xref: /openbmc/qemu/block/block-copy.c (revision bf616ce4)
1 /*
2  * block_copy API
3  *
4  * Copyright (C) 2013 Proxmox Server Solutions
5  * Copyright (c) 2019 Virtuozzo International GmbH.
6  *
7  * Authors:
8  *  Dietmar Maurer (dietmar@proxmox.com)
9  *  Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "block/block_int-io.h"
21 #include "block/dirty-bitmap.h"
22 #include "block/reqlist.h"
23 #include "sysemu/block-backend.h"
24 #include "qemu/units.h"
25 #include "qemu/co-shared-resource.h"
26 #include "qemu/coroutine.h"
27 #include "qemu/ratelimit.h"
28 #include "block/aio_task.h"
29 #include "qemu/error-report.h"
30 #include "qemu/memalign.h"
31 
32 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
33 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
34 #define BLOCK_COPY_MAX_MEM (128 * MiB)
35 #define BLOCK_COPY_MAX_WORKERS 64
36 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
37 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
38 
39 typedef enum {
40     COPY_READ_WRITE_CLUSTER,
41     COPY_READ_WRITE,
42     COPY_WRITE_ZEROES,
43     COPY_RANGE_SMALL,
44     COPY_RANGE_FULL
45 } BlockCopyMethod;
46 
47 static coroutine_fn int block_copy_task_entry(AioTask *task);
48 
49 typedef struct BlockCopyCallState {
50     /* Fields initialized in block_copy_async() and never changed. */
51     BlockCopyState *s;
52     int64_t offset;
53     int64_t bytes;
54     int max_workers;
55     int64_t max_chunk;
56     bool ignore_ratelimit;
57     BlockCopyAsyncCallbackFunc cb;
58     void *cb_opaque;
59     /* Coroutine where async block-copy is running */
60     Coroutine *co;
61 
62     /* Fields whose state changes throughout the execution */
63     bool finished; /* atomic */
64     QemuCoSleep sleep; /* TODO: protect API with a lock */
65     bool cancelled; /* atomic */
66     /* To reference all call states from BlockCopyState */
67     QLIST_ENTRY(BlockCopyCallState) list;
68 
69     /*
70      * Fields that report information about return values and errors.
71      * Protected by lock in BlockCopyState.
72      */
73     bool error_is_read;
74     /*
75      * @ret is set concurrently by tasks under mutex. Only set once by first
76      * failed task (and untouched if no task failed).
77      * After finishing (call_state->finished is true), it is not modified
78      * anymore and may be safely read without mutex.
79      */
80     int ret;
81 } BlockCopyCallState;
82 
83 typedef struct BlockCopyTask {
84     AioTask task;
85 
86     /*
87      * Fields initialized in block_copy_task_create()
88      * and never changed.
89      */
90     BlockCopyState *s;
91     BlockCopyCallState *call_state;
92     /*
93      * @method can also be set again in the while loop of
94      * block_copy_dirty_clusters(), but it is never accessed concurrently
95      * because the only other function that reads it is
96      * block_copy_task_entry() and it is invoked afterwards in the same
97      * iteration.
98      */
99     BlockCopyMethod method;
100 
101     /*
102      * Generally, req is protected by lock in BlockCopyState, Still req.offset
103      * is only set on task creation, so may be read concurrently after creation.
104      * req.bytes is changed at most once, and need only protecting the case of
105      * parallel read while updating @bytes value in block_copy_task_shrink().
106      */
107     BlockReq req;
108 } BlockCopyTask;
109 
110 static int64_t task_end(BlockCopyTask *task)
111 {
112     return task->req.offset + task->req.bytes;
113 }
114 
115 typedef struct BlockCopyState {
116     /*
117      * BdrvChild objects are not owned or managed by block-copy. They are
118      * provided by block-copy user and user is responsible for appropriate
119      * permissions on these children.
120      */
121     BdrvChild *source;
122     BdrvChild *target;
123 
124     /*
125      * Fields initialized in block_copy_state_new()
126      * and never changed.
