1 /* 2 * block_copy API 3 * 4 * Copyright (C) 2013 Proxmox Server Solutions 5 * Copyright (c) 2019 Virtuozzo International GmbH. 6 * 7 * Authors: 8 * Dietmar Maurer (dietmar@proxmox.com) 9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 */ 14 15 #include "qemu/osdep.h" 16 17 #include "trace.h" 18 #include "qapi/error.h" 19 #include "block/block-copy.h" 20 #include "sysemu/block-backend.h" 21 #include "qemu/units.h" 22 #include "qemu/coroutine.h" 23 #include "block/aio_task.h" 24 25 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB) 26 #define BLOCK_COPY_MAX_BUFFER (1 * MiB) 27 #define BLOCK_COPY_MAX_MEM (128 * MiB) 28 #define BLOCK_COPY_MAX_WORKERS 64 29 30 static coroutine_fn int block_copy_task_entry(AioTask *task); 31 32 typedef struct BlockCopyCallState { 33 bool failed; 34 bool error_is_read; 35 } BlockCopyCallState; 36 37 typedef struct BlockCopyTask { 38 AioTask task; 39 40 BlockCopyState *s; 41 BlockCopyCallState *call_state; 42 int64_t offset; 43 int64_t bytes; 44 bool zeroes; 45 QLIST_ENTRY(BlockCopyTask) list; 46 CoQueue wait_queue; /* coroutines blocked on this task */ 47 } BlockCopyTask; 48 49 static int64_t task_end(BlockCopyTask *task) 50 { 51 return task->offset + task->bytes; 52 } 53 54 typedef struct BlockCopyState { 55 /* 56 * BdrvChild objects are not owned or managed by block-copy. They are 57 * provided by block-copy user and user is responsible for appropriate 58 * permissions on these children. 59 */ 60 BdrvChild *source; 61 BdrvChild *target; 62 BdrvDirtyBitmap *copy_bitmap; 63 int64_t in_flight_bytes; 64 int64_t cluster_size; 65 bool use_copy_range; 66 int64_t copy_size; 67 uint64_t len; 68 QLIST_HEAD(, BlockCopyTask) tasks; 69 70 BdrvRequestFlags write_flags; 71 72 /* 73 * skip_unallocated: 74 * 75 * Used by sync=top jobs, which first scan the source node for unallocated 76 * areas and clear them in the copy_bitmap. During this process, the bitmap 77 * is thus not fully initialized: It may still have bits set for areas that 78 * are unallocated and should actually not be copied. 79 * 80 * This is indicated by skip_unallocated. 81 * 82 * In this case, block_copy() will query the source’s allocation status, 83 * skip unallocated regions, clear them in the copy_bitmap, and invoke 84 * block_copy_reset_unallocated() every time it does. 85 */ 86 bool skip_unallocated; 87 88 ProgressMeter *progress; 89 /* progress_bytes_callback: called when some copying progress is done. */ 90 ProgressBytesCallbackFunc progress_bytes_callback; 91 void *progress_opaque; 92 93 SharedResource *mem; 94 } BlockCopyState; 95 96 static BlockCopyTask *find_conflicting_task(BlockCopyState *s, 97 int64_t offset, int64_t bytes) 98 { 99 BlockCopyTask *t; 100 101 QLIST_FOREACH(t, &s->tasks, list) { 102 if (offset + bytes > t->offset && offset < t->offset + t->bytes) { 103 return t; 104 } 105 } 106 107 return NULL; 108 } 109 110 /* 111 * If there are no intersecting tasks return false. Otherwise, wait for the 112 * first found intersecting tasks to finish and return true. 113 */ 114 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset, 115 int64_t bytes) 116 { 117 BlockCopyTask *task = find_conflicting_task(s, offset, bytes); 118 119 if (!task) { 120 return false; 121 } 122 123 qemu_co_queue_wait(&task->wait_queue, NULL); 124 125 return true; 126 } 127 128 /* 129 * Search for the first dirty area in offset/bytes range and create task at 130 * the beginning of it. 131 */ 132 static BlockCopyTask *block_copy_task_create(BlockCopyState *s, 133 BlockCopyCallState *call_state, 134 int64_t offset, int64_t bytes) 135 { 136 BlockCopyTask *task; 137 138 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap, 139 offset, offset + bytes, 140 s->copy_size, &offset, &bytes)) 141 { 142 return NULL; 143 } 144 145 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 