1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qapi/error.h" 36 #include "qemu/error-report.h" 37 #include "qemu/main-loop.h" 38 #include "sysemu/replay.h" 39 40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 42 43 static void bdrv_parent_cb_resize(BlockDriverState *bs); 44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 45 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 46 47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore, 48 bool ignore_bds_parents) 49 { 50 BdrvChild *c, *next; 51 52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 53 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 54 continue; 55 } 56 bdrv_parent_drained_begin_single(c, false); 57 } 58 } 59 60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c, 61 int *drained_end_counter) 62 { 63 assert(c->parent_quiesce_counter > 0); 64 c->parent_quiesce_counter--; 65 if (c->klass->drained_end) { 66 c->klass->drained_end(c, drained_end_counter); 67 } 68 } 69 70 void bdrv_parent_drained_end_single(BdrvChild *c) 71 { 72 int drained_end_counter = 0; 73 IO_OR_GS_CODE(); 74 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter); 75 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0); 76 } 77 78 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore, 79 bool ignore_bds_parents, 80 int *drained_end_counter) 81 { 82 BdrvChild *c; 83 84 QLIST_FOREACH(c, &bs->parents, next_parent) { 85 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 86 continue; 87 } 88 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter); 89 } 90 } 91 92 static bool bdrv_parent_drained_poll_single(BdrvChild *c) 93 { 94 if (c->klass->drained_poll) { 95 return c->klass->drained_poll(c); 96 } 97 return false; 98 } 99 100 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 101 bool ignore_bds_parents) 102 { 103 BdrvChild *c, *next; 104 bool busy = false; 105 106 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 107 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 108 continue; 109 } 110 busy |= bdrv_parent_drained_poll_single(c); 111 } 112 113 return busy; 114 } 115 116 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll) 117 { 118 IO_OR_GS_CODE(); 119 c->parent_quiesce_counter++; 120 if (c->klass->drained_begin) { 121 c->klass->drained_begin(c); 122 } 123 if (poll) { 124 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c)); 125 } 126 } 127 128 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 129 { 130 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 131 src->pdiscard_alignment); 132 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 133 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 134 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 135 src->max_hw_transfer); 136 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 137 src->opt_mem_alignment); 138 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 139 src->min_mem_alignment); 140 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 141 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 142 } 143 144 typedef struct BdrvRefreshLimitsState { 145 BlockDriverState *bs; 146 BlockLimits old_bl; 147 } BdrvRefreshLimitsState; 148 149 static void bdrv_refresh_limits_abort(void *opaque) 150 { 151 BdrvRefreshLimitsState *s = opaque; 152 153 s->bs->bl = s->old_bl; 154 } 155 156 static TransactionActionDrv bdrv_refresh_limits_drv = { 157 .abort = bdrv_refresh_limits_abort, 158 .clean = g_free, 159 }; 160 161 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 162 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 163 { 164 ERRP_GUARD(); 165 BlockDriver *drv = bs->drv; 166 BdrvChild *c; 167 bool have_limits; 168 169 GLOBAL_STATE_CODE(); 170 171 if (tran) { 172 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 173 *s = (BdrvRefreshLimitsState) { 174 .bs = bs, 175 .old_bl = bs->bl, 176 }; 177 tran_add(tran, &bdrv_refresh_limits_drv, s); 178 } 179 180 memset(&bs->bl, 0, sizeof(bs->bl)); 181 182 if (!drv) { 183 return; 184 } 185 186 /* Default alignment based on whether driver has byte interface */ 187 bs->bl.request_alignment = (drv->bdrv_co_preadv || 188 drv->bdrv_aio_preadv || 189 drv->bdrv_co_preadv_part) ? 1 : 512; 190 191 /* Take some limits from the children as a default */ 192 have_limits = false; 193 QLIST_FOREACH(c, &bs->children, next) { 194 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 195 { 196 bdrv_merge_limits(&bs->bl, &c->bs->bl); 197 have_limits = true; 198 } 199 } 200 201 if (!have_limits) { 202 bs->bl.min_mem_alignment = 512; 203 bs->bl.opt_mem_alignment = qemu_real_host_page_size; 204 205 /* Safe default since most protocols use readv()/writev()/etc */ 206 bs->bl.max_iov = IOV_MAX; 207 } 208 209 /* Then let the driver override it */ 210 if (drv->bdrv_refresh_limits) { 211 drv->bdrv_refresh_limits(bs, errp); 212 if (*errp) { 213 return; 214 } 215 } 216 217 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 218 error_setg(errp, "Driver requires too large request alignment"); 219 } 220 } 221 222 /** 223 * The copy-on-read flag is actually a reference count so multiple users may 224 * use the feature without worrying about clobbering its previous state. 225 * Copy-on-read stays enabled until all users have called to disable it. 226 */ 227 void bdrv_enable_copy_on_read(BlockDriverState *bs) 228 { 229 IO_CODE(); 230 qatomic_inc(&bs->copy_on_read); 231 } 232 233 void bdrv_disable_copy_on_read(BlockDriverState *bs) 234 { 235 int old = qatomic_fetch_dec(&bs->copy_on_read); 236 IO_CODE(); 237 assert(old >= 1); 238 } 239 240 typedef struct { 241 Coroutine *co; 242 BlockDriverState *bs; 243 bool done; 244 bool begin; 245 bool recursive; 246 bool poll; 247 BdrvChild *parent; 248 bool ignore_bds_parents; 249 int *drained_end_counter; 250 } BdrvCoDrainData; 251 252 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) 253 { 254 BdrvCoDrainData *data = opaque; 255 BlockDriverState *bs = data->bs; 256 257 if (data->begin) { 258 bs->drv->bdrv_co_drain_begin(bs); 259 } else { 260 bs->drv->bdrv_co_drain_end(bs); 261 } 262 263 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */ 264 qatomic_mb_set(&data->done, true); 265 if (!data->begin) { 266 qatomic_dec(data->drained_end_counter); 267 } 268 bdrv_dec_in_flight(bs); 269 270 g_free(data); 271 } 272 273 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ 274 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, 275 int *drained_end_counter) 276 { 277 BdrvCoDrainData *data; 278 279 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || 280 (!begin && !bs->drv->bdrv_co_drain_end)) { 281 return; 282 } 283 284 data = g_new(BdrvCoDrainData, 1); 285 *data = (BdrvCoDrainData) { 286 .bs = bs, 287 .done = false, 288 .begin = begin, 289 .drained_end_counter = drained_end_counter, 290 }; 291 292 if (!begin) { 293 qatomic_inc(drained_end_counter); 294 } 295 296 /* Make sure the driver callback completes during the polling phase for 297 * drain_begin. */ 298 bdrv_inc_in_flight(bs); 299 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data); 300 aio_co_schedule(bdrv_get_aio_context(bs), data->co); 301 } 302 303 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 304 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive, 305 BdrvChild *ignore_parent, bool ignore_bds_parents) 306 { 307 BdrvChild *child, *next; 308 IO_OR_GS_CODE(); 309 310 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 311 return true; 312 } 313 314 if (qatomic_read(&bs->in_flight)) { 315 return true; 316 } 317 318 if (recursive) { 319 assert(!ignore_bds_parents); 320 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 321 if (bdrv_drain_poll(child->bs, recursive, child, false)) { 322 return true; 323 } 324 } 325 } 326 327 return false; 328 } 329 330 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive, 331 BdrvChild *ignore_parent) 332 { 333 return bdrv_drain_poll(bs, recursive, ignore_parent, false); 334 } 335 336 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 337 BdrvChild *parent, bool ignore_bds_parents, 338 bool poll); 339 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 340 BdrvChild *parent, bool ignore_bds_parents, 341 int *drained_end_counter); 342 343 static void bdrv_co_drain_bh_cb(void *opaque) 344 { 345 BdrvCoDrainData *data = opaque; 346 Coroutine *co = data->co; 347 BlockDriverState *bs = data->bs; 348 349 if (bs) { 350 AioContext *ctx = bdrv_get_aio_context(bs); 351 aio_context_acquire(ctx); 352 bdrv_dec_in_flight(bs); 353 if (data->begin) { 354 assert(!data->drained_end_counter); 355 bdrv_do_drained_begin(bs, data->recursive, data->parent, 356 data->ignore_bds_parents, data->poll); 357 } else { 358 assert(!data->poll); 359 bdrv_do_drained_end(bs, data->recursive, data->parent, 360 data->ignore_bds_parents, 361 data->drained_end_counter); 362 } 363 aio_context_release(ctx); 364 } else { 365 assert(data->begin); 366 bdrv_drain_all_begin(); 367 } 368 369 data->done = true; 370 aio_co_wake(co); 371 } 372 373 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 374 bool begin, bool recursive, 375 BdrvChild *parent, 376 bool ignore_bds_parents, 377 bool poll, 378 int *drained_end_counter) 379 { 380 BdrvCoDrainData data; 381 Coroutine *self = qemu_coroutine_self(); 382 AioContext *ctx = bdrv_get_aio_context(bs); 383 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 384 385 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 386 * other coroutines run if they were queued by aio_co_enter(). */ 387 388 assert(qemu_in_coroutine()); 389 data = (BdrvCoDrainData) { 390 .co = self, 391 .bs = bs, 392 .done = false, 393 .begin = begin, 394 .recursive = recursive, 395 .parent = parent, 396 .ignore_bds_parents = ignore_bds_parents, 397 .poll = poll, 398 .drained_end_counter = drained_end_counter, 399 }; 400 401 if (bs) { 402 bdrv_inc_in_flight(bs); 403 } 404 405 /* 406 * Temporarily drop the lock across yield or we would get deadlocks. 407 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 408 * 409 * When we yield below, the lock for the current context will be 410 * released, so if this is actually the lock that protects bs, don't drop 411 * it a second time. 412 */ 413 if (ctx != co_ctx) { 414 aio_context_release(ctx); 415 } 416 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 417 418 qemu_coroutine_yield(); 419 /* If we are resumed from some other event (such as an aio completion or a 420 * timer callback), it is a bug in the caller that should be fixed. */ 421 assert(data.done); 422 423 /* Reaquire the AioContext of bs if we dropped it */ 424 if (ctx != co_ctx) { 425 aio_context_acquire(ctx); 426 } 427 } 428 429 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, 430 BdrvChild *parent, bool ignore_bds_parents) 431 { 432 IO_OR_GS_CODE(); 433 assert(!qemu_in_coroutine()); 434 435 /* Stop things in parent-to-child order */ 436 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 437 aio_disable_external(bdrv_get_aio_context(bs)); 438 } 439 440 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents); 441 bdrv_drain_invoke(bs, true, NULL); 442 } 443 444 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, 445 BdrvChild *parent, bool ignore_bds_parents, 446 bool poll) 447 { 448 BdrvChild *child, *next; 449 450 if (qemu_in_coroutine()) { 451 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents, 452 poll, NULL); 453 return; 454 } 455 456 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents); 457 458 if (recursive) { 459 assert(!ignore_bds_parents); 460 bs->recursive_quiesce_counter++; 461 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 462 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents, 463 false); 464 } 465 } 466 467 /* 468 * Wait for drained requests to finish. 469 * 470 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 471 * call is needed so things in this AioContext can make progress even 472 * though we don't return to the main AioContext loop - this automatically 473 * includes other nodes in the same AioContext and therefore all child 474 * nodes. 475 */ 476 if (poll) { 477 assert(!ignore_bds_parents); 478 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent)); 479 } 480 } 481 482 void bdrv_drained_begin(BlockDriverState *bs) 483 { 484 IO_OR_GS_CODE(); 485 bdrv_do_drained_begin(bs, false, NULL, false, true); 486 } 487 488 void bdrv_subtree_drained_begin(BlockDriverState *bs) 489 { 490 IO_OR_GS_CODE(); 491 bdrv_do_drained_begin(bs, true, NULL, false, true); 492 } 493 494 /** 495 * This function does not poll, nor must any of its recursively called 496 * functions. The *drained_end_counter pointee will be incremented 497 * once for every background operation scheduled, and decremented once 498 * the operation settles. Therefore, the pointer must remain valid 499 * until the pointee reaches 0. That implies that whoever sets up the 500 * pointee has to poll until it is 0. 