127      */
128     int64_t cluster_size;
129     int64_t max_transfer;
130     uint64_t len;
131     BdrvRequestFlags write_flags;
132 
133     /*
134      * Fields whose state changes throughout the execution
135      * Protected by lock.
136      */
137     CoMutex lock;
138     int64_t in_flight_bytes;
139     BlockCopyMethod method;
140     BlockReqList reqs;
141     QLIST_HEAD(, BlockCopyCallState) calls;
142     /*
143      * skip_unallocated:
144      *
145      * Used by sync=top jobs, which first scan the source node for unallocated
146      * areas and clear them in the copy_bitmap.  During this process, the bitmap
147      * is thus not fully initialized: It may still have bits set for areas that
148      * are unallocated and should actually not be copied.
149      *
150      * This is indicated by skip_unallocated.
151      *
152      * In this case, block_copy() will query the source’s allocation status,
153      * skip unallocated regions, clear them in the copy_bitmap, and invoke
154      * block_copy_reset_unallocated() every time it does.
155      */
156     bool skip_unallocated; /* atomic */
157     /* State fields that use a thread-safe API */
158     BdrvDirtyBitmap *copy_bitmap;
159     ProgressMeter *progress;
160     SharedResource *mem;
161     RateLimit rate_limit;
162 } BlockCopyState;
163 
164 /* Called with lock held */
165 static int64_t block_copy_chunk_size(BlockCopyState *s)
166 {
167     switch (s->method) {
168     case COPY_READ_WRITE_CLUSTER:
169         return s->cluster_size;
170     case COPY_READ_WRITE:
171     case COPY_RANGE_SMALL:
172         return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
173                    s->max_transfer);
174     case COPY_RANGE_FULL:
175         return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
176                    s->max_transfer);
177     default:
178         /* Cannot have COPY_WRITE_ZEROES here.  */
179         abort();
180     }
181 }
182 
183 /*
184  * Search for the first dirty area in offset/bytes range and create task at
185  * the beginning of it.
186  */
187 static coroutine_fn BlockCopyTask *
188 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
189                        int64_t offset, int64_t bytes)
190 {
191     BlockCopyTask *task;
192     int64_t max_chunk;
193 
194     QEMU_LOCK_GUARD(&s->lock);
195     max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
196     if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
197                                            offset, offset + bytes,
198                                            max_chunk, &offset, &bytes))
199     {
200         return NULL;
201     }
202 
203     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
204     bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
205 
206     /* region is dirty, so no existent tasks possible in it */
207     assert(!reqlist_find_conflict(&s->reqs, offset, bytes));
208 
209     bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
210     s->in_flight_bytes += bytes;
211 
212     task = g_new(BlockCopyTask, 1);
213     *task = (BlockCopyTask) {
214         .task.func = block_copy_task_entry,
215         .s = s,
216         .call_state = call_state,
217         .method = s->method,
218     };
219     reqlist_init_req(&s->reqs, &task->req, offset, bytes);
220 
221     return task;
222 }
223 
224 /*
225  * block_copy_task_shrink
226  *
227  * Drop the tail of the task to be handled later. Set dirty bits back and
228  * wake up all tasks waiting for us (may be some of them are not intersecting
229  * with shrunk task)
230  */
231 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
232                                                 int64_t new_bytes)
233 {
234     QEMU_LOCK_GUARD(&task->s->lock);
235     if (new_bytes == task->req.bytes) {
236         return;
237     }
238 
239     assert(new_bytes > 0 && new_bytes < task->req.bytes);
240 
241     task->s->in_flight_bytes -= task->req.bytes - new_bytes;
242     bdrv_set_dirty_bitmap(task->s->copy_bitmap,
243                           task->req.offset + new_bytes,
244                           task->req.bytes - new_bytes);
245 
246     reqlist_shrink_req(&task->req, new_bytes);
247 }
248 
249 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
250 {
251     QEMU_LOCK_GUARD(&task->s->lock);
252     task->s->in_flight_bytes -= task->req.bytes;
253     if (ret < 0) {
254         bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->req.offset,
255                               task->req.bytes);
256     }
257     if (task->s->progress) {
258         progress_set_remaining(task->s->progress,
259                                bdrv_get_dirty_count(task->s->copy_bitmap) +
260                                task->s->in_flight_bytes);
261     }
262     reqlist_remove_req(&task->req);
263 }
264 
265 void block_copy_state_free(BlockCopyState *s)
266 {
267     if (!s) {
268         return;
269     }
270 
271     ratelimit_destroy(&s->rate_limit);
272     bdrv_release_dirty_bitmap(s->copy_bitmap);
273     shres_destroy(s->mem);
274     g_free(s);
275 }
276 
277 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
278 {
279     return MIN_NON_ZERO(INT_MAX,
280                         MIN_NON_ZERO(source->bs->bl.max_transfer,
281                                      target->bs->bl.max_transfer));
282 }
283 
284 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
285                               bool compress)
286 {
287     /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
288     s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
289         (compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
290 
291     if (s->max_transfer < s->cluster_size) {
292         /*
293          * copy_range does not respect max_transfer. We don't want to bother
294          * with requests smaller than block-copy cluster size, so fallback to
295          * buffered copying (read and write respect max_transfer on their
296          * behalf).
