1 /* 2 * Block layer I/O functions 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "trace.h" 27 #include "sysemu/block-backend.h" 28 #include "block/aio-wait.h" 29 #include "block/blockjob.h" 30 #include "block/blockjob_int.h" 31 #include "block/block_int.h" 32 #include "block/coroutines.h" 33 #include "block/write-threshold.h" 34 #include "qemu/cutils.h" 35 #include "qemu/memalign.h" 36 #include "qapi/error.h" 37 #include "qemu/error-report.h" 38 #include "qemu/main-loop.h" 39 #include "sysemu/replay.h" 40 41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ 42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) 43 44 static void bdrv_parent_cb_resize(BlockDriverState *bs); 45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 46 int64_t offset, int64_t bytes, BdrvRequestFlags flags); 47 48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) 49 { 50 BdrvChild *c, *next; 51 52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 53 if (c == ignore) { 54 continue; 55 } 56 bdrv_parent_drained_begin_single(c); 57 } 58 } 59 60 void bdrv_parent_drained_end_single(BdrvChild *c) 61 { 62 IO_OR_GS_CODE(); 63 64 assert(c->quiesced_parent); 65 c->quiesced_parent = false; 66 67 if (c->klass->drained_end) { 68 c->klass->drained_end(c); 69 } 70 } 71 72 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) 73 { 74 BdrvChild *c; 75 76 QLIST_FOREACH(c, &bs->parents, next_parent) { 77 if (c == ignore) { 78 continue; 79 } 80 bdrv_parent_drained_end_single(c); 81 } 82 } 83 84 bool bdrv_parent_drained_poll_single(BdrvChild *c) 85 { 86 if (c->klass->drained_poll) { 87 return c->klass->drained_poll(c); 88 } 89 return false; 90 } 91 92 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore, 93 bool ignore_bds_parents) 94 { 95 BdrvChild *c, *next; 96 bool busy = false; 97 98 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { 99 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) { 100 continue; 101 } 102 busy |= bdrv_parent_drained_poll_single(c); 103 } 104 105 return busy; 106 } 107 108 void bdrv_parent_drained_begin_single(BdrvChild *c) 109 { 110 IO_OR_GS_CODE(); 111 112 assert(!c->quiesced_parent); 113 c->quiesced_parent = true; 114 115 if (c->klass->drained_begin) { 116 c->klass->drained_begin(c); 117 } 118 } 119 120 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) 121 { 122 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment, 123 src->pdiscard_alignment); 124 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); 125 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); 126 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer, 127 src->max_hw_transfer); 128 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, 129 src->opt_mem_alignment); 130 dst->min_mem_alignment = MAX(dst->min_mem_alignment, 131 src->min_mem_alignment); 132 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); 133 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov); 134 } 135 136 typedef struct BdrvRefreshLimitsState { 137 BlockDriverState *bs; 138 BlockLimits old_bl; 139 } BdrvRefreshLimitsState; 140 141 static void bdrv_refresh_limits_abort(void *opaque) 142 { 143 BdrvRefreshLimitsState *s = opaque; 144 145 s->bs->bl = s->old_bl; 146 } 147 148 static TransactionActionDrv bdrv_refresh_limits_drv = { 149 .abort = bdrv_refresh_limits_abort, 150 .clean = g_free, 151 }; 152 153 /* @tran is allowed to be NULL, in this case no rollback is possible. */ 154 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp) 155 { 156 ERRP_GUARD(); 157 BlockDriver *drv = bs->drv; 158 BdrvChild *c; 159 bool have_limits; 160 161 GLOBAL_STATE_CODE(); 162 163 if (tran) { 164 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1); 165 *s = (BdrvRefreshLimitsState) { 166 .bs = bs, 167 .old_bl = bs->bl, 168 }; 169 tran_add(tran, &bdrv_refresh_limits_drv, s); 170 } 171 172 memset(&bs->bl, 0, sizeof(bs->bl)); 173 174 if (!drv) { 175 return; 176 } 177 178 /* Default alignment based on whether driver has byte interface */ 179 bs->bl.request_alignment = (drv->bdrv_co_preadv || 180 drv->bdrv_aio_preadv || 181 drv->bdrv_co_preadv_part) ? 1 : 512; 182 183 /* Take some limits from the children as a default */ 184 have_limits = false; 185 QLIST_FOREACH(c, &bs->children, next) { 186 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW)) 187 { 188 bdrv_merge_limits(&bs->bl, &c->bs->bl); 189 have_limits = true; 190 } 191 } 192 193 if (!have_limits) { 194 bs->bl.min_mem_alignment = 512; 195 bs->bl.opt_mem_alignment = qemu_real_host_page_size(); 196 197 /* Safe default since most protocols use readv()/writev()/etc */ 198 bs->bl.max_iov = IOV_MAX; 199 } 200 201 /* Then let the driver override it */ 202 if (drv->bdrv_refresh_limits) { 203 drv->bdrv_refresh_limits(bs, errp); 204 if (*errp) { 205 return; 206 } 207 } 208 209 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) { 210 error_setg(errp, "Driver requires too large request alignment"); 211 } 212 } 213 214 /** 215 * The copy-on-read flag is actually a reference count so multiple users may 216 * use the feature without worrying about clobbering its previous state. 217 * Copy-on-read stays enabled until all users have called to disable it. 218 */ 219 void bdrv_enable_copy_on_read(BlockDriverState *bs) 220 { 221 IO_CODE(); 222 qatomic_inc(&bs->copy_on_read); 223 } 224 225 void bdrv_disable_copy_on_read(BlockDriverState *bs) 226 { 227 int old = qatomic_fetch_dec(&bs->copy_on_read); 228 IO_CODE(); 229 assert(old >= 1); 230 } 231 232 typedef struct { 233 Coroutine *co; 234 BlockDriverState *bs; 235 bool done; 236 bool begin; 237 bool poll; 238 BdrvChild *parent; 239 } BdrvCoDrainData; 240 241 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */ 242 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent, 243 bool ignore_bds_parents) 244 { 245 IO_OR_GS_CODE(); 246 247 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) { 248 return true; 249 } 250 251 if (qatomic_read(&bs->in_flight)) { 252 return true; 253 } 254 255 return false; 256 } 257 258 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, 259 BdrvChild *ignore_parent) 260 { 261 return bdrv_drain_poll(bs, ignore_parent, false); 262 } 263 264 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 265 bool poll); 266 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent); 267 268 static void bdrv_co_drain_bh_cb(void *opaque) 269 { 270 BdrvCoDrainData *data = opaque; 271 Coroutine *co = data->co; 272 BlockDriverState *bs = data->bs; 273 274 if (bs) { 275 AioContext *ctx = bdrv_get_aio_context(bs); 276 aio_context_acquire(ctx); 277 bdrv_dec_in_flight(bs); 278 if (data->begin) { 279 bdrv_do_drained_begin(bs, data->parent, data->poll); 280 } else { 281 assert(!data->poll); 282 bdrv_do_drained_end(bs, data->parent); 283 } 284 aio_context_release(ctx); 285 } else { 286 assert(data->begin); 287 bdrv_drain_all_begin(); 288 } 289 290 data->done = true; 291 aio_co_wake(co); 292 } 293 294 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, 295 bool begin, 296 BdrvChild *parent, 297 bool poll) 298 { 299 BdrvCoDrainData data; 300 Coroutine *self = qemu_coroutine_self(); 301 AioContext *ctx = bdrv_get_aio_context(bs); 302 AioContext *co_ctx = qemu_coroutine_get_aio_context(self); 303 304 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and 305 * other coroutines run if they were queued by aio_co_enter(). */ 306 307 assert(qemu_in_coroutine()); 308 data = (BdrvCoDrainData) { 309 .co = self, 310 .bs = bs, 311 .done = false, 312 .begin = begin, 313 .parent = parent, 314 .poll = poll, 315 }; 316 317 if (bs) { 318 bdrv_inc_in_flight(bs); 319 } 320 321 /* 322 * Temporarily drop the lock across yield or we would get deadlocks. 323 * bdrv_co_drain_bh_cb() reaquires the lock as needed. 324 * 325 * When we yield below, the lock for the current context will be 326 * released, so if this is actually the lock that protects bs, don't drop 327 * it a second time. 328 */ 329 if (ctx != co_ctx) { 330 aio_context_release(ctx); 331 } 332 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data); 333 334 qemu_coroutine_yield(); 335 /* If we are resumed from some other event (such as an aio completion or a 336 * timer callback), it is a bug in the caller that should be fixed. */ 337 assert(data.done); 338 339 /* Reaquire the AioContext of bs if we dropped it */ 340 if (ctx != co_ctx) { 341 aio_context_acquire(ctx); 342 } 343 } 344 345 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent, 346 bool poll) 347 { 348 IO_OR_GS_CODE(); 349 350 if (qemu_in_coroutine()) { 351 bdrv_co_yield_to_drain(bs, true, parent, poll); 352 return; 353 } 354 355 /* Stop things in parent-to-child order */ 356 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) { 357 aio_disable_external(bdrv_get_aio_context(bs)); 358 bdrv_parent_drained_begin(bs, parent); 359 if (bs->drv && bs->drv->bdrv_drain_begin) { 360 bs->drv->bdrv_drain_begin(bs); 361 } 362 } 363 364 /* 365 * Wait for drained requests to finish. 366 * 367 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The 368 * call is needed so things in this AioContext can make progress even 369 * though we don't return to the main AioContext loop - this automatically 370 * includes other nodes in the same AioContext and therefore all child 371 * nodes. 372 */ 373 if (poll) { 374 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent)); 375 } 376 } 377 378 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent) 379 { 380 bdrv_do_drained_begin(bs, parent, false); 381 } 382 383 void bdrv_drained_begin(BlockDriverState *bs) 384 { 385 IO_OR_GS_CODE(); 386 bdrv_do_drained_begin(bs, NULL, true); 387 } 388 389 /** 390 * This function does not poll, nor must any of its recursively called 391 * functions. 392 */ 393 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent) 394 { 395 int old_quiesce_counter; 396 397 if (qemu_in_coroutine()) { 398 bdrv_co_yield_to_drain(bs, false, parent, false); 399 return; 400 } 401 assert(bs->quiesce_counter > 0); 402 403 /* Re-enable things in child-to-parent order */ 404 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter); 405 if (old_quiesce_counter == 1) { 406 if (bs->drv && bs->drv->bdrv_drain_end) { 407 bs->drv->bdrv_drain_end(bs); 408 } 409 bdrv_parent_drained_end(bs, parent); 410 aio_enable_external(bdrv_get_aio_context(bs)); 411 } 412 } 413 414 void bdrv_drained_end(BlockDriverState *bs) 415 { 416 IO_OR_GS_CODE(); 417 bdrv_do_drained_end(bs, NULL); 418 } 419 420 void bdrv_drain(BlockDriverState *bs) 421 { 422 IO_OR_GS_CODE(); 423 bdrv_drained_begin(bs); 424 bdrv_drained_end(bs); 425 } 426 427 static void bdrv_drain_assert_idle(BlockDriverState *bs) 428 { 429 BdrvChild *child, *next; 430 431 assert(qatomic_read(&bs->in_flight) == 0); 432 QLIST_FOREACH_SAFE(child, &bs->children, next, next) { 433 bdrv_drain_assert_idle(child->bs); 434 } 435 } 436 437 unsigned int bdrv_drain_all_count = 0; 438 439 static bool bdrv_drain_all_poll(void) 440 { 441 BlockDriverState *bs = NULL; 442 bool result = false; 443 GLOBAL_STATE_CODE(); 444 445 /* bdrv_drain_poll() can't make changes to the graph and we are holding the 446 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */ 447 while ((bs = bdrv_next_all_states(bs))) { 448 AioContext *aio_context = bdrv_get_aio_context(bs); 449 aio_context_acquire(aio_context); 450 result |= bdrv_drain_poll(bs, NULL, true); 451 aio_context_release(aio_context); 452 } 453 454 return result; 455 } 456 457 /* 458 * Wait for pending requests to complete across all BlockDriverStates 459 * 460 * This function does not flush data to disk, use bdrv_flush_all() for that 461 * after calling this function. 462 * 463 * This pauses all block jobs and disables external clients. It must 464 * be paired with bdrv_drain_all_end(). 465 * 466 * NOTE: no new block jobs or BlockDriverStates can be created between 467 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. 