501 * 502 * We use atomic operations to access *drained_end_counter, because 503 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of 504 * @bs may contain nodes in different AioContexts, 505 * (2) bdrv_drain_all_end() uses the same counter for all nodes, 506 * regardless of which AioContext they are in. 507 */ 508 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, 509 BdrvChild *parent, bool ignore_bds_parents, 510 int *drained_end_counter) 511 { 512 BdrvChild *child; 513 int old_quiesce_counter; 514 515 assert(drained_end_counter != NULL); 516 517 if (qemu_in_coroutine()) { 518 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents, 519 false, drained_end_counter); 520 return; 521 } 522 assert(bs->quiesce_counter > 0); 523 524 /* Re-enable things in child-to-parent order */ 525 bdrv_drain_invoke(bs, false, drained_end_counter); 526 bdrv_parent_drained_end(bs, parent, ignore_bds_parents, 527 drained_end_counter); 528 529 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 530 if (old_quiesce_counter == 1) { 531 aio_enable_external(bdrv_get_aio_context(bs)); 532 } 533 534 if (recursive) { 535 assert(!ignore_bds_parents); 536 bs->recursive_quiesce_counter--; 537 QLIST_FOREACH(child, &bs->children, next) { 538 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents, 539 drained_end_counter); 540 } 541 } 542 } 543 544 void bdrv_drained_end(BlockDriverState *bs) 545 { 546 int drained_end_counter = 0; 547 IO_OR_GS_CODE(); 548 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter); 549 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 550 } 551 552 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter) 553 { 554 IO_CODE(); 555 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter); 556 } 557 558 void bdrv_subtree_drained_end(BlockDriverState *bs) 559 { 560 int drained_end_counter = 0; 561 IO_OR_GS_CODE(); 562 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter); 563 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 564 } 565 566 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) 567 { 568 int i; 569 IO_OR_GS_CODE(); 570 571 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { 572 bdrv_do_drained_begin(child->bs, true, child, false, true); 573 } 574 } 575 576 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) 577 { 578 int drained_end_counter = 0; 579 int i; 580 IO_OR_GS_CODE(); 581 582 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { 583 bdrv_do_drained_end(child->bs, true, child, false, 584 &drained_end_counter); 585 } 586 587 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0); 588 } 589 590 /* 591 * Wait for pending requests to complete on a single BlockDriverState subtree, 592 * and suspend block driver's internal I/O until next request arrives. 593 * 594 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState 595 * AioContext. 596 */ 597 void coroutine_fn bdrv_co_drain(BlockDriverState *bs) 598 { 599 IO_OR_GS_CODE(); 600 assert(qemu_in_coroutine()); 601 bdrv_drained_begin(bs); 602 bdrv_drained_end(bs); 603 } 604 605 void bdrv_drain(BlockDriverState *bs) 606 { 607 IO_OR_GS_CODE(); 608 bdrv_drained_begin(bs); 609 bdrv_drained_end(bs); 610 } 611 612 static void bdrv_drain_assert_idle(BlockDriverState *bs) 613 { 614 BdrvChild *child, *next; 615 616 assert(qatomic_read(&bs->in_flight) == 0); 617 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 618 bdrv_drain_assert_idle(child->bs); 619 } 620 } 621 622 unsigned int bdrv_drain_all_count = 0; 623 624 static bool bdrv_drain_all_poll(void) 625 { 626 BlockDriverState *bs = NULL; 627 bool result = false; 628 GLOBAL_STATE_CODE(); 629 630 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 631 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 632 while ((bs = bdrv_next_all_states(bs))) { 633 AioContext *aio_context = bdrv_get_aio_context(bs); 634 aio_context_acquire(aio_context); 635 result |= bdrv_drain_poll(bs, false, NULL, true); 636 aio_context_release(aio_context); 637 } 638 639 return result; 640 } 641 642 /* 643 * Wait for pending requests to complete across all BlockDriverStates 644 * 645 * This function does not flush data to disk, use bdrv_flush_all() for that 646 * after calling this function. 647 * 648 * This pauses all block jobs and disables external clients. It must 649 * be paired with bdrv_drain_all_end(). 650 * 651 * NOTE: no new block jobs or BlockDriverStates can be created between 652 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 653 */ 654 void bdrv_drain_all_begin(void) 655 { 656 BlockDriverState *bs = NULL; 657 GLOBAL_STATE_CODE(); 658 659 if (qemu_in_coroutine()) { 660 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL); 661 return; 662 } 663 664 /* 665 * bdrv queue is managed by record/replay, 666 * waiting for finishing the I/O requests may 667 * be infinite 668 */ 669 if (replay_events_enabled()) { 670 return; 671 } 672 673 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 674 * loop AioContext, so make sure we're in the main context. */ 675 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 676 assert(bdrv_drain_all_count < INT_MAX); 677 bdrv_drain_all_count++; 678 679 /* Quiesce all nodes, without polling in-flight requests yet. The graph 680 * cannot change during this loop. */ 681 while ((bs = bdrv_next_all_states(bs))) { 682 AioContext *aio_context = bdrv_get_aio_context(bs); 683 684 aio_context_acquire(aio_context); 685 bdrv_do_drained_begin(bs, false, NULL, true, false); 686 aio_context_release(aio_context); 687 } 688 689 /* Now poll the in-flight requests */ 690 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 691 692 while ((bs = bdrv_next_all_states(bs))) { 693 bdrv_drain_assert_idle(bs); 694 } 695 } 696 697 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 698 { 699 int drained_end_counter = 0; 700 GLOBAL_STATE_CODE(); 701 702 g_assert(bs->quiesce_counter > 0); 703 g_assert(!bs->refcnt); 704 705 while (bs->quiesce_counter) { 706 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 707 } 708 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0); 709 } 710 711 void bdrv_drain_all_end(void) 712 { 713 BlockDriverState *bs = NULL; 714 int drained_end_counter = 0; 715 GLOBAL_STATE_CODE(); 716 717 /* 718 * bdrv queue is managed by record/replay, 719 * waiting for finishing the I/O requests may 720 * be endless 721 */ 722 if (replay_events_enabled()) { 723 return; 724 } 725 726 while ((bs = bdrv_next_all_states(bs))) { 727 AioContext *aio_context = bdrv_get_aio_context(bs); 728 729 aio_context_acquire(aio_context); 730 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter); 731 aio_context_release(aio_context); 732 } 733 734 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 735 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0); 736 737 assert(bdrv_drain_all_count > 0); 738 bdrv_drain_all_count--; 739 } 740 741 void bdrv_drain_all(void) 742 { 743 GLOBAL_STATE_CODE(); 744 bdrv_drain_all_begin(); 745 bdrv_drain_all_end(); 746 } 747 748 /** 749 * Remove an active request from the tracked requests list 750 * 751 * This function should be called when a tracked request is completing. 752 */ 753 static void tracked_request_end(BdrvTrackedRequest *req) 754 { 755 if (req->serialising) { 756 qatomic_dec(&req->bs->serialising_in_flight); 757 } 758 759 qemu_co_mutex_lock(&req->bs->reqs_lock); 760 QLIST_REMOVE(req, list); 761 qemu_co_queue_restart_all(&req->wait_queue); 762 qemu_co_mutex_unlock(&req->bs->reqs_lock); 763 } 764 765 /** 766 * Add an active request to the tracked requests list 767 */ 768 static void tracked_request_begin(BdrvTrackedRequest *req, 769 BlockDriverState *bs, 770 int64_t offset, 771 int64_t bytes, 772 enum BdrvTrackedRequestType type) 773 { 774 bdrv_check_request(offset, bytes, &error_abort); 775 776 *req = (BdrvTrackedRequest){ 777 .bs = bs, 778 .offset = offset, 779 .bytes = bytes, 780 .type = type, 781 .co = qemu_coroutine_self(), 782 .serialising = false, 783 .overlap_offset = offset, 784 .overlap_bytes = bytes, 785 }; 786 787 qemu_co_queue_init(&req->wait_queue); 788 789 qemu_co_mutex_lock(&bs->reqs_lock); 790 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 791 qemu_co_mutex_unlock(&bs->reqs_lock); 792 } 793 794 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 795 int64_t offset, int64_t bytes) 796 { 797 bdrv_check_request(offset, bytes, &error_abort); 798 799 /* aaaa bbbb */ 800 if (offset >= req->overlap_offset + req->overlap_bytes) { 801 return false; 802 } 803 /* bbbb aaaa */ 804 if (req->overlap_offset >= offset + bytes) { 805 return false; 806 } 807 return true; 808 } 809 810 /* Called with self->bs->reqs_lock held */ 811 static BdrvTrackedRequest * 812 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 813 { 814 BdrvTrackedRequest *req; 815 816 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 817 if (req == self || (!req->serialising && !self->serialising)) { 818 continue; 819 } 820 if (tracked_request_overlaps(req, self->overlap_offset, 821 self->overlap_bytes)) 822 { 823 /* 824 * Hitting this means there was a reentrant request, for 825 * example, a block driver issuing nested requests. This must 826 * never happen since it means deadlock. 827 */ 828 assert(qemu_coroutine_self() != req->co); 829 830 /* 831 * If the request is already (indirectly) waiting for us, or 832 * will wait for us as soon as it wakes up, then just go on 833 * (instead of producing a deadlock in the former case). 834 */ 835 if (!req->waiting_for) { 836 return req; 837 } 838 } 839 } 840 841 return NULL; 842 } 843 844 /* Called with self->bs->reqs_lock held */ 845 static bool coroutine_fn 846 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 847 { 848 BdrvTrackedRequest *req; 849 bool waited = false; 850 851 while ((req = bdrv_find_conflicting_request(self))) { 852 self->waiting_for = req; 853 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 854 self->waiting_for = NULL; 855 waited = true; 856 } 857 858 return waited; 859 } 860 861 /* Called with req->bs->reqs_lock held */ 862 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 863 uint64_t align) 864 { 865 int64_t overlap_offset = req->offset & ~(align - 1); 866 int64_t overlap_bytes = 867 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 868 869 bdrv_check_request(req->offset, req->bytes, &error_abort); 870 871 if (!req->serialising) { 872 qatomic_inc(&req->bs->serialising_in_flight); 873 req->serialising = true; 874 } 875 876 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 877 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 878 } 879 880 /** 881 * Return the tracked request on @bs for the current coroutine, or 882 * NULL if there is none. 883 */ 884 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 885 { 886 BdrvTrackedRequest *req; 887 Coroutine *self = qemu_coroutine_self(); 888 IO_CODE(); 889 890 QLIST_FOREACH(req, &bs->tracked_requests, list) { 891 if (req->co == self) { 892 return req; 893 } 894 } 895 896 return NULL; 897 } 898 899 /** 900 * Round a region to cluster boundaries 901 */ 902 void bdrv_round_to_clusters(BlockDriverState *bs, 903 int64_t offset, int64_t bytes, 904 int64_t *cluster_offset, 905 int64_t *cluster_bytes) 906 { 907 BlockDriverInfo bdi; 908 IO_CODE(); 909 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 910 *cluster_offset = offset; 911 *cluster_bytes = bytes; 912 } else { 913 int64_t c = bdi.cluster_size; 914 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 915 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 916 } 917 } 918 919 static int bdrv_get_cluster_size(BlockDriverState *bs) 920 { 921 BlockDriverInfo bdi; 922 int ret; 923 924 ret = bdrv_get_info(bs, &bdi); 925 if (ret < 0 || bdi.cluster_size == 0) { 926 return bs->bl.request_alignment; 927 } else { 928 return bdi.cluster_size; 929 } 930 } 931 932 void bdrv_inc_in_flight(BlockDriverState *bs) 933 { 934 IO_CODE(); 935 qatomic_inc(&bs->in_flight); 936 } 937 938 void bdrv_wakeup(BlockDriverState *bs) 939 { 940 IO_CODE(); 941 aio_wait_kick(); 942 } 943 944 void bdrv_dec_in_flight(BlockDriverState *bs) 945 { 946 IO_CODE(); 947 qatomic_dec(&bs->in_flight); 948 bdrv_wakeup(bs); 949 } 950 951 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 952 { 953 BlockDriverState *bs = self->bs; 954 bool waited = false; 955 956 if (!qatomic_read(&bs->serialising_in_flight)) { 957 return false; 958 } 959 960 qemu_co_mutex_lock(&bs->reqs_lock); 961 waited = bdrv_wait_serialising_requests_locked(self); 962 qemu_co_mutex_unlock(&bs->reqs_lock); 963 964 return waited; 965 } 966 967 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 968 uint64_t align) 969 { 970 bool waited; 