297          */
298         s->method = COPY_READ_WRITE_CLUSTER;
299     } else if (compress) {
300         /* Compression supports only cluster-size writes and no copy-range. */
301         s->method = COPY_READ_WRITE_CLUSTER;
302     } else {
303         /*
304          * If copy range enabled, start with COPY_RANGE_SMALL, until first
305          * successful copy_range (look at block_copy_do_copy).
306          */
307         s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
308     }
309 }
310 
311 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
312                                                  Error **errp)
313 {
314     int ret;
315     BlockDriverInfo bdi;
316     bool target_does_cow;
317 
318     GLOBAL_STATE_CODE();
319     GRAPH_RDLOCK_GUARD_MAINLOOP();
320 
321     target_does_cow = bdrv_backing_chain_next(target);
322 
323     /*
324      * If there is no backing file on the target, we cannot rely on COW if our
325      * backup cluster size is smaller than the target cluster size. Even for
326      * targets with a backing file, try to avoid COW if possible.
327      */
328     ret = bdrv_get_info(target, &bdi);
329     if (ret == -ENOTSUP && !target_does_cow) {
330         /* Cluster size is not defined */
331         warn_report("The target block device doesn't provide "
332                     "information about the block size and it doesn't have a "
333                     "backing file. The default block size of %u bytes is "
334                     "used. If the actual block size of the target exceeds "
335                     "this default, the backup may be unusable",
336                     BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
337         return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
338     } else if (ret < 0 && !target_does_cow) {
339         error_setg_errno(errp, -ret,
340             "Couldn't determine the cluster size of the target image, "
341             "which has no backing file");
342         error_append_hint(errp,
343             "Aborting, since this may create an unusable destination image\n");
344         return ret;
345     } else if (ret < 0 && target_does_cow) {
346         /* Not fatal; just trudge on ahead. */
347         return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
348     }
349 
350     return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
351 }
352 
353 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
354                                      const BdrvDirtyBitmap *bitmap,
355                                      Error **errp)
356 {
357     ERRP_GUARD();
358     BlockCopyState *s;
359     int64_t cluster_size;
360     BdrvDirtyBitmap *copy_bitmap;
361     bool is_fleecing;
362 
363     GLOBAL_STATE_CODE();
364 
365     cluster_size = block_copy_calculate_cluster_size(target->bs, errp);
366     if (cluster_size < 0) {
367         return NULL;
368     }
369 
370     copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
371                                            errp);
372     if (!copy_bitmap) {
373         return NULL;
374     }
375     bdrv_disable_dirty_bitmap(copy_bitmap);
376     if (bitmap) {
377         if (!bdrv_merge_dirty_bitmap(copy_bitmap, bitmap, NULL, errp)) {
378             error_prepend(errp, "Failed to merge bitmap '%s' to internal "
379                           "copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap));
380             bdrv_release_dirty_bitmap(copy_bitmap);
381             return NULL;
382         }
383     } else {
384         bdrv_set_dirty_bitmap(copy_bitmap, 0,
385                               bdrv_dirty_bitmap_size(copy_bitmap));
386     }
387 
388     /*
389      * If source is in backing chain of target assume that target is going to be
390      * used for "image fleecing", i.e. it should represent a kind of snapshot of
391      * source at backup-start point in time. And target is going to be read by
392      * somebody (for example, used as NBD export) during backup job.