468 */ 469 void bdrv_drain_all_begin_nopoll(void) 470 { 471 BlockDriverState *bs = NULL; 472 GLOBAL_STATE_CODE(); 473 474 /* 475 * bdrv queue is managed by record/replay, 476 * waiting for finishing the I/O requests may 477 * be infinite 478 */ 479 if (replay_events_enabled()) { 480 return; 481 } 482 483 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main 484 * loop AioContext, so make sure we're in the main context. */ 485 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 486 assert(bdrv_drain_all_count < INT_MAX); 487 bdrv_drain_all_count++; 488 489 /* Quiesce all nodes, without polling in-flight requests yet. The graph 490 * cannot change during this loop. */ 491 while ((bs = bdrv_next_all_states(bs))) { 492 AioContext *aio_context = bdrv_get_aio_context(bs); 493 494 aio_context_acquire(aio_context); 495 bdrv_do_drained_begin(bs, NULL, false); 496 aio_context_release(aio_context); 497 } 498 } 499 500 void bdrv_drain_all_begin(void) 501 { 502 BlockDriverState *bs = NULL; 503 504 if (qemu_in_coroutine()) { 505 bdrv_co_yield_to_drain(NULL, true, NULL, true); 506 return; 507 } 508 509 /* 510 * bdrv queue is managed by record/replay, 511 * waiting for finishing the I/O requests may 512 * be infinite 513 */ 514 if (replay_events_enabled()) { 515 return; 516 } 517 518 bdrv_drain_all_begin_nopoll(); 519 520 /* Now poll the in-flight requests */ 521 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll()); 522 523 while ((bs = bdrv_next_all_states(bs))) { 524 bdrv_drain_assert_idle(bs); 525 } 526 } 527 528 void bdrv_drain_all_end_quiesce(BlockDriverState *bs) 529 { 530 GLOBAL_STATE_CODE(); 531 532 g_assert(bs->quiesce_counter > 0); 533 g_assert(!bs->refcnt); 534 535 while (bs->quiesce_counter) { 536 bdrv_do_drained_end(bs, NULL); 537 } 538 } 539 540 void bdrv_drain_all_end(void) 541 { 542 BlockDriverState *bs = NULL; 543 GLOBAL_STATE_CODE(); 544 545 /* 546 * bdrv queue is managed by record/replay, 547 * waiting for finishing the I/O requests may 548 * be endless 549 */ 550 if (replay_events_enabled()) { 551 return; 552 } 553 554 while ((bs = bdrv_next_all_states(bs))) { 555 AioContext *aio_context = bdrv_get_aio_context(bs); 556 557 aio_context_acquire(aio_context); 558 bdrv_do_drained_end(bs, NULL); 559 aio_context_release(aio_context); 560 } 561 562 assert(qemu_get_current_aio_context() == qemu_get_aio_context()); 563 assert(bdrv_drain_all_count > 0); 564 bdrv_drain_all_count--; 565 } 566 567 void bdrv_drain_all(void) 568 { 569 GLOBAL_STATE_CODE(); 570 bdrv_drain_all_begin(); 571 bdrv_drain_all_end(); 572 } 573 574 /** 575 * Remove an active request from the tracked requests list 576 * 577 * This function should be called when a tracked request is completing. 578 */ 579 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req) 580 { 581 if (req->serialising) { 582 qatomic_dec(&req->bs->serialising_in_flight); 583 } 584 585 qemu_co_mutex_lock(&req->bs->reqs_lock); 586 QLIST_REMOVE(req, list); 587 qemu_co_queue_restart_all(&req->wait_queue); 588 qemu_co_mutex_unlock(&req->bs->reqs_lock); 589 } 590 591 /** 592 * Add an active request to the tracked requests list 593 */ 594 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req, 595 BlockDriverState *bs, 596 int64_t offset, 597 int64_t bytes, 598 enum BdrvTrackedRequestType type) 599 { 600 bdrv_check_request(offset, bytes, &error_abort); 601 602 *req = (BdrvTrackedRequest){ 603 .bs = bs, 604 .offset = offset, 605 .bytes = bytes, 606 .type = type, 607 .co = qemu_coroutine_self(), 608 .serialising = false, 609 .overlap_offset = offset, 610 .overlap_bytes = bytes, 611 }; 612 613 qemu_co_queue_init(&req->wait_queue); 614 615 qemu_co_mutex_lock(&bs->reqs_lock); 616 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 617 qemu_co_mutex_unlock(&bs->reqs_lock); 618 } 619 620 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 621 int64_t offset, int64_t bytes) 622 { 623 bdrv_check_request(offset, bytes, &error_abort); 624 625 /* aaaa bbbb */ 626 if (offset >= req->overlap_offset + req->overlap_bytes) { 627 return false; 628 } 629 /* bbbb aaaa */ 630 if (req->overlap_offset >= offset + bytes) { 631 return false; 632 } 633 return true; 634 } 635 636 /* Called with self->bs->reqs_lock held */ 637 static coroutine_fn BdrvTrackedRequest * 638 bdrv_find_conflicting_request(BdrvTrackedRequest *self) 639 { 640 BdrvTrackedRequest *req; 641 642 QLIST_FOREACH(req, &self->bs->tracked_requests, list) { 643 if (req == self || (!req->serialising && !self->serialising)) { 644 continue; 645 } 646 if (tracked_request_overlaps(req, self->overlap_offset, 647 self->overlap_bytes)) 648 { 649 /* 650 * Hitting this means there was a reentrant request, for 651 * example, a block driver issuing nested requests. This must 652 * never happen since it means deadlock. 653 */ 654 assert(qemu_coroutine_self() != req->co); 655 656 /* 657 * If the request is already (indirectly) waiting for us, or 658 * will wait for us as soon as it wakes up, then just go on 659 * (instead of producing a deadlock in the former case). 660 */ 661 if (!req->waiting_for) { 662 return req; 663 } 664 } 665 } 666 667 return NULL; 668 } 669 670 /* Called with self->bs->reqs_lock held */ 671 static void coroutine_fn 672 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self) 673 { 674 BdrvTrackedRequest *req; 675 676 while ((req = bdrv_find_conflicting_request(self))) { 677 self->waiting_for = req; 678 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock); 679 self->waiting_for = NULL; 680 } 681 } 682 683 /* Called with req->bs->reqs_lock held */ 684 static void tracked_request_set_serialising(BdrvTrackedRequest *req, 685 uint64_t align) 686 { 687 int64_t overlap_offset = req->offset & ~(align - 1); 688 int64_t overlap_bytes = 689 ROUND_UP(req->offset + req->bytes, align) - overlap_offset; 690 691 bdrv_check_request(req->offset, req->bytes, &error_abort); 692 693 if (!req->serialising) { 694 qatomic_inc(&req->bs->serialising_in_flight); 695 req->serialising = true; 696 } 697 698 req->overlap_offset = MIN(req->overlap_offset, overlap_offset); 699 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); 700 } 701 702 /** 703 * Return the tracked request on @bs for the current coroutine, or 704 * NULL if there is none. 705 */ 706 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs) 707 { 708 BdrvTrackedRequest *req; 709 Coroutine *self = qemu_coroutine_self(); 710 IO_CODE(); 711 712 QLIST_FOREACH(req, &bs->tracked_requests, list) { 713 if (req->co == self) { 714 return req; 715 } 716 } 717 718 return NULL; 719 } 720 721 /** 722 * Round a region to cluster boundaries 723 */ 724 void bdrv_round_to_clusters(BlockDriverState *bs, 725 int64_t offset, int64_t bytes, 726 int64_t *cluster_offset, 727 int64_t *cluster_bytes) 728 { 729 BlockDriverInfo bdi; 730 IO_CODE(); 731 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 732 *cluster_offset = offset; 733 *cluster_bytes = bytes; 734 } else { 735 int64_t c = bdi.cluster_size; 736 *cluster_offset = QEMU_ALIGN_DOWN(offset, c); 737 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); 738 } 739 } 740 741 static int bdrv_get_cluster_size(BlockDriverState *bs) 742 { 743 BlockDriverInfo bdi; 744 int ret; 745 746 ret = bdrv_get_info(bs, &bdi); 747 if (ret < 0 || bdi.cluster_size == 0) { 748 return bs->bl.request_alignment; 749 } else { 750 return bdi.cluster_size; 751 } 752 } 753 754 void bdrv_inc_in_flight(BlockDriverState *bs) 755 { 756 IO_CODE(); 757 qatomic_inc(&bs->in_flight); 758 } 759 760 void bdrv_wakeup(BlockDriverState *bs) 761 { 762 IO_CODE(); 763 aio_wait_kick(); 764 } 765 766 void bdrv_dec_in_flight(BlockDriverState *bs) 767 { 768 IO_CODE(); 769 qatomic_dec(&bs->in_flight); 770 bdrv_wakeup(bs); 771 } 772 773 static void coroutine_fn 774 bdrv_wait_serialising_requests(BdrvTrackedRequest *self) 775 { 776 BlockDriverState *bs = self->bs; 777 778 if (!qatomic_read(&bs->serialising_in_flight)) { 779 return; 780 } 781 782 qemu_co_mutex_lock(&bs->reqs_lock); 783 bdrv_wait_serialising_requests_locked(self); 784 qemu_co_mutex_unlock(&bs->reqs_lock); 785 } 786 787 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req, 788 uint64_t align) 789 { 790 IO_CODE(); 791 792 qemu_co_mutex_lock(&req->bs->reqs_lock); 793 794 tracked_request_set_serialising(req, align); 795 bdrv_wait_serialising_requests_locked(req); 796 797 qemu_co_mutex_unlock(&req->bs->reqs_lock); 798 } 799 800 int bdrv_check_qiov_request(int64_t offset, int64_t bytes, 801 QEMUIOVector *qiov, size_t qiov_offset, 802 Error **errp) 803 { 804 /* 805 * Check generic offset/bytes correctness 806 */ 807 808 if (offset < 0) { 809 error_setg(errp, "offset is negative: %" PRIi64, offset); 810 return -EIO; 811 } 812 813 if (bytes < 0) { 814 error_setg(errp, "bytes is negative: %" PRIi64, bytes); 815 return -EIO; 816 } 817 818 if (bytes > BDRV_MAX_LENGTH) { 819 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 820 bytes, BDRV_MAX_LENGTH); 821 return -EIO; 822 } 823 824 if (offset > BDRV_MAX_LENGTH) { 825 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")", 826 offset, BDRV_MAX_LENGTH); 827 return -EIO; 828 } 829 830 if (offset > BDRV_MAX_LENGTH - bytes) { 831 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") " 832 "exceeds maximum(%" PRIi64 ")", offset, bytes, 833 BDRV_MAX_LENGTH); 834 return -EIO; 835 } 836 837 if (!qiov) { 838 return 0; 839 } 840 841 /* 842 * Check qiov and qiov_offset 843 */ 844 845 if (qiov_offset > qiov->size) { 846 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)", 847 qiov_offset, qiov->size); 848 return -EIO; 849 } 850 851 if (bytes > qiov->size - qiov_offset) { 852 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io " 853 "vector size(%zu)", bytes, qiov_offset, qiov->size); 854 return -EIO; 855 } 856 857 return 0; 858 } 859 860 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp) 861 { 862 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp); 863 } 864 865 static int bdrv_check_request32(int64_t offset, int64_t bytes, 866 QEMUIOVector *qiov, size_t qiov_offset) 867 { 868 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 869 if (ret < 0) { 870 return ret; 871 } 872 873 if (bytes > BDRV_REQUEST_MAX_BYTES) { 874 return -EIO; 875 } 876 877 return 0; 878 } 879 880 /* 881 * Completely zero out a block device with the help of bdrv_pwrite_zeroes. 882 * The operation is sped up by checking the block status and only writing 883 * zeroes to the device if they currently do not return zeroes. Optional 884 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, 885 * BDRV_REQ_FUA). 886 * 887 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite(). 888 */ 889 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) 890 { 891 int ret; 892 int64_t target_size, bytes, offset = 0; 893 BlockDriverState *bs = child->bs; 894 IO_CODE(); 895 896 target_size = bdrv_getlength(bs); 897 if (target_size < 0) { 898 return target_size; 899 } 900 901 for (;;) { 902 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); 903 if (bytes <= 0) { 904 return 0; 905 } 906 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); 907 if (ret < 0) { 908 return ret; 909 } 910 if (ret & BDRV_BLOCK_ZERO) { 911 offset += bytes; 912 continue; 913 } 914 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); 915 if (ret < 0) { 916 return ret; 917 } 918 offset += bytes; 919 } 920 } 921 922 /* 923 * Writes to the file and ensures that no writes are reordered across this 924 * request (acts as a barrier) 925 * 926 * Returns 0 on success, -errno in error cases. 927 */ 928 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset, 929 int64_t bytes, const void *buf, 930 BdrvRequestFlags flags) 931 { 932 int ret; 933 IO_CODE(); 934 935 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags); 936 if (ret < 0) { 937 return ret; 938 } 939 940 ret = bdrv_co_flush(child->bs); 941 if (ret < 0) { 942 return ret; 943 } 944 945 return 0; 946 } 947 948 typedef struct CoroutineIOCompletion { 949 Coroutine *coroutine; 950 int ret; 951 } CoroutineIOCompletion; 952 953 static void bdrv_co_io_em_complete(void *opaque, int ret) 954 { 955 CoroutineIOCompletion *co = opaque; 956 957 co->ret = ret; 958 aio_co_wake(co->coroutine); 959 } 960 961 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, 962 int64_t offset, int64_t bytes, 963 QEMUIOVector *qiov, 964 size_t qiov_offset, int flags) 965 { 966 BlockDriver *drv = bs->drv; 967 int64_t sector_num; 968 unsigned int nb_sectors; 969 QEMUIOVector local_qiov; 970 int ret; 971 972 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 973 assert(!