971 IO_CODE(); 972 973 qemu_co_mutex_lock(&req->bs->reqs_lock); 974 975 tracked_request_set_serialising(req, align); 976 waited = bdrv_wait_serialising_requests_locked(req); 977 978 qemu_co_mutex_unlock(&req->bs->reqs_lock); 979 980 return waited; 981 } 982 983 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 984 QEMUIOVector *qiov, size_t qiov_offset, 985 Error **errp) 986 { 987 /* 988 * Check generic offset/bytes correctness 989 */ 990 991 if (offset < 0) { 992 error_setg(errp, "offset is negative: %" PRIi64, offset); 993 return -EIO; 994 } 995 996 if (bytes < 0) { 997 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 998 return -EIO; 999 } 1000 1001 if (bytes > BDRV_MAX_LENGTH) { 1002 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 1003 bytes, BDRV_MAX_LENGTH); 1004 return -EIO; 1005 } 1006 1007 if (offset > BDRV_MAX_LENGTH) { 1008 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 1009 offset, BDRV_MAX_LENGTH); 1010 return -EIO; 1011 } 1012 1013 if (offset > BDRV_MAX_LENGTH - bytes) { 1014 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 1015 "exceeds maximum(%" PRIi64 ")", offset, bytes, 1016 BDRV_MAX_LENGTH); 1017 return -EIO; 1018 } 1019 1020 if (!qiov) { 1021 return 0; 1022 } 1023 1024 /* 1025 * Check qiov and qiov_offset 1026 */ 1027 1028 if (qiov_offset > qiov->size) { 1029 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 1030 qiov_offset, qiov->size); 1031 return -EIO; 1032 } 1033 1034 if (bytes > qiov->size - qiov_offset) { 1035 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 1036 "vector size(%zu)", bytes, qiov_offset, qiov->size); 1037 return -EIO; 1038 } 1039 1040 return 0; 1041 } 1042 1043 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 1044 { 1045 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 1046 } 1047 1048 static int bdrv_check_request32(int64_t offset, int64_t bytes, 1049 QEMUIOVector *qiov, size_t qiov_offset) 1050 { 1051 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 1052 if (ret < 0) { 1053 return ret; 1054 } 1055 1056 if (bytes > BDRV_REQUEST_MAX_BYTES) { 1057 return -EIO; 1058 } 1059 1060 return 0; 1061 } 1062 1063 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, 1064 int64_t bytes, BdrvRequestFlags flags) 1065 { 1066 IO_CODE(); 1067 return bdrv_pwritev(child, offset, bytes, NULL, 1068 BDRV_REQ_ZERO_WRITE | flags); 1069 } 1070 1071 /* 1072 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 1073 * The operation is sped up by checking the block status and only writing 1074 * zeroes to the device if they currently do not return zeroes. Optional 1075 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 1076 * BDRV_REQ_FUA). 1077 * 1078 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 1079 */ 1080 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 1081 { 1082 int ret; 1083 int64_t target_size, bytes, offset = 0; 1084 BlockDriverState *bs = child->bs; 1085 IO_CODE(); 1086 1087 target_size = bdrv_getlength(bs); 1088 if (target_size < 0) { 1089 return target_size; 1090 } 1091 1092 for (;;) { 1093 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 1094 if (bytes <= 0) { 1095 return 0; 1096 } 1097 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 1098 if (ret < 0) { 1099 return ret; 1100 } 1101 if (ret & BDRV_BLOCK_ZERO) { 1102 offset += bytes; 1103 continue; 1104 } 1105 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 1106 if (ret < 0) { 1107 return ret; 1108 } 1109 offset += bytes; 1110 } 1111 } 1112 1113 /* See bdrv_pwrite() for the return codes */ 1114 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes) 1115 { 1116 int ret; 1117 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1118 IO_CODE(); 1119 1120 if (bytes < 0) { 1121 return -EINVAL; 1122 } 1123 1124 ret = bdrv_preadv(child, offset, bytes, &qiov, 0); 1125 1126 return ret < 0 ? ret : bytes; 1127 } 1128 1129 /* Return no. of bytes on success or < 0 on error. Important errors are: 1130 -EIO generic I/O error (may happen for all errors) 1131 -ENOMEDIUM No media inserted. 1132 -EINVAL Invalid offset or number of bytes 1133 -EACCES Trying to write a read-only device 1134 */ 1135 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, 1136 int64_t bytes) 1137 { 1138 int ret; 1139 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes); 1140 IO_CODE(); 1141 1142 if (bytes < 0) { 1143 return -EINVAL; 1144 } 1145 1146 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0); 1147 1148 return ret < 0 ? ret : bytes; 1149 } 1150 1151 /* 1152 * Writes to the file and ensures that no writes are reordered across this 1153 * request (acts as a barrier) 1154 * 1155 * Returns 0 on success, -errno in error cases. 1156 */ 1157 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, 1158 const void *buf, int64_t count) 1159 { 1160 int ret; 1161 IO_CODE(); 1162 1163 ret = bdrv_pwrite(child, offset, buf, count); 1164 if (ret < 0) { 1165 return ret; 1166 } 1167 1168 ret = bdrv_flush(child->bs); 1169 if (ret < 0) { 1170 return ret; 1171 } 1172 1173 return 0; 1174 } 1175 1176 typedef struct CoroutineIOCompletion { 1177 Coroutine *coroutine; 1178 int ret; 1179 } CoroutineIOCompletion; 1180 1181 static void bdrv_co_io_em_complete(void *opaque, int ret) 1182 { 1183 CoroutineIOCompletion *co = opaque; 1184 1185 co->ret = ret; 1186 aio_co_wake(co->coroutine); 1187 } 1188 1189 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 1190 int64_t offset, int64_t bytes, 1191 QEMUIOVector *qiov, 1192 size_t qiov_offset, int flags) 1193 { 1194 BlockDriver *drv = bs->drv; 1195 int64_t sector_num; 1196 unsigned int nb_sectors; 1197 QEMUIOVector local_qiov; 1198 int ret; 1199 1200 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1201 assert(!(flags & ~BDRV_REQ_MASK)); 1202 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1203 1204 if (!drv) { 1205 return -ENOMEDIUM; 1206 } 1207 1208 if (drv->bdrv_co_preadv_part) { 1209 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 1210 flags); 1211 } 1212 1213 if (qiov_offset > 0 || bytes != qiov->size) { 1214 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1215 qiov = &local_qiov; 1216 } 1217 1218 if (drv->bdrv_co_preadv) { 1219 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 1220 goto out; 1221 } 1222 1223 if (drv->bdrv_aio_preadv) { 1224 BlockAIOCB *acb; 1225 CoroutineIOCompletion co = { 1226 .coroutine = qemu_coroutine_self(), 1227 }; 1228 1229 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1230 bdrv_co_io_em_complete, &co); 1231 if (acb == NULL) { 1232 ret = -EIO; 1233 goto out; 1234 } else { 1235 qemu_coroutine_yield(); 1236 ret = co.ret; 1237 goto out; 1238 } 1239 } 1240 1241 sector_num = offset >> BDRV_SECTOR_BITS; 1242 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1243 1244 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1245 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1246 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1247 assert(drv->bdrv_co_readv); 1248 1249 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1250 1251 out: 1252 if (qiov == &local_qiov) { 1253 qemu_iovec_destroy(&local_qiov); 1254 } 1255 1256 return ret; 1257 } 1258 1259 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1260 int64_t offset, int64_t bytes, 1261 QEMUIOVector *qiov, 1262 size_t qiov_offset, 1263 BdrvRequestFlags flags) 1264 { 1265 BlockDriver *drv = bs->drv; 1266 int64_t sector_num; 1267 unsigned int nb_sectors; 1268 QEMUIOVector local_qiov; 1269 int ret; 1270 1271 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1272 assert(!(flags & ~BDRV_REQ_MASK)); 1273 assert(!(flags & BDRV_REQ_NO_FALLBACK)); 1274 1275 if (!drv) { 1276 return -ENOMEDIUM; 1277 } 1278 1279 if (drv->bdrv_co_pwritev_part) { 1280 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1281 flags & bs->supported_write_flags); 1282 flags &= ~bs->supported_write_flags; 1283 goto emulate_flags; 1284 } 1285 1286 if (qiov_offset > 0 || bytes != qiov->size) { 1287 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1288 qiov = &local_qiov; 1289 } 1290 1291 if (drv->bdrv_co_pwritev) { 1292 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, 1293 flags & bs->supported_write_flags); 1294 flags &= ~bs->supported_write_flags; 1295 goto emulate_flags; 1296 } 1297 1298 if (drv->bdrv_aio_pwritev) { 1299 BlockAIOCB *acb; 1300 CoroutineIOCompletion co = { 1301 .coroutine = qemu_coroutine_self(), 1302 }; 1303 1304 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, 1305 flags & bs->supported_write_flags, 1306 bdrv_co_io_em_complete, &co); 1307 flags &= ~bs->supported_write_flags; 1308 if (acb == NULL) { 1309 ret = -EIO; 1310 } else { 1311 qemu_coroutine_yield(); 1312 ret = co.ret; 1313 } 1314 goto emulate_flags; 1315 } 1316 1317 sector_num = offset >> BDRV_SECTOR_BITS; 1318 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1319 1320 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1321 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1322 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1323 1324 assert(drv->bdrv_co_writev); 1325 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, 1326 flags & bs->supported_write_flags); 1327 flags &= ~bs->supported_write_flags; 1328 1329 emulate_flags: 1330 if (ret == 0 && (flags & BDRV_REQ_FUA)) { 1331 ret = bdrv_co_flush(bs); 1332 } 1333 1334 if (qiov == &local_qiov) { 1335 qemu_iovec_destroy(&local_qiov); 1336 } 1337 1338 return ret; 1339 } 1340 1341 static int coroutine_fn 1342 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1343 int64_t bytes, QEMUIOVector *qiov, 1344 size_t qiov_offset) 1345 { 1346 BlockDriver *drv = bs->drv; 1347 QEMUIOVector local_qiov; 1348 int ret; 1349 1350 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1351 1352 if (!drv) { 1353 return -ENOMEDIUM; 1354 } 1355 1356 if (!block_driver_can_compress(drv)) { 1357 return -ENOTSUP; 1358 } 1359 1360 if (drv->bdrv_co_pwritev_compressed_part) { 1361 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1362 qiov, qiov_offset); 1363 } 1364 1365 if (qiov_offset == 0) { 1366 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1367 } 1368 1369 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1370 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1371 qemu_iovec_destroy(&local_qiov); 1372 1373 return ret; 1374 } 1375 1376 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1377 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1378 size_t qiov_offset, int flags) 1379 { 1380 BlockDriverState *bs = child->bs; 1381 1382 /* Perform I/O through a temporary buffer so that users who scribble over 1383 * their read buffer while the operation is in progress do not end up 1384 * modifying the image file. This is critical for zero-copy guest I/O 1385 * where anything might happen inside guest memory. 1386 */ 1387 void *bounce_buffer = NULL; 1388 1389 BlockDriver *drv = bs->drv; 1390 int64_t cluster_offset; 1391 int64_t cluster_bytes; 1392 int64_t skip_bytes; 1393 int ret; 1394 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1395 BDRV_REQUEST_MAX_BYTES); 1396 int64_t progress = 0; 1397 bool skip_write; 1398 1399 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1400 1401 if (!drv) { 1402 return -ENOMEDIUM; 1403 } 1404 1405 /* 1406 * Do not write anything when the BDS is inactive. That is not 1407 * allowed, and it would not help. 1408 */ 1409 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1410 1411 /* FIXME We cannot require callers to have write permissions when all they 1412 * are doing is a read request. If we did things right, write permissions 1413 * would be obtained anyway, but internally by the copy-on-read code. As 1414 * long as it is implemented here rather than in a separate filter driver, 1415 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1416 * it could request permissions. Therefore we have to bypass the permission 1417 * system for the moment. */ 1418 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1419 1420 /* Cover entire cluster so no additional backing file I/O is required when 1421 * allocating cluster in the image file. Note that this value may exceed 1422 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1423 * is one reason we loop rather than doing it all at once. 1424 */ 1425 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1426 skip_bytes = offset - cluster_offset; 1427 1428 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1429 cluster_offset, cluster_bytes); 1430 1431 while (cluster_bytes) { 1432 int64_t pnum; 1433 1434 if (skip_write) { 1435 ret = 1; /* "already allocated", so nothing will be copied */ 1436 pnum = MIN(cluster_bytes, max_transfer); 1437 } else { 1438 ret = bdrv_is_allocated(bs, cluster_offset, 1439 MIN(cluster_bytes, max_transfer), &pnum); 1440 if (ret < 0) { 1441 /* 1442 * Safe to treat errors in querying allocation as if 1443 * unallocated; we'll probably fail again soon on the 1444 * read, but at least that will set a decent errno. 