146 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size); 147 148 /* region is dirty, so no existent tasks possible in it */ 149 assert(!find_conflicting_task(s, offset, bytes)); 150 151 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); 152 s->in_flight_bytes += bytes; 153 154 task = g_new(BlockCopyTask, 1); 155 *task = (BlockCopyTask) { 156 .task.func = block_copy_task_entry, 157 .s = s, 158 .call_state = call_state, 159 .offset = offset, 160 .bytes = bytes, 161 }; 162 qemu_co_queue_init(&task->wait_queue); 163 QLIST_INSERT_HEAD(&s->tasks, task, list); 164 165 return task; 166 } 167 168 /* 169 * block_copy_task_shrink 170 * 171 * Drop the tail of the task to be handled later. Set dirty bits back and 172 * wake up all tasks waiting for us (may be some of them are not intersecting 173 * with shrunk task) 174 */ 175 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task, 176 int64_t new_bytes) 177 { 178 if (new_bytes == task->bytes) { 179 return; 180 } 181 182 assert(new_bytes > 0 && new_bytes < task->bytes); 183 184 task->s->in_flight_bytes -= task->bytes - new_bytes; 185 bdrv_set_dirty_bitmap(task->s->copy_bitmap, 186 task->offset + new_bytes, task->bytes - new_bytes); 187 188 task->bytes = new_bytes; 189 qemu_co_queue_restart_all(&task->wait_queue); 190 } 191 192 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret) 193 { 194 task->s->in_flight_bytes -= task->bytes; 195 if (ret < 0) { 196 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes); 197 } 198 QLIST_REMOVE(task, list); 199 qemu_co_queue_restart_all(&task->wait_queue); 200 } 201 202 void block_copy_state_free(BlockCopyState *s) 203 { 204 if (!s) { 205 return; 206 } 207 208 bdrv_release_dirty_bitmap(s->copy_bitmap); 209 shres_destroy(s->mem); 210 g_free(s); 211 } 212 213 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target) 214 { 215 return MIN_NON_ZERO(INT_MAX, 216 MIN_NON_ZERO(source->bs->bl.max_transfer, 217 target->bs->bl.max_transfer)); 218 } 219 220 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target, 221 int64_t cluster_size, 222 BdrvRequestFlags write_flags, Error **errp) 223 { 224 BlockCopyState *s; 225 BdrvDirtyBitmap *copy_bitmap; 226 227 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL, 228 errp); 229 if (!copy_bitmap) { 230 return NULL; 231 } 232 bdrv_disable_dirty_bitmap(copy_bitmap); 233 234 s = g_new(BlockCopyState, 1); 235 *s = (BlockCopyState) { 236 .source = source, 237 .target = target, 238 .copy_bitmap = copy_bitmap, 239 .cluster_size = cluster_size, 240 .len = bdrv_dirty_bitmap_size(copy_bitmap), 241 .write_flags = write_flags, 242 .mem = shres_create(BLOCK_COPY_MAX_MEM), 243 }; 244 245 if (block_copy_max_transfer(source, target) < cluster_size) { 246 /* 247 * copy_range does not respect max_transfer. We don't want to bother 248 * with requests smaller than block-copy cluster size, so fallback to 249 * buffered copying (read and write respect max_transfer on their 250 * behalf). 251 */ 252 s->use_copy_range = false; 253 s->copy_size = cluster_size; 254 } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) { 255 /* Compression supports only cluster-size writes and no copy-range. */ 256 s->use_copy_range = false; 257 s->copy_size = cluster_size; 258 } else { 259 /* 260 * We enable copy-range, but keep small copy_size, until first 261 * successful copy_range (look at block_copy_do_copy). 