393      *
394      * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
395      * intersection of backup writes and third party reads from target,
396      * otherwise reading from target we may occasionally read already updated by
397      * guest data.
398      *
399      * For more information see commit f8d59dfb40bb and test
400      * tests/qemu-iotests/222
401      */
402     bdrv_graph_rdlock_main_loop();
403     is_fleecing = bdrv_chain_contains(target->bs, source->bs);
404     bdrv_graph_rdunlock_main_loop();
405 
406     s = g_new(BlockCopyState, 1);
407     *s = (BlockCopyState) {
408         .source = source,
409         .target = target,
410         .copy_bitmap = copy_bitmap,
411         .cluster_size = cluster_size,
412         .len = bdrv_dirty_bitmap_size(copy_bitmap),
413         .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
414         .mem = shres_create(BLOCK_COPY_MAX_MEM),
415         .max_transfer = QEMU_ALIGN_DOWN(
416                                     block_copy_max_transfer(source, target),
417                                     cluster_size),
418     };
419 
420     block_copy_set_copy_opts(s, false, false);
421 
422     ratelimit_init(&s->rate_limit);
423     qemu_co_mutex_init(&s->lock);
424     QLIST_INIT(&s->reqs);
425     QLIST_INIT(&s->calls);
426 
427     return s;
428 }
429 
430 /* Only set before running the job, no need for locking. */
431 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
432 {
433     s->progress = pm;
434 }
435 
436 /*
437  * Takes ownership of @task
438  *
439  * If pool is NULL directly run the task, otherwise schedule it into the pool.
440  *
441  * Returns: task.func return code if pool is NULL
442  *          otherwise -ECANCELED if pool status is bad
443  *          otherwise 0 (successfully scheduled)
444  */
445 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
446                                             BlockCopyTask *task)
447 {
448     if (!pool) {
449         int ret = task->task.func(&task->task);
450 
451         g_free(task);
452         return ret;
453     }
454 
455     aio_task_pool_wait_slot(pool);
456     if (aio_task_pool_status(pool) < 0) {
457         co_put_to_shres(task->s->mem, task->req.bytes);
458         block_copy_task_end(task, -ECANCELED);
459         g_free(task);
460         return -ECANCELED;
461     }
462 
463     aio_task_pool_start_task(pool, &task->task);
464 
465     return 0;
466 }
467 
468 /*
469  * block_copy_do_copy
470  *
471  * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
472  * s->len only to cover last cluster when s->len is not aligned to clusters.
473  *
474  * No sync here: neither bitmap nor intersecting requests handling, only copy.
475  *
476  * @method is an in-out argument, so that copy_range can be either extended to
477  * a full-size buffer or disabled if the copy_range attempt fails.  The output
478  * value of @method should be used for subsequent tasks.
479  * Returns 0 on success.
480  */
481 static int coroutine_fn GRAPH_RDLOCK
482 block_copy_do_copy(BlockCopyState *s, int64_t offset, int64_t bytes,
483                    BlockCopyMethod *method, bool *error_is_read)
484 {
485     int ret;
486     int64_t nbytes = MIN(offset + bytes, s->len) - offset;
487     void *bounce_buffer = NULL;
488 
489     assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
490     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
491     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
492     assert(offset < s->len);
493     assert(offset + bytes <= s->len ||
494            offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
495     assert(nbytes < INT_MAX);
496 
497     switch (*method) {
498     case COPY_WRITE_ZEROES:
499         ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
500                                     ~BDRV_REQ_WRITE_COMPRESSED);
501         if (ret < 0) {
502             trace_block_copy_write_zeroes_fail(s, offset, ret);
503             *error_is_read = false;
504         }
505         return ret;
506 
507     case COPY_RANGE_SMALL:
508     case COPY_RANGE_FULL:
509         ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
510                                  0, s->write_flags);
511         if (ret >= 0) {
512             /* Successful copy-range, increase chunk size.  */
513             *method = COPY_RANGE_FULL;
514             return 0;
515         }
516 
517         trace_block_copy_copy_range_fail(s, offset, ret);
518         *method = COPY_READ_WRITE;
519         /* Fall through to read+write with allocated buffer */
520 
521     case COPY_READ_WRITE_CLUSTER:
522     case COPY_READ_WRITE:
523         /*
524          * In case of failed copy_range request above, we may proceed with
525          * buffered request larger than BLOCK_COPY_MAX_BUFFER.
