1 /* 2 * block_copy API 3 * 4 * Copyright (C) 2013 Proxmox Server Solutions 5 * Copyright (c) 2019 Virtuozzo International GmbH. 6 * 7 * Authors: 8 * Dietmar Maurer (dietmar@proxmox.com) 9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 */ 14 15 #include "qemu/osdep.h" 16 17 #include "trace.h" 18 #include "qapi/error.h" 19 #include "block/block-copy.h" 20 #include "block/block_int-io.h" 21 #include "block/dirty-bitmap.h" 22 #include "block/reqlist.h" 23 #include "sysemu/block-backend.h" 24 #include "qemu/units.h" 25 #include "qemu/co-shared-resource.h" 26 #include "qemu/coroutine.h" 27 #include "qemu/ratelimit.h" 28 #include "block/aio_task.h" 29 #include "qemu/error-report.h" 30 #include "qemu/memalign.h" 31 32 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB) 33 #define BLOCK_COPY_MAX_BUFFER (1 * MiB) 34 #define BLOCK_COPY_MAX_MEM (128 * MiB) 35 #define BLOCK_COPY_MAX_WORKERS 64 36 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */ 37 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16) 38 39 typedef enum { 40 COPY_READ_WRITE_CLUSTER, 41 COPY_READ_WRITE, 42 COPY_WRITE_ZEROES, 43 COPY_RANGE_SMALL, 44 COPY_RANGE_FULL 45 } BlockCopyMethod; 46 47 static coroutine_fn int block_copy_task_entry(AioTask *task); 48 49 typedef struct BlockCopyCallState { 50 /* Fields initialized in block_copy_async() and never changed. */ 51 BlockCopyState *s; 52 int64_t offset; 53 int64_t bytes; 54 int max_workers; 55 int64_t max_chunk; 56 bool ignore_ratelimit; 57 BlockCopyAsyncCallbackFunc cb; 58 void *cb_opaque; 59 /* Coroutine where async block-copy is running */ 60 Coroutine *co; 61 62 /* Fields whose state changes throughout the execution */ 63 bool finished; /* atomic */ 64 QemuCoSleep sleep; /* TODO: protect API with a lock */ 65 bool cancelled; /* atomic */ 66 /* To reference all call states from BlockCopyState */ 67 QLIST_ENTRY(BlockCopyCallState) list; 68 69 /* 70 * Fields that report information about return values and erros. 71 * Protected by lock in BlockCopyState. 72 */ 73 bool error_is_read; 74 /* 75 * @ret is set concurrently by tasks under mutex. Only set once by first 76 * failed task (and untouched if no task failed). 77 * After finishing (call_state->finished is true), it is not modified 78 * anymore and may be safely read without mutex. 79 */ 80 int ret; 81 } BlockCopyCallState; 82 83 typedef struct BlockCopyTask { 84 AioTask task; 85 86 /* 87 * Fields initialized in block_copy_task_create() 88 * and never changed. 89 */ 90 BlockCopyState *s; 91 BlockCopyCallState *call_state; 92 /* 93 * @method can also be set again in the while loop of 94 * block_copy_dirty_clusters(), but it is never accessed concurrently 95 * because the only other function that reads it is 96 * block_copy_task_entry() and it is invoked afterwards in the same 97 * iteration. 98 */ 99 BlockCopyMethod method; 100 101 /* 102 * Generally, req is protected by lock in BlockCopyState, Still req.offset 103 * is only set on task creation, so may be read concurrently after creation. 104 * req.bytes is changed at most once, and need only protecting the case of 105 * parallel read while updating @bytes value in block_copy_task_shrink(). 106 */ 107 BlockReq req; 108 } BlockCopyTask; 109 110 static int64_t task_end(BlockCopyTask *task) 111 { 112 return task->req.offset + task->req.bytes; 113 } 114 115 typedef struct BlockCopyState { 116 /* 117 * BdrvChild objects are not owned or managed by block-copy. They are 118 * provided by block-copy user and user is responsible for appropriate 119 * permissions on these children. 120 */ 121 BdrvChild *source; 122 BdrvChild *target; 123 124 /* 125 * Fields initialized in block_copy_state_new() 126 * and never changed. 