xref: /openbmc/qemu/block/block-copy.c (revision f480f6e8)
1 /*
2  * block_copy API
3  *
4  * Copyright (C) 2013 Proxmox Server Solutions
5  * Copyright (c) 2019 Virtuozzo International GmbH.
6  *
7  * Authors:
8  *  Dietmar Maurer (dietmar@proxmox.com)
9  *  Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 
23 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
24 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
25 #define BLOCK_COPY_MAX_MEM (128 * MiB)
26 
27 static void coroutine_fn block_copy_wait_inflight_reqs(BlockCopyState *s,
28                                                        int64_t start,
29                                                        int64_t end)
30 {
31     BlockCopyInFlightReq *req;
32     bool waited;
33 
34     do {
35         waited = false;
36         QLIST_FOREACH(req, &s->inflight_reqs, list) {
37             if (end > req->start_byte && start < req->end_byte) {
38                 qemu_co_queue_wait(&req->wait_queue, NULL);
39                 waited = true;
40                 break;
41             }
42         }
43     } while (waited);
44 }
45 
46 static void block_copy_inflight_req_begin(BlockCopyState *s,
47                                           BlockCopyInFlightReq *req,
48                                           int64_t start, int64_t end)
49 {
50     req->start_byte = start;
51     req->end_byte = end;
52     qemu_co_queue_init(&req->wait_queue);
53     QLIST_INSERT_HEAD(&s->inflight_reqs, req, list);
54 }
55 
56 static void coroutine_fn block_copy_inflight_req_end(BlockCopyInFlightReq *req)
57 {
58     QLIST_REMOVE(req, list);
59     qemu_co_queue_restart_all(&req->wait_queue);
60 }
61 
62 void block_copy_state_free(BlockCopyState *s)
63 {
64     if (!s) {
65         return;
66     }
67 
68     bdrv_release_dirty_bitmap(s->copy_bitmap);
69     shres_destroy(s->mem);
70     g_free(s);
71 }
72 
73 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
74                                      int64_t cluster_size,
75                                      BdrvRequestFlags write_flags, Error **errp)
76 {
77     BlockCopyState *s;
78     BdrvDirtyBitmap *copy_bitmap;
79     uint32_t max_transfer =
80             MIN_NON_ZERO(INT_MAX,
81                          MIN_NON_ZERO(source->bs->bl.max_transfer,
82                                       target->bs->bl.max_transfer));
83 
84     copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
85                                            errp);
86     if (!copy_bitmap) {
87         return NULL;
88     }
89     bdrv_disable_dirty_bitmap(copy_bitmap);
90 
91     s = g_new(BlockCopyState, 1);
92     *s = (BlockCopyState) {
93         .source = source,
94         .target = target,
95         .copy_bitmap = copy_bitmap,
96         .cluster_size = cluster_size,
97         .len = bdrv_dirty_bitmap_size(copy_bitmap),
98         .write_flags = write_flags,
99         .mem = shres_create(BLOCK_COPY_MAX_MEM),
100     };
101 
102     if (max_transfer < cluster_size) {
103         /*
104          * copy_range does not respect max_transfer. We don't want to bother
105          * with requests smaller than block-copy cluster size, so fallback to
106          * buffered copying (read and write respect max_transfer on their
107          * behalf).
108          */
109         s->use_copy_range = false;
110         s->copy_size = cluster_size;
111     } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
112         /* Compression supports only cluster-size writes and no copy-range. */
113         s->use_copy_range = false;
114         s->copy_size = cluster_size;
115     } else {
116         /*
117          * copy_range does not respect max_transfer (it's a TODO), so we factor
118          * that in here.
119          */
120         s->use_copy_range = true;
121         s->copy_size = MIN(MAX(cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
122                            QEMU_ALIGN_DOWN(max_transfer, cluster_size));
123     }
124 
125     QLIST_INIT(&s->inflight_reqs);
126 
127     return s;
128 }
129 
130 void block_copy_set_callbacks(
131         BlockCopyState *s,
132         ProgressBytesCallbackFunc progress_bytes_callback,
133         ProgressResetCallbackFunc progress_reset_callback,
134         void *progress_opaque)
135 {
136     s->progress_bytes_callback = progress_bytes_callback;
137     s->progress_reset_callback = progress_reset_callback;
138     s->progress_opaque = progress_opaque;
139 }
140 
141 /*
142  * block_copy_do_copy
143  *
144  * Do copy of cluser-aligned chunk. @end is allowed to exceed s->len only to
145  * cover last cluster when s->len is not aligned to clusters.
146  *
147  * No sync here: nor bitmap neighter intersecting requests handling, only copy.
148  *
149  * Returns 0 on success.
150  */
151 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
152                                            int64_t start, int64_t end,
153                                            bool *error_is_read)
154 {
155     int ret;
156     int nbytes = MIN(end, s->len) - start;
157     void *bounce_buffer = NULL;
158 
159     assert(QEMU_IS_ALIGNED(start, s->cluster_size));
160     assert(QEMU_IS_ALIGNED(end, s->cluster_size));
161     assert(end < s->len || end == QEMU_ALIGN_UP(s->len, s->cluster_size));
162 
163     if (s->use_copy_range) {
164         ret = bdrv_co_copy_range(s->source, start, s->target, start, nbytes,
165                                  0, s->write_flags);
166         if (ret < 0) {
167             trace_block_copy_copy_range_fail(s, start, ret);
168             s->use_copy_range = false;
169             s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
170             /* Fallback to read+write with allocated buffer */
171         } else {
172             goto out;
173         }
174     }
175 
176     /*
177      * In case of failed copy_range request above, we may proceed with buffered
178      * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
179      * be properly limited, so don't care too much.