(flags & ~bs->supported_read_flags)); 974 975 if (!drv) { 976 return -ENOMEDIUM; 977 } 978 979 if (drv->bdrv_co_preadv_part) { 980 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset, 981 flags); 982 } 983 984 if (qiov_offset > 0 || bytes != qiov->size) { 985 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 986 qiov = &local_qiov; 987 } 988 989 if (drv->bdrv_co_preadv) { 990 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); 991 goto out; 992 } 993 994 if (drv->bdrv_aio_preadv) { 995 BlockAIOCB *acb; 996 CoroutineIOCompletion co = { 997 .coroutine = qemu_coroutine_self(), 998 }; 999 1000 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, 1001 bdrv_co_io_em_complete, &co); 1002 if (acb == NULL) { 1003 ret = -EIO; 1004 goto out; 1005 } else { 1006 qemu_coroutine_yield(); 1007 ret = co.ret; 1008 goto out; 1009 } 1010 } 1011 1012 sector_num = offset >> BDRV_SECTOR_BITS; 1013 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1014 1015 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1016 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1017 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1018 assert(drv->bdrv_co_readv); 1019 1020 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1021 1022 out: 1023 if (qiov == &local_qiov) { 1024 qemu_iovec_destroy(&local_qiov); 1025 } 1026 1027 return ret; 1028 } 1029 1030 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, 1031 int64_t offset, int64_t bytes, 1032 QEMUIOVector *qiov, 1033 size_t qiov_offset, 1034 BdrvRequestFlags flags) 1035 { 1036 BlockDriver *drv = bs->drv; 1037 bool emulate_fua = false; 1038 int64_t sector_num; 1039 unsigned int nb_sectors; 1040 QEMUIOVector local_qiov; 1041 int ret; 1042 1043 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1044 1045 if (!drv) { 1046 return -ENOMEDIUM; 1047 } 1048 1049 if ((flags & BDRV_REQ_FUA) && 1050 (~bs->supported_write_flags & BDRV_REQ_FUA)) { 1051 flags &= ~BDRV_REQ_FUA; 1052 emulate_fua = true; 1053 } 1054 1055 flags &= bs->supported_write_flags; 1056 1057 if (drv->bdrv_co_pwritev_part) { 1058 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset, 1059 flags); 1060 goto emulate_flags; 1061 } 1062 1063 if (qiov_offset > 0 || bytes != qiov->size) { 1064 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1065 qiov = &local_qiov; 1066 } 1067 1068 if (drv->bdrv_co_pwritev) { 1069 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags); 1070 goto emulate_flags; 1071 } 1072 1073 if (drv->bdrv_aio_pwritev) { 1074 BlockAIOCB *acb; 1075 CoroutineIOCompletion co = { 1076 .coroutine = qemu_coroutine_self(), 1077 }; 1078 1079 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags, 1080 bdrv_co_io_em_complete, &co); 1081 if (acb == NULL) { 1082 ret = -EIO; 1083 } else { 1084 qemu_coroutine_yield(); 1085 ret = co.ret; 1086 } 1087 goto emulate_flags; 1088 } 1089 1090 sector_num = offset >> BDRV_SECTOR_BITS; 1091 nb_sectors = bytes >> BDRV_SECTOR_BITS; 1092 1093 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE)); 1094 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE)); 1095 assert(bytes <= BDRV_REQUEST_MAX_BYTES); 1096 1097 assert(drv->bdrv_co_writev); 1098 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags); 1099 1100 emulate_flags: 1101 if (ret == 0 && emulate_fua) { 1102 ret = bdrv_co_flush(bs); 1103 } 1104 1105 if (qiov == &local_qiov) { 1106 qemu_iovec_destroy(&local_qiov); 1107 } 1108 1109 return ret; 1110 } 1111 1112 static int coroutine_fn 1113 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset, 1114 int64_t bytes, QEMUIOVector *qiov, 1115 size_t qiov_offset) 1116 { 1117 BlockDriver *drv = bs->drv; 1118 QEMUIOVector local_qiov; 1119 int ret; 1120 1121 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1122 1123 if (!drv) { 1124 return -ENOMEDIUM; 1125 } 1126 1127 if (!block_driver_can_compress(drv)) { 1128 return -ENOTSUP; 1129 } 1130 1131 if (drv->bdrv_co_pwritev_compressed_part) { 1132 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes, 1133 qiov, qiov_offset); 1134 } 1135 1136 if (qiov_offset == 0) { 1137 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); 1138 } 1139 1140 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes); 1141 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov); 1142 qemu_iovec_destroy(&local_qiov); 1143 1144 return ret; 1145 } 1146 1147 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, 1148 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1149 size_t qiov_offset, int flags) 1150 { 1151 BlockDriverState *bs = child->bs; 1152 1153 /* Perform I/O through a temporary buffer so that users who scribble over 1154 * their read buffer while the operation is in progress do not end up 1155 * modifying the image file. This is critical for zero-copy guest I/O 1156 * where anything might happen inside guest memory. 1157 */ 1158 void *bounce_buffer = NULL; 1159 1160 BlockDriver *drv = bs->drv; 1161 int64_t cluster_offset; 1162 int64_t cluster_bytes; 1163 int64_t skip_bytes; 1164 int ret; 1165 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, 1166 BDRV_REQUEST_MAX_BYTES); 1167 int64_t progress = 0; 1168 bool skip_write; 1169 1170 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1171 1172 if (!drv) { 1173 return -ENOMEDIUM; 1174 } 1175 1176 /* 1177 * Do not write anything when the BDS is inactive. That is not 1178 * allowed, and it would not help. 1179 */ 1180 skip_write = (bs->open_flags & BDRV_O_INACTIVE); 1181 1182 /* FIXME We cannot require callers to have write permissions when all they 1183 * are doing is a read request. If we did things right, write permissions 1184 * would be obtained anyway, but internally by the copy-on-read code. As 1185 * long as it is implemented here rather than in a separate filter driver, 1186 * the copy-on-read code doesn't have its own BdrvChild, however, for which 1187 * it could request permissions. Therefore we have to bypass the permission 1188 * system for the moment. */ 1189 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1190 1191 /* Cover entire cluster so no additional backing file I/O is required when 1192 * allocating cluster in the image file. Note that this value may exceed 1193 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which 1194 * is one reason we loop rather than doing it all at once. 1195 */ 1196 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); 1197 skip_bytes = offset - cluster_offset; 1198 1199 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, 1200 cluster_offset, cluster_bytes); 1201 1202 while (cluster_bytes) { 1203 int64_t pnum; 1204 1205 if (skip_write) { 1206 ret = 1; /* "already allocated", so nothing will be copied */ 1207 pnum = MIN(cluster_bytes, max_transfer); 1208 } else { 1209 ret = bdrv_is_allocated(bs, cluster_offset, 1210 MIN(cluster_bytes, max_transfer), &pnum); 1211 if (ret < 0) { 1212 /* 1213 * Safe to treat errors in querying allocation as if 1214 * unallocated; we'll probably fail again soon on the 1215 * read, but at least that will set a decent errno. 1216 */ 1217 pnum = MIN(cluster_bytes, max_transfer); 1218 } 1219 1220 /* Stop at EOF if the image ends in the middle of the cluster */ 1221 if (ret == 0 && pnum == 0) { 1222 assert(progress >= bytes); 1223 break; 1224 } 1225 1226 assert(skip_bytes < pnum); 1227 } 1228 1229 if (ret <= 0) { 1230 QEMUIOVector local_qiov; 1231 1232 /* Must copy-on-read; use the bounce buffer */ 1233 pnum = MIN(pnum, MAX_BOUNCE_BUFFER); 1234 if (!bounce_buffer) { 1235 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum); 1236 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER); 1237 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed); 1238 1239 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len); 1240 if (!bounce_buffer) { 1241 ret = -ENOMEM; 1242 goto err; 1243 } 1244 } 1245 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum); 1246 1247 ret = bdrv_driver_preadv(bs, cluster_offset, pnum, 1248 &local_qiov, 0, 0); 1249 if (ret < 0) { 1250 goto err; 1251 } 1252 1253 bdrv_debug_event(bs, BLKDBG_COR_WRITE); 1254 if (drv->bdrv_co_pwrite_zeroes && 1255 buffer_is_zero(bounce_buffer, pnum)) { 1256 /* FIXME: Should we (perhaps conditionally) be setting 1257 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy 1258 * that still correctly reads as zero? */ 1259 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 1260 BDRV_REQ_WRITE_UNCHANGED); 1261 } else { 1262 /* This does not change the data on the disk, it is not 1263 * necessary to flush even in cache=writethrough mode. 1264 */ 1265 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, 1266 &local_qiov, 0, 1267 BDRV_REQ_WRITE_UNCHANGED); 1268 } 1269 1270 if (ret < 0) { 1271 /* It might be okay to ignore write errors for guest 1272 * requests. If this is a deliberate copy-on-read 1273 * then we don't want to ignore the error. Simply 1274 * report it in all cases. 1275 */ 1276 goto err; 1277 } 1278 1279 if (!(flags & BDRV_REQ_PREFETCH)) { 1280 qemu_iovec_from_buf(qiov, qiov_offset + progress, 1281 bounce_buffer + skip_bytes, 1282 MIN(pnum - skip_bytes, bytes - progress)); 1283 } 1284 } else if (!(flags & BDRV_REQ_PREFETCH)) { 1285 /* Read directly into the destination */ 1286 ret = bdrv_driver_preadv(bs, offset + progress, 1287 MIN(pnum - skip_bytes, bytes - progress), 1288 qiov, qiov_offset + progress, 0); 1289 if (ret < 0) { 1290 goto err; 1291 } 1292 } 1293 1294 cluster_offset += pnum; 1295 cluster_bytes -= pnum; 1296 progress += pnum - skip_bytes; 1297 skip_bytes = 0; 1298 } 1299 ret = 0; 1300 1301 err: 1302 qemu_vfree(bounce_buffer); 1303 return ret; 1304 } 1305 1306 /* 1307 * Forwards an already correctly aligned request to the BlockDriver. This 1308 * handles copy on read, zeroing after EOF, and fragmentation of large 1309 * reads; any other features must be implemented by the caller. 1310 */ 1311 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, 1312 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1313 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags) 1314 { 1315 BlockDriverState *bs = child->bs; 1316 int64_t total_bytes, max_bytes; 1317 int ret = 0; 1318 int64_t bytes_remaining = bytes; 1319 int max_transfer; 1320 1321 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1322 assert(is_power_of_2(align)); 1323 assert((offset & (align - 1)) == 0); 1324 assert((bytes & (align - 1)) == 0); 1325 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1326 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1327 align); 1328 1329 /* 1330 * TODO: We would need a per-BDS .supported_read_flags and 1331 * potential fallback support, if we ever implement any read flags 1332 * to pass through to drivers. For now, there aren't any 1333 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint. 1334 */ 1335 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH | 1336 BDRV_REQ_REGISTERED_BUF))); 1337 1338 /* Handle Copy on Read and associated serialisation */ 1339 if (flags & BDRV_REQ_COPY_ON_READ) { 1340 /* If we touch the same cluster it counts as an overlap. This 1341 * guarantees that allocating writes will be serialized and not race 1342 * with each other for the same cluster. For example, in copy-on-read 1343 * it ensures that the CoR read and write operations are atomic and 1344 * guest writes cannot interleave between them. */ 1345 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs)); 1346 } else { 1347 bdrv_wait_serialising_requests(req); 1348 } 1349 1350 if (flags & BDRV_REQ_COPY_ON_READ) { 1351 int64_t pnum; 1352 1353 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */ 1354 flags &= ~BDRV_REQ_COPY_ON_READ; 1355 1356 ret = bdrv_is_allocated(bs, offset, bytes, &pnum); 1357 if (ret < 0) { 1358 goto out; 1359 } 1360 1361 if (!ret || pnum != bytes) { 1362 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, 1363 qiov, qiov_offset, flags); 1364 goto out; 1365 } else if (flags & BDRV_REQ_PREFETCH) { 1366 goto out; 1367 } 1368 } 1369 1370 /* Forward the request to the BlockDriver, possibly fragmenting it */ 1371 total_bytes = bdrv_getlength(bs); 1372 if (total_bytes < 0) { 1373 ret = total_bytes; 1374 goto out; 1375 } 1376 1377 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF))); 1378 1379 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); 1380 if (bytes <= max_bytes && bytes <= max_transfer) { 1381 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags); 1382 goto out; 1383 } 1384 1385 while (bytes_remaining) { 1386 int64_t num; 1387 1388 if (max_bytes) { 1389 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); 1390 assert(num); 1391 1392 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, 1393 num, qiov, 1394 qiov_offset + bytes - bytes_remaining, 1395 flags); 1396 max_bytes -= num; 1397 } else { 1398 num = bytes_remaining; 1399 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining, 1400 0, bytes_remaining); 1401 } 1402 if (ret < 0) { 1403 goto out; 1404 } 1405 bytes_remaining -= num; 1406 } 1407 1408 out: 1409 return ret < 0 ? ret : 0; 1410 } 1411 1412 /* 1413 * Request padding 1414 * 1415 * |<---- align ----->| |<----- align ---->| 1416 * |<- head ->|<------------- bytes ------------->|<-- tail -->| 1417 * | | | | | | 1418 * -*----------$-------*-------- ... --------*-----$------------*--- 1419 * | | | | | | 1420 * | offset | | end | 1421 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end) 1422 * [buf ... ) [tail_buf ) 1423 * 1424 * @buf is an aligned allocation needed to store @head and @tail paddings. @head 1425 * is placed at the beginning of @buf and @tail at the @end. 1426 * 1427 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk 1428 * around tail, if tail exists. 