262 */ 263 s->use_copy_range = true; 264 s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER); 265 } 266 267 QLIST_INIT(&s->tasks); 268 269 return s; 270 } 271 272 void block_copy_set_progress_callback( 273 BlockCopyState *s, 274 ProgressBytesCallbackFunc progress_bytes_callback, 275 void *progress_opaque) 276 { 277 s->progress_bytes_callback = progress_bytes_callback; 278 s->progress_opaque = progress_opaque; 279 } 280 281 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm) 282 { 283 s->progress = pm; 284 } 285 286 /* 287 * Takes ownership of @task 288 * 289 * If pool is NULL directly run the task, otherwise schedule it into the pool. 290 * 291 * Returns: task.func return code if pool is NULL 292 * otherwise -ECANCELED if pool status is bad 293 * otherwise 0 (successfully scheduled) 294 */ 295 static coroutine_fn int block_copy_task_run(AioTaskPool *pool, 296 BlockCopyTask *task) 297 { 298 if (!pool) { 299 int ret = task->task.func(&task->task); 300 301 g_free(task); 302 return ret; 303 } 304 305 aio_task_pool_wait_slot(pool); 306 if (aio_task_pool_status(pool) < 0) { 307 co_put_to_shres(task->s->mem, task->bytes); 308 block_copy_task_end(task, -ECANCELED); 309 g_free(task); 310 return -ECANCELED; 311 } 312 313 aio_task_pool_start_task(pool, &task->task); 314 315 return 0; 316 } 317 318 /* 319 * block_copy_do_copy 320 * 321 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed 322 * s->len only to cover last cluster when s->len is not aligned to clusters. 323 * 324 * No sync here: nor bitmap neighter intersecting requests handling, only copy. 325 * 326 * Returns 0 on success. 327 */ 328 static int coroutine_fn block_copy_do_copy(BlockCopyState *s, 329 int64_t offset, int64_t bytes, 330 bool zeroes, bool *error_is_read) 331 { 332 int ret; 333 int64_t nbytes = MIN(offset + bytes, s->len) - offset; 334 void *bounce_buffer = NULL; 335 336 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes); 337 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 338 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); 339 assert(offset < s->len); 340 assert(offset + bytes <= s->len || 341 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size)); 342 assert(nbytes < INT_MAX); 343 344 if (zeroes) { 345 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags & 346 ~BDRV_REQ_WRITE_COMPRESSED); 347 if (ret < 0) { 348 trace_block_copy_write_zeroes_fail(s, offset, ret); 349 *error_is_read = false; 350 } 351 return ret; 352 } 353 354 if (s->use_copy_range) { 355 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes, 356 0, s->write_flags); 357 if (ret < 0) { 358 trace_block_copy_copy_range_fail(s, offset, ret); 359 s->use_copy_range = false; 360 s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER); 361 /* Fallback to read+write with allocated buffer */ 362 } else { 363 if (s->use_copy_range) { 364 /* 365 * Successful copy-range. Now increase copy_size. copy_range 366 * does not respect max_transfer (it's a TODO), so we factor 367 * that in here. 368 * 369 * Note: we double-check s->use_copy_range for the case when 370 * parallel block-copy request unsets it during previous 371 * bdrv_co_copy_range call. 372 */ 373 s->copy_size = 374 MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE), 375 QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source, 376 s->target), 377 s->cluster_size)); 378 } 379 goto out; 380 } 381 } 382 383 /* 384 * In case of failed copy_range request above, we may proceed with buffered 385 * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will 386 * be properly limited, so don't care too much. Moreover the most likely 387 * case (copy_range is unsupported for the configuration, so the very first 388 * copy_range request fails) is handled by setting large copy_size only 389 * after first successful copy_range. 