526          * Still, further requests will be properly limited, so don't care too
527          * much. Moreover the most likely case (copy_range is unsupported for
528          * the configuration, so the very first copy_range request fails)
529          * is handled by setting large copy_size only after first successful
530          * copy_range.
531          */
532 
533         bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
534 
535         ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
536         if (ret < 0) {
537             trace_block_copy_read_fail(s, offset, ret);
538             *error_is_read = true;
539             goto out;
540         }
541 
542         ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
543                              s->write_flags);
544         if (ret < 0) {
545             trace_block_copy_write_fail(s, offset, ret);
546             *error_is_read = false;
547             goto out;
548         }
549 
550     out:
551         qemu_vfree(bounce_buffer);
552         break;
553 
554     default:
555         abort();
556     }
557 
558     return ret;
559 }
560 
561 static coroutine_fn int block_copy_task_entry(AioTask *task)
562 {
563     BlockCopyTask *t = container_of(task, BlockCopyTask, task);
564     BlockCopyState *s = t->s;
565     bool error_is_read = false;
566     BlockCopyMethod method = t->method;
567     int ret;
568 
569     WITH_GRAPH_RDLOCK_GUARD() {
570         ret = block_copy_do_copy(s, t->req.offset, t->req.bytes, &method,
571                                  &error_is_read);
572     }
573 
574     WITH_QEMU_LOCK_GUARD(&s->lock) {
575         if (s->method == t->method) {
576             s->method = method;
577         }
578 
579         if (ret < 0) {
580             if (!t->call_state->ret) {
581                 t->call_state->ret = ret;
582                 t->call_state->error_is_read = error_is_read;
583             }
584         } else if (s->progress) {
585             progress_work_done(s->progress, t->req.bytes);
586         }
587     }
588     co_put_to_shres(s->mem, t->req.bytes);
589     block_copy_task_end(t, ret);
590 
591     return ret;
592 }
593 
594 static coroutine_fn GRAPH_RDLOCK
595 int block_copy_block_status(BlockCopyState *s, int64_t offset, int64_t bytes,
596                             int64_t *pnum)
597 {
598     int64_t num;
599     BlockDriverState *base;
600     int ret;
601 
602     if (qatomic_read(&s->skip_unallocated)) {
603         base = bdrv_backing_chain_next(s->source->bs);
604     } else {
605         base = NULL;
606     }
607 
608     ret = bdrv_co_block_status_above(s->source->bs, base, offset, bytes, &num,
609                                      NULL, NULL);
610     if (ret < 0 || num < s->cluster_size) {
611         /*
612          * On error or if failed to obtain large enough chunk just fallback to
613          * copy one cluster.
614          */
615         num = s->cluster_size;
616         ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
617     } else if (offset + num == s->len) {
618         num = QEMU_ALIGN_UP(num, s->cluster_size);
619     } else {
620         num = QEMU_ALIGN_DOWN(num, s->cluster_size);
621     }
622 
623     *pnum = num;
624     return ret;
625 }
626 
627 /*
628  * Check if the cluster starting at offset is allocated or not.
629  * return via pnum the number of contiguous clusters sharing this allocation.
630  */
631 static int coroutine_fn GRAPH_RDLOCK
632 block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
633                                 int64_t *pnum)
634 {
635     BlockDriverState *bs = s->source->bs;
636     int64_t count, total_count = 0;
637     int64_t bytes = s->len - offset;
638     int ret;
639 
640     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
641 
642     while (true) {
643         /* protected in backup_run() */
644         ret = bdrv_co_is_allocated(bs, offset, bytes, &count);
645         if (ret < 0) {
646             return ret;
647         }
648 
649         total_count += count;
650 
651         if (ret || count == 0) {
652             /*
653              * ret: partial segment(s) are considered allocated.