127 */ 128 int64_t cluster_size; 129 int64_t max_transfer; 130 uint64_t len; 131 BdrvRequestFlags write_flags; 132 133 /* 134 * Fields whose state changes throughout the execution 135 * Protected by lock. 136 */ 137 CoMutex lock; 138 int64_t in_flight_bytes; 139 BlockCopyMethod method; 140 BlockReqList reqs; 141 QLIST_HEAD(, BlockCopyCallState) calls; 142 /* 143 * skip_unallocated: 144 * 145 * Used by sync=top jobs, which first scan the source node for unallocated 146 * areas and clear them in the copy_bitmap. During this process, the bitmap 147 * is thus not fully initialized: It may still have bits set for areas that 148 * are unallocated and should actually not be copied. 149 * 150 * This is indicated by skip_unallocated. 151 * 152 * In this case, block_copy() will query the source’s allocation status, 153 * skip unallocated regions, clear them in the copy_bitmap, and invoke 154 * block_copy_reset_unallocated() every time it does. 155 */ 156 bool skip_unallocated; /* atomic */ 157 /* State fields that use a thread-safe API */ 158 BdrvDirtyBitmap *copy_bitmap; 159 ProgressMeter *progress; 160 SharedResource *mem; 161 RateLimit rate_limit; 162 } BlockCopyState; 163 164 /* Called with lock held */ 165 static int64_t block_copy_chunk_size(BlockCopyState *s) 166 { 167 switch (s->method) { 168 case COPY_READ_WRITE_CLUSTER: 169 return s->cluster_size; 170 case COPY_READ_WRITE: 171 case COPY_RANGE_SMALL: 172 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER), 173 s->max_transfer); 174 case COPY_RANGE_FULL: 175 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE), 176 s->max_transfer); 177 default: 178 /* Cannot have COPY_WRITE_ZEROES here. */ 179 abort(); 180 } 181 } 182 183 /* 184 * Search for the first dirty area in offset/bytes range and create task at 185 * the beginning of it. 186 */ 187 static coroutine_fn BlockCopyTask * 188 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state, 189 int64_t offset, int64_t bytes) 190 { 191 BlockCopyTask *task; 192 int64_t max_chunk; 193 194 QEMU_LOCK_GUARD(&s->lock); 195 max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk); 196 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap, 197 offset, offset + bytes, 198 max_chunk, &offset, &bytes)) 199 { 200 return NULL; 201 } 202 203 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 204 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size); 205 206 /* region is dirty, so no existent tasks possible in it */ 207 assert(!reqlist_find_conflict(&s->reqs, offset, bytes)); 208 209 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); 210 s->in_flight_bytes += bytes; 211 212 task = g_new(BlockCopyTask, 1); 213 *task = (BlockCopyTask) { 214 .task.func = block_copy_task_entry, 215 .s = s, 216 .call_state = call_state, 217 .method = s->method, 218 }; 219 reqlist_init_req(&s->reqs, &task->req, offset, bytes); 220 221 return task; 222 } 223 224 /* 225 * block_copy_task_shrink 226 * 227 * Drop the tail of the task to be handled later. Set dirty bits back and 228 * wake up all tasks waiting for us (may be some of them are not intersecting 229 * with shrunk task) 230 */ 231 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task, 232 int64_t new_bytes) 233 { 234 QEMU_LOCK_GUARD(&task->s->lock); 235 if (new_bytes == task->req.bytes) { 236 return; 237 } 238 239 assert(new_bytes > 0 && new_bytes < task->req.bytes); 240 241 task->s->in_flight_bytes -= task->req.bytes - new_bytes; 242 bdrv_set_dirty_bitmap(task->s->copy_bitmap, 243 task->req.offset + new_bytes, 244 task->req.bytes - new_bytes); 245 246 reqlist_shrink_req(&task->req, new_bytes); 247 } 248 249 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret) 250 { 251 QEMU_LOCK_GUARD(&task->s->lock); 252 task->s->in_flight_bytes -= task->req.bytes; 253 if (ret < 0) { 254 