1445 */ 1446 pnum = MIN(cluster_bytes, max_transfer); 1447 } 1448 1449 /* Stop at EOF if the image ends in the middle of the cluster */ 1450 if (ret == 0 && pnum == 0) { 1451 assert(progress >= bytes); 1452 break; 1453 } 1454 1455 assert(skip_bytes < pnum); 1456 } 1457 1458 if (ret <= 0) { 1459 QEMUIOVector local_qiov; 1460 1461 /* Must copy-on-read; use the bounce buffer */ 1462 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1463 if (!bounce_buffer) { 1464 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1465 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1466 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1467 1468 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1469 if (!bounce_buffer) { 1470 ret = -ENOMEM; 1471 goto err; 1472 } 1473 } 1474 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1475 1476 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1477 &local_qiov, 0, 0); 1478 if (ret < 0) { 1479 goto err; 1480 } 1481 1482 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1483 if (drv->bdrv_co_pwrite_zeroes && 1484 buffer_is_zero(bounce_buffer, pnum)) { 1485 /* FIXME: Should we (perhaps conditionally) be setting 1486 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1487 * that still correctly reads as zero? */ 1488 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1489 BDRV_REQ_WRITE_UNCHANGED); 1490 } else { 1491 /* This does not change the data on the disk, it is not 1492 * necessary to flush even in cache=writethrough mode. 1493 */ 1494 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1495 &local_qiov, 0, 1496 BDRV_REQ_WRITE_UNCHANGED); 1497 } 1498 1499 if (ret < 0) { 1500 /* It might be okay to ignore write errors for guest 1501 * requests. If this is a deliberate copy-on-read 1502 * then we don't want to ignore the error. Simply 1503 * report it in all cases. 1504 */ 1505 goto err; 1506 } 1507 1508 if (!(flags & BDRV_REQ_PREFETCH)) { 1509 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1510 bounce_buffer + skip_bytes, 1511 MIN(pnum - skip_bytes, bytes - progress)); 1512 } 1513 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1514 /* Read directly into the destination */ 1515 ret = bdrv_driver_preadv(bs, offset + progress, 1516 MIN(pnum - skip_bytes, bytes - progress), 1517 qiov, qiov_offset + progress, 0); 1518 if (ret < 0) { 1519 goto err; 1520 } 1521 } 1522 1523 cluster_offset += pnum; 1524 cluster_bytes -= pnum; 1525 progress += pnum - skip_bytes; 1526 skip_bytes = 0; 1527 } 1528 ret = 0; 1529 1530 err: 1531 qemu_vfree(bounce_buffer); 1532 return ret; 1533 } 1534 1535 /* 1536 * Forwards an already correctly aligned request to the BlockDriver. This 1537 * handles copy on read, zeroing after EOF, and fragmentation of large 1538 * reads; any other features must be implemented by the caller. 1539 */ 1540 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1541 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1542 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1543 { 1544 BlockDriverState *bs = child->bs; 1545 int64_t total_bytes, max_bytes; 1546 int ret = 0; 1547 int64_t bytes_remaining = bytes; 1548 int max_transfer; 1549 1550 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1551 assert(is_power_of_2(align)); 1552 assert((offset & (align - 1)) == 0); 1553 assert((bytes & (align - 1)) == 0); 1554 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1555 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1556 align); 1557 1558 /* TODO: We would need a per-BDS .supported_read_flags and 1559 * potential fallback support, if we ever implement any read flags 1560 * to pass through to drivers. For now, there aren't any 1561 * passthrough flags. */ 1562 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH))); 1563 1564 /* Handle Copy on Read and associated serialisation */ 1565 if (flags & BDRV_REQ_COPY_ON_READ) { 1566 /* If we touch the same cluster it counts as an overlap. This 1567 * guarantees that allocating writes will be serialized and not race 1568 * with each other for the same cluster. For example, in copy-on-read 1569 * it ensures that the CoR read and write operations are atomic and 1570 * guest writes cannot interleave between them. */ 1571 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1572 } else { 1573 bdrv_wait_serialising_requests(req); 1574 } 1575 1576 if (flags & BDRV_REQ_COPY_ON_READ) { 1577 int64_t pnum; 1578 1579 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1580 flags &= ~BDRV_REQ_COPY_ON_READ; 1581 1582 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1583 if (ret < 0) { 1584 goto out; 1585 } 1586 1587 if (!ret || pnum != bytes) { 1588 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1589 qiov, qiov_offset, flags); 1590 goto out; 1591 } else if (flags & BDRV_REQ_PREFETCH) { 1592 goto out; 1593 } 1594 } 1595 1596 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1597 total_bytes = bdrv_getlength(bs); 1598 if (total_bytes < 0) { 1599 ret = total_bytes; 1600 goto out; 1601 } 1602 1603 assert(!(flags & ~bs->supported_read_flags)); 1604 1605 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1606 if (bytes <= max_bytes && bytes <= max_transfer) { 1607 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1608 goto out; 1609 } 1610 1611 while (bytes_remaining) { 1612 int64_t num; 1613 1614 if (max_bytes) { 1615 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1616 assert(num); 1617 1618 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1619 num, qiov, 1620 qiov_offset + bytes - bytes_remaining, 1621 flags); 1622 max_bytes -= num; 1623 } else { 1624 num = bytes_remaining; 1625 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1626 0, bytes_remaining); 1627 } 1628 if (ret < 0) { 1629 goto out; 1630 } 1631 bytes_remaining -= num; 1632 } 1633 1634 out: 1635 return ret < 0 ? ret : 0; 1636 } 1637 1638 /* 1639 * Request padding 1640 * 1641 * |<---- align ----->| |<----- align ---->| 1642 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1643 * | | | | | | 1644 * -*----------$-------*-------- ... --------*-----$------------*--- 1645 * | | | | | | 1646 * | offset | | end | 1647 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1648 * [buf ... ) [tail_buf ) 1649 * 1650 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1651 * is placed at the beginning of @buf and @tail at the @end. 1652 * 1653 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1654 * around tail, if tail exists. 1655 * 1656 * @merge_reads is true for small requests, 1657 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1658 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1659 */ 1660 typedef struct BdrvRequestPadding { 1661 uint8_t *buf; 1662 size_t buf_len; 1663 uint8_t *tail_buf; 1664 size_t head; 1665 size_t tail; 1666 bool merge_reads; 1667 QEMUIOVector local_qiov; 1668 } BdrvRequestPadding; 1669 1670 static bool bdrv_init_padding(BlockDriverState *bs, 1671 int64_t offset, int64_t bytes, 1672 BdrvRequestPadding *pad) 1673 { 1674 int64_t align = bs->bl.request_alignment; 1675 int64_t sum; 1676 1677 bdrv_check_request(offset, bytes, &error_abort); 1678 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1679 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1680 1681 memset(pad, 0, sizeof(*pad)); 1682 1683 pad->head = offset & (align - 1); 1684 pad->tail = ((offset + bytes) & (align - 1)); 1685 if (pad->tail) { 1686 pad->tail = align - pad->tail; 1687 } 1688 1689 if (!pad->head && !pad->tail) { 1690 return false; 1691 } 1692 1693 assert(bytes); /* Nothing good in aligning zero-length requests */ 1694 1695 sum = pad->head + bytes + pad->tail; 1696 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1697 pad->buf = qemu_blockalign(bs, pad->buf_len); 1698 pad->merge_reads = sum == pad->buf_len; 1699 if (pad->tail) { 1700 pad->tail_buf = pad->buf + pad->buf_len - align; 1701 } 1702 1703 return true; 1704 } 1705 1706 static int bdrv_padding_rmw_read(BdrvChild *child, 1707 BdrvTrackedRequest *req, 1708 BdrvRequestPadding *pad, 1709 bool zero_middle) 1710 { 1711 QEMUIOVector local_qiov; 1712 BlockDriverState *bs = child->bs; 1713 uint64_t align = bs->bl.request_alignment; 1714 int ret; 1715 1716 assert(req->serialising && pad->buf); 1717 1718 if (pad->head || pad->merge_reads) { 1719 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1720 1721 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1722 1723 if (pad->head) { 1724 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1725 } 1726 if (pad->merge_reads && pad->tail) { 1727 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1728 } 1729 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1730 align, &local_qiov, 0, 0); 1731 if (ret < 0) { 1732 return ret; 1733 } 1734 if (pad->head) { 1735 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1736 } 1737 if (pad->merge_reads && pad->tail) { 1738 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1739 } 1740 1741 if (pad->merge_reads) { 1742 goto zero_mem; 1743 } 1744 } 1745 1746 if (pad->tail) { 1747 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1748 1749 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1750 ret = bdrv_aligned_preadv( 1751 child, req, 1752 req->overlap_offset + req->overlap_bytes - align, 1753 align, align, &local_qiov, 0, 0); 1754 if (ret < 0) { 1755 return ret; 1756 } 1757 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1758 } 1759 1760 zero_mem: 1761 if (zero_middle) { 1762 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1763 } 1764 1765 return 0; 1766 } 1767 1768 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1769 { 1770 if (pad->buf) { 1771 qemu_vfree(pad->buf); 1772 qemu_iovec_destroy(&pad->local_qiov); 1773 } 1774 memset(pad, 0, sizeof(*pad)); 1775 } 1776 1777 /* 1778 * bdrv_pad_request 1779 * 1780 * Exchange request parameters with padded request if needed. Don't include RMW 1781 * read of padding, bdrv_padding_rmw_read() should be called separately if 1782 * needed. 1783 * 1784 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1785 * - on function start they represent original request 1786 * - on failure or when padding is not needed they are unchanged 1787 * - on success when padding is needed they represent padded request 1788 */ 1789 static int bdrv_pad_request(BlockDriverState *bs, 1790 QEMUIOVector **qiov, size_t *qiov_offset, 1791 int64_t *offset, int64_t *bytes, 1792 BdrvRequestPadding *pad, bool *padded) 1793 { 1794 int ret; 1795 1796 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1797 1798 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1799 if (padded) { 1800 *padded = false; 1801 } 1802 return 0; 1803 } 1804 1805 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1806 *qiov, *qiov_offset, *bytes, 1807 pad->buf + pad->buf_len - pad->tail, 1808 pad->tail); 1809 if (ret < 0) { 1810 bdrv_padding_destroy(pad); 1811 return ret; 1812 } 1813 *bytes += pad->head + pad->tail; 1814 *offset -= pad->head; 1815 *qiov = &pad->local_qiov; 1816 *qiov_offset = 0; 1817 if (padded) { 1818 *padded = true; 1819 } 1820 1821 return 0; 1822 } 1823 1824 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1825 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1826 BdrvRequestFlags flags) 1827 { 1828 IO_CODE(); 1829 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1830 } 1831 1832 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1833 int64_t offset, int64_t bytes, 1834 QEMUIOVector *qiov, size_t qiov_offset, 1835 BdrvRequestFlags flags) 1836 { 1837 BlockDriverState *bs = child->bs; 1838 BdrvTrackedRequest req; 1839 BdrvRequestPadding pad; 1840 int ret; 1841 IO_CODE(); 1842 1843 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1844 1845 if (!bdrv_is_inserted(bs)) { 1846 return -ENOMEDIUM; 1847 } 1848 1849 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1850 if (ret < 0) { 1851 return ret; 1852 } 1853 1854 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1855 /* 1856 * Aligning zero request is nonsense. Even if driver has special meaning 1857 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1858 * it to driver due to request_alignment. 1859 * 1860 * Still, no reason to return an error if someone do unaligned 1861 * zero-length read occasionally. 