654              * otherwise: unallocated tail is treated as an entire segment.
655              */
656             *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
657             return ret;
658         }
659 
660         /* Unallocated segment(s) with uncertain following segment(s) */
661         if (total_count >= s->cluster_size) {
662             *pnum = total_count / s->cluster_size;
663             return 0;
664         }
665 
666         offset += count;
667         bytes -= count;
668     }
669 }
670 
671 void block_copy_reset(BlockCopyState *s, int64_t offset, int64_t bytes)
672 {
673     QEMU_LOCK_GUARD(&s->lock);
674 
675     bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
676     if (s->progress) {
677         progress_set_remaining(s->progress,
678                                bdrv_get_dirty_count(s->copy_bitmap) +
679                                s->in_flight_bytes);
680     }
681 }
682 
683 /*
684  * Reset bits in copy_bitmap starting at offset if they represent unallocated
685  * data in the image. May reset subsequent contiguous bits.
686  * @return 0 when the cluster at @offset was unallocated,
687  *         1 otherwise, and -ret on error.
688  */
689 int64_t coroutine_fn block_copy_reset_unallocated(BlockCopyState *s,
690                                                   int64_t offset,
691                                                   int64_t *count)
692 {
693     int ret;
694     int64_t clusters, bytes;
695 
696     ret = block_copy_is_cluster_allocated(s, offset, &clusters);
697     if (ret < 0) {
698         return ret;
699     }
700 
701     bytes = clusters * s->cluster_size;
702 
703     if (!ret) {
704         block_copy_reset(s, offset, bytes);
705     }
706 
707     *count = bytes;
708     return ret;
709 }
710 
711 /*
712  * block_copy_dirty_clusters
713  *
714  * Copy dirty clusters in @offset/@bytes range.
715  * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
716  * clusters found and -errno on failure.
717  */
718 static int coroutine_fn GRAPH_RDLOCK
719 block_copy_dirty_clusters(BlockCopyCallState *call_state)
720 {
721     BlockCopyState *s = call_state->s;
722     int64_t offset = call_state->offset;
723     int64_t bytes = call_state->bytes;
724 
725     int ret = 0;
726     bool found_dirty = false;
727     int64_t end = offset + bytes;
728     AioTaskPool *aio = NULL;
729 
730     /*
731      * block_copy() user is responsible for keeping source and target in same
732      * aio context
733      */
734     assert(bdrv_get_aio_context(s->source->bs) ==
735            bdrv_get_aio_context(s->target->bs));
736 
737     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
738     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
739 
740     while (bytes && aio_task_pool_status(aio) == 0 &&
741            !qatomic_read(&call_state->cancelled)) {
742         BlockCopyTask *task;
743         int64_t status_bytes;
744 
745         task = block_copy_task_create(s, call_state, offset, bytes);
746         if (!task) {
747             /* No more dirty bits in the bitmap */
748             trace_block_copy_skip_range(s, offset, bytes);
749             break;
750         }
751         if (task->req.offset > offset) {
752             trace_block_copy_skip_range(s, offset, task->req.offset - offset);
753         }
754 
755         found_dirty = true;
756 
757         ret = block_copy_block_status(s, task->req.offset, task->req.bytes,
758                                       &status_bytes);
759         assert(ret >= 0); /* never fail */
760         if (status_bytes < task->req.bytes) {
761             block_copy_task_shrink(task, status_bytes);
762         }
763         if (qatomic_read(&s->skip_unallocated) &&
764             !(ret & BDRV_BLOCK_ALLOCATED)) {
765             block_copy_task_end(task, 0);
766             trace_block_copy_skip_range(s, task->req.offset, task->req.bytes);
767             offset = task_end(task);
768             bytes = end - offset;
769             g_free(task);
770             continue;
771         }
772         if (ret & BDRV_BLOCK_ZERO) {
773             task->method = COPY_WRITE_ZEROES;
774         }
775 
776         if (!call_state->ignore_ratelimit) {
777             uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
778             if (ns > 0) {
779                 block_copy_task_end(task, -EAGAIN);
780                 g_free(task);
781                 qemu_co_sleep_ns_wakeable(&call_state->sleep,
782                                           QEMU_CLOCK_REALTIME, ns);
783                 continue;
784             }
785         }
786 
787         ratelimit_calculate_delay(&s->rate_limit, task->req.bytes);
788 
789         trace_block_copy_process(s, task->req.offset);
790 
791         co_get_from_shres(s->mem, task->req.bytes);
792 
793         offset = task_end(task);
794         bytes = end - offset;
795 
796         if (!aio && bytes) {
797             aio = aio_task_pool_new(call_state->max_workers);
798         }
799 
800         ret = block_copy_task_run(aio, task);
801         if (ret < 0) {
802             goto out;
803         }
804     }
805 
806 out:
807     if (aio) {
808         aio_task_pool_wait_all(aio);
809 
810         /*
811          * We are not really interested in -ECANCELED returned from
812          * block_copy_task_run. If it fails, it means some task already failed
813          * for real reason, let's return first failure.