1429 * 1430 * @merge_reads is true for small requests, 1431 * if @buf_len == @head + bytes + @tail. In this case it is possible that both 1432 * head and tail exist but @buf_len == align and @tail_buf == @buf. 1433 */ 1434 typedef struct BdrvRequestPadding { 1435 uint8_t *buf; 1436 size_t buf_len; 1437 uint8_t *tail_buf; 1438 size_t head; 1439 size_t tail; 1440 bool merge_reads; 1441 QEMUIOVector local_qiov; 1442 } BdrvRequestPadding; 1443 1444 static bool bdrv_init_padding(BlockDriverState *bs, 1445 int64_t offset, int64_t bytes, 1446 BdrvRequestPadding *pad) 1447 { 1448 int64_t align = bs->bl.request_alignment; 1449 int64_t sum; 1450 1451 bdrv_check_request(offset, bytes, &error_abort); 1452 assert(align <= INT_MAX); /* documented in block/block_int.h */ 1453 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */ 1454 1455 memset(pad, 0, sizeof(*pad)); 1456 1457 pad->head = offset & (align - 1); 1458 pad->tail = ((offset + bytes) & (align - 1)); 1459 if (pad->tail) { 1460 pad->tail = align - pad->tail; 1461 } 1462 1463 if (!pad->head && !pad->tail) { 1464 return false; 1465 } 1466 1467 assert(bytes); /* Nothing good in aligning zero-length requests */ 1468 1469 sum = pad->head + bytes + pad->tail; 1470 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align; 1471 pad->buf = qemu_blockalign(bs, pad->buf_len); 1472 pad->merge_reads = sum == pad->buf_len; 1473 if (pad->tail) { 1474 pad->tail_buf = pad->buf + pad->buf_len - align; 1475 } 1476 1477 return true; 1478 } 1479 1480 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child, 1481 BdrvTrackedRequest *req, 1482 BdrvRequestPadding *pad, 1483 bool zero_middle) 1484 { 1485 QEMUIOVector local_qiov; 1486 BlockDriverState *bs = child->bs; 1487 uint64_t align = bs->bl.request_alignment; 1488 int ret; 1489 1490 assert(req->serialising && pad->buf); 1491 1492 if (pad->head || pad->merge_reads) { 1493 int64_t bytes = pad->merge_reads ? pad->buf_len : align; 1494 1495 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes); 1496 1497 if (pad->head) { 1498 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); 1499 } 1500 if (pad->merge_reads && pad->tail) { 1501 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1502 } 1503 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes, 1504 align, &local_qiov, 0, 0); 1505 if (ret < 0) { 1506 return ret; 1507 } 1508 if (pad->head) { 1509 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); 1510 } 1511 if (pad->merge_reads && pad->tail) { 1512 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1513 } 1514 1515 if (pad->merge_reads) { 1516 goto zero_mem; 1517 } 1518 } 1519 1520 if (pad->tail) { 1521 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align); 1522 1523 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); 1524 ret = bdrv_aligned_preadv( 1525 child, req, 1526 req->overlap_offset + req->overlap_bytes - align, 1527 align, align, &local_qiov, 0, 0); 1528 if (ret < 0) { 1529 return ret; 1530 } 1531 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); 1532 } 1533 1534 zero_mem: 1535 if (zero_middle) { 1536 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail); 1537 } 1538 1539 return 0; 1540 } 1541 1542 static void bdrv_padding_destroy(BdrvRequestPadding *pad) 1543 { 1544 if (pad->buf) { 1545 qemu_vfree(pad->buf); 1546 qemu_iovec_destroy(&pad->local_qiov); 1547 } 1548 memset(pad, 0, sizeof(*pad)); 1549 } 1550 1551 /* 1552 * bdrv_pad_request 1553 * 1554 * Exchange request parameters with padded request if needed. Don't include RMW 1555 * read of padding, bdrv_padding_rmw_read() should be called separately if 1556 * needed. 1557 * 1558 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out: 1559 * - on function start they represent original request 1560 * - on failure or when padding is not needed they are unchanged 1561 * - on success when padding is needed they represent padded request 1562 */ 1563 static int bdrv_pad_request(BlockDriverState *bs, 1564 QEMUIOVector **qiov, size_t *qiov_offset, 1565 int64_t *offset, int64_t *bytes, 1566 BdrvRequestPadding *pad, bool *padded, 1567 BdrvRequestFlags *flags) 1568 { 1569 int ret; 1570 1571 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort); 1572 1573 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) { 1574 if (padded) { 1575 *padded = false; 1576 } 1577 return 0; 1578 } 1579 1580 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head, 1581 *qiov, *qiov_offset, *bytes, 1582 pad->buf + pad->buf_len - pad->tail, 1583 pad->tail); 1584 if (ret < 0) { 1585 bdrv_padding_destroy(pad); 1586 return ret; 1587 } 1588 *bytes += pad->head + pad->tail; 1589 *offset -= pad->head; 1590 *qiov = &pad->local_qiov; 1591 *qiov_offset = 0; 1592 if (padded) { 1593 *padded = true; 1594 } 1595 if (flags) { 1596 /* Can't use optimization hint with bounce buffer */ 1597 *flags &= ~BDRV_REQ_REGISTERED_BUF; 1598 } 1599 1600 return 0; 1601 } 1602 1603 int coroutine_fn bdrv_co_preadv(BdrvChild *child, 1604 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 1605 BdrvRequestFlags flags) 1606 { 1607 IO_CODE(); 1608 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags); 1609 } 1610 1611 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child, 1612 int64_t offset, int64_t bytes, 1613 QEMUIOVector *qiov, size_t qiov_offset, 1614 BdrvRequestFlags flags) 1615 { 1616 BlockDriverState *bs = child->bs; 1617 BdrvTrackedRequest req; 1618 BdrvRequestPadding pad; 1619 int ret; 1620 IO_CODE(); 1621 1622 trace_bdrv_co_preadv_part(bs, offset, bytes, flags); 1623 1624 if (!bdrv_is_inserted(bs)) { 1625 return -ENOMEDIUM; 1626 } 1627 1628 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 1629 if (ret < 0) { 1630 return ret; 1631 } 1632 1633 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 1634 /* 1635 * Aligning zero request is nonsense. Even if driver has special meaning 1636 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 1637 * it to driver due to request_alignment. 1638 * 1639 * Still, no reason to return an error if someone do unaligned 1640 * zero-length read occasionally. 1641 */ 1642 return 0; 1643 } 1644 1645 bdrv_inc_in_flight(bs); 1646 1647 /* Don't do copy-on-read if we read data before write operation */ 1648 if (qatomic_read(&bs->copy_on_read)) { 1649 flags |= BDRV_REQ_COPY_ON_READ; 1650 } 1651 1652 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 1653 NULL, &flags); 1654 if (ret < 0) { 1655 goto fail; 1656 } 1657 1658 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); 1659 ret = bdrv_aligned_preadv(child, &req, offset, bytes, 1660 bs->bl.request_alignment, 1661 qiov, qiov_offset, flags); 1662 tracked_request_end(&req); 1663 bdrv_padding_destroy(&pad); 1664 1665 fail: 1666 bdrv_dec_in_flight(bs); 1667 1668 return ret; 1669 } 1670 1671 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, 1672 int64_t offset, int64_t bytes, BdrvRequestFlags flags) 1673 { 1674 BlockDriver *drv = bs->drv; 1675 QEMUIOVector qiov; 1676 void *buf = NULL; 1677 int ret = 0; 1678 bool need_flush = false; 1679 int head = 0; 1680 int tail = 0; 1681 1682 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, 1683 INT64_MAX); 1684 int alignment = MAX(bs->bl.pwrite_zeroes_alignment, 1685 bs->bl.request_alignment); 1686 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); 1687 1688 bdrv_check_request(offset, bytes, &error_abort); 1689 1690 if (!drv) { 1691 return -ENOMEDIUM; 1692 } 1693 1694 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) { 1695 return -ENOTSUP; 1696 } 1697 1698 /* By definition there is no user buffer so this flag doesn't make sense */ 1699 if (flags & BDRV_REQ_REGISTERED_BUF) { 1700 return -EINVAL; 1701 } 1702 1703 /* Invalidate the cached block-status data range if this write overlaps */ 1704 bdrv_bsc_invalidate_range(bs, offset, bytes); 1705 1706 assert(alignment % bs->bl.request_alignment == 0); 1707 head = offset % alignment; 1708 tail = (offset + bytes) % alignment; 1709 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); 1710 assert(max_write_zeroes >= bs->bl.request_alignment); 1711 1712 while (bytes > 0 && !ret) { 1713 int64_t num = bytes; 1714 1715 /* Align request. Block drivers can expect the "bulk" of the request 1716 * to be aligned, and that unaligned requests do not cross cluster 1717 * boundaries. 1718 */ 1719 if (head) { 1720 /* Make a small request up to the first aligned sector. For 1721 * convenience, limit this request to max_transfer even if 1722 * we don't need to fall back to writes. */ 1723 num = MIN(MIN(bytes, max_transfer), alignment - head); 1724 head = (head + num) % alignment; 1725 assert(num < max_write_zeroes); 1726 } else if (tail && num > alignment) { 1727 /* Shorten the request to the last aligned sector. */ 1728 num -= tail; 1729 } 1730 1731 /* limit request size */ 1732 if (num > max_write_zeroes) { 1733 num = max_write_zeroes; 1734 } 1735 1736 ret = -ENOTSUP; 1737 /* First try the efficient write zeroes operation */ 1738 if (drv->bdrv_co_pwrite_zeroes) { 1739 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, 1740 flags & bs->supported_zero_flags); 1741 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && 1742 !(bs->supported_zero_flags & BDRV_REQ_FUA)) { 1743 need_flush = true; 1744 } 1745 } else { 1746 assert(!bs->supported_zero_flags); 1747 } 1748 1749 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) { 1750 /* Fall back to bounce buffer if write zeroes is unsupported */ 1751 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; 1752 1753 if ((flags & BDRV_REQ_FUA) && 1754 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1755 /* No need for bdrv_driver_pwrite() to do a fallback 1756 * flush on each chunk; use just one at the end */ 1757 write_flags &= ~BDRV_REQ_FUA; 1758 need_flush = true; 1759 } 1760 num = MIN(num, max_transfer); 1761 if (buf == NULL) { 1762 buf = qemu_try_blockalign0(bs, num); 1763 if (buf == NULL) { 1764 ret = -ENOMEM; 1765 goto fail; 1766 } 1767 } 1768 qemu_iovec_init_buf(&qiov, buf, num); 1769 1770 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags); 1771 1772 /* Keep bounce buffer around if it is big enough for all 1773 * all future requests. 1774 */ 1775 if (num < max_transfer) { 1776 qemu_vfree(buf); 1777 buf = NULL; 1778 } 1779 } 1780 1781 offset += num; 1782 bytes -= num; 1783 } 1784 1785 fail: 1786 if (ret == 0 && need_flush) { 1787 ret = bdrv_co_flush(bs); 1788 } 1789 qemu_vfree(buf); 1790 return ret; 1791 } 1792 1793 static inline int coroutine_fn 1794 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes, 1795 BdrvTrackedRequest *req, int flags) 1796 { 1797 BlockDriverState *bs = child->bs; 1798 1799 bdrv_check_request(offset, bytes, &error_abort); 1800 1801 if (bdrv_is_read_only(bs)) { 1802 return -EPERM; 1803 } 1804 1805 assert(!(bs->open_flags & BDRV_O_INACTIVE)); 1806 assert((bs->open_flags & BDRV_O_NO_IO) == 0); 1807 assert(!