1862 */ 1863 return 0; 1864 } 1865 1866 bdrv_inc_in_flight(bs); 1867 1868 /* Don't do copy-on-read if we read data before write operation */ 1869 if (qatomic_read(&bs->copy_on_read)) { 1870 flags |= BDRV_REQ_COPY_ON_READ; 1871 } 1872 1873 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1874 NULL); 1875 if (ret < 0) { 1876 goto fail; 1877 } 1878 1879 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1880 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1881 bs->bl.request_alignment, 1882 qiov, qiov_offset, flags); 1883 tracked_request_end(&req); 1884 bdrv_padding_destroy(&pad); 1885 1886 fail: 1887 bdrv_dec_in_flight(bs); 1888 1889 return ret; 1890 } 1891 1892 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1893 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1894 { 1895 BlockDriver *drv = bs->drv; 1896 QEMUIOVector qiov; 1897 void *buf = NULL; 1898 int ret = 0; 1899 bool need_flush = false; 1900 int head = 0; 1901 int tail = 0; 1902 1903 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1904 INT64_MAX); 1905 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1906 bs->bl.request_alignment); 1907 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1908 1909 bdrv_check_request(offset, bytes, &error_abort); 1910 1911 if (!drv) { 1912 return -ENOMEDIUM; 1913 } 1914 1915 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1916 return -ENOTSUP; 1917 } 1918 1919 /* Invalidate the cached block-status data range if this write overlaps */ 1920 bdrv_bsc_invalidate_range(bs, offset, bytes); 1921 1922 assert(alignment % bs->bl.request_alignment == 0); 1923 head = offset % alignment; 1924 tail = (offset + bytes) % alignment; 1925 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1926 assert(max_write_zeroes >= bs->bl.request_alignment); 1927 1928 while (bytes > 0 && !ret) { 1929 int64_t num = bytes; 1930 1931 /* Align request. Block drivers can expect the "bulk" of the request 1932 * to be aligned, and that unaligned requests do not cross cluster 1933 * boundaries. 1934 */ 1935 if (head) { 1936 /* Make a small request up to the first aligned sector. For 1937 * convenience, limit this request to max_transfer even if 1938 * we don't need to fall back to writes. */ 1939 num = MIN(MIN(bytes, max_transfer), alignment - head); 1940 head = (head + num) % alignment; 1941 assert(num < max_write_zeroes); 1942 } else if (tail && num > alignment) { 1943 /* Shorten the request to the last aligned sector. */ 1944 num -= tail; 1945 } 1946 1947 /* limit request size */ 1948 if (num > max_write_zeroes) { 1949 num = max_write_zeroes; 1950 } 1951 1952 ret = -ENOTSUP; 1953 /* First try the efficient write zeroes operation */ 1954 if (drv->bdrv_co_pwrite_zeroes) { 1955 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1956 flags & bs->supported_zero_flags); 1957 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1958 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1959 need_flush = true; 1960 } 1961 } else { 1962 assert(!bs->supported_zero_flags); 1963 } 1964 1965 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1966 /* Fall back to bounce buffer if write zeroes is unsupported */ 1967 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1968 1969 if ((flags & BDRV_REQ_FUA) && 1970 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1971 /* No need for bdrv_driver_pwrite() to do a fallback 1972 * flush on each chunk; use just one at the end */ 1973 write_flags &= ~BDRV_REQ_FUA; 1974 need_flush = true; 1975 } 1976 num = MIN(num, max_transfer); 1977 if (buf == NULL) { 1978 buf = qemu_try_blockalign0(bs, num); 1979 if (buf == NULL) { 1980 ret = -ENOMEM; 1981 goto fail; 1982 } 1983 } 1984 qemu_iovec_init_buf(&qiov, buf, num); 1985 1986 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1987 1988 /* Keep bounce buffer around if it is big enough for all 1989 * all future requests. 1990 */ 1991 if (num < max_transfer) { 1992 qemu_vfree(buf); 1993 buf = NULL; 1994 } 1995 } 1996 1997 offset += num; 1998 bytes -= num; 1999 } 2000 2001 fail: 2002 if (ret == 0 && need_flush) { 2003 ret = bdrv_co_flush(bs); 2004 } 2005 qemu_vfree(buf); 2006 return ret; 2007 } 2008 2009 static inline int coroutine_fn 2010 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 2011 BdrvTrackedRequest *req, int flags) 2012 { 2013 BlockDriverState *bs = child->bs; 2014 2015 bdrv_check_request(offset, bytes, &error_abort); 2016 2017 if (bdrv_is_read_only(bs)) { 2018 return -EPERM; 2019 } 2020 2021 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 2022 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 2023 assert(!(flags & ~BDRV_REQ_MASK)); 2024 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 2025 2026 if (flags & BDRV_REQ_SERIALISING) { 2027 QEMU_LOCK_GUARD(&bs->reqs_lock); 2028 2029 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 2030 2031 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 2032 return -EBUSY; 2033 } 2034 2035 bdrv_wait_serialising_requests_locked(req); 2036 } else { 2037 bdrv_wait_serialising_requests(req); 2038 } 2039 2040 assert(req->overlap_offset <= offset); 2041 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 2042 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 2043 child->perm & BLK_PERM_RESIZE); 2044 2045 switch (req->type) { 2046 case BDRV_TRACKED_WRITE: 2047 case BDRV_TRACKED_DISCARD: 2048 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 2049 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 2050 } else { 2051 assert(child->perm & BLK_PERM_WRITE); 2052 } 2053 bdrv_write_threshold_check_write(bs, offset, bytes); 2054 return 0; 2055 case BDRV_TRACKED_TRUNCATE: 2056 assert(child->perm & BLK_PERM_RESIZE); 2057 return 0; 2058 default: 2059 abort(); 2060 } 2061 } 2062 2063 static inline void coroutine_fn 2064 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 2065 BdrvTrackedRequest *req, int ret) 2066 { 2067 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 2068 BlockDriverState *bs = child->bs; 2069 2070 bdrv_check_request(offset, bytes, &error_abort); 2071 2072 qatomic_inc(&bs->write_gen); 2073 2074 /* 2075 * Discard cannot extend the image, but in error handling cases, such as 2076 * when reverting a qcow2 cluster allocation, the discarded range can pass 2077 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 2078 * here. Instead, just skip it, since semantically a discard request 2079 * beyond EOF cannot expand the image anyway. 2080 */ 2081 if (ret == 0 && 2082 (req->type == BDRV_TRACKED_TRUNCATE || 2083 end_sector > bs->total_sectors) && 2084 req->type != BDRV_TRACKED_DISCARD) { 2085 bs->total_sectors = end_sector; 2086 bdrv_parent_cb_resize(bs); 2087 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 2088 } 2089 if (req->bytes) { 2090 switch (req->type) { 2091 case BDRV_TRACKED_WRITE: 2092 stat64_max(&bs->wr_highest_offset, offset + bytes); 2093 /* fall through, to set dirty bits */ 2094 case BDRV_TRACKED_DISCARD: 2095 bdrv_set_dirty(bs, offset, bytes); 2096 break; 2097 default: 2098 break; 2099 } 2100 } 2101 } 2102 2103 /* 2104 * Forwards an already correctly aligned write request to the BlockDriver, 2105 * after possibly fragmenting it. 2106 */ 2107 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 2108 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 2109 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 2110 BdrvRequestFlags flags) 2111 { 2112 BlockDriverState *bs = child->bs; 2113 BlockDriver *drv = bs->drv; 2114 int ret; 2115 2116 int64_t bytes_remaining = bytes; 2117 int max_transfer; 2118 2119 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 2120 2121 if (!drv) { 2122 return -ENOMEDIUM; 2123 } 2124 2125 if (bdrv_has_readonly_bitmaps(bs)) { 2126 return -EPERM; 2127 } 2128 2129 assert(is_power_of_2(align)); 2130 assert((offset & (align - 1)) == 0); 2131 assert((bytes & (align - 1)) == 0); 2132 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 2133 align); 2134 2135 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 2136 2137 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 2138 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 2139 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 2140 flags |= BDRV_REQ_ZERO_WRITE; 2141 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 2142 flags |= BDRV_REQ_MAY_UNMAP; 2143 } 2144 } 2145 2146 if (ret < 0) { 2147 /* Do nothing, write notifier decided to fail this request */ 2148 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2149 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 2150 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 2151 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 2152 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 2153 qiov, qiov_offset); 2154 } else if (bytes <= max_transfer) { 2155 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2156 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 2157 } else { 2158 bdrv_debug_event(bs, BLKDBG_PWRITEV); 2159 while (bytes_remaining) { 2160 int num = MIN(bytes_remaining, max_transfer); 2161 int local_flags = flags; 2162 2163 assert(num); 2164 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 2165 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 2166 /* If FUA is going to be emulated by flush, we only 2167 * need to flush on the last iteration */ 2168 local_flags &= ~BDRV_REQ_FUA; 2169 } 2170 2171 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 2172 num, qiov, 2173 qiov_offset + bytes - bytes_remaining, 2174 local_flags); 2175 if (ret < 0) { 2176 break; 2177 } 2178 bytes_remaining -= num; 2179 } 2180 } 2181 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 2182 2183 if (ret >= 0) { 2184 ret = 0; 2185 } 2186 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 2187 2188 return ret; 2189 } 2190 2191 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 2192 int64_t offset, 2193 int64_t bytes, 2194 BdrvRequestFlags flags, 2195 BdrvTrackedRequest *req) 2196 { 2197 BlockDriverState *bs = child->bs; 2198 QEMUIOVector local_qiov; 2199 uint64_t align = bs->bl.request_alignment; 2200 int ret = 0; 2201 bool padding; 2202 BdrvRequestPadding pad; 2203 2204 padding = bdrv_init_padding(bs, offset, bytes, &pad); 2205 if (padding) { 2206 bdrv_make_request_serialising(req, align); 2207 2208 bdrv_padding_rmw_read(child, req, &pad, true); 2209 2210 if (pad.head || pad.merge_reads) { 2211 int64_t aligned_offset = offset & ~(align - 1); 2212 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2213 2214 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2215 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2216 align, &local_qiov, 0, 2217 flags & ~BDRV_REQ_ZERO_WRITE); 2218 if (ret < 0 || pad.merge_reads) { 2219 /* Error or all work is done */ 2220 goto out; 2221 } 2222 offset += write_bytes - pad.head; 2223 bytes -= write_bytes - pad.head; 2224 } 2225 } 2226 2227 assert(!bytes || (offset & (align - 1)) == 0); 2228 if (bytes >= align) { 2229 /* Write the aligned part in the middle. */ 2230 int64_t aligned_bytes = bytes & ~(align - 1); 2231 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2232 NULL, 0, flags); 2233 if (ret < 0) { 2234 goto out; 2235 } 2236 bytes -= aligned_bytes; 2237 offset += aligned_bytes; 2238 } 2239 2240 assert(!bytes || (offset & (align - 1)) == 0); 2241 if (bytes) { 2242 assert(align == pad.tail + bytes); 2243 2244 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2245 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2246 &local_qiov, 0, 2247 flags & ~BDRV_REQ_ZERO_WRITE); 2248 } 2249 2250 out: 2251 bdrv_padding_destroy(&pad); 2252 2253 return ret; 2254 } 2255 2256 /* 2257 * Handle a write request in coroutine context 2258 */ 2259 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2260 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2261 BdrvRequestFlags flags) 2262 { 2263 IO_CODE(); 2264 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2265 } 2266 2267 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2268 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2269 BdrvRequestFlags flags) 2270 { 2271 BlockDriverState *bs = child->bs; 2272 BdrvTrackedRequest req; 2273 uint64_t align = bs->bl.request_alignment; 2274 BdrvRequestPadding pad; 2275 int ret; 2276 bool padded = false; 2277 IO_CODE(); 2278 2279 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2280 2281 if (!bdrv_is_inserted(bs)) { 2282 return -ENOMEDIUM; 2283 } 2284 2285 if (flags & BDRV_REQ_ZERO_WRITE) { 2286 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2287 } else { 2288 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2289 } 2290 if (ret < 0) { 2291 return ret; 2292 } 2293 2294 /* If the request is misaligned then we can't make it efficient */ 2295 if ((flags & BDRV_REQ_NO_FALLBACK) && 2296 !QEMU_IS_ALIGNED(offset | bytes, align)) 2297 { 2298 return -ENOTSUP; 2299 } 2300 2301 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2302 /* 2303 * Aligning zero request is nonsense. Even if driver has special meaning 2304 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2305 * it to driver due to request_alignment. 