814          * Still, assert that we don't rewrite failure by success.
815          *
816          * Note: ret may be positive here because of block-status result.
817          */
818         assert(ret >= 0 || aio_task_pool_status(aio) < 0);
819         ret = aio_task_pool_status(aio);
820 
821         aio_task_pool_free(aio);
822     }
823 
824     return ret < 0 ? ret : found_dirty;
825 }
826 
827 void block_copy_kick(BlockCopyCallState *call_state)
828 {
829     qemu_co_sleep_wake(&call_state->sleep);
830 }
831 
832 /*
833  * block_copy_common
834  *
835  * Copy requested region, accordingly to dirty bitmap.
836  * Collaborate with parallel block_copy requests: if they succeed it will help
837  * us. If they fail, we will retry not-copied regions. So, if we return error,
838  * it means that some I/O operation failed in context of _this_ block_copy call,
839  * not some parallel operation.
840  */
841 static int coroutine_fn GRAPH_RDLOCK
842 block_copy_common(BlockCopyCallState *call_state)
843 {
844     int ret;
845     BlockCopyState *s = call_state->s;
846 
847     qemu_co_mutex_lock(&s->lock);
848     QLIST_INSERT_HEAD(&s->calls, call_state, list);
849     qemu_co_mutex_unlock(&s->lock);
850 
851     do {
852         ret = block_copy_dirty_clusters(call_state);
853 
854         if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
855             WITH_QEMU_LOCK_GUARD(&s->lock) {
856                 /*
857                  * Check that there is no task we still need to
858                  * wait to complete
859                  */
860                 ret = reqlist_wait_one(&s->reqs, call_state->offset,
861                                        call_state->bytes, &s->lock);
862                 if (ret == 0) {
863                     /*
864                      * No pending tasks, but check again the bitmap in this
865                      * same critical section, since a task might have failed
866                      * between this and the critical section in
867                      * block_copy_dirty_clusters().
868                      *
869                      * reqlist_wait_one return value 0 also means that it
870                      * didn't release the lock. So, we are still in the same
871                      * critical section, not interrupted by any concurrent
872                      * access to state.
873                      */
874                     ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
875                                                        call_state->offset,
876                                                        call_state->bytes) >= 0;
877                 }
878             }
879         }
880 
881         /*
882          * We retry in two cases:
883          * 1. Some progress done
884          *    Something was copied, which means that there were yield points
885          *    and some new dirty bits may have appeared (due to failed parallel
886          *    block-copy requests).
887          * 2. We have waited for some intersecting block-copy request
888          *    It may have failed and produced new dirty bits.