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->req.offset, 255 task->req.bytes); 256 } 257 if (task->s->progress) { 258 progress_set_remaining(task->s->progress, 259 bdrv_get_dirty_count(task->s->copy_bitmap) + 260 task->s->in_flight_bytes); 261 } 262 reqlist_remove_req(&task->req); 263 } 264 265 void block_copy_state_free(BlockCopyState *s) 266 { 267 if (!s) { 268 return; 269 } 270 271 ratelimit_destroy(&s->rate_limit); 272 bdrv_release_dirty_bitmap(s->copy_bitmap); 273 shres_destroy(s->mem); 274 g_free(s); 275 } 276 277 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target) 278 { 279 return MIN_NON_ZERO(INT_MAX, 280 MIN_NON_ZERO(source->bs->bl.max_transfer, 281 target->bs->bl.max_transfer)); 282 } 283 284 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range, 285 bool compress) 286 { 287 /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */ 288 s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) | 289 (compress ? BDRV_REQ_WRITE_COMPRESSED : 0); 290 291 if (s->max_transfer < s->cluster_size) { 292 /* 293 * copy_range does not respect max_transfer. We don't want to bother 294 * with requests smaller than block-copy cluster size, so fallback to 295 * buffered copying (read and write respect max_transfer on their 296 * behalf). 297 */ 298 s->method = COPY_READ_WRITE_CLUSTER; 299 } else if (compress) { 300 /* Compression supports only cluster-size writes and no copy-range. */ 301 s->method = COPY_READ_WRITE_CLUSTER; 302 } else { 303 /* 304 * If copy range enabled, start with COPY_RANGE_SMALL, until first 305 * successful copy_range (look at block_copy_do_copy). 306 */ 307 s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE; 308 } 309 } 310 311 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target, 312 Error **errp) 313 { 314 int ret; 315 BlockDriverInfo bdi; 316 bool target_does_cow = bdrv_backing_chain_next(target); 317 318 /* 319 * If there is no backing file on the target, we cannot rely on COW if our 320 * backup cluster size is smaller than the target cluster size. Even for 321 * targets with a backing file, try to avoid COW if possible. 322 */ 323 ret = bdrv_get_info(target, &bdi); 324 if (ret == -ENOTSUP && !target_does_cow) { 325 /* Cluster size is not defined */ 326 warn_report("The target block device doesn't provide " 327 "information about the block size and it doesn't have a " 328 "backing file. The default block size of %u bytes is " 329 "used. If the actual block size of the target exceeds " 330 "this default, the backup may be unusable", 331 BLOCK_COPY_CLUSTER_SIZE_DEFAULT); 332 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT; 333 } else if (ret < 0 && !target_does_cow) { 334 error_setg_errno(errp, -ret, 335 "Couldn't determine the cluster size of the target image, " 336 "which has no backing file"); 337 error_append_hint(errp, 338 "Aborting, since this may create an unusable destination image\n"); 339 return ret; 340 } else if (ret < 0 && target_does_cow) { 341 /* Not fatal; just trudge on ahead. */ 342 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT; 343 } 344 345 return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size); 346 } 347 348 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target, 349 const BdrvDirtyBitmap *bitmap, 350 Error **errp) 351 { 352 ERRP_GUARD(); 353 BlockCopyState *s; 354 int64_t cluster_size; 355 BdrvDirtyBitmap *copy_bitmap; 356 bool is_fleecing; 357 358 cluster_size = block_copy_calculate_cluster_size(target->bs, errp); 359 if (cluster_size < 0) { 360 return NULL; 361 } 362 363 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL, 364 errp); 365 if (!copy_bitmap) { 366 return NULL; 367 } 368 bdrv_disable_dirty_bitmap(copy_bitmap); 369 if (bitmap) { 370 if (!bdrv_merge_dirty_bitmap(copy_bitmap, bitmap, NULL, errp)) { 371 error_prepend(errp, "Failed to merge bitmap '%s' to internal " 372 "copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap)); 373 bdrv_release_dirty_bitmap(copy_bitmap); 374 return NULL; 375 } 376 } else { 377 bdrv_set_dirty_bitmap(copy_bitmap, 0, 378 bdrv_dirty_bitmap_size(copy_bitmap)); 379 } 380 381 /* 382 * If source is in backing chain of target assume that target is going to be 383 * used for "image fleecing", i.e. it should represent a kind of snapshot of 384 * source at backup-start point in time. And target is going to be read by 385 * somebody (for example, used as NBD export) during backup job. 386 * 387 * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid 388 * intersection of backup writes and third party reads from target, 389 * otherwise reading from target we may occasionally read already updated by 390 * guest data. 391 * 392 * For more information see commit f8d59dfb40bb and test 393 * tests/qemu-iotests/222 394 */ 395 is_fleecing = bdrv_chain_contains(target->bs, source->bs); 396 397 s = g_new(BlockCopyState, 1); 398 *s = (BlockCopyState) { 399 .source = source, 400 .target = target, 401 .copy_bitmap = copy_bitmap, 402 .cluster_size = cluster_size, 403 .len = bdrv_dirty_bitmap_size(copy_bitmap), 404 .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0), 405 .mem = shres_create(BLOCK_COPY_MAX_MEM), 406 .max_transfer = QEMU_ALIGN_DOWN( 407 block_copy_max_transfer(source, target), 408 cluster_size), 409 }; 410 411 block_copy_set_copy_opts(s, false, false); 412 413 ratelimit_init(&s->rate_limit); 414 qemu_co_mutex_init(&s->lock); 415 QLIST_INIT(&s->reqs); 416 QLIST_INIT(&s->calls); 417 418 return s; 419 } 420 421 /* Only set before running the job, no need for locking. */ 422 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm) 423 { 424 s->progress = pm; 425 } 426 427 /* 428 * Takes ownership of @task 429 * 430 * If pool is NULL directly run the task, otherwise schedule it into the pool. 431 * 432 * Returns: task.func return code if pool is NULL 433 * otherwise -ECANCELED if pool status is bad 434 * otherwise 0 (successfully scheduled) 435 */ 436 static coroutine_fn int block_copy_task_run(AioTaskPool *pool, 437 BlockCopyTask *task) 438 { 439 if (!pool) { 440 int ret = task->task.func(&task->task); 441 442 g_free(task); 443 return ret; 444 } 445 446 aio_task_pool_wait_slot(pool); 447 if (aio_task_pool_status(pool) < 0) { 448 co_put_to_shres(task->s->mem, task->req.bytes); 449 block_copy_task_end(task, -ECANCELED); 450 g_free(task); 451 return -ECANCELED; 452 } 453 454 aio_task_pool_start_task(pool, &task->task); 455 456 return 0; 457 } 458 459 /* 460 * block_copy_do_copy 461 * 462 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed 463 * s->len only to cover last cluster when s->len is not aligned to clusters. 464 * 465 * No sync here: nor bitmap neighter intersecting requests handling, only copy. 466 * 467 * @method is an in-out argument, so that copy_range can be either extended to 468 * a full-size buffer or disabled if the copy_range attempt fails. The output 469 * value of @method should be used for subsequent tasks. 470 * Returns 0 on success. 