3185 num = max_pdiscard; 3186 } 3187 3188 if (!bs->drv) { 3189 ret = -ENOMEDIUM; 3190 goto out; 3191 } 3192 if (bs->drv->bdrv_co_pdiscard) { 3193 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3194 } else { 3195 BlockAIOCB *acb; 3196 CoroutineIOCompletion co = { 3197 .coroutine = qemu_coroutine_self(), 3198 }; 3199 3200 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3201 bdrv_co_io_em_complete, &co); 3202 if (acb == NULL) { 3203 ret = -EIO; 3204 goto out; 3205 } else { 3206 qemu_coroutine_yield(); 3207 ret = co.ret; 3208 } 3209 } 3210 if (ret && ret != -ENOTSUP) { 3211 goto out; 3212 } 3213 3214 offset += num; 3215 bytes -= num; 3216 } 3217 ret = 0; 3218 out: 3219 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3220 tracked_request_end(&req); 3221 bdrv_dec_in_flight(bs); 3222 return ret; 3223 } 3224 3225 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3226 { 3227 BlockDriver *drv = bs->drv; 3228 CoroutineIOCompletion co = { 3229 .coroutine = qemu_coroutine_self(), 3230 }; 3231 BlockAIOCB *acb; 3232 IO_CODE(); 3233 assert_bdrv_graph_readable(); 3234 3235 bdrv_inc_in_flight(bs); 3236 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3237 co.ret = -ENOTSUP; 3238 goto out; 3239 } 3240 3241 if (drv->bdrv_co_ioctl) { 3242 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3243 } else { 3244 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3245 if (!acb) { 3246 co.ret = -ENOTSUP; 3247 goto out; 3248 } 3249 qemu_coroutine_yield(); 3250 } 3251 out: 3252 bdrv_dec_in_flight(bs); 3253 return co.ret; 3254 } 3255 3256 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset, 3257 unsigned int *nr_zones, 3258 BlockZoneDescriptor *zones) 3259 { 3260 BlockDriver *drv = bs->drv; 3261 CoroutineIOCompletion co = { 3262 .coroutine = qemu_coroutine_self(), 3263 }; 3264 IO_CODE(); 3265 3266 bdrv_inc_in_flight(bs); 3267 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) { 3268 co.ret = -ENOTSUP; 3269 goto out; 3270 } 3271 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones); 3272 out: 3273 bdrv_dec_in_flight(bs); 3274 return co.ret; 3275 } 3276 3277 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op, 3278 int64_t offset, int64_t len) 3279 { 3280 BlockDriver *drv = bs->drv; 3281 CoroutineIOCompletion co = { 3282 .coroutine = qemu_coroutine_self(), 3283 }; 3284 IO_CODE(); 3285 3286 bdrv_inc_in_flight(bs); 3287 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) { 3288 co.ret = -ENOTSUP; 3289 goto out; 3290 } 3291 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len); 3292 out: 3293 bdrv_dec_in_flight(bs); 3294 return co.ret; 3295 } 3296 3297 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset, 3298 QEMUIOVector *qiov, 3299 BdrvRequestFlags flags) 3300 { 3301 int ret; 3302 BlockDriver *drv = bs->drv; 3303 CoroutineIOCompletion co = { 3304 .coroutine = qemu_coroutine_self(), 3305 }; 3306 IO_CODE(); 3307 3308 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL); 3309 if (ret < 0) { 3310 return ret; 3311 } 3312 3313 bdrv_inc_in_flight(bs); 3314 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) { 3315 co.ret = -ENOTSUP; 3316 goto out; 3317 } 3318 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags); 3319 out: 3320 bdrv_dec_in_flight(bs); 3321 return co.ret; 3322 } 3323 3324 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3325 { 3326 IO_CODE(); 3327 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3328 } 3329 3330 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3331 { 3332 IO_CODE(); 3333 return memset(qemu_blockalign(bs, size), 0, size); 3334 } 3335 3336 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3337 { 3338 size_t align = bdrv_opt_mem_align(bs); 3339 IO_CODE(); 3340 3341 /* Ensure that NULL is never returned on success */ 3342 assert(align > 0); 3343 if (size == 0) { 3344 size = align; 3345 } 3346 3347 return qemu_try_memalign(align, size); 3348 } 3349 3350 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3351 { 3352 void *mem = qemu_try_blockalign(bs, size); 3353 IO_CODE(); 3354 3355 if (mem) { 3356 memset(mem, 0, size); 3357 } 3358 3359 return mem; 3360 } 3361 3362 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3363 static void GRAPH_RDLOCK 3364 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size, 3365 BdrvChild *final_child) 3366 { 3367 BdrvChild *child; 3368 3369 GLOBAL_STATE_CODE(); 3370 assert_bdrv_graph_readable(); 3371 3372 QLIST_FOREACH(child, &bs->children, next) { 3373 if (child == final_child) { 3374 break; 3375 } 3376 3377 bdrv_unregister_buf(child->bs, host, size); 3378 } 3379 3380 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3381 bs->drv->bdrv_unregister_buf(bs, host, size); 3382 } 3383 } 3384 3385 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3386 Error **errp) 3387 { 3388 BdrvChild *child; 3389 3390 GLOBAL_STATE_CODE(); 3391 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3392 3393 if (bs->drv && bs->drv->bdrv_register_buf) { 3394 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3395 return false; 3396 } 3397 } 3398 QLIST_FOREACH(child, &bs->children, next) { 3399 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3400 bdrv_register_buf_rollback(bs, host, size, child); 3401 return false; 3402 } 3403 } 3404 return true; 3405 } 3406 3407 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3408 { 3409 BdrvChild *child; 3410 3411 GLOBAL_STATE_CODE(); 3412 GRAPH_RDLOCK_GUARD_MAINLOOP(); 3413 3414 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3415 bs->drv->bdrv_unregister_buf(bs, host, size); 3416 } 3417 QLIST_FOREACH(child, &bs->children, next) { 3418 bdrv_unregister_buf(child->bs, host, size); 3419 } 3420 } 3421 3422 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal( 3423 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3424 int64_t dst_offset, int64_t bytes, 3425 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3426 bool recurse_src) 3427 { 3428 BdrvTrackedRequest req; 3429 int ret; 3430 assert_bdrv_graph_readable(); 3431 3432 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3433 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3434 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3435 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3436 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3437 3438 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) { 3439 return -ENOMEDIUM; 3440 } 3441 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3442 if (ret) { 3443 return ret; 3444 } 3445 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3446 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3447 } 3448 3449 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) { 3450 return -ENOMEDIUM; 3451 } 3452 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3453 if (ret) { 3454 return ret; 3455 } 3456 3457 if (!src->bs->drv->bdrv_co_copy_range_from 3458 || !dst->bs->drv->bdrv_co_copy_range_to 3459 || src->bs->encrypted || dst->bs->encrypted) { 3460 return -ENOTSUP; 3461 } 3462 3463 if (recurse_src) { 3464 bdrv_inc_in_flight(src->bs); 3465 tracked_request_begin(&req, src->bs, src_offset, bytes, 3466 BDRV_TRACKED_READ); 3467 3468 /* BDRV_REQ_SERIALISING is only for write operation */ 3469 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3470 bdrv_wait_serialising_requests(&req); 3471 3472 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3473 src, src_offset, 3474 dst, dst_offset, 3475 bytes, 3476 read_flags, write_flags); 3477 3478 tracked_request_end(&req); 3479 bdrv_dec_in_flight(src->bs); 3480 } else { 3481 bdrv_inc_in_flight(dst->bs); 3482 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3483 BDRV_TRACKED_WRITE); 3484 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3485 write_flags); 3486 if (!ret) { 3487 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3488 src, src_offset, 3489 dst, dst_offset, 3490 bytes, 3491 read_flags, write_flags); 3492 } 3493 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3494 tracked_request_end(&req); 3495 bdrv_dec_in_flight(dst->bs); 3496 } 3497 3498 return ret; 3499 } 3500 3501 /* Copy range from @src to @dst. 3502 * 3503 * See the comment of bdrv_co_copy_range for the parameter and return value 3504 * semantics. */ 3505 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3506 BdrvChild *dst, int64_t dst_offset, 3507 int64_t bytes, 3508 BdrvRequestFlags read_flags, 3509 BdrvRequestFlags write_flags) 3510 { 3511 IO_CODE(); 3512 assert_bdrv_graph_readable(); 3513 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3514 read_flags, write_flags); 3515 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3516 bytes, read_flags, write_flags, true); 3517 } 3518 3519 /* Copy range from @src to @dst. 3520 * 3521 * See the comment of bdrv_co_copy_range for the parameter and return value 3522 * semantics. */ 3523 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3524 BdrvChild *dst, int64_t dst_offset, 3525 int64_t bytes, 3526 BdrvRequestFlags read_flags, 3527 BdrvRequestFlags write_flags) 3528 { 3529 IO_CODE(); 3530 assert_bdrv_graph_readable(); 3531 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3532 read_flags, write_flags); 3533 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3534 bytes, read_flags, write_flags, false); 3535 } 3536 3537 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3538 BdrvChild *dst, int64_t dst_offset, 3539 int64_t bytes, BdrvRequestFlags read_flags, 3540 BdrvRequestFlags write_flags) 3541 { 3542 IO_CODE(); 3543 assert_bdrv_graph_readable(); 3544 3545 return bdrv_co_copy_range_from(src, src_offset, 3546 dst, dst_offset, 3547 bytes, read_flags, write_flags); 3548 } 3549 3550 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3551 { 3552 BdrvChild *c; 3553 QLIST_FOREACH(c, &bs->parents, next_parent) { 3554 if (c->klass->resize) { 3555 c->klass->resize(c); 3556 } 3557 } 3558 } 3559 3560 /** 3561 * Truncate file to 'offset' bytes (needed only for file protocols) 3562 * 3563 * If 'exact' is true, the file must be resized to exactly the given 3564 * 'offset'. Otherwise, it is sufficient for the node to be at least 3565 * 'offset' bytes in length. 3566 */ 3567 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3568 PreallocMode prealloc, BdrvRequestFlags flags, 3569 Error **errp) 3570 { 3571 BlockDriverState *bs = child->bs; 3572 BdrvChild *filtered, *backing; 3573 BlockDriver *drv = bs->drv; 3574 BdrvTrackedRequest req; 3575 int64_t old_size, new_bytes; 3576 int ret; 3577 IO_CODE(); 3578 assert_bdrv_graph_readable(); 3579 3580 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3581 if (!drv) { 3582 error_setg(errp, "No medium inserted"); 3583 return -ENOMEDIUM; 3584 } 3585 if (offset < 0) { 3586 error_setg(errp, "Image size cannot be negative"); 3587 return -EINVAL; 3588 } 3589 3590 ret = bdrv_check_request(offset, 0, errp); 3591 if (ret < 0) { 3592 return ret; 3593 } 3594 3595 old_size = bdrv_getlength(bs); 3596 if (old_size < 0) { 3597 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3598 return old_size; 3599 } 3600 3601 if (bdrv_is_read_only(bs)) { 3602 error_setg(errp, "Image is read-only"); 3603 return -EACCES; 3604 } 3605 3606 if (offset > old_size) { 3607 new_bytes = offset - old_size; 3608 } else { 3609 new_bytes = 0; 3610 } 3611 3612 bdrv_inc_in_flight(bs); 3613 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3614 BDRV_TRACKED_TRUNCATE); 3615 3616 /* If we are growing the image and potentially using preallocation for the 3617 * new area, we need to make sure that no write requests are made to it 3618 * concurrently or they might be overwritten by preallocation. */ 3619 if (new_bytes) { 3620 bdrv_make_request_serialising(&req, 1); 3621 } 3622 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3623 0); 3624 if (ret < 0) { 3625 error_setg_errno(errp, -ret, 3626 "Failed to prepare request for truncation"); 3627 goto out; 3628 } 3629 3630 filtered = bdrv_filter_child(bs); 3631 backing = bdrv_cow_child(bs); 3632 3633 /* 3634 * If the image has a backing file that is large enough that it would 3635 * provide data for the new area, we cannot leave it unallocated because 3636 * then the backing file content would become visible. Instead, zero-fill 3637 * the new area. 3638 * 3639 * Note that if the image has a backing file, but was opened without the 3640 * backing file, taking care of keeping things consistent with that backing 3641 * file is the user's responsibility. 