(flags & ~BDRV_REQ_MASK)); 1808 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING))); 1809 1810 if (flags & BDRV_REQ_SERIALISING) { 1811 QEMU_LOCK_GUARD(&bs->reqs_lock); 1812 1813 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs)); 1814 1815 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) { 1816 return -EBUSY; 1817 } 1818 1819 bdrv_wait_serialising_requests_locked(req); 1820 } else { 1821 bdrv_wait_serialising_requests(req); 1822 } 1823 1824 assert(req->overlap_offset <= offset); 1825 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); 1826 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE || 1827 child->perm & BLK_PERM_RESIZE); 1828 1829 switch (req->type) { 1830 case BDRV_TRACKED_WRITE: 1831 case BDRV_TRACKED_DISCARD: 1832 if (flags & BDRV_REQ_WRITE_UNCHANGED) { 1833 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); 1834 } else { 1835 assert(child->perm & BLK_PERM_WRITE); 1836 } 1837 bdrv_write_threshold_check_write(bs, offset, bytes); 1838 return 0; 1839 case BDRV_TRACKED_TRUNCATE: 1840 assert(child->perm & BLK_PERM_RESIZE); 1841 return 0; 1842 default: 1843 abort(); 1844 } 1845 } 1846 1847 static inline void coroutine_fn 1848 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes, 1849 BdrvTrackedRequest *req, int ret) 1850 { 1851 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); 1852 BlockDriverState *bs = child->bs; 1853 1854 bdrv_check_request(offset, bytes, &error_abort); 1855 1856 qatomic_inc(&bs->write_gen); 1857 1858 /* 1859 * Discard cannot extend the image, but in error handling cases, such as 1860 * when reverting a qcow2 cluster allocation, the discarded range can pass 1861 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD 1862 * here. Instead, just skip it, since semantically a discard request 1863 * beyond EOF cannot expand the image anyway. 1864 */ 1865 if (ret == 0 && 1866 (req->type == BDRV_TRACKED_TRUNCATE || 1867 end_sector > bs->total_sectors) && 1868 req->type != BDRV_TRACKED_DISCARD) { 1869 bs->total_sectors = end_sector; 1870 bdrv_parent_cb_resize(bs); 1871 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS); 1872 } 1873 if (req->bytes) { 1874 switch (req->type) { 1875 case BDRV_TRACKED_WRITE: 1876 stat64_max(&bs->wr_highest_offset, offset + bytes); 1877 /* fall through, to set dirty bits */ 1878 case BDRV_TRACKED_DISCARD: 1879 bdrv_set_dirty(bs, offset, bytes); 1880 break; 1881 default: 1882 break; 1883 } 1884 } 1885 } 1886 1887 /* 1888 * Forwards an already correctly aligned write request to the BlockDriver, 1889 * after possibly fragmenting it. 1890 */ 1891 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, 1892 BdrvTrackedRequest *req, int64_t offset, int64_t bytes, 1893 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, 1894 BdrvRequestFlags flags) 1895 { 1896 BlockDriverState *bs = child->bs; 1897 BlockDriver *drv = bs->drv; 1898 int ret; 1899 1900 int64_t bytes_remaining = bytes; 1901 int max_transfer; 1902 1903 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort); 1904 1905 if (!drv) { 1906 return -ENOMEDIUM; 1907 } 1908 1909 if (bdrv_has_readonly_bitmaps(bs)) { 1910 return -EPERM; 1911 } 1912 1913 assert(is_power_of_2(align)); 1914 assert((offset & (align - 1)) == 0); 1915 assert((bytes & (align - 1)) == 0); 1916 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), 1917 align); 1918 1919 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags); 1920 1921 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && 1922 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && 1923 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) { 1924 flags |= BDRV_REQ_ZERO_WRITE; 1925 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { 1926 flags |= BDRV_REQ_MAY_UNMAP; 1927 } 1928 } 1929 1930 if (ret < 0) { 1931 /* Do nothing, write notifier decided to fail this request */ 1932 } else if (flags & BDRV_REQ_ZERO_WRITE) { 1933 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); 1934 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); 1935 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { 1936 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, 1937 qiov, qiov_offset); 1938 } else if (bytes <= max_transfer) { 1939 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1940 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags); 1941 } else { 1942 bdrv_debug_event(bs, BLKDBG_PWRITEV); 1943 while (bytes_remaining) { 1944 int num = MIN(bytes_remaining, max_transfer); 1945 int local_flags = flags; 1946 1947 assert(num); 1948 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && 1949 !(bs->supported_write_flags & BDRV_REQ_FUA)) { 1950 /* If FUA is going to be emulated by flush, we only 1951 * need to flush on the last iteration */ 1952 local_flags &= ~BDRV_REQ_FUA; 1953 } 1954 1955 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, 1956 num, qiov, 1957 qiov_offset + bytes - bytes_remaining, 1958 local_flags); 1959 if (ret < 0) { 1960 break; 1961 } 1962 bytes_remaining -= num; 1963 } 1964 } 1965 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); 1966 1967 if (ret >= 0) { 1968 ret = 0; 1969 } 1970 bdrv_co_write_req_finish(child, offset, bytes, req, ret); 1971 1972 return ret; 1973 } 1974 1975 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, 1976 int64_t offset, 1977 int64_t bytes, 1978 BdrvRequestFlags flags, 1979 BdrvTrackedRequest *req) 1980 { 1981 BlockDriverState *bs = child->bs; 1982 QEMUIOVector local_qiov; 1983 uint64_t align = bs->bl.request_alignment; 1984 int ret = 0; 1985 bool padding; 1986 BdrvRequestPadding pad; 1987 1988 /* This flag doesn't make sense for padding or zero writes */ 1989 flags &= ~BDRV_REQ_REGISTERED_BUF; 1990 1991 padding = bdrv_init_padding(bs, offset, bytes, &pad); 1992 if (padding) { 1993 assert(!(flags & BDRV_REQ_NO_WAIT)); 1994 bdrv_make_request_serialising(req, align); 1995 1996 bdrv_padding_rmw_read(child, req, &pad, true); 1997 1998 if (pad.head || pad.merge_reads) { 1999 int64_t aligned_offset = offset & ~(align - 1); 2000 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align; 2001 2002 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes); 2003 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes, 2004 align, &local_qiov, 0, 2005 flags & ~BDRV_REQ_ZERO_WRITE); 2006 if (ret < 0 || pad.merge_reads) { 2007 /* Error or all work is done */ 2008 goto out; 2009 } 2010 offset += write_bytes - pad.head; 2011 bytes -= write_bytes - pad.head; 2012 } 2013 } 2014 2015 assert(!bytes || (offset & (align - 1)) == 0); 2016 if (bytes >= align) { 2017 /* Write the aligned part in the middle. */ 2018 int64_t aligned_bytes = bytes & ~(align - 1); 2019 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, 2020 NULL, 0, flags); 2021 if (ret < 0) { 2022 goto out; 2023 } 2024 bytes -= aligned_bytes; 2025 offset += aligned_bytes; 2026 } 2027 2028 assert(!bytes || (offset & (align - 1)) == 0); 2029 if (bytes) { 2030 assert(align == pad.tail + bytes); 2031 2032 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align); 2033 ret = bdrv_aligned_pwritev(child, req, offset, align, align, 2034 &local_qiov, 0, 2035 flags & ~BDRV_REQ_ZERO_WRITE); 2036 } 2037 2038 out: 2039 bdrv_padding_destroy(&pad); 2040 2041 return ret; 2042 } 2043 2044 /* 2045 * Handle a write request in coroutine context 2046 */ 2047 int coroutine_fn bdrv_co_pwritev(BdrvChild *child, 2048 int64_t offset, int64_t bytes, QEMUIOVector *qiov, 2049 BdrvRequestFlags flags) 2050 { 2051 IO_CODE(); 2052 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags); 2053 } 2054 2055 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child, 2056 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset, 2057 BdrvRequestFlags flags) 2058 { 2059 BlockDriverState *bs = child->bs; 2060 BdrvTrackedRequest req; 2061 uint64_t align = bs->bl.request_alignment; 2062 BdrvRequestPadding pad; 2063 int ret; 2064 bool padded = false; 2065 IO_CODE(); 2066 2067 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags); 2068 2069 if (!bdrv_is_inserted(bs)) { 2070 return -ENOMEDIUM; 2071 } 2072 2073 if (flags & BDRV_REQ_ZERO_WRITE) { 2074 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL); 2075 } else { 2076 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset); 2077 } 2078 if (ret < 0) { 2079 return ret; 2080 } 2081 2082 /* If the request is misaligned then we can't make it efficient */ 2083 if ((flags & BDRV_REQ_NO_FALLBACK) && 2084 !QEMU_IS_ALIGNED(offset | bytes, align)) 2085 { 2086 return -ENOTSUP; 2087 } 2088 2089 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) { 2090 /* 2091 * Aligning zero request is nonsense. Even if driver has special meaning 2092 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass 2093 * it to driver due to request_alignment. 2094 * 2095 * Still, no reason to return an error if someone do unaligned 2096 * zero-length write occasionally. 2097 */ 2098 return 0; 2099 } 2100 2101 if (!(flags & BDRV_REQ_ZERO_WRITE)) { 2102 /* 2103 * Pad request for following read-modify-write cycle. 2104 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do 2105 * alignment only if there is no ZERO flag. 2106 */ 2107 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad, 2108 &padded, &flags); 2109 if (ret < 0) { 2110 return ret; 2111 } 2112 } 2113 2114 bdrv_inc_in_flight(bs); 2115 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); 2116 2117 if (flags & BDRV_REQ_ZERO_WRITE) { 2118 assert(!padded); 2119 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); 2120 goto out; 2121 } 2122 2123 if (padded) { 2124 /* 2125 * Request was unaligned to request_alignment and therefore 2126 * padded. We are going to do read-modify-write, and must 2127 * serialize the request to prevent interactions of the 2128 * widened region with other transactions. 2129 */ 2130 assert(!(flags & BDRV_REQ_NO_WAIT)); 2131 bdrv_make_request_serialising(&req, align); 2132 bdrv_padding_rmw_read(child, &req, &pad, false); 2133 } 2134 2135 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, 2136 qiov, qiov_offset, flags); 2137 2138 bdrv_padding_destroy(&pad); 2139 2140 out: 2141 tracked_request_end(&req); 2142 bdrv_dec_in_flight(bs); 2143 2144 return ret; 2145 } 2146 2147 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, 2148 int64_t bytes, BdrvRequestFlags flags) 2149 { 2150 IO_CODE(); 2151 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); 2152 2153 if (!(child->bs->open_flags & BDRV_O_UNMAP)) { 2154 flags &= ~BDRV_REQ_MAY_UNMAP; 2155 } 2156 2157 return bdrv_co_pwritev(child, offset, bytes, NULL, 2158 BDRV_REQ_ZERO_WRITE | flags); 2159 } 2160 2161 /* 2162 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. 2163 */ 2164 int bdrv_flush_all(void) 2165 { 2166 BdrvNextIterator it; 2167 BlockDriverState *bs = NULL; 2168 int result = 0; 2169 2170 GLOBAL_STATE_CODE(); 2171 2172 /* 2173 * bdrv queue is managed by record/replay, 2174 * creating new flush request for stopping 2175 * the VM may break the determinism 2176 */ 2177 if (replay_events_enabled()) { 2178 return result; 2179 } 2180 2181 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { 2182 AioContext *aio_context = bdrv_get_aio_context(bs); 2183 int ret; 2184 2185 aio_context_acquire(aio_context); 2186 ret = bdrv_flush(bs); 2187 if (ret < 0 && !result) { 2188 result = ret; 2189 } 2190 aio_context_release(aio_context); 2191 } 2192 2193 return result; 2194 } 2195 2196 /* 2197 * Returns the allocation status of the specified sectors. 2198 * Drivers not implementing the functionality are assumed to not support 2199 * backing files, hence all their sectors are reported as allocated. 2200 * 2201 * If 'want_zero' is true, the caller is querying for mapping 2202 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and 2203 * _ZERO where possible; otherwise, the result favors larger 'pnum', 2204 * with a focus on accurate BDRV_BLOCK_ALLOCATED. 2205 * 2206 * If 'offset' is beyond the end of the disk image the return value is 2207 * BDRV_BLOCK_EOF and 'pnum' is set to 0. 2208 * 2209 * 'bytes' is the max value 'pnum' should be set to. If bytes goes 2210 * beyond the end of the disk image it will be clamped; if 'pnum' is set to 2211 * the end of the image, then the returned value will include BDRV_BLOCK_EOF. 2212 * 2213 * 'pnum' is set to the number of bytes (including and immediately 2214 * following the specified offset) that are easily known to be in the 2215 * same allocated/unallocated state. Note that a second call starting 2216 * at the original offset plus returned pnum may have the same status. 2217 * The returned value is non-zero on success except at end-of-file. 2218 * 2219 * Returns negative errno on failure. Otherwise, if the 2220 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are 2221 * set to the host mapping and BDS corresponding to the guest offset. 