390 */ 391 392 bounce_buffer = qemu_blockalign(s->source->bs, nbytes); 393 394 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0); 395 if (ret < 0) { 396 trace_block_copy_read_fail(s, offset, ret); 397 *error_is_read = true; 398 goto out; 399 } 400 401 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer, 402 s->write_flags); 403 if (ret < 0) { 404 trace_block_copy_write_fail(s, offset, ret); 405 *error_is_read = false; 406 goto out; 407 } 408 409 out: 410 qemu_vfree(bounce_buffer); 411 412 return ret; 413 } 414 415 static coroutine_fn int block_copy_task_entry(AioTask *task) 416 { 417 BlockCopyTask *t = container_of(task, BlockCopyTask, task); 418 bool error_is_read = false; 419 int ret; 420 421 ret = block_copy_do_copy(t->s, t->offset, t->bytes, t->zeroes, 422 &error_is_read); 423 if (ret < 0 && !t->call_state->failed) { 424 t->call_state->failed = true; 425 t->call_state->error_is_read = error_is_read; 426 } else { 427 progress_work_done(t->s->progress, t->bytes); 428 t->s->progress_bytes_callback(t->bytes, t->s->progress_opaque); 429 } 430 co_put_to_shres(t->s->mem, t->bytes); 431 block_copy_task_end(t, ret); 432 433 return ret; 434 } 435 436 static int block_copy_block_status(BlockCopyState *s, int64_t offset, 437 int64_t bytes, int64_t *pnum) 438 { 439 int64_t num; 440 BlockDriverState *base; 441 int ret; 442 443 if (s->skip_unallocated && s->source->bs->backing) { 444 base = s->source->bs->backing->bs; 445 } else { 446 base = NULL; 447 } 448 449 ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num, 450 NULL, NULL); 451 if (ret < 0 || num < s->cluster_size) { 452 /* 453 * On error or if failed to obtain large enough chunk just fallback to 454 * copy one cluster. 455 */ 456 num = s->cluster_size; 457 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA; 458 } else if (offset + num == s->len) { 459 num = QEMU_ALIGN_UP(num, s->cluster_size); 460 } else { 461 num = QEMU_ALIGN_DOWN(num, s->cluster_size); 462 } 463 464 *pnum = num; 465 return ret; 466 } 467 468 /* 469 * Check if the cluster starting at offset is allocated or not. 470 * return via pnum the number of contiguous clusters sharing this allocation. 471 */ 472 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset, 473 int64_t *pnum) 474 { 475 BlockDriverState *bs = s->source->bs; 476 int64_t count, total_count = 0; 477 int64_t bytes = s->len - offset; 478 int ret; 479 480 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 481 482 while (true) { 483 ret = bdrv_is_allocated(bs, offset, bytes, &count); 484 if (ret < 0) { 485 return ret; 486 } 487 488 total_count += count; 489 490 if (ret || count == 0) { 491 /* 492 * ret: partial segment(s) are considered allocated. 493 * otherwise: unallocated tail is treated as an entire segment. 494 */ 495 *pnum = DIV_ROUND_UP(total_count, s->cluster_size); 496 return ret; 497 } 498 499 /* Unallocated segment(s) with uncertain following segment(s) */ 500 if (total_count >= s->cluster_size) { 501 *pnum = total_count / s->cluster_size; 502 return 0; 503 } 504 505 offset += count; 506 bytes -= count; 507 } 508 } 509 510 /* 511 * Reset bits in copy_bitmap starting at offset if they represent unallocated 512 * data in the image. May reset subsequent contiguous bits. 513 * @return 0 when the cluster at @offset was unallocated, 514 * 1 otherwise, and -ret on error. 515 */ 516 int64_t block_copy_reset_unallocated(BlockCopyState *s, 517 int64_t offset, int64_t *count) 518 { 519 int ret; 520 int64_t clusters, bytes; 521 522 ret = block_copy_is_cluster_allocated(s, offset, &clusters); 523 if (ret < 0) { 524 return ret; 525 } 526 527 bytes = clusters * s->cluster_size; 528 529 if (!ret) { 530 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); 531 progress_set_remaining(s->progress, 532 bdrv_get_dirty_count(s->copy_bitmap) + 533 s->in_flight_bytes); 534 } 535 536 *count = bytes; 537 return ret; 538 } 539 540 /* 541 * block_copy_dirty_clusters 542 * 543 * Copy dirty clusters in @offset/@bytes range. 544 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty 545 * clusters found and -errno on failure. 