2306 * 2307 * Still, no reason to return an error if someone do unaligned 2308 * zero-length write occasionally. 2309 */ 2310 return 0; 2311 } 2312 2313 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2314 /* 2315 * Pad request for following read-modify-write cycle. 2316 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2317 * alignment only if there is no ZERO flag. 2318 */ 2319 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2320 &padded); 2321 if (ret < 0) { 2322 return ret; 2323 } 2324 } 2325 2326 bdrv_inc_in_flight(bs); 2327 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2328 2329 if (flags & BDRV_REQ_ZERO_WRITE) { 2330 assert(!padded); 2331 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2332 goto out; 2333 } 2334 2335 if (padded) { 2336 /* 2337 * Request was unaligned to request_alignment and therefore 2338 * padded. We are going to do read-modify-write, and must 2339 * serialize the request to prevent interactions of the 2340 * widened region with other transactions. 2341 */ 2342 bdrv_make_request_serialising(&req, align); 2343 bdrv_padding_rmw_read(child, &req, &pad, false); 2344 } 2345 2346 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2347 qiov, qiov_offset, flags); 2348 2349 bdrv_padding_destroy(&pad); 2350 2351 out: 2352 tracked_request_end(&req); 2353 bdrv_dec_in_flight(bs); 2354 2355 return ret; 2356 } 2357 2358 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2359 int64_t bytes, BdrvRequestFlags flags) 2360 { 2361 IO_CODE(); 2362 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2363 2364 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2365 flags &= ~BDRV_REQ_MAY_UNMAP; 2366 } 2367 2368 return bdrv_co_pwritev(child, offset, bytes, NULL, 2369 BDRV_REQ_ZERO_WRITE | flags); 2370 } 2371 2372 /* 2373 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2374 */ 2375 int bdrv_flush_all(void) 2376 { 2377 BdrvNextIterator it; 2378 BlockDriverState *bs = NULL; 2379 int result = 0; 2380 2381 GLOBAL_STATE_CODE(); 2382 2383 /* 2384 * bdrv queue is managed by record/replay, 2385 * creating new flush request for stopping 2386 * the VM may break the determinism 2387 */ 2388 if (replay_events_enabled()) { 2389 return result; 2390 } 2391 2392 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2393 AioContext *aio_context = bdrv_get_aio_context(bs); 2394 int ret; 2395 2396 aio_context_acquire(aio_context); 2397 ret = bdrv_flush(bs); 2398 if (ret < 0 && !result) { 2399 result = ret; 2400 } 2401 aio_context_release(aio_context); 2402 } 2403 2404 return result; 2405 } 2406 2407 /* 2408 * Returns the allocation status of the specified sectors. 2409 * Drivers not implementing the functionality are assumed to not support 2410 * backing files, hence all their sectors are reported as allocated. 2411 * 2412 * If 'want_zero' is true, the caller is querying for mapping 2413 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2414 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2415 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2416 * 2417 * If 'offset' is beyond the end of the disk image the return value is 2418 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2419 * 2420 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2421 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2422 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2423 * 2424 * 'pnum' is set to the number of bytes (including and immediately 2425 * following the specified offset) that are easily known to be in the 2426 * same allocated/unallocated state. Note that a second call starting 2427 * at the original offset plus returned pnum may have the same status. 2428 * The returned value is non-zero on success except at end-of-file. 2429 * 2430 * Returns negative errno on failure. Otherwise, if the 2431 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2432 * set to the host mapping and BDS corresponding to the guest offset. 2433 */ 2434 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2435 bool want_zero, 2436 int64_t offset, int64_t bytes, 2437 int64_t *pnum, int64_t *map, 2438 BlockDriverState **file) 2439 { 2440 int64_t total_size; 2441 int64_t n; /* bytes */ 2442 int ret; 2443 int64_t local_map = 0; 2444 BlockDriverState *local_file = NULL; 2445 int64_t aligned_offset, aligned_bytes; 2446 uint32_t align; 2447 bool has_filtered_child; 2448 2449 assert(pnum); 2450 *pnum = 0; 2451 total_size = bdrv_getlength(bs); 2452 if (total_size < 0) { 2453 ret = total_size; 2454 goto early_out; 2455 } 2456 2457 if (offset >= total_size) { 2458 ret = BDRV_BLOCK_EOF; 2459 goto early_out; 2460 } 2461 if (!bytes) { 2462 ret = 0; 2463 goto early_out; 2464 } 2465 2466 n = total_size - offset; 2467 if (n < bytes) { 2468 bytes = n; 2469 } 2470 2471 /* Must be non-NULL or bdrv_getlength() would have failed */ 2472 assert(bs->drv); 2473 has_filtered_child = bdrv_filter_child(bs); 2474 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2475 *pnum = bytes; 2476 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2477 if (offset + bytes == total_size) { 2478 ret |= BDRV_BLOCK_EOF; 2479 } 2480 if (bs->drv->protocol_name) { 2481 ret |= BDRV_BLOCK_OFFSET_VALID; 2482 local_map = offset; 2483 local_file = bs; 2484 } 2485 goto early_out; 2486 } 2487 2488 bdrv_inc_in_flight(bs); 2489 2490 /* Round out to request_alignment boundaries */ 2491 align = bs->bl.request_alignment; 2492 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2493 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2494 2495 if (bs->drv->bdrv_co_block_status) { 2496 /* 2497 * Use the block-status cache only for protocol nodes: Format 2498 * drivers are generally quick to inquire the status, but protocol 2499 * drivers often need to get information from outside of qemu, so 2500 * we do not have control over the actual implementation. There 2501 * have been cases where inquiring the status took an unreasonably 2502 * long time, and we can do nothing in qemu to fix it. 2503 * This is especially problematic for images with large data areas, 2504 * because finding the few holes in them and giving them special 2505 * treatment does not gain much performance. Therefore, we try to 2506 * cache the last-identified data region. 2507 * 2508 * Second, limiting ourselves to protocol nodes allows us to assume 2509 * the block status for data regions to be DATA | OFFSET_VALID, and 2510 * that the host offset is the same as the guest offset. 2511 * 2512 * Note that it is possible that external writers zero parts of 2513 * the cached regions without the cache being invalidated, and so 2514 * we may report zeroes as data. This is not catastrophic, 2515 * however, because reporting zeroes as data is fine. 2516 */ 2517 if (QLIST_EMPTY(&bs->children) && 2518 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2519 { 2520 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2521 local_file = bs; 2522 local_map = aligned_offset; 2523 } else { 2524 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2525 aligned_bytes, pnum, &local_map, 2526 &local_file); 2527 2528 /* 2529 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2530 * the cache is queried above. Technically, we do not need to check 2531 * it here; the worst that can happen is that we fill the cache for 2532 * non-protocol nodes, and then it is never used. However, filling 2533 * the cache requires an RCU update, so double check here to avoid 2534 * such an update if possible. 2535 * 2536 * Check want_zero, because we only want to update the cache when we 2537 * have accurate information about what is zero and what is data. 2538 */ 2539 if (want_zero && 2540 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2541 QLIST_EMPTY(&bs->children)) 2542 { 2543 /* 2544 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2545 * returned local_map value must be the same as the offset we 2546 * have passed (aligned_offset), and local_bs must be the node 2547 * itself. 2548 * Assert this, because we follow this rule when reading from 2549 * the cache (see the `local_file = bs` and 2550 * `local_map = aligned_offset` assignments above), and the 2551 * result the cache delivers must be the same as the driver 2552 * would deliver. 2553 */ 2554 assert(local_file == bs); 2555 assert(local_map == aligned_offset); 2556 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2557 } 2558 } 2559 } else { 2560 /* Default code for filters */ 2561 2562 local_file = bdrv_filter_bs(bs); 2563 assert(local_file); 2564 2565 *pnum = aligned_bytes; 2566 local_map = aligned_offset; 2567 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2568 } 2569 if (ret < 0) { 2570 *pnum = 0; 2571 goto out; 2572 } 2573 2574 /* 2575 * The driver's result must be a non-zero multiple of request_alignment. 2576 * Clamp pnum and adjust map to original request. 2577 */ 2578 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2579 align > offset - aligned_offset); 2580 if (ret & BDRV_BLOCK_RECURSE) { 2581 assert(ret & BDRV_BLOCK_DATA); 2582 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2583 assert(!(ret & BDRV_BLOCK_ZERO)); 2584 } 2585 2586 *pnum -= offset - aligned_offset; 2587 if (*pnum > bytes) { 2588 *pnum = bytes; 2589 } 2590 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2591 local_map += offset - aligned_offset; 2592 } 2593 2594 if (ret & BDRV_BLOCK_RAW) { 2595 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2596 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2597 *pnum, pnum, &local_map, &local_file); 2598 goto out; 2599 } 2600 2601 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2602 ret |= BDRV_BLOCK_ALLOCATED; 2603 } else if (bs->drv->supports_backing) { 2604 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2605 2606 if (!cow_bs) { 2607 ret |= BDRV_BLOCK_ZERO; 2608 } else if (want_zero) { 2609 int64_t size2 = bdrv_getlength(cow_bs); 2610 2611 if (size2 >= 0 && offset >= size2) { 2612 ret |= BDRV_BLOCK_ZERO; 2613 } 2614 } 2615 } 2616 2617 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2618 local_file && local_file != bs && 2619 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2620 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2621 int64_t file_pnum; 2622 int ret2; 2623 2624 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2625 *pnum, &file_pnum, NULL, NULL); 2626 if (ret2 >= 0) { 2627 /* Ignore errors. This is just providing extra information, it 2628 * is useful but not necessary. 2629 */ 2630 if (ret2 & BDRV_BLOCK_EOF && 2631 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2632 /* 2633 * It is valid for the format block driver to read 2634 * beyond the end of the underlying file's current 2635 * size; such areas read as zero. 2636 */ 2637 ret |= BDRV_BLOCK_ZERO; 2638 } else { 2639 /* Limit request to the range reported by the protocol driver */ 2640 *pnum = file_pnum; 2641 ret |= (ret2 & BDRV_BLOCK_ZERO); 2642 } 2643 } 2644 } 2645 2646 out: 2647 bdrv_dec_in_flight(bs); 2648 if (ret >= 0 && offset + *pnum == total_size) { 2649 ret |= BDRV_BLOCK_EOF; 2650 } 2651 early_out: 2652 if (file) { 2653 *file = local_file; 2654 } 2655 if (map) { 2656 *map = local_map; 2657 } 2658 return ret; 2659 } 2660 2661 int coroutine_fn 2662 bdrv_co_common_block_status_above(BlockDriverState *bs, 2663 BlockDriverState *base, 2664 bool include_base, 2665 bool want_zero, 2666 int64_t offset, 2667 int64_t bytes, 2668 int64_t *pnum, 2669 int64_t *map, 2670 BlockDriverState **file, 2671 int *depth) 2672 { 2673 int ret; 2674 BlockDriverState *p; 2675 int64_t eof = 0; 2676 int dummy; 2677 IO_CODE(); 2678 2679 assert(!include_base || base); /* Can't include NULL base */ 2680 2681 if (!depth) { 2682 depth = &dummy; 2683 } 2684 *depth = 0; 2685 2686 if (!include_base && bs == base) { 2687 *pnum = bytes; 2688 return 0; 2689 } 2690 2691 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2692 ++*depth; 2693 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2694 return ret; 2695 } 2696 2697 if (ret & BDRV_BLOCK_EOF) { 2698 eof = offset + *pnum; 2699 } 2700 2701 assert(*pnum <= bytes); 2702 bytes = *pnum; 2703 2704 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2705 p = bdrv_filter_or_cow_bs(p)) 2706 { 2707 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2708 file); 2709 ++*depth; 2710 if (ret < 0) { 2711 return ret; 2712 } 2713 if (*pnum == 0) { 2714 /* 2715 * The top layer deferred to this layer, and because this layer is 2716 * short, any zeroes that we synthesize beyond EOF behave as if they 2717 * were allocated at this layer. 2718 * 2719 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2720 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2721 * below. 