2222 */ 2223 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, 2224 bool want_zero, 2225 int64_t offset, int64_t bytes, 2226 int64_t *pnum, int64_t *map, 2227 BlockDriverState **file) 2228 { 2229 int64_t total_size; 2230 int64_t n; /* bytes */ 2231 int ret; 2232 int64_t local_map = 0; 2233 BlockDriverState *local_file = NULL; 2234 int64_t aligned_offset, aligned_bytes; 2235 uint32_t align; 2236 bool has_filtered_child; 2237 2238 assert(pnum); 2239 *pnum = 0; 2240 total_size = bdrv_getlength(bs); 2241 if (total_size < 0) { 2242 ret = total_size; 2243 goto early_out; 2244 } 2245 2246 if (offset >= total_size) { 2247 ret = BDRV_BLOCK_EOF; 2248 goto early_out; 2249 } 2250 if (!bytes) { 2251 ret = 0; 2252 goto early_out; 2253 } 2254 2255 n = total_size - offset; 2256 if (n < bytes) { 2257 bytes = n; 2258 } 2259 2260 /* Must be non-NULL or bdrv_getlength() would have failed */ 2261 assert(bs->drv); 2262 has_filtered_child = bdrv_filter_child(bs); 2263 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) { 2264 *pnum = bytes; 2265 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; 2266 if (offset + bytes == total_size) { 2267 ret |= BDRV_BLOCK_EOF; 2268 } 2269 if (bs->drv->protocol_name) { 2270 ret |= BDRV_BLOCK_OFFSET_VALID; 2271 local_map = offset; 2272 local_file = bs; 2273 } 2274 goto early_out; 2275 } 2276 2277 bdrv_inc_in_flight(bs); 2278 2279 /* Round out to request_alignment boundaries */ 2280 align = bs->bl.request_alignment; 2281 aligned_offset = QEMU_ALIGN_DOWN(offset, align); 2282 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; 2283 2284 if (bs->drv->bdrv_co_block_status) { 2285 /* 2286 * Use the block-status cache only for protocol nodes: Format 2287 * drivers are generally quick to inquire the status, but protocol 2288 * drivers often need to get information from outside of qemu, so 2289 * we do not have control over the actual implementation. There 2290 * have been cases where inquiring the status took an unreasonably 2291 * long time, and we can do nothing in qemu to fix it. 2292 * This is especially problematic for images with large data areas, 2293 * because finding the few holes in them and giving them special 2294 * treatment does not gain much performance. Therefore, we try to 2295 * cache the last-identified data region. 2296 * 2297 * Second, limiting ourselves to protocol nodes allows us to assume 2298 * the block status for data regions to be DATA | OFFSET_VALID, and 2299 * that the host offset is the same as the guest offset. 2300 * 2301 * Note that it is possible that external writers zero parts of 2302 * the cached regions without the cache being invalidated, and so 2303 * we may report zeroes as data. This is not catastrophic, 2304 * however, because reporting zeroes as data is fine. 2305 */ 2306 if (QLIST_EMPTY(&bs->children) && 2307 bdrv_bsc_is_data(bs, aligned_offset, pnum)) 2308 { 2309 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID; 2310 local_file = bs; 2311 local_map = aligned_offset; 2312 } else { 2313 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, 2314 aligned_bytes, pnum, &local_map, 2315 &local_file); 2316 2317 /* 2318 * Note that checking QLIST_EMPTY(&bs->children) is also done when 2319 * the cache is queried above. Technically, we do not need to check 2320 * it here; the worst that can happen is that we fill the cache for 2321 * non-protocol nodes, and then it is never used. However, filling 2322 * the cache requires an RCU update, so double check here to avoid 2323 * such an update if possible. 2324 * 2325 * Check want_zero, because we only want to update the cache when we 2326 * have accurate information about what is zero and what is data. 2327 */ 2328 if (want_zero && 2329 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) && 2330 QLIST_EMPTY(&bs->children)) 2331 { 2332 /* 2333 * When a protocol driver reports BLOCK_OFFSET_VALID, the 2334 * returned local_map value must be the same as the offset we 2335 * have passed (aligned_offset), and local_bs must be the node 2336 * itself. 2337 * Assert this, because we follow this rule when reading from 2338 * the cache (see the `local_file = bs` and 2339 * `local_map = aligned_offset` assignments above), and the 2340 * result the cache delivers must be the same as the driver 2341 * would deliver. 2342 */ 2343 assert(local_file == bs); 2344 assert(local_map == aligned_offset); 2345 bdrv_bsc_fill(bs, aligned_offset, *pnum); 2346 } 2347 } 2348 } else { 2349 /* Default code for filters */ 2350 2351 local_file = bdrv_filter_bs(bs); 2352 assert(local_file); 2353 2354 *pnum = aligned_bytes; 2355 local_map = aligned_offset; 2356 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; 2357 } 2358 if (ret < 0) { 2359 *pnum = 0; 2360 goto out; 2361 } 2362 2363 /* 2364 * The driver's result must be a non-zero multiple of request_alignment. 2365 * Clamp pnum and adjust map to original request. 2366 */ 2367 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && 2368 align > offset - aligned_offset); 2369 if (ret & BDRV_BLOCK_RECURSE) { 2370 assert(ret & BDRV_BLOCK_DATA); 2371 assert(ret & BDRV_BLOCK_OFFSET_VALID); 2372 assert(!(ret & BDRV_BLOCK_ZERO)); 2373 } 2374 2375 *pnum -= offset - aligned_offset; 2376 if (*pnum > bytes) { 2377 *pnum = bytes; 2378 } 2379 if (ret & BDRV_BLOCK_OFFSET_VALID) { 2380 local_map += offset - aligned_offset; 2381 } 2382 2383 if (ret & BDRV_BLOCK_RAW) { 2384 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); 2385 ret = bdrv_co_block_status(local_file, want_zero, local_map, 2386 *pnum, pnum, &local_map, &local_file); 2387 goto out; 2388 } 2389 2390 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { 2391 ret |= BDRV_BLOCK_ALLOCATED; 2392 } else if (bs->drv->supports_backing) { 2393 BlockDriverState *cow_bs = bdrv_cow_bs(bs); 2394 2395 if (!cow_bs) { 2396 ret |= BDRV_BLOCK_ZERO; 2397 } else if (want_zero) { 2398 int64_t size2 = bdrv_getlength(cow_bs); 2399 2400 if (size2 >= 0 && offset >= size2) { 2401 ret |= BDRV_BLOCK_ZERO; 2402 } 2403 } 2404 } 2405 2406 if (want_zero && ret & BDRV_BLOCK_RECURSE && 2407 local_file && local_file != bs && 2408 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && 2409 (ret & BDRV_BLOCK_OFFSET_VALID)) { 2410 int64_t file_pnum; 2411 int ret2; 2412 2413 ret2 = bdrv_co_block_status(local_file, want_zero, local_map, 2414 *pnum, &file_pnum, NULL, NULL); 2415 if (ret2 >= 0) { 2416 /* Ignore errors. This is just providing extra information, it 2417 * is useful but not necessary. 2418 */ 2419 if (ret2 & BDRV_BLOCK_EOF && 2420 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { 2421 /* 2422 * It is valid for the format block driver to read 2423 * beyond the end of the underlying file's current 2424 * size; such areas read as zero. 2425 */ 2426 ret |= BDRV_BLOCK_ZERO; 2427 } else { 2428 /* Limit request to the range reported by the protocol driver */ 2429 *pnum = file_pnum; 2430 ret |= (ret2 & BDRV_BLOCK_ZERO); 2431 } 2432 } 2433 } 2434 2435 out: 2436 bdrv_dec_in_flight(bs); 2437 if (ret >= 0 && offset + *pnum == total_size) { 2438 ret |= BDRV_BLOCK_EOF; 2439 } 2440 early_out: 2441 if (file) { 2442 *file = local_file; 2443 } 2444 if (map) { 2445 *map = local_map; 2446 } 2447 return ret; 2448 } 2449 2450 int coroutine_fn 2451 bdrv_co_common_block_status_above(BlockDriverState *bs, 2452 BlockDriverState *base, 2453 bool include_base, 2454 bool want_zero, 2455 int64_t offset, 2456 int64_t bytes, 2457 int64_t *pnum, 2458 int64_t *map, 2459 BlockDriverState **file, 2460 int *depth) 2461 { 2462 int ret; 2463 BlockDriverState *p; 2464 int64_t eof = 0; 2465 int dummy; 2466 IO_CODE(); 2467 2468 assert(!include_base || base); /* Can't include NULL base */ 2469 2470 if (!depth) { 2471 depth = &dummy; 2472 } 2473 *depth = 0; 2474 2475 if (!include_base && bs == base) { 2476 *pnum = bytes; 2477 return 0; 2478 } 2479 2480 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file); 2481 ++*depth; 2482 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) { 2483 return ret; 2484 } 2485 2486 if (ret & BDRV_BLOCK_EOF) { 2487 eof = offset + *pnum; 2488 } 2489 2490 assert(*pnum <= bytes); 2491 bytes = *pnum; 2492 2493 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base; 2494 p = bdrv_filter_or_cow_bs(p)) 2495 { 2496 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, 2497 file); 2498 ++*depth; 2499 if (ret < 0) { 2500 return ret; 2501 } 2502 if (*pnum == 0) { 2503 /* 2504 * The top layer deferred to this layer, and because this layer is 2505 * short, any zeroes that we synthesize beyond EOF behave as if they 2506 * were allocated at this layer. 2507 * 2508 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be 2509 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2510 * below. 2511 */ 2512 assert(ret & BDRV_BLOCK_EOF); 2513 *pnum = bytes; 2514 if (file) { 2515 *file = p; 2516 } 2517 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED; 2518 break; 2519 } 2520 if (ret & BDRV_BLOCK_ALLOCATED) { 2521 /* 2522 * We've found the node and the status, we must break. 2523 * 2524 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be 2525 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see 2526 * below. 2527 */ 2528 ret &= ~BDRV_BLOCK_EOF; 2529 break; 2530 } 2531 2532 if (p == base) { 2533 assert(include_base); 2534 break; 2535 } 2536 2537 /* 2538 * OK, [offset, offset + *pnum) region is unallocated on this layer, 2539 * let's continue the diving. 2540 */ 2541 assert(*pnum <= bytes); 2542 bytes = *pnum; 2543 } 2544 2545 if (offset + *pnum == eof) { 2546 ret |= BDRV_BLOCK_EOF; 2547 } 2548 2549 return ret; 2550 } 2551 2552 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, 2553 BlockDriverState *base, 2554 int64_t offset, int64_t bytes, 2555 int64_t *pnum, int64_t *map, 2556 BlockDriverState **file) 2557 { 2558 IO_CODE(); 2559 return bdrv_co_common_block_status_above(bs, base, false, true, offset, 2560 bytes, pnum, map, file, NULL); 2561 } 2562 2563 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, 2564 int64_t offset, int64_t bytes, int64_t *pnum, 2565 int64_t *map, BlockDriverState **file) 2566 { 2567 IO_CODE(); 2568 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes, 2569 pnum, map, file, NULL); 2570 } 2571 2572 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, 2573 int64_t *pnum, int64_t *map, BlockDriverState **file) 2574 { 2575 IO_CODE(); 2576 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs), 2577 offset, bytes, pnum, map, file); 2578 } 2579 2580 /* 2581 * Check @bs (and its backing chain) to see if the range defined 2582 * by @offset and @bytes is known to read as zeroes. 2583 * Return 1 if that is the case, 0 otherwise and -errno on error. 2584 * This test is meant to be fast rather than accurate so returning 0 2585 * does not guarantee non-zero data. 2586 */ 2587 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset, 2588 int64_t bytes) 2589 { 2590 int ret; 2591 int64_t pnum = bytes; 2592 IO_CODE(); 2593 2594 if (!bytes) { 2595 return 1; 2596 } 2597 2598 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset, 2599 bytes, &pnum, NULL, NULL, NULL); 2600 2601 if (ret < 0) { 2602 return ret; 2603 } 2604 2605 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO); 2606 } 2607 2608 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset, 2609 int64_t bytes, int64_t *pnum) 2610 { 2611 int ret; 2612 int64_t dummy; 2613 IO_CODE(); 2614 2615 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset, 2616 bytes, pnum ? pnum : &dummy, NULL, 2617 NULL, NULL); 2618 if (ret < 0) { 2619 return ret; 2620 } 2621 return !!(ret & BDRV_BLOCK_ALLOCATED); 2622 } 2623 2624 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, 2625 int64_t *pnum) 2626 { 2627 int ret; 2628 int64_t dummy; 2629 IO_CODE(); 2630 2631 ret = bdrv_common_block_status_above(bs, bs, true, false, offset, 2632 bytes, pnum ? pnum : &dummy, NULL, 2633 NULL, NULL); 2634 if (ret < 0) { 2635 return ret; 2636 } 2637 return !!(ret & BDRV_BLOCK_ALLOCATED); 2638 } 2639 2640 /* See bdrv_is_allocated_above for documentation */ 2641 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2642 BlockDriverState *base, 2643 bool include_base, int64_t offset, 2644 int64_t bytes, int64_t *pnum) 2645 { 2646 int depth; 2647 int ret; 2648 IO_CODE(); 2649 2650 ret = bdrv_co_common_block_status_above(top, base, include_base, false, 2651 offset, bytes, pnum, NULL, NULL, 2652 &depth); 2653 if (ret < 0) { 2654 return ret; 2655 } 2656 2657 if (ret & BDRV_BLOCK_ALLOCATED) { 2658 return depth; 2659 } 2660 return 0; 2661 } 2662 2663 /* 2664 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2665 * 2666 * Return a positive depth if (a prefix of) the given range is allocated 2667 * in any image between BASE and TOP (BASE is only included if include_base 2668 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth. 2669 * BASE can be NULL to check if the given offset is allocated in any 2670 * image of the chain. Return 0 otherwise, or negative errno on 2671 * failure. 