546 */ 547 static int coroutine_fn block_copy_dirty_clusters(BlockCopyState *s, 548 int64_t offset, int64_t bytes, 549 bool *error_is_read) 550 { 551 int ret = 0; 552 bool found_dirty = false; 553 int64_t end = offset + bytes; 554 AioTaskPool *aio = NULL; 555 BlockCopyCallState call_state = {false, false}; 556 557 /* 558 * block_copy() user is responsible for keeping source and target in same 559 * aio context 560 */ 561 assert(bdrv_get_aio_context(s->source->bs) == 562 bdrv_get_aio_context(s->target->bs)); 563 564 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 565 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); 566 567 while (bytes && aio_task_pool_status(aio) == 0) { 568 BlockCopyTask *task; 569 int64_t status_bytes; 570 571 task = block_copy_task_create(s, &call_state, offset, bytes); 572 if (!task) { 573 /* No more dirty bits in the bitmap */ 574 trace_block_copy_skip_range(s, offset, bytes); 575 break; 576 } 577 if (task->offset > offset) { 578 trace_block_copy_skip_range(s, offset, task->offset - offset); 579 } 580 581 found_dirty = true; 582 583 ret = block_copy_block_status(s, task->offset, task->bytes, 584 &status_bytes); 585 assert(ret >= 0); /* never fail */ 586 if (status_bytes < task->bytes) { 587 block_copy_task_shrink(task, status_bytes); 588 } 589 if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) { 590 block_copy_task_end(task, 0); 591 progress_set_remaining(s->progress, 592 bdrv_get_dirty_count(s->copy_bitmap) + 593 s->in_flight_bytes); 594 trace_block_copy_skip_range(s, task->offset, task->bytes); 595 offset = task_end(task); 596 bytes = end - offset; 597 g_free(task); 598 continue; 599 } 600 task->zeroes = ret & BDRV_BLOCK_ZERO; 601 602 trace_block_copy_process(s, task->offset); 603 604 co_get_from_shres(s->mem, task->bytes); 605 606 offset = task_end(task); 607 bytes = end - offset; 608 609 if (!aio && bytes) { 610 aio = aio_task_pool_new(BLOCK_COPY_MAX_WORKERS); 611 } 612 613 ret = block_copy_task_run(aio, task); 614 if (ret < 0) { 615 goto out; 616 } 617 } 618 619 out: 620 if (aio) { 621 aio_task_pool_wait_all(aio); 622 623 /* 624 * We are not really interested in -ECANCELED returned from 625 * block_copy_task_run. If it fails, it means some task already failed 626 * for real reason, let's return first failure. 627 * Still, assert that we don't rewrite failure by success. 628 * 629 * Note: ret may be positive here because of block-status result. 630 */ 631 assert(ret >= 0 || aio_task_pool_status(aio) < 0); 632 ret = aio_task_pool_status(aio); 633 634 aio_task_pool_free(aio); 635 } 636 if (error_is_read && ret < 0) { 637 *error_is_read = call_state.error_is_read; 638 } 639 640 return ret < 0 ? ret : found_dirty; 641 } 642 643 /* 644 * block_copy 645 * 646 * Copy requested region, accordingly to dirty bitmap. 647 * Collaborate with parallel block_copy requests: if they succeed it will help 648 * us. If they fail, we will retry not-copied regions. So, if we return error, 649 * it means that some I/O operation failed in context of _this_ block_copy call, 650 * not some parallel operation. 651 */ 652 int coroutine_fn block_copy(BlockCopyState *s, int64_t offset, int64_t bytes, 653 bool *error_is_read) 654 { 655 int ret; 656 657 do { 658 ret = block_copy_dirty_clusters(s, offset, bytes, error_is_read); 659 660 if (ret == 0) { 661 ret = block_copy_wait_one(s, offset, bytes); 662 } 663 664 /* 665 * We retry in two cases: 666 * 1. Some progress done 667 * Something was copied, which means that there were yield points 668 * and some new dirty bits may have appeared (due to failed parallel 669 * block-copy requests). 670 * 2. We have waited for some intersecting block-copy request 671 * It may have failed and produced new dirty bits. 672 */ 673 } while (ret > 0); 674 675 return ret; 676 } 677 678 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s) 679 { 680 return s->copy_bitmap; 681 } 682 683 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip) 684 { 685 s->skip_unallocated = skip; 686 } 687