2722 */ 2723 assert(ret & BDRV_BLOCK_EOF); 2724 *pnum = bytes; 2725 if (file) { 2726 *file = p; 2727 } 2728 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2729 break; 2730 } 2731 if (ret & BDRV_BLOCK_ALLOCATED) { 2732 /* 2733 * We've found the node and the status, we must break. 2734 * 2735 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2736 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2737 * below. 2738 */ 2739 ret &= ~BDRV_BLOCK_EOF; 2740 break; 2741 } 2742 2743 if (p == base) { 2744 assert(include_base); 2745 break; 2746 } 2747 2748 /* 2749 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2750 * let's continue the diving. 2751 */ 2752 assert(*pnum <= bytes); 2753 bytes = *pnum; 2754 } 2755 2756 if (offset + *pnum == eof) { 2757 ret |= BDRV_BLOCK_EOF; 2758 } 2759 2760 return ret; 2761 } 2762 2763 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2764 int64_t offset, int64_t bytes, int64_t *pnum, 2765 int64_t *map, BlockDriverState **file) 2766 { 2767 IO_CODE(); 2768 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2769 pnum, map, file, NULL); 2770 } 2771 2772 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2773 int64_t *pnum, int64_t *map, BlockDriverState **file) 2774 { 2775 IO_CODE(); 2776 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2777 offset, bytes, pnum, map, file); 2778 } 2779 2780 /* 2781 * Check @bs (and its backing chain) to see if the range defined 2782 * by @offset and @bytes is known to read as zeroes. 2783 * Return 1 if that is the case, 0 otherwise and -errno on error. 2784 * This test is meant to be fast rather than accurate so returning 0 2785 * does not guarantee non-zero data. 2786 */ 2787 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2788 int64_t bytes) 2789 { 2790 int ret; 2791 int64_t pnum = bytes; 2792 IO_CODE(); 2793 2794 if (!bytes) { 2795 return 1; 2796 } 2797 2798 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset, 2799 bytes, &pnum, NULL, NULL, NULL); 2800 2801 if (ret < 0) { 2802 return ret; 2803 } 2804 2805 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2806 } 2807 2808 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, 2809 int64_t bytes, int64_t *pnum) 2810 { 2811 int ret; 2812 int64_t dummy; 2813 IO_CODE(); 2814 2815 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2816 bytes, pnum ? pnum : &dummy, NULL, 2817 NULL, NULL); 2818 if (ret < 0) { 2819 return ret; 2820 } 2821 return !!(ret & BDRV_BLOCK_ALLOCATED); 2822 } 2823 2824 /* 2825 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2826 * 2827 * Return a positive depth if (a prefix of) the given range is allocated 2828 * in any image between BASE and TOP (BASE is only included if include_base 2829 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2830 * BASE can be NULL to check if the given offset is allocated in any 2831 * image of the chain. Return 0 otherwise, or negative errno on 2832 * failure. 2833 * 2834 * 'pnum' is set to the number of bytes (including and immediately 2835 * following the specified offset) that are known to be in the same 2836 * allocated/unallocated state. Note that a subsequent call starting 2837 * at 'offset + *pnum' may return the same allocation status (in other 2838 * words, the result is not necessarily the maximum possible range); 2839 * but 'pnum' will only be 0 when end of file is reached. 2840 */ 2841 int bdrv_is_allocated_above(BlockDriverState *top, 2842 BlockDriverState *base, 2843 bool include_base, int64_t offset, 2844 int64_t bytes, int64_t *pnum) 2845 { 2846 int depth; 2847 int ret = bdrv_common_block_status_above(top, base, include_base, false, 2848 offset, bytes, pnum, NULL, NULL, 2849 &depth); 2850 IO_CODE(); 2851 if (ret < 0) { 2852 return ret; 2853 } 2854 2855 if (ret & BDRV_BLOCK_ALLOCATED) { 2856 return depth; 2857 } 2858 return 0; 2859 } 2860 2861 int coroutine_fn 2862 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2863 { 2864 BlockDriver *drv = bs->drv; 2865 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2866 int ret; 2867 IO_CODE(); 2868 2869 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2870 if (ret < 0) { 2871 return ret; 2872 } 2873 2874 if (!drv) { 2875 return -ENOMEDIUM; 2876 } 2877 2878 bdrv_inc_in_flight(bs); 2879 2880 if (drv->bdrv_load_vmstate) { 2881 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2882 } else if (child_bs) { 2883 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2884 } else { 2885 ret = -ENOTSUP; 2886 } 2887 2888 bdrv_dec_in_flight(bs); 2889 2890 return ret; 2891 } 2892 2893 int coroutine_fn 2894 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2895 { 2896 BlockDriver *drv = bs->drv; 2897 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2898 int ret; 2899 IO_CODE(); 2900 2901 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2902 if (ret < 0) { 2903 return ret; 2904 } 2905 2906 if (!drv) { 2907 return -ENOMEDIUM; 2908 } 2909 2910 bdrv_inc_in_flight(bs); 2911 2912 if (drv->bdrv_save_vmstate) { 2913 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2914 } else if (child_bs) { 2915 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2916 } else { 2917 ret = -ENOTSUP; 2918 } 2919 2920 bdrv_dec_in_flight(bs); 2921 2922 return ret; 2923 } 2924 2925 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2926 int64_t pos, int size) 2927 { 2928 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2929 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2930 IO_CODE(); 2931 2932 return ret < 0 ? ret : size; 2933 } 2934 2935 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2936 int64_t pos, int size) 2937 { 2938 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2939 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2940 IO_CODE(); 2941 2942 return ret < 0 ? ret : size; 2943 } 2944 2945 /**************************************************************/ 2946 /* async I/Os */ 2947 2948 void bdrv_aio_cancel(BlockAIOCB *acb) 2949 { 2950 IO_CODE(); 2951 qemu_aio_ref(acb); 2952 bdrv_aio_cancel_async(acb); 2953 while (acb->refcnt > 1) { 2954 if (acb->aiocb_info->get_aio_context) { 2955 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2956 } else if (acb->bs) { 2957 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2958 * assert that we're not using an I/O thread. Thread-safe 2959 * code should use bdrv_aio_cancel_async exclusively. 2960 */ 2961 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2962 aio_poll(bdrv_get_aio_context(acb->bs), true); 2963 } else { 2964 abort(); 2965 } 2966 } 2967 qemu_aio_unref(acb); 2968 } 2969 2970 /* Async version of aio cancel. The caller is not blocked if the acb implements 2971 * cancel_async, otherwise we do nothing and let the request normally complete. 2972 * In either case the completion callback must be called. */ 2973 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2974 { 2975 IO_CODE(); 2976 if (acb->aiocb_info->cancel_async) { 2977 acb->aiocb_info->cancel_async(acb); 2978 } 2979 } 2980 2981 /**************************************************************/ 2982 /* Coroutine block device emulation */ 2983 2984 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2985 { 2986 BdrvChild *primary_child = bdrv_primary_child(bs); 2987 BdrvChild *child; 2988 int current_gen; 2989 int ret = 0; 2990 IO_CODE(); 2991 2992 bdrv_inc_in_flight(bs); 2993 2994 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2995 bdrv_is_sg(bs)) { 2996 goto early_exit; 2997 } 2998 2999 qemu_co_mutex_lock(&bs->reqs_lock); 3000 current_gen = qatomic_read(&bs->write_gen); 3001 3002 /* Wait until any previous flushes are completed */ 3003 while (bs->active_flush_req) { 3004 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 3005 } 3006 3007 /* Flushes reach this point in nondecreasing current_gen order. */ 3008 bs->active_flush_req = true; 3009 qemu_co_mutex_unlock(&bs->reqs_lock); 3010 3011 /* Write back all layers by calling one driver function */ 3012 if (bs->drv->bdrv_co_flush) { 3013 ret = bs->drv->bdrv_co_flush(bs); 3014 goto out; 3015 } 3016 3017 /* Write back cached data to the OS even with cache=unsafe */ 3018 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 3019 if (bs->drv->bdrv_co_flush_to_os) { 3020 ret = bs->drv->bdrv_co_flush_to_os(bs); 3021 if (ret < 0) { 3022 goto out; 3023 } 3024 } 3025 3026 /* But don't actually force it to the disk with cache=unsafe */ 3027 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3028 goto flush_children; 3029 } 3030 3031 /* Check if we really need to flush anything */ 3032 if (bs->flushed_gen == current_gen) { 3033 goto flush_children; 3034 } 3035 3036 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 3037 if (!bs->drv) { 3038 /* bs->drv->bdrv_co_flush() might have ejected the BDS 3039 * (even in case of apparent success) */ 3040 ret = -ENOMEDIUM; 3041 goto out; 3042 } 3043 if (bs->drv->bdrv_co_flush_to_disk) { 3044 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3045 } else if (bs->drv->bdrv_aio_flush) { 3046 BlockAIOCB *acb; 3047 CoroutineIOCompletion co = { 3048 .coroutine = qemu_coroutine_self(), 3049 }; 3050 3051 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3052 if (acb == NULL) { 3053 ret = -EIO; 3054 } else { 3055 qemu_coroutine_yield(); 3056 ret = co.ret; 3057 } 3058 } else { 3059 /* 3060 * Some block drivers always operate in either writethrough or unsafe 3061 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3062 * know how the server works (because the behaviour is hardcoded or 3063 * depends on server-side configuration), so we can't ensure that 3064 * everything is safe on disk. Returning an error doesn't work because 3065 * that would break guests even if the server operates in writethrough 3066 * mode. 3067 * 3068 * Let's hope the user knows what he's doing. 3069 */ 3070 ret = 0; 3071 } 3072 3073 if (ret < 0) { 3074 goto out; 3075 } 3076 3077 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3078 * in the case of cache=unsafe, so there are no useless flushes. 3079 */ 3080 flush_children: 3081 ret = 0; 3082 QLIST_FOREACH(child, &bs->children, next) { 3083 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 3084 int this_child_ret = bdrv_co_flush(child->bs); 3085 if (!ret) { 3086 ret = this_child_ret; 3087 } 3088 } 3089 } 3090 3091 out: 3092 /* Notify any pending flushes that we have completed */ 3093 if (ret == 0) { 3094 bs->flushed_gen = current_gen; 3095 } 3096 3097 qemu_co_mutex_lock(&bs->reqs_lock); 3098 bs->active_flush_req = false; 3099 /* Return value is ignored - it's ok if wait queue is empty */ 3100 qemu_co_queue_next(&bs->flush_queue); 3101 qemu_co_mutex_unlock(&bs->reqs_lock); 3102 3103 early_exit: 3104 bdrv_dec_in_flight(bs); 3105 return ret; 3106 } 3107 3108 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 3109 int64_t bytes) 3110 { 3111 BdrvTrackedRequest req; 3112 int ret; 3113 int64_t max_pdiscard; 3114 int head, tail, align; 3115 BlockDriverState *bs = child->bs; 3116 IO_CODE(); 3117 3118 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 3119 return -ENOMEDIUM; 3120 } 3121 3122 if (bdrv_has_readonly_bitmaps(bs)) { 3123 return -EPERM; 3124 } 3125 3126 ret = bdrv_check_request(offset, bytes, NULL); 3127 if (ret < 0) { 3128 return ret; 3129 } 3130 3131 /* Do nothing if disabled. */ 3132 if (!