3642 */ 3643 if (new_bytes && backing) { 3644 int64_t backing_len; 3645 3646 backing_len = bdrv_co_getlength(backing->bs); 3647 if (backing_len < 0) { 3648 ret = backing_len; 3649 error_setg_errno(errp, -ret, "Could not get backing file size"); 3650 goto out; 3651 } 3652 3653 if (backing_len > old_size) { 3654 flags |= BDRV_REQ_ZERO_WRITE; 3655 } 3656 } 3657 3658 if (drv->bdrv_co_truncate) { 3659 if (flags & ~bs->supported_truncate_flags) { 3660 error_setg(errp, "Block driver does not support requested flags"); 3661 ret = -ENOTSUP; 3662 goto out; 3663 } 3664 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3665 } else if (filtered) { 3666 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3667 } else { 3668 error_setg(errp, "Image format driver does not support resize"); 3669 ret = -ENOTSUP; 3670 goto out; 3671 } 3672 if (ret < 0) { 3673 goto out; 3674 } 3675 3676 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3677 if (ret < 0) { 3678 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3679 } else { 3680 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3681 } 3682 /* 3683 * It's possible that truncation succeeded but bdrv_refresh_total_sectors 3684 * failed, but the latter doesn't affect how we should finish the request. 3685 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. 3686 */ 3687 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3688 3689 out: 3690 tracked_request_end(&req); 3691 bdrv_dec_in_flight(bs); 3692 3693 return ret; 3694 } 3695 3696 void bdrv_cancel_in_flight(BlockDriverState *bs) 3697 { 3698 GLOBAL_STATE_CODE(); 3699 if (!bs || !bs->drv) { 3700 return; 3701 } 3702 3703 if (bs->drv->bdrv_cancel_in_flight) { 3704 bs->drv->bdrv_cancel_in_flight(bs); 3705 } 3706 } 3707 3708 int coroutine_fn 3709 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3710 QEMUIOVector *qiov, size_t qiov_offset) 3711 { 3712 BlockDriverState *bs = child->bs; 3713 BlockDriver *drv = bs->drv; 3714 int ret; 3715 IO_CODE(); 3716 assert_bdrv_graph_readable(); 3717 3718 if (!drv) { 3719 return -ENOMEDIUM; 3720 } 3721 3722 if (!drv->bdrv_co_preadv_snapshot) { 3723 return -ENOTSUP; 3724 } 3725 3726 bdrv_inc_in_flight(bs); 3727 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3728 bdrv_dec_in_flight(bs); 3729 3730 return ret; 3731 } 3732 3733 int coroutine_fn 3734 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3735 bool want_zero, int64_t offset, int64_t bytes, 3736 int64_t *pnum, int64_t *map, 3737 BlockDriverState **file) 3738 { 3739 BlockDriver *drv = bs->drv; 3740 int ret; 3741 IO_CODE(); 3742 assert_bdrv_graph_readable(); 3743 3744 if (!drv) { 3745 return -ENOMEDIUM; 3746 } 3747 3748 if (!drv->bdrv_co_snapshot_block_status) { 3749 return -ENOTSUP; 3750 } 3751 3752 bdrv_inc_in_flight(bs); 3753 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3754 pnum, map, file); 3755 bdrv_dec_in_flight(bs); 3756 3757 return ret; 3758 } 3759 3760 int coroutine_fn 3761 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3762 { 3763 BlockDriver *drv = bs->drv; 3764 int ret; 3765 IO_CODE(); 3766 assert_bdrv_graph_readable(); 3767 3768 if (!drv) { 3769 return -ENOMEDIUM; 3770 } 3771 3772 if (!drv->bdrv_co_pdiscard_snapshot) { 3773 return -ENOTSUP; 3774 } 3775 3776 bdrv_inc_in_flight(bs); 3777 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3778 bdrv_dec_in_flight(bs); 3779 3780 return ret; 3781 } 3782