2672 * 2673 * 'pnum' is set to the number of bytes (including and immediately 2674 * following the specified offset) that are known to be in the same 2675 * allocated/unallocated state. Note that a subsequent call starting 2676 * at 'offset + *pnum' may return the same allocation status (in other 2677 * words, the result is not necessarily the maximum possible range); 2678 * but 'pnum' will only be 0 when end of file is reached. 2679 */ 2680 int bdrv_is_allocated_above(BlockDriverState *top, 2681 BlockDriverState *base, 2682 bool include_base, int64_t offset, 2683 int64_t bytes, int64_t *pnum) 2684 { 2685 int depth; 2686 int ret; 2687 IO_CODE(); 2688 2689 ret = bdrv_common_block_status_above(top, base, include_base, false, 2690 offset, bytes, pnum, NULL, NULL, 2691 &depth); 2692 if (ret < 0) { 2693 return ret; 2694 } 2695 2696 if (ret & BDRV_BLOCK_ALLOCATED) { 2697 return depth; 2698 } 2699 return 0; 2700 } 2701 2702 int coroutine_fn 2703 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2704 { 2705 BlockDriver *drv = bs->drv; 2706 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2707 int ret; 2708 IO_CODE(); 2709 assert_bdrv_graph_readable(); 2710 2711 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2712 if (ret < 0) { 2713 return ret; 2714 } 2715 2716 if (!drv) { 2717 return -ENOMEDIUM; 2718 } 2719 2720 bdrv_inc_in_flight(bs); 2721 2722 if (drv->bdrv_load_vmstate) { 2723 ret = drv->bdrv_load_vmstate(bs, qiov, pos); 2724 } else if (child_bs) { 2725 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos); 2726 } else { 2727 ret = -ENOTSUP; 2728 } 2729 2730 bdrv_dec_in_flight(bs); 2731 2732 return ret; 2733 } 2734 2735 int coroutine_fn 2736 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 2737 { 2738 BlockDriver *drv = bs->drv; 2739 BlockDriverState *child_bs = bdrv_primary_bs(bs); 2740 int ret; 2741 IO_CODE(); 2742 assert_bdrv_graph_readable(); 2743 2744 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL); 2745 if (ret < 0) { 2746 return ret; 2747 } 2748 2749 if (!drv) { 2750 return -ENOMEDIUM; 2751 } 2752 2753 bdrv_inc_in_flight(bs); 2754 2755 if (drv->bdrv_save_vmstate) { 2756 ret = drv->bdrv_save_vmstate(bs, qiov, pos); 2757 } else if (child_bs) { 2758 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos); 2759 } else { 2760 ret = -ENOTSUP; 2761 } 2762 2763 bdrv_dec_in_flight(bs); 2764 2765 return ret; 2766 } 2767 2768 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2769 int64_t pos, int size) 2770 { 2771 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2772 int ret = bdrv_writev_vmstate(bs, &qiov, pos); 2773 IO_CODE(); 2774 2775 return ret < 0 ? ret : size; 2776 } 2777 2778 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2779 int64_t pos, int size) 2780 { 2781 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size); 2782 int ret = bdrv_readv_vmstate(bs, &qiov, pos); 2783 IO_CODE(); 2784 2785 return ret < 0 ? ret : size; 2786 } 2787 2788 /**************************************************************/ 2789 /* async I/Os */ 2790 2791 void bdrv_aio_cancel(BlockAIOCB *acb) 2792 { 2793 IO_CODE(); 2794 qemu_aio_ref(acb); 2795 bdrv_aio_cancel_async(acb); 2796 while (acb->refcnt > 1) { 2797 if (acb->aiocb_info->get_aio_context) { 2798 aio_poll(acb->aiocb_info->get_aio_context(acb), true); 2799 } else if (acb->bs) { 2800 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so 2801 * assert that we're not using an I/O thread. Thread-safe 2802 * code should use bdrv_aio_cancel_async exclusively. 2803 */ 2804 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); 2805 aio_poll(bdrv_get_aio_context(acb->bs), true); 2806 } else { 2807 abort(); 2808 } 2809 } 2810 qemu_aio_unref(acb); 2811 } 2812 2813 /* Async version of aio cancel. The caller is not blocked if the acb implements 2814 * cancel_async, otherwise we do nothing and let the request normally complete. 2815 * In either case the completion callback must be called. */ 2816 void bdrv_aio_cancel_async(BlockAIOCB *acb) 2817 { 2818 IO_CODE(); 2819 if (acb->aiocb_info->cancel_async) { 2820 acb->aiocb_info->cancel_async(acb); 2821 } 2822 } 2823 2824 /**************************************************************/ 2825 /* Coroutine block device emulation */ 2826 2827 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 2828 { 2829 BdrvChild *primary_child = bdrv_primary_child(bs); 2830 BdrvChild *child; 2831 int current_gen; 2832 int ret = 0; 2833 IO_CODE(); 2834 2835 bdrv_inc_in_flight(bs); 2836 2837 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || 2838 bdrv_is_sg(bs)) { 2839 goto early_exit; 2840 } 2841 2842 qemu_co_mutex_lock(&bs->reqs_lock); 2843 current_gen = qatomic_read(&bs->write_gen); 2844 2845 /* Wait until any previous flushes are completed */ 2846 while (bs->active_flush_req) { 2847 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); 2848 } 2849 2850 /* Flushes reach this point in nondecreasing current_gen order. */ 2851 bs->active_flush_req = true; 2852 qemu_co_mutex_unlock(&bs->reqs_lock); 2853 2854 /* Write back all layers by calling one driver function */ 2855 if (bs->drv->bdrv_co_flush) { 2856 ret = bs->drv->bdrv_co_flush(bs); 2857 goto out; 2858 } 2859 2860 /* Write back cached data to the OS even with cache=unsafe */ 2861 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS); 2862 if (bs->drv->bdrv_co_flush_to_os) { 2863 ret = bs->drv->bdrv_co_flush_to_os(bs); 2864 if (ret < 0) { 2865 goto out; 2866 } 2867 } 2868 2869 /* But don't actually force it to the disk with cache=unsafe */ 2870 if (bs->open_flags & BDRV_O_NO_FLUSH) { 2871 goto flush_children; 2872 } 2873 2874 /* Check if we really need to flush anything */ 2875 if (bs->flushed_gen == current_gen) { 2876 goto flush_children; 2877 } 2878 2879 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK); 2880 if (!bs->drv) { 2881 /* bs->drv->bdrv_co_flush() might have ejected the BDS 2882 * (even in case of apparent success) */ 2883 ret = -ENOMEDIUM; 2884 goto out; 2885 } 2886 if (bs->drv->bdrv_co_flush_to_disk) { 2887 ret = bs->drv->bdrv_co_flush_to_disk(bs); 2888 } else if (bs->drv->bdrv_aio_flush) { 2889 BlockAIOCB *acb; 2890 CoroutineIOCompletion co = { 2891 .coroutine = qemu_coroutine_self(), 2892 }; 2893 2894 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 2895 if (acb == NULL) { 2896 ret = -EIO; 2897 } else { 2898 qemu_coroutine_yield(); 2899 ret = co.ret; 2900 } 2901 } else { 2902 /* 2903 * Some block drivers always operate in either writethrough or unsafe 2904 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 2905 * know how the server works (because the behaviour is hardcoded or 2906 * depends on server-side configuration), so we can't ensure that 2907 * everything is safe on disk. Returning an error doesn't work because 2908 * that would break guests even if the server operates in writethrough 2909 * mode. 2910 * 2911 * Let's hope the user knows what he's doing. 2912 */ 2913 ret = 0; 2914 } 2915 2916 if (ret < 0) { 2917 goto out; 2918 } 2919 2920 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 2921 * in the case of cache=unsafe, so there are no useless flushes. 2922 */ 2923 flush_children: 2924 ret = 0; 2925 QLIST_FOREACH(child, &bs->children, next) { 2926 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) { 2927 int this_child_ret = bdrv_co_flush(child->bs); 2928 if (!ret) { 2929 ret = this_child_ret; 2930 } 2931 } 2932 } 2933 2934 out: 2935 /* Notify any pending flushes that we have completed */ 2936 if (ret == 0) { 2937 bs->flushed_gen = current_gen; 2938 } 2939 2940 qemu_co_mutex_lock(&bs->reqs_lock); 2941 bs->active_flush_req = false; 2942 /* Return value is ignored - it's ok if wait queue is empty */ 2943 qemu_co_queue_next(&bs->flush_queue); 2944 qemu_co_mutex_unlock(&bs->reqs_lock); 2945 2946 early_exit: 2947 bdrv_dec_in_flight(bs); 2948 return ret; 2949 } 2950 2951 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, 2952 int64_t bytes) 2953 { 2954 BdrvTrackedRequest req; 2955 int ret; 2956 int64_t max_pdiscard; 2957 int head, tail, align; 2958 BlockDriverState *bs = child->bs; 2959 IO_CODE(); 2960 2961 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) { 2962 return -ENOMEDIUM; 2963 } 2964 2965 if (bdrv_has_readonly_bitmaps(bs)) { 2966 return -EPERM; 2967 } 2968 2969 ret = bdrv_check_request(offset, bytes, NULL); 2970 if (ret < 0) { 2971 return ret; 2972 } 2973 2974 /* Do nothing if disabled. */ 2975 if (!(bs->open_flags & BDRV_O_UNMAP)) { 2976 return 0; 2977 } 2978 2979 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { 2980 return 0; 2981 } 2982 2983 /* Invalidate the cached block-status data range if this discard overlaps */ 2984 bdrv_bsc_invalidate_range(bs, offset, bytes); 2985 2986 /* Discard is advisory, but some devices track and coalesce 2987 * unaligned requests, so we must pass everything down rather than 2988 * round here. Still, most devices will just silently ignore 2989 * unaligned requests (by returning -ENOTSUP), so we must fragment 2990 * the request accordingly. */ 2991 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); 2992 assert(align % bs->bl.request_alignment == 0); 2993 head = offset % align; 2994 tail = (offset + bytes) % align; 2995 2996 bdrv_inc_in_flight(bs); 2997 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); 2998 2999 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0); 3000 if (ret < 0) { 3001 goto out; 3002 } 3003 3004 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX), 3005 align); 3006 assert(max_pdiscard >= bs->bl.request_alignment); 3007 3008 while (bytes > 0) { 3009 int64_t num = bytes; 3010 3011 if (head) { 3012 /* Make small requests to get to alignment boundaries. */ 3013 num = MIN(bytes, align - head); 3014 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { 3015 num %= bs->bl.request_alignment; 3016 } 3017 head = (head + num) % align; 3018 assert(num < max_pdiscard); 3019 } else if (tail) { 3020 if (num > align) { 3021 /* Shorten the request to the last aligned cluster. */ 3022 num -= tail; 3023 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && 3024 tail > bs->bl.request_alignment) { 3025 tail %= bs->bl.request_alignment; 3026 num -= tail; 3027 } 3028 } 3029 /* limit request size */ 3030 if (num > max_pdiscard) { 3031 num = max_pdiscard; 3032 } 3033 3034 if (!bs->drv) { 3035 ret = -ENOMEDIUM; 3036 goto out; 3037 } 3038 if (bs->drv->bdrv_co_pdiscard) { 3039 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); 3040 } else { 3041 BlockAIOCB *acb; 3042 CoroutineIOCompletion co = { 3043 .coroutine = qemu_coroutine_self(), 3044 }; 3045 3046 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, 3047 bdrv_co_io_em_complete, &co); 3048 if (acb == NULL) { 3049 ret = -EIO; 3050 goto out; 3051 } else { 3052 qemu_coroutine_yield(); 3053 ret = co.ret; 3054 } 3055 } 3056 if (ret && ret != -ENOTSUP) { 3057 goto out; 3058 } 3059 3060 offset += num; 3061 bytes -= num; 3062 } 3063 ret = 0; 3064 out: 3065 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret); 3066 tracked_request_end(&req); 3067 bdrv_dec_in_flight(bs); 3068 return ret; 3069 } 3070 3071 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) 3072 { 3073 BlockDriver *drv = bs->drv; 3074 CoroutineIOCompletion co = { 3075 .coroutine = qemu_coroutine_self(), 3076 }; 3077 BlockAIOCB *acb; 3078 IO_CODE(); 3079 3080 bdrv_inc_in_flight(bs); 3081 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { 3082 co.ret = -ENOTSUP; 3083 goto out; 3084 } 3085 3086 if (drv->bdrv_co_ioctl) { 3087 co.ret = drv->bdrv_co_ioctl(bs, req, buf); 3088 } else { 3089 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); 3090 if (!acb) { 3091 co.ret = -ENOTSUP; 3092 goto out; 3093 } 3094 qemu_coroutine_yield(); 3095 } 3096 out: 3097 bdrv_dec_in_flight(bs); 3098 return co.ret; 3099 } 3100 3101 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3102 { 3103 IO_CODE(); 3104 return qemu_memalign(bdrv_opt_mem_align(bs), size); 3105 } 3106 3107 void *qemu_blockalign0(BlockDriverState *bs, size_t size) 3108 { 3109 IO_CODE(); 3110 return memset(qemu_blockalign(bs, size), 0, size); 3111 } 3112 3113 void *qemu_try_blockalign(BlockDriverState *bs, size_t size) 3114 { 3115 size_t align = bdrv_opt_mem_align(bs); 3116 IO_CODE(); 3117 3118 /* Ensure that NULL is never returned on success */ 3119 assert(align > 