(bs->open_flags & BDRV_O_UNMAP)) { 3133 return 0; 3134 } 3135 3136 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 3137 return 0; 3138 } 3139 3140 /* Invalidate the cached block-status data range if this discard overlaps */ 3141 bdrv_bsc_invalidate_range(bs, offset, bytes); 3142 3143 /* Discard is advisory, but some devices track and coalesce 3144 * unaligned requests, so we must pass everything down rather than 3145 * round here. Still, most devices will just silently ignore 3146 * unaligned requests (by returning -ENOTSUP), so we must fragment 3147 * the request accordingly. */ 3148 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 3149 assert(align % bs->bl.request_alignment == 0); 3150 head = offset % align; 3151 tail = (offset + bytes) % align; 3152 3153 bdrv_inc_in_flight(bs); 3154 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 3155 3156 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3157 if (ret < 0) { 3158 goto out; 3159 } 3160 3161 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3162 align); 3163 assert(max_pdiscard >= bs->bl.request_alignment); 3164 3165 while (bytes > 0) { 3166 int64_t num = bytes; 3167 3168 if (head) { 3169 /* Make small requests to get to alignment boundaries. */ 3170 num = MIN(bytes, align - head); 3171 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3172 num %= bs->bl.request_alignment; 3173 } 3174 head = (head + num) % align; 3175 assert(num < max_pdiscard); 3176 } else if (tail) { 3177 if (num > align) { 3178 /* Shorten the request to the last aligned cluster. */ 3179 num -= tail; 3180 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3181 tail > bs->bl.request_alignment) { 3182 tail %= bs->bl.request_alignment; 3183 num -= tail; 3184 } 3185 } 3186 /* limit request size */ 3187 if (num > max_pdiscard) { 3188 num = max_pdiscard; 3189 } 3190 3191 if (!bs->drv) { 3192 ret = -ENOMEDIUM; 3193 goto out; 3194 } 3195 if (bs->drv->bdrv_co_pdiscard) { 3196 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3197 } else { 3198 BlockAIOCB *acb; 3199 CoroutineIOCompletion co = { 3200 .coroutine = qemu_coroutine_self(), 3201 }; 3202 3203 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3204 bdrv_co_io_em_complete, &co); 3205 if (acb == NULL) { 3206 ret = -EIO; 3207 goto out; 3208 } else { 3209 qemu_coroutine_yield(); 3210 ret = co.ret; 3211 } 3212 } 3213 if (ret && ret != -ENOTSUP) { 3214 goto out; 3215 } 3216 3217 offset += num; 3218 bytes -= num; 3219 } 3220 ret = 0; 3221 out: 3222 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3223 tracked_request_end(&req); 3224 bdrv_dec_in_flight(bs); 3225 return ret; 3226 } 3227 3228 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3229 { 3230 BlockDriver *drv = bs->drv; 3231 CoroutineIOCompletion co = { 3232 .coroutine = qemu_coroutine_self(), 3233 }; 3234 BlockAIOCB *acb; 3235 IO_CODE(); 3236 3237 bdrv_inc_in_flight(bs); 3238 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3239 co.ret = -ENOTSUP; 3240 goto out; 3241 } 3242 3243 if (drv->bdrv_co_ioctl) { 3244 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3245 } else { 3246 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3247 if (!acb) { 3248 co.ret = -ENOTSUP; 3249 goto out; 3250 } 3251 qemu_coroutine_yield(); 3252 } 3253 out: 3254 bdrv_dec_in_flight(bs); 3255 return co.ret; 3256 } 3257 3258 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3259 { 3260 IO_CODE(); 3261 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3262 } 3263 3264 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3265 { 3266 IO_CODE(); 3267 return memset(qemu_blockalign(bs, size), 0, size); 3268 } 3269 3270 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3271 { 3272 size_t align = bdrv_opt_mem_align(bs); 3273 IO_CODE(); 3274 3275 /* Ensure that NULL is never returned on success */ 3276 assert(align > 0); 3277 if (size == 0) { 3278 size = align; 3279 } 3280 3281 return qemu_try_memalign(align, size); 3282 } 3283 3284 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3285 { 3286 void *mem = qemu_try_blockalign(bs, size); 3287 IO_CODE(); 3288 3289 if (mem) { 3290 memset(mem, 0, size); 3291 } 3292 3293 return mem; 3294 } 3295 3296 /* 3297 * Check if all memory in this vector is sector aligned. 3298 */ 3299 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 3300 { 3301 int i; 3302 size_t alignment = bdrv_min_mem_align(bs); 3303 IO_CODE(); 3304 3305 for (i = 0; i < qiov->niov; i++) { 3306 if ((uintptr_t) qiov->iov[i].iov_base % alignment) { 3307 return false; 3308 } 3309 if (qiov->iov[i].iov_len % alignment) { 3310 return false; 3311 } 3312 } 3313 3314 return true; 3315 } 3316 3317 void bdrv_io_plug(BlockDriverState *bs) 3318 { 3319 BdrvChild *child; 3320 IO_CODE(); 3321 3322 QLIST_FOREACH(child, &bs->children, next) { 3323 bdrv_io_plug(child->bs); 3324 } 3325 3326 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3327 BlockDriver *drv = bs->drv; 3328 if (drv && drv->bdrv_io_plug) { 3329 drv->bdrv_io_plug(bs); 3330 } 3331 } 3332 } 3333 3334 void bdrv_io_unplug(BlockDriverState *bs) 3335 { 3336 BdrvChild *child; 3337 IO_CODE(); 3338 3339 assert(bs->io_plugged); 3340 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3341 BlockDriver *drv = bs->drv; 3342 if (drv && drv->bdrv_io_unplug) { 3343 drv->bdrv_io_unplug(bs); 3344 } 3345 } 3346 3347 QLIST_FOREACH(child, &bs->children, next) { 3348 bdrv_io_unplug(child->bs); 3349 } 3350 } 3351 3352 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) 3353 { 3354 BdrvChild *child; 3355 3356 GLOBAL_STATE_CODE(); 3357 if (bs->drv && bs->drv->bdrv_register_buf) { 3358 bs->drv->bdrv_register_buf(bs, host, size); 3359 } 3360 QLIST_FOREACH(child, &bs->children, next) { 3361 bdrv_register_buf(child->bs, host, size); 3362 } 3363 } 3364 3365 void bdrv_unregister_buf(BlockDriverState *bs, void *host) 3366 { 3367 BdrvChild *child; 3368 3369 GLOBAL_STATE_CODE(); 3370 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3371 bs->drv->bdrv_unregister_buf(bs, host); 3372 } 3373 QLIST_FOREACH(child, &bs->children, next) { 3374 bdrv_unregister_buf(child->bs, host); 3375 } 3376 } 3377 3378 static int coroutine_fn bdrv_co_copy_range_internal( 3379 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3380 int64_t dst_offset, int64_t bytes, 3381 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3382 bool recurse_src) 3383 { 3384 BdrvTrackedRequest req; 3385 int ret; 3386 3387 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3388 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3389 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3390 3391 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3392 return -ENOMEDIUM; 3393 } 3394 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3395 if (ret) { 3396 return ret; 3397 } 3398 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3399 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3400 } 3401 3402 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3403 return -ENOMEDIUM; 3404 } 3405 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3406 if (ret) { 3407 return ret; 3408 } 3409 3410 if (!src->bs->drv->bdrv_co_copy_range_from 3411 || !dst->bs->drv->bdrv_co_copy_range_to 3412 || src->bs->encrypted || dst->bs->encrypted) { 3413 return -ENOTSUP; 3414 } 3415 3416 if (recurse_src) { 3417 bdrv_inc_in_flight(src->bs); 3418 tracked_request_begin(&req, src->bs, src_offset, bytes, 3419 BDRV_TRACKED_READ); 3420 3421 /* BDRV_REQ_SERIALISING is only for write operation */ 3422 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3423 bdrv_wait_serialising_requests(&req); 3424 3425 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3426 src, src_offset, 3427 dst, dst_offset, 3428 bytes, 3429 read_flags, write_flags); 3430 3431 tracked_request_end(&req); 3432 bdrv_dec_in_flight(src->bs); 3433 } else { 3434 bdrv_inc_in_flight(dst->bs); 3435 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3436 BDRV_TRACKED_WRITE); 3437 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3438 write_flags); 3439 if (!ret) { 3440 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3441 src, src_offset, 3442 dst, dst_offset, 3443 bytes, 3444 read_flags, write_flags); 3445 } 3446 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3447 tracked_request_end(&req); 3448 bdrv_dec_in_flight(dst->bs); 3449 } 3450 3451 return ret; 3452 } 3453 3454 /* Copy range from @src to @dst. 3455 * 3456 * See the comment of bdrv_co_copy_range for the parameter and return value 3457 * semantics. */ 3458 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3459 BdrvChild *dst, int64_t dst_offset, 3460 int64_t bytes, 3461 BdrvRequestFlags read_flags, 3462 BdrvRequestFlags write_flags) 3463 { 3464 IO_CODE(); 3465 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3466 read_flags, write_flags); 3467 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3468 bytes, read_flags, write_flags, true); 3469 } 3470 3471 /* Copy range from @src to @dst. 3472 * 3473 * See the comment of bdrv_co_copy_range for the parameter and return value 3474 * semantics. */ 3475 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3476 BdrvChild *dst, int64_t dst_offset, 3477 int64_t bytes, 3478 BdrvRequestFlags read_flags, 3479 BdrvRequestFlags write_flags) 3480 { 3481 IO_CODE(); 3482 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3483 read_flags, write_flags); 3484 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3485 bytes, read_flags, write_flags, false); 3486 } 3487 3488 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3489 BdrvChild *dst, int64_t dst_offset, 3490 int64_t bytes, BdrvRequestFlags read_flags, 3491 BdrvRequestFlags write_flags) 3492 { 3493 IO_CODE(); 3494 return bdrv_co_copy_range_from(src, src_offset, 3495 dst, dst_offset, 3496 bytes, read_flags, write_flags); 3497 } 3498 3499 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3500 { 3501 BdrvChild *c; 3502 QLIST_FOREACH(c, &bs->parents, next_parent) { 3503 if (c->klass->resize) { 3504 c->klass->resize(c); 3505 } 3506 } 3507 } 3508 3509 /** 3510 * Truncate file to 'offset' bytes (needed only for file protocols) 3511 * 3512 * If 'exact' is true, the file must be resized to exactly the given 3513 * 'offset'. Otherwise, it is sufficient for the node to be at least 3514 * 'offset' bytes in length. 3515 */ 3516 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3517 PreallocMode prealloc, BdrvRequestFlags flags, 3518 Error **errp) 3519 { 3520 BlockDriverState *bs = child->bs; 3521 BdrvChild *filtered, *backing; 3522 BlockDriver *drv = bs->drv; 3523 BdrvTrackedRequest req; 3524 int64_t old_size, new_bytes; 3525 int ret; 3526 IO_CODE(); 3527 3528 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3529 if (!drv) { 3530 error_setg(errp, "No medium inserted"); 3531 return -ENOMEDIUM; 3532 } 3533 if (offset < 0) { 3534 error_setg(errp, "Image size cannot be negative"); 3535 return -EINVAL; 3536 } 3537 3538 ret = bdrv_check_request(offset, 0, errp); 3539 if (ret < 0) { 3540 return ret; 3541 } 3542 3543 old_size = bdrv_getlength(bs); 3544 if (old_size < 0) { 3545 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3546 return old_size; 3547 } 3548 3549 if (bdrv_is_read_only(bs)) { 3550 error_setg(errp, "Image is read-only"); 3551 return -EACCES; 3552 } 3553 3554 if (offset > old_size) { 3555 new_bytes = offset - old_size; 3556 } else { 3557 new_bytes = 0; 3558 } 3559 3560 bdrv_inc_in_flight(bs); 3561 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3562 BDRV_TRACKED_TRUNCATE); 3563 3564 /* If we are growing the image and potentially using preallocation for the 3565 * new area, we need to make sure that no write requests are made to it 3566 * concurrently or they might be overwritten by preallocation. */ 3567 if (new_bytes) { 3568 bdrv_make_request_serialising(&req, 1); 3569 } 3570 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3571 0); 3572 if (ret < 0) { 3573 error_setg_errno(errp, -ret, 3574 "Failed to prepare request for truncation"); 3575 goto out; 3576 } 3577 3578 filtered = bdrv_filter_child(bs); 3579 backing = bdrv_cow_child(bs); 3580 3581 /* 3582 * If the image has a backing file that is large enough that it would 3583 * provide data for the new area, we cannot leave it unallocated because 3584 * then the backing file content would become visible. Instead, zero-fill 3585 * the new area. 3586 * 3587 * Note that if the image has a backing file, but was opened without the 3588 * backing file, taking care of keeping things consistent with that backing 3589 * file is the user's responsibility. 3590 */ 3591 if (new_bytes && backing) { 3592 int64_t backing_len; 3593 3594 backing_len = bdrv_getlength(backing->bs); 3595 if (backing_len < 0) { 3596 ret = backing_len; 3597 error_setg_errno(errp, -ret, "Could not get backing file size"); 3598 goto out; 3599 } 3600 3601 if (backing_len > old_size) { 3602 flags |= BDRV_REQ_ZERO_WRITE; 3603 } 3604 } 3605 3606 if (drv->bdrv_co_truncate) { 3607 if (flags & ~bs->supported_truncate_flags) { 3608 error_setg(errp, "Block driver does not support requested flags"); 3609 ret = -ENOTSUP; 3610 goto out; 3611 } 3612 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3613 } else if (filtered) { 3614 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3615 } else { 3616 error_setg(errp, "Image format driver does not support resize"); 3617 ret = -ENOTSUP; 3618 goto out; 3619 } 3620 if (ret < 0) { 3621 goto out; 3622 } 3623 3624 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3625 if (ret < 0) { 3626 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3627 } else { 3628 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3629 } 3630 /* It's possible that truncation succeeded but refresh_total_sectors 3631 * failed, but the latter doesn't affect how we should finish the request. 3632 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3633 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3634 3635 out: 3636 tracked_request_end(&req); 3637 bdrv_dec_in_flight(bs); 3638 3639 return ret; 3640 } 3641 3642 void bdrv_cancel_in_flight(BlockDriverState *bs) 3643 { 3644 GLOBAL_STATE_CODE(); 3645 if (!bs || !bs->drv) { 3646 return; 3647 } 3648 3649 if (bs->drv->bdrv_cancel_in_flight) { 3650 bs->drv->bdrv_cancel_in_flight(bs); 3651 } 3652 } 3653