471 */ 472 static int coroutine_fn block_copy_do_copy(BlockCopyState *s, 473 int64_t offset, int64_t bytes, 474 BlockCopyMethod *method, 475 bool *error_is_read) 476 { 477 int ret; 478 int64_t nbytes = MIN(offset + bytes, s->len) - offset; 479 void *bounce_buffer = NULL; 480 481 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes); 482 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 483 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); 484 assert(offset < s->len); 485 assert(offset + bytes <= s->len || 486 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size)); 487 assert(nbytes < INT_MAX); 488 489 switch (*method) { 490 case COPY_WRITE_ZEROES: 491 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags & 492 ~BDRV_REQ_WRITE_COMPRESSED); 493 if (ret < 0) { 494 trace_block_copy_write_zeroes_fail(s, offset, ret); 495 *error_is_read = false; 496 } 497 return ret; 498 499 case COPY_RANGE_SMALL: 500 case COPY_RANGE_FULL: 501 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes, 502 0, s->write_flags); 503 if (ret >= 0) { 504 /* Successful copy-range, increase chunk size. */ 505 *method = COPY_RANGE_FULL; 506 return 0; 507 } 508 509 trace_block_copy_copy_range_fail(s, offset, ret); 510 *method = COPY_READ_WRITE; 511 /* Fall through to read+write with allocated buffer */ 512 513 case COPY_READ_WRITE_CLUSTER: 514 case COPY_READ_WRITE: 515 /* 516 * In case of failed copy_range request above, we may proceed with 517 * buffered request larger than BLOCK_COPY_MAX_BUFFER. 518 * Still, further requests will be properly limited, so don't care too 519 * much. Moreover the most likely case (copy_range is unsupported for 520 * the configuration, so the very first copy_range request fails) 521 * is handled by setting large copy_size only after first successful 522 * copy_range. 523 */ 524 525 bounce_buffer = qemu_blockalign(s->source->bs, nbytes); 526 527 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0); 528 if (ret < 0) { 529 trace_block_copy_read_fail(s, offset, ret); 530 *error_is_read = true; 531 goto out; 532 } 533 534 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer, 535 s->write_flags); 536 if (ret < 0) { 537 trace_block_copy_write_fail(s, offset, ret); 538 *error_is_read = false; 539 goto out; 540 } 541 542 out: 543 qemu_vfree(bounce_buffer); 544 break; 545 546 default: 547 abort(); 548 } 549 550 return ret; 551 } 552 553 static coroutine_fn int block_copy_task_entry(AioTask *task) 554 { 555 BlockCopyTask *t = container_of(task, BlockCopyTask, task); 556 BlockCopyState *s = t->s; 557 bool error_is_read = false; 558 BlockCopyMethod method = t->method; 559 int ret; 560 561 ret = block_copy_do_copy(s, t->req.offset, t->req.bytes, &method, 562 &error_is_read); 563 564 WITH_QEMU_LOCK_GUARD(&s->lock) { 565 if (s->method == t->method) { 566 s->method = method; 567 } 568 569 if (ret < 0) { 570 if (!t->call_state->ret) { 571 t->call_state->ret = ret; 572 t->call_state->error_is_read = error_is_read; 573 } 574 } else if (s->progress) { 575 progress_work_done(s->progress, t->req.bytes); 576 } 577 } 578 co_put_to_shres(s->mem, t->req.bytes); 579 block_copy_task_end(t, ret); 580 581 return ret; 582 } 583 584 static coroutine_fn int block_copy_block_status(BlockCopyState *s, 585 int64_t offset, 586 int64_t bytes, int64_t *pnum) 587 { 588 int64_t num; 589 BlockDriverState *base; 590 int ret; 591 592 if (qatomic_read(&s->skip_unallocated)) { 593 base = bdrv_backing_chain_next(s->source->bs); 594 } else { 595 base = NULL; 596 } 597 598 ret = bdrv_co_block_status_above(s->source->bs, base, offset, bytes, &num, 599 NULL, NULL); 600 if (ret < 0 || num < s->cluster_size) { 601 /* 602 * On error or if failed to obtain large enough chunk just fallback to 603 * copy one cluster. 604 */ 605 num = s->cluster_size; 606 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA; 607 } else if (offset + num == s->len) { 608 num = QEMU_ALIGN_UP(num, s->cluster_size); 609 } else { 610 num = QEMU_ALIGN_DOWN(num, s->cluster_size); 611 } 612 613 *pnum = num; 614 return ret; 615 } 616 617 /* 618 * Check if the cluster starting at offset is allocated or not. 619 * return via pnum the number of contiguous clusters sharing this allocation. 