889          */
890     } while (ret > 0 && !qatomic_read(&call_state->cancelled));
891 
892     qatomic_store_release(&call_state->finished, true);
893 
894     if (call_state->cb) {
895         call_state->cb(call_state->cb_opaque);
896     }
897 
898     qemu_co_mutex_lock(&s->lock);
899     QLIST_REMOVE(call_state, list);
900     qemu_co_mutex_unlock(&s->lock);
901 
902     return ret;
903 }
904 
905 static void coroutine_fn block_copy_async_co_entry(void *opaque)
906 {
907     GRAPH_RDLOCK_GUARD();
908     block_copy_common(opaque);
909 }
910 
911 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
912                             bool ignore_ratelimit, uint64_t timeout_ns,
913                             BlockCopyAsyncCallbackFunc cb,
914                             void *cb_opaque)
915 {
916     int ret;
917     BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
918 
919     *call_state = (BlockCopyCallState) {
920         .s = s,
921         .offset = start,
922         .bytes = bytes,
923         .ignore_ratelimit = ignore_ratelimit,
924         .max_workers = BLOCK_COPY_MAX_WORKERS,
925         .cb = cb,
926         .cb_opaque = cb_opaque,
927     };
928 
929     ret = qemu_co_timeout(block_copy_async_co_entry, call_state, timeout_ns,
930                           g_free);
931     if (ret < 0) {
932         assert(ret == -ETIMEDOUT);
933         block_copy_call_cancel(call_state);
934         /* call_state will be freed by running coroutine. */
935         return ret;
936     }
937 
938     ret = call_state->ret;
939     g_free(call_state);
940 
941     return ret;
942 }
943 
944 BlockCopyCallState *block_copy_async(BlockCopyState *s,
945                                      int64_t offset, int64_t bytes,
946                                      int max_workers, int64_t max_chunk,
947                                      BlockCopyAsyncCallbackFunc cb,
948                                      void *cb_opaque)
949 {
950     BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
951 
952     *call_state = (BlockCopyCallState) {
953         .s = s,
954         .offset = offset,
955         .bytes = bytes,
956         .max_workers = max_workers,
957         .max_chunk = max_chunk,
958         .cb = cb,
959         .cb_opaque = cb_opaque,
960 
961         .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
962     };
963 
964     qemu_coroutine_enter(call_state->co);
965 
966     return call_state;
967 }
968 
969 void block_copy_call_free(BlockCopyCallState *call_state)
970 {
971     if (!call_state) {
972         return;
973     }
974 
975     assert(qatomic_read(&call_state->finished));
976     g_free(call_state);
977 }
978 
979 bool block_copy_call_finished(BlockCopyCallState *call_state)
980 {
981     return qatomic_read(&call_state->finished);
982 }
983 
984 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
985 {
986     return qatomic_load_acquire(&call_state->finished) &&
987            !qatomic_read(&call_state->cancelled) &&
988            call_state->ret == 0;
989 }
990 
991 bool block_copy_call_failed(BlockCopyCallState *call_state)
992 {
993     return qatomic_load_acquire(&call_state->finished) &&
994            !qatomic_read(&call_state->cancelled) &&
995            call_state->ret < 0;
996 }
997 
998 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
999 {
1000     return qatomic_read(&call_state->cancelled);
1001 }
1002 
1003 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
1004 {
1005     assert(qatomic_load_acquire(&call_state->finished));
1006     if (error_is_read) {
1007         *error_is_read = call_state->error_is_read;
1008     }
1009     return call_state->ret;
1010 }
1011 
1012 /*
1013  * Note that cancelling and finishing are racy.
1014  * User can cancel a block-copy that is already finished.
1015  */
1016 void block_copy_call_cancel(BlockCopyCallState *call_state)
1017 {
1018     qatomic_set(&call_state->cancelled, true);
1019     block_copy_kick(call_state);
1020 }
1021 
1022 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
1023 {
1024     return s->copy_bitmap;
1025 }
1026 
1027 int64_t block_copy_cluster_size(BlockCopyState *s)
1028 {
1029     return s->cluster_size;
1030 }
1031 
1032 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
1033 {
1034     qatomic_set(&s->skip_unallocated, skip);
1035 }
1036 
1037 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
1038 {
1039     ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
1040 
1041     /*
1042      * Note: it's good to kick all call states from here, but it should be done
1043      * only from a coroutine, to not crash if s->calls list changed while
1044      * entering one call. So for now, the only user of this function kicks its
1045      * only one call_state by hand.
1046      */
1047 }
1048