0); 3120 if (size == 0) { 3121 size = align; 3122 } 3123 3124 return qemu_try_memalign(align, size); 3125 } 3126 3127 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) 3128 { 3129 void *mem = qemu_try_blockalign(bs, size); 3130 IO_CODE(); 3131 3132 if (mem) { 3133 memset(mem, 0, size); 3134 } 3135 3136 return mem; 3137 } 3138 3139 void bdrv_io_plug(BlockDriverState *bs) 3140 { 3141 BdrvChild *child; 3142 IO_CODE(); 3143 3144 QLIST_FOREACH(child, &bs->children, next) { 3145 bdrv_io_plug(child->bs); 3146 } 3147 3148 if (qatomic_fetch_inc(&bs->io_plugged) == 0) { 3149 BlockDriver *drv = bs->drv; 3150 if (drv && drv->bdrv_io_plug) { 3151 drv->bdrv_io_plug(bs); 3152 } 3153 } 3154 } 3155 3156 void bdrv_io_unplug(BlockDriverState *bs) 3157 { 3158 BdrvChild *child; 3159 IO_CODE(); 3160 3161 assert(bs->io_plugged); 3162 if (qatomic_fetch_dec(&bs->io_plugged) == 1) { 3163 BlockDriver *drv = bs->drv; 3164 if (drv && drv->bdrv_io_unplug) { 3165 drv->bdrv_io_unplug(bs); 3166 } 3167 } 3168 3169 QLIST_FOREACH(child, &bs->children, next) { 3170 bdrv_io_unplug(child->bs); 3171 } 3172 } 3173 3174 /* Helper that undoes bdrv_register_buf() when it fails partway through */ 3175 static void bdrv_register_buf_rollback(BlockDriverState *bs, 3176 void *host, 3177 size_t size, 3178 BdrvChild *final_child) 3179 { 3180 BdrvChild *child; 3181 3182 QLIST_FOREACH(child, &bs->children, next) { 3183 if (child == final_child) { 3184 break; 3185 } 3186 3187 bdrv_unregister_buf(child->bs, host, size); 3188 } 3189 3190 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3191 bs->drv->bdrv_unregister_buf(bs, host, size); 3192 } 3193 } 3194 3195 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size, 3196 Error **errp) 3197 { 3198 BdrvChild *child; 3199 3200 GLOBAL_STATE_CODE(); 3201 if (bs->drv && bs->drv->bdrv_register_buf) { 3202 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) { 3203 return false; 3204 } 3205 } 3206 QLIST_FOREACH(child, &bs->children, next) { 3207 if (!bdrv_register_buf(child->bs, host, size, errp)) { 3208 bdrv_register_buf_rollback(bs, host, size, child); 3209 return false; 3210 } 3211 } 3212 return true; 3213 } 3214 3215 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size) 3216 { 3217 BdrvChild *child; 3218 3219 GLOBAL_STATE_CODE(); 3220 if (bs->drv && bs->drv->bdrv_unregister_buf) { 3221 bs->drv->bdrv_unregister_buf(bs, host, size); 3222 } 3223 QLIST_FOREACH(child, &bs->children, next) { 3224 bdrv_unregister_buf(child->bs, host, size); 3225 } 3226 } 3227 3228 static int coroutine_fn bdrv_co_copy_range_internal( 3229 BdrvChild *src, int64_t src_offset, BdrvChild *dst, 3230 int64_t dst_offset, int64_t bytes, 3231 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags, 3232 bool recurse_src) 3233 { 3234 BdrvTrackedRequest req; 3235 int ret; 3236 3237 /* TODO We can support BDRV_REQ_NO_FALLBACK here */ 3238 assert(!(read_flags & BDRV_REQ_NO_FALLBACK)); 3239 assert(!(write_flags & BDRV_REQ_NO_FALLBACK)); 3240 assert(!(read_flags & BDRV_REQ_NO_WAIT)); 3241 assert(!(write_flags & BDRV_REQ_NO_WAIT)); 3242 3243 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) { 3244 return -ENOMEDIUM; 3245 } 3246 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0); 3247 if (ret) { 3248 return ret; 3249 } 3250 if (write_flags & BDRV_REQ_ZERO_WRITE) { 3251 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags); 3252 } 3253 3254 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) { 3255 return -ENOMEDIUM; 3256 } 3257 ret = bdrv_check_request32(src_offset, bytes, NULL, 0); 3258 if (ret) { 3259 return ret; 3260 } 3261 3262 if (!src->bs->drv->bdrv_co_copy_range_from 3263 || !dst->bs->drv->bdrv_co_copy_range_to 3264 || src->bs->encrypted || dst->bs->encrypted) { 3265 return -ENOTSUP; 3266 } 3267 3268 if (recurse_src) { 3269 bdrv_inc_in_flight(src->bs); 3270 tracked_request_begin(&req, src->bs, src_offset, bytes, 3271 BDRV_TRACKED_READ); 3272 3273 /* BDRV_REQ_SERIALISING is only for write operation */ 3274 assert(!(read_flags & BDRV_REQ_SERIALISING)); 3275 bdrv_wait_serialising_requests(&req); 3276 3277 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs, 3278 src, src_offset, 3279 dst, dst_offset, 3280 bytes, 3281 read_flags, write_flags); 3282 3283 tracked_request_end(&req); 3284 bdrv_dec_in_flight(src->bs); 3285 } else { 3286 bdrv_inc_in_flight(dst->bs); 3287 tracked_request_begin(&req, dst->bs, dst_offset, bytes, 3288 BDRV_TRACKED_WRITE); 3289 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req, 3290 write_flags); 3291 if (!ret) { 3292 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs, 3293 src, src_offset, 3294 dst, dst_offset, 3295 bytes, 3296 read_flags, write_flags); 3297 } 3298 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret); 3299 tracked_request_end(&req); 3300 bdrv_dec_in_flight(dst->bs); 3301 } 3302 3303 return ret; 3304 } 3305 3306 /* Copy range from @src to @dst. 3307 * 3308 * See the comment of bdrv_co_copy_range for the parameter and return value 3309 * semantics. */ 3310 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset, 3311 BdrvChild *dst, int64_t dst_offset, 3312 int64_t bytes, 3313 BdrvRequestFlags read_flags, 3314 BdrvRequestFlags write_flags) 3315 { 3316 IO_CODE(); 3317 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes, 3318 read_flags, write_flags); 3319 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3320 bytes, read_flags, write_flags, true); 3321 } 3322 3323 /* Copy range from @src to @dst. 3324 * 3325 * See the comment of bdrv_co_copy_range for the parameter and return value 3326 * semantics. */ 3327 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset, 3328 BdrvChild *dst, int64_t dst_offset, 3329 int64_t bytes, 3330 BdrvRequestFlags read_flags, 3331 BdrvRequestFlags write_flags) 3332 { 3333 IO_CODE(); 3334 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes, 3335 read_flags, write_flags); 3336 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset, 3337 bytes, read_flags, write_flags, false); 3338 } 3339 3340 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset, 3341 BdrvChild *dst, int64_t dst_offset, 3342 int64_t bytes, BdrvRequestFlags read_flags, 3343 BdrvRequestFlags write_flags) 3344 { 3345 IO_CODE(); 3346 return bdrv_co_copy_range_from(src, src_offset, 3347 dst, dst_offset, 3348 bytes, read_flags, write_flags); 3349 } 3350 3351 static void bdrv_parent_cb_resize(BlockDriverState *bs) 3352 { 3353 BdrvChild *c; 3354 QLIST_FOREACH(c, &bs->parents, next_parent) { 3355 if (c->klass->resize) { 3356 c->klass->resize(c); 3357 } 3358 } 3359 } 3360 3361 /** 3362 * Truncate file to 'offset' bytes (needed only for file protocols) 3363 * 3364 * If 'exact' is true, the file must be resized to exactly the given 3365 * 'offset'. Otherwise, it is sufficient for the node to be at least 3366 * 'offset' bytes in length. 3367 */ 3368 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact, 3369 PreallocMode prealloc, BdrvRequestFlags flags, 3370 Error **errp) 3371 { 3372 BlockDriverState *bs = child->bs; 3373 BdrvChild *filtered, *backing; 3374 BlockDriver *drv = bs->drv; 3375 BdrvTrackedRequest req; 3376 int64_t old_size, new_bytes; 3377 int ret; 3378 IO_CODE(); 3379 3380 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */ 3381 if (!drv) { 3382 error_setg(errp, "No medium inserted"); 3383 return -ENOMEDIUM; 3384 } 3385 if (offset < 0) { 3386 error_setg(errp, "Image size cannot be negative"); 3387 return -EINVAL; 3388 } 3389 3390 ret = bdrv_check_request(offset, 0, errp); 3391 if (ret < 0) { 3392 return ret; 3393 } 3394 3395 old_size = bdrv_getlength(bs); 3396 if (old_size < 0) { 3397 error_setg_errno(errp, -old_size, "Failed to get old image size"); 3398 return old_size; 3399 } 3400 3401 if (bdrv_is_read_only(bs)) { 3402 error_setg(errp, "Image is read-only"); 3403 return -EACCES; 3404 } 3405 3406 if (offset > old_size) { 3407 new_bytes = offset - old_size; 3408 } else { 3409 new_bytes = 0; 3410 } 3411 3412 bdrv_inc_in_flight(bs); 3413 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes, 3414 BDRV_TRACKED_TRUNCATE); 3415 3416 /* If we are growing the image and potentially using preallocation for the 3417 * new area, we need to make sure that no write requests are made to it 3418 * concurrently or they might be overwritten by preallocation. */ 3419 if (new_bytes) { 3420 bdrv_make_request_serialising(&req, 1); 3421 } 3422 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req, 3423 0); 3424 if (ret < 0) { 3425 error_setg_errno(errp, -ret, 3426 "Failed to prepare request for truncation"); 3427 goto out; 3428 } 3429 3430 filtered = bdrv_filter_child(bs); 3431 backing = bdrv_cow_child(bs); 3432 3433 /* 3434 * If the image has a backing file that is large enough that it would 3435 * provide data for the new area, we cannot leave it unallocated because 3436 * then the backing file content would become visible. Instead, zero-fill 3437 * the new area. 3438 * 3439 * Note that if the image has a backing file, but was opened without the 3440 * backing file, taking care of keeping things consistent with that backing 3441 * file is the user's responsibility. 3442 */ 3443 if (new_bytes && backing) { 3444 int64_t backing_len; 3445 3446 backing_len = bdrv_getlength(backing->bs); 3447 if (backing_len < 0) { 3448 ret = backing_len; 3449 error_setg_errno(errp, -ret, "Could not get backing file size"); 3450 goto out; 3451 } 3452 3453 if (backing_len > old_size) { 3454 flags |= BDRV_REQ_ZERO_WRITE; 3455 } 3456 } 3457 3458 if (drv->bdrv_co_truncate) { 3459 if (flags & ~bs->supported_truncate_flags) { 3460 error_setg(errp, "Block driver does not support requested flags"); 3461 ret = -ENOTSUP; 3462 goto out; 3463 } 3464 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp); 3465 } else if (filtered) { 3466 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp); 3467 } else { 3468 error_setg(errp, "Image format driver does not support resize"); 3469 ret = -ENOTSUP; 3470 goto out; 3471 } 3472 if (ret < 0) { 3473 goto out; 3474 } 3475 3476 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 3477 if (ret < 0) { 3478 error_setg_errno(errp, -ret, "Could not refresh total sector count"); 3479 } else { 3480 offset = bs->total_sectors * BDRV_SECTOR_SIZE; 3481 } 3482 /* It's possible that truncation succeeded but refresh_total_sectors 3483 * failed, but the latter doesn't affect how we should finish the request. 3484 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */ 3485 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0); 3486 3487 out: 3488 tracked_request_end(&req); 3489 bdrv_dec_in_flight(bs); 3490 3491 return ret; 3492 } 3493 3494 void bdrv_cancel_in_flight(BlockDriverState *bs) 3495 { 3496 GLOBAL_STATE_CODE(); 3497 if (!bs || !bs->drv) { 3498 return; 3499 } 3500 3501 if (bs->drv->bdrv_cancel_in_flight) { 3502 bs->drv->bdrv_cancel_in_flight(bs); 3503 } 3504 } 3505 3506 int coroutine_fn 3507 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes, 3508 QEMUIOVector *qiov, size_t qiov_offset) 3509 { 3510 BlockDriverState *bs = child->bs; 3511 BlockDriver *drv = bs->drv; 3512 int ret; 3513 IO_CODE(); 3514 3515 if (!drv) { 3516 return -ENOMEDIUM; 3517 } 3518 3519 if (!drv->bdrv_co_preadv_snapshot) { 3520 return -ENOTSUP; 3521 } 3522 3523 bdrv_inc_in_flight(bs); 3524 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset); 3525 bdrv_dec_in_flight(bs); 3526 3527 return ret; 3528 } 3529 3530 int coroutine_fn 3531 bdrv_co_snapshot_block_status(BlockDriverState *bs, 3532 bool want_zero, int64_t offset, int64_t bytes, 3533 int64_t *pnum, int64_t *map, 3534 BlockDriverState **file) 3535 { 3536 BlockDriver *drv = bs->drv; 3537 int ret; 3538 IO_CODE(); 3539 3540 if (!drv) { 3541 return -ENOMEDIUM; 3542 } 3543 3544 if (!drv->bdrv_co_snapshot_block_status) { 3545 return -ENOTSUP; 3546 } 3547 3548 bdrv_inc_in_flight(bs); 3549 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes, 3550 pnum, map, file); 3551 bdrv_dec_in_flight(bs); 3552 3553 return ret; 3554 } 3555 3556 int coroutine_fn 3557 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes) 3558 { 3559 BlockDriver *drv = bs->drv; 3560 int ret; 3561 IO_CODE(); 3562 3563 if (!drv) { 3564 return -ENOMEDIUM; 3565 } 3566 3567 if (!drv->bdrv_co_pdiscard_snapshot) { 3568 return -ENOTSUP; 3569 } 3570 3571 bdrv_inc_in_flight(bs); 3572 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes); 3573 bdrv_dec_in_flight(bs); 3574 3575 return ret; 3576 } 3577