620 */ 621 static int coroutine_fn block_copy_is_cluster_allocated(BlockCopyState *s, 622 int64_t offset, 623 int64_t *pnum) 624 { 625 BlockDriverState *bs = s->source->bs; 626 int64_t count, total_count = 0; 627 int64_t bytes = s->len - offset; 628 int ret; 629 630 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 631 632 while (true) { 633 ret = bdrv_co_is_allocated(bs, offset, bytes, &count); 634 if (ret < 0) { 635 return ret; 636 } 637 638 total_count += count; 639 640 if (ret || count == 0) { 641 /* 642 * ret: partial segment(s) are considered allocated. 643 * otherwise: unallocated tail is treated as an entire segment. 644 */ 645 *pnum = DIV_ROUND_UP(total_count, s->cluster_size); 646 return ret; 647 } 648 649 /* Unallocated segment(s) with uncertain following segment(s) */ 650 if (total_count >= s->cluster_size) { 651 *pnum = total_count / s->cluster_size; 652 return 0; 653 } 654 655 offset += count; 656 bytes -= count; 657 } 658 } 659 660 void block_copy_reset(BlockCopyState *s, int64_t offset, int64_t bytes) 661 { 662 QEMU_LOCK_GUARD(&s->lock); 663 664 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); 665 if (s->progress) { 666 progress_set_remaining(s->progress, 667 bdrv_get_dirty_count(s->copy_bitmap) + 668 s->in_flight_bytes); 669 } 670 } 671 672 /* 673 * Reset bits in copy_bitmap starting at offset if they represent unallocated 674 * data in the image. May reset subsequent contiguous bits. 675 * @return 0 when the cluster at @offset was unallocated, 676 * 1 otherwise, and -ret on error. 677 */ 678 int64_t coroutine_fn block_copy_reset_unallocated(BlockCopyState *s, 679 int64_t offset, 680 int64_t *count) 681 { 682 int ret; 683 int64_t clusters, bytes; 684 685 ret = block_copy_is_cluster_allocated(s, offset, &clusters); 686 if (ret < 0) { 687 return ret; 688 } 689 690 bytes = clusters * s->cluster_size; 691 692 if (!ret) { 693 block_copy_reset(s, offset, bytes); 694 } 695 696 *count = bytes; 697 return ret; 698 } 699 700 /* 701 * block_copy_dirty_clusters 702 * 703 * Copy dirty clusters in @offset/@bytes range. 704 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty 705 * clusters found and -errno on failure. 706 */ 707 static int coroutine_fn 708 block_copy_dirty_clusters(BlockCopyCallState *call_state) 709 { 710 BlockCopyState *s = call_state->s; 711 int64_t offset = call_state->offset; 712 int64_t bytes = call_state->bytes; 713 714 int ret = 0; 715 bool found_dirty = false; 716 int64_t end = offset + bytes; 717 AioTaskPool *aio = NULL; 718 719 /* 720 * block_copy() user is responsible for keeping source and target in same 721 * aio context 722 */ 723 assert(bdrv_get_aio_context(s->source->bs) == 724 bdrv_get_aio_context(s->target->bs)); 725 726 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 727 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); 728 729 while (bytes && aio_task_pool_status(aio) == 0 && 730 !qatomic_read(&call_state->cancelled)) { 731 BlockCopyTask *task; 732 int64_t status_bytes; 733 734 task = block_copy_task_create(s, call_state, offset, bytes); 735 if (!task) { 736 /* No more dirty bits in the bitmap */ 737 trace_block_copy_skip_range(s, offset, bytes); 738 break; 739 } 740 if (task->req.offset > offset) { 741 trace_block_copy_skip_range(s, offset, task->req.offset - offset); 742 } 743 744 found_dirty = true; 745 746 ret = block_copy_block_status(s, task->req.offset, task->req.bytes, 747 &status_bytes); 748 assert(ret >= 0); /* never fail */ 749 if (status_bytes < task->req.bytes) { 750 block_copy_task_shrink(task, status_bytes); 751 } 752 if (qatomic_read(&s->skip_unallocated) && 753 !