180      */
181 
182     bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
183 
184     ret = bdrv_co_pread(s->source, start, nbytes, bounce_buffer, 0);
185     if (ret < 0) {
186         trace_block_copy_read_fail(s, start, ret);
187         if (error_is_read) {
188             *error_is_read = true;
189         }
190         goto out;
191     }
192 
193     ret = bdrv_co_pwrite(s->target, start, nbytes, bounce_buffer,
194                          s->write_flags);
195     if (ret < 0) {
196         trace_block_copy_write_fail(s, start, ret);
197         if (error_is_read) {
198             *error_is_read = false;
199         }
200         goto out;
201     }
202 
203 out:
204     qemu_vfree(bounce_buffer);
205 
206     return ret;
207 }
208 
209 /*
210  * Check if the cluster starting at offset is allocated or not.
211  * return via pnum the number of contiguous clusters sharing this allocation.
212  */
213 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
214                                            int64_t *pnum)
215 {
216     BlockDriverState *bs = s->source->bs;
217     int64_t count, total_count = 0;
218     int64_t bytes = s->len - offset;
219     int ret;
220 
221     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
222 
223     while (true) {
224         ret = bdrv_is_allocated(bs, offset, bytes, &count);
225         if (ret < 0) {
226             return ret;
227         }
228 
229         total_count += count;
230 
231         if (ret || count == 0) {
232             /*
233              * ret: partial segment(s) are considered allocated.
234              * otherwise: unallocated tail is treated as an entire segment.
235              */
236             *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
237             return ret;
238         }
239 
240         /* Unallocated segment(s) with uncertain following segment(s) */
241         if (total_count >= s->cluster_size) {
242             *pnum = total_count / s->cluster_size;
243             return 0;
244         }
245 
246         offset += count;
247         bytes -= count;
248     }
249 }
250 
251 /*
252  * Reset bits in copy_bitmap starting at offset if they represent unallocated
253  * data in the image. May reset subsequent contiguous bits.
254  * @return 0 when the cluster at @offset was unallocated,
255  *         1 otherwise, and -ret on error.
256  */
257 int64_t block_copy_reset_unallocated(BlockCopyState *s,
258                                      int64_t offset, int64_t *count)
259 {
260     int ret;
261     int64_t clusters, bytes;
262 
263     ret = block_copy_is_cluster_allocated(s, offset, &clusters);
264     if (ret < 0) {
265         return ret;
266     }
267 
268     bytes = clusters * s->cluster_size;
269 
270     if (!ret) {
271         bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
272         s->progress_reset_callback(s->progress_opaque);
273     }
274 
275     *count = bytes;
276     return ret;
277 }
278 
279 int coroutine_fn block_copy(BlockCopyState *s,
280                             int64_t start, uint64_t bytes,
281                             bool *error_is_read)
282 {
283     int ret = 0;
284     int64_t end = bytes + start; /* bytes */
285     int64_t status_bytes;
286     BlockCopyInFlightReq req;
287 
288     /*
289      * block_copy() user is responsible for keeping source and target in same
290      * aio context
291      */
292     assert(bdrv_get_aio_context(s->source->bs) ==
293            bdrv_get_aio_context(s->target->bs));
294 
295     assert(QEMU_IS_ALIGNED(start, s->cluster_size));
296     assert(QEMU_IS_ALIGNED(end, s->cluster_size));
297 
298     block_copy_wait_inflight_reqs(s, start, bytes);
299     block_copy_inflight_req_begin(s, &req, start, end);
300 
301     while (start < end) {
302         int64_t next_zero, chunk_end;
303 
304         if (!bdrv_dirty_bitmap_get(s->copy_bitmap, start)) {
305             trace_block_copy_skip(s, start);
306             start += s->cluster_size;
307             continue; /* already copied */
308         }
309 
310         chunk_end = MIN(end, start + s->copy_size);
311 
312         next_zero = bdrv_dirty_bitmap_next_zero(s->copy_bitmap, start,
313                                                 chunk_end - start);
314         if (next_zero >= 0) {
315             assert(next_zero > start); /* start is dirty */
316             assert(next_zero < chunk_end); /* no need to do MIN() */
317             chunk_end = next_zero;
318         }
319 
320         if (s->skip_unallocated) {
321             ret = block_copy_reset_unallocated(s, start, &status_bytes);
322             if (ret == 0) {
323                 trace_block_copy_skip_range(s, start, status_bytes);
324                 start += status_bytes;
325                 continue;
326             }
327             /* Clamp to known allocated region */
328             chunk_end = MIN(chunk_end, start + status_bytes);
329         }
330 
331         trace_block_copy_process(s, start);
332 
333         bdrv_reset_dirty_bitmap(s->copy_bitmap, start, chunk_end - start);
334 
335         co_get_from_shres(s->mem, chunk_end - start);
336         ret = block_copy_do_copy(s, start, chunk_end, error_is_read);
337         co_put_to_shres(s->mem, chunk_end - start);
338         if (ret < 0) {
339             bdrv_set_dirty_bitmap(s->copy_bitmap, start, chunk_end - start);
340             break;
341         }
342 
343         s->progress_bytes_callback(chunk_end - start, s->progress_opaque);
344         start = chunk_end;
345         ret = 0;
346     }
347 
348     block_copy_inflight_req_end(&req);
349 
350     return ret;
351 }
352