(ret & BDRV_BLOCK_ALLOCATED)) { 754 block_copy_task_end(task, 0); 755 trace_block_copy_skip_range(s, task->req.offset, task->req.bytes); 756 offset = task_end(task); 757 bytes = end - offset; 758 g_free(task); 759 continue; 760 } 761 if (ret & BDRV_BLOCK_ZERO) { 762 task->method = COPY_WRITE_ZEROES; 763 } 764 765 if (!call_state->ignore_ratelimit) { 766 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0); 767 if (ns > 0) { 768 block_copy_task_end(task, -EAGAIN); 769 g_free(task); 770 qemu_co_sleep_ns_wakeable(&call_state->sleep, 771 QEMU_CLOCK_REALTIME, ns); 772 continue; 773 } 774 } 775 776 ratelimit_calculate_delay(&s->rate_limit, task->req.bytes); 777 778 trace_block_copy_process(s, task->req.offset); 779 780 co_get_from_shres(s->mem, task->req.bytes); 781 782 offset = task_end(task); 783 bytes = end - offset; 784 785 if (!aio && bytes) { 786 aio = aio_task_pool_new(call_state->max_workers); 787 } 788 789 ret = block_copy_task_run(aio, task); 790 if (ret < 0) { 791 goto out; 792 } 793 } 794 795 out: 796 if (aio) { 797 aio_task_pool_wait_all(aio); 798 799 /* 800 * We are not really interested in -ECANCELED returned from 801 * block_copy_task_run. If it fails, it means some task already failed 802 * for real reason, let's return first failure. 803 * Still, assert that we don't rewrite failure by success. 804 * 805 * Note: ret may be positive here because of block-status result. 806 */ 807 assert(ret >= 0 || aio_task_pool_status(aio) < 0); 808 ret = aio_task_pool_status(aio); 809 810 aio_task_pool_free(aio); 811 } 812 813 return ret < 0 ? ret : found_dirty; 814 } 815 816 void block_copy_kick(BlockCopyCallState *call_state) 817 { 818 qemu_co_sleep_wake(&call_state->sleep); 819 } 820 821 /* 822 * block_copy_common 823 * 824 * Copy requested region, accordingly to dirty bitmap. 825 * Collaborate with parallel block_copy requests: if they succeed it will help 826 * us. If they fail, we will retry not-copied regions. So, if we return error, 827 * it means that some I/O operation failed in context of _this_ block_copy call, 828 * not some parallel operation. 829 */ 830 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state) 831 { 832 int ret; 833 BlockCopyState *s = call_state->s; 834 835 qemu_co_mutex_lock(&s->lock); 836 QLIST_INSERT_HEAD(&s->calls, call_state, list); 837 qemu_co_mutex_unlock(&s->lock); 838 839 do { 840 ret = block_copy_dirty_clusters(call_state); 841 842 if (ret == 0 && !qatomic_read(&call_state->cancelled)) { 843 WITH_QEMU_LOCK_GUARD(&s->lock) { 844 /* 845 * Check that there is no task we still need to 846 * wait to complete 847 */ 848 ret = reqlist_wait_one(&s->reqs, call_state->offset, 849 call_state->bytes, &s->lock); 850 if (ret == 0) { 851 /* 852 * No pending tasks, but check again the bitmap in this 853 * same critical section, since a task might have failed 854 * between this and the critical section in 855 * block_copy_dirty_clusters(). 856 * 857 * reqlist_wait_one return value 0 also means that it 858 * didn't release the lock. So, we are still in the same 859 * critical section, not interrupted by any concurrent 860 * access to state. 861 */ 862 ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap, 863 call_state->offset, 864 call_state->bytes) >= 0; 865 } 866 } 867 } 868 869 /* 870 * We retry in two cases: 871 * 1. Some progress done 872 * Something was copied, which means that there were yield points 873 * and some new dirty bits may have appeared (due to failed parallel 874 * block-copy requests). 875 * 2. We have waited for some intersecting block-copy request 876 * It may have failed and produced new dirty bits. 877 */ 878 } while (ret > 0 && !qatomic_read(&call_state->cancelled)); 879 880 qatomic_store_release(&call_state->finished, true); 881 882 if (call_state->cb) { 883 call_state->cb(call_state->cb_opaque); 884 } 885 886 qemu_co_mutex_lock(&s->lock); 887 QLIST_REMOVE(call_state, list); 888 qemu_co_mutex_unlock(&s->lock); 889 890 return ret; 891 } 892 893 static void coroutine_fn block_copy_async_co_entry(void *opaque) 894 { 895 block_copy_common(opaque); 896 } 897 898 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes, 899 bool ignore_ratelimit, uint64_t timeout_ns, 900 BlockCopyAsyncCallbackFunc cb, 901 void *cb_opaque) 902 { 903 int ret; 904 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1); 905 906 *call_state = (BlockCopyCallState) { 907 .s = s, 908 .offset = start, 909 .bytes = bytes, 910 .ignore_ratelimit = ignore_ratelimit, 911 .max_workers = BLOCK_COPY_MAX_WORKERS, 912 .cb = cb, 913 .cb_opaque = cb_opaque, 914 }; 915 916 ret = qemu_co_timeout(block_copy_async_co_entry, call_state, timeout_ns, 917 g_free); 918 if (ret < 0) { 919 assert(ret == -ETIMEDOUT); 920 block_copy_call_cancel(call_state); 921 /* call_state will be freed by running coroutine. */ 922 return ret; 923 } 924 925 ret = call_state->ret; 926 g_free(call_state); 927 928 return ret; 929 } 930 931 BlockCopyCallState *block_copy_async(BlockCopyState *s, 932 int64_t offset, int64_t bytes, 933 int max_workers, int64_t max_chunk, 934 BlockCopyAsyncCallbackFunc cb, 935 void *cb_opaque) 936 { 937 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1); 938 939 *call_state = (BlockCopyCallState) { 940 .s = s, 941 .offset = offset, 942 .bytes = bytes, 943 .max_workers = max_workers, 944 .max_chunk = max_chunk, 945 .cb = cb, 946 .cb_opaque = cb_opaque, 947 948 .co = qemu_coroutine_create(block_copy_async_co_entry, call_state), 949 }; 950 951 qemu_coroutine_enter(call_state->co); 952 953 return call_state; 954 } 955 956 void block_copy_call_free(BlockCopyCallState *call_state) 957 { 958 if (!call_state) { 959 return; 960 } 961 962 assert(qatomic_read(&call_state->finished)); 963 g_free(call_state); 964 } 965 966 bool block_copy_call_finished(BlockCopyCallState *call_state) 967 { 968 return qatomic_read(&call_state->finished); 969 } 970 971 bool block_copy_call_succeeded(BlockCopyCallState *call_state) 972 { 973 return qatomic_load_acquire(&call_state->finished) && 974 !qatomic_read(&call_state->cancelled) && 975 call_state->ret == 0; 976 } 977 978 bool block_copy_call_failed(BlockCopyCallState *call_state) 979 { 980 return qatomic_load_acquire(&call_state->finished) && 981 !qatomic_read(&call_state->cancelled) && 982 call_state->ret < 0; 983 } 984 985 bool block_copy_call_cancelled(BlockCopyCallState *call_state) 986 { 987 return qatomic_read(&call_state->cancelled); 988 } 989 990 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read) 991 { 992 assert(qatomic_load_acquire(&call_state->finished)); 993 if (error_is_read) { 994 *error_is_read = call_state->error_is_read; 995 } 996 return call_state->ret; 997 } 998 999 /* 1000 * Note that cancelling and finishing are racy. 1001 * User can cancel a block-copy that is already finished. 1002 */ 1003 void block_copy_call_cancel(BlockCopyCallState *call_state) 1004 { 1005 qatomic_set(&call_state->cancelled, true); 1006 block_copy_kick(call_state); 1007 } 1008 1009 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s) 1010 { 1011 return s->copy_bitmap; 1012 } 1013 1014 int64_t block_copy_cluster_size(BlockCopyState *s) 1015 { 1016 return s->cluster_size; 1017 } 1018 1019 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip) 1020 { 1021 qatomic_set(&s->skip_unallocated, skip); 1022 } 1023 1024 void block_copy_set_speed(BlockCopyState *s, uint64_t speed) 1025 { 1026 ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME); 1027 1028 /* 1029 * Note: it's good to kick all call states from here, but it should be done 1030 * only from a coroutine, to not crash if s->calls list changed while 1031 * entering one call. So for now, the only user of this function kicks its 1032 * only one call_state by hand. 1033 */ 1034 } 1035