xref: /openbmc/qemu/block/block-copy.c (revision 64c9a921)
1 /*
2  * block_copy API
3  *
4  * Copyright (C) 2013 Proxmox Server Solutions
5  * Copyright (c) 2019 Virtuozzo International GmbH.
6  *
7  * Authors:
8  *  Dietmar Maurer (dietmar@proxmox.com)
9  *  Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 #include "qemu/coroutine.h"
23 #include "block/aio_task.h"
24 
25 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
26 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
27 #define BLOCK_COPY_MAX_MEM (128 * MiB)
28 #define BLOCK_COPY_MAX_WORKERS 64
29 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
30 
31 static coroutine_fn int block_copy_task_entry(AioTask *task);
32 
33 typedef struct BlockCopyCallState {
34     /* IN parameters. Initialized in block_copy_async() and never changed. */
35     BlockCopyState *s;
36     int64_t offset;
37     int64_t bytes;
38     int max_workers;
39     int64_t max_chunk;
40     bool ignore_ratelimit;
41     BlockCopyAsyncCallbackFunc cb;
42     void *cb_opaque;
43 
44     /* Coroutine where async block-copy is running */
45     Coroutine *co;
46 
47     /* To reference all call states from BlockCopyState */
48     QLIST_ENTRY(BlockCopyCallState) list;
49 
50     /* State */
51     int ret;
52     bool finished;
53     QemuCoSleepState *sleep_state;
54     bool cancelled;
55 
56     /* OUT parameters */
57     bool error_is_read;
58 } BlockCopyCallState;
59 
60 typedef struct BlockCopyTask {
61     AioTask task;
62 
63     BlockCopyState *s;
64     BlockCopyCallState *call_state;
65     int64_t offset;
66     int64_t bytes;
67     bool zeroes;
68     QLIST_ENTRY(BlockCopyTask) list;
69     CoQueue wait_queue; /* coroutines blocked on this task */
70 } BlockCopyTask;
71 
72 static int64_t task_end(BlockCopyTask *task)
73 {
74     return task->offset + task->bytes;
75 }
76 
77 typedef struct BlockCopyState {
78     /*
79      * BdrvChild objects are not owned or managed by block-copy. They are
80      * provided by block-copy user and user is responsible for appropriate
81      * permissions on these children.
82      */
83     BdrvChild *source;
84     BdrvChild *target;
85     BdrvDirtyBitmap *copy_bitmap;
86     int64_t in_flight_bytes;
87     int64_t cluster_size;
88     bool use_copy_range;
89     int64_t copy_size;
90     uint64_t len;
91     QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */
92     QLIST_HEAD(, BlockCopyCallState) calls;
93 
94     BdrvRequestFlags write_flags;
95 
96     /*
97      * skip_unallocated:
98      *
99      * Used by sync=top jobs, which first scan the source node for unallocated
100      * areas and clear them in the copy_bitmap.  During this process, the bitmap
101      * is thus not fully initialized: It may still have bits set for areas that
102      * are unallocated and should actually not be copied.
103      *
104      * This is indicated by skip_unallocated.
105      *
106      * In this case, block_copy() will query the source’s allocation status,
107      * skip unallocated regions, clear them in the copy_bitmap, and invoke
108      * block_copy_reset_unallocated() every time it does.
109      */
110     bool skip_unallocated;
111 
112     ProgressMeter *progress;
113 
114     SharedResource *mem;
115 
116     uint64_t speed;
117     RateLimit rate_limit;
118 } BlockCopyState;
119 
120 static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
121                                             int64_t offset, int64_t bytes)
122 {
123     BlockCopyTask *t;
124 
125     QLIST_FOREACH(t, &s->tasks, list) {
126         if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
127             return t;
128         }
129     }
130 
131     return NULL;
132 }
133 
134 /*
135  * If there are no intersecting tasks return false. Otherwise, wait for the
136  * first found intersecting tasks to finish and return true.
137  */
138 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
139                                              int64_t bytes)
140 {
141     BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
142 
143     if (!task) {
144         return false;
145     }
146 
147     qemu_co_queue_wait(&task->wait_queue, NULL);
148 
149     return true;
150 }
151 
152 /*
153  * Search for the first dirty area in offset/bytes range and create task at
154  * the beginning of it.
155  */
156 static BlockCopyTask *block_copy_task_create(BlockCopyState *s,
157                                              BlockCopyCallState *call_state,
158                                              int64_t offset, int64_t bytes)
159 {
160     BlockCopyTask *task;
161     int64_t max_chunk = MIN_NON_ZERO(s->copy_size, call_state->max_chunk);
162 
163     if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
164                                            offset, offset + bytes,
165                                            max_chunk, &offset, &bytes))
166     {
167         return NULL;
168     }
169 
170     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
171     bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
172 
173     /* region is dirty, so no existent tasks possible in it */
174     assert(!find_conflicting_task(s, offset, bytes));
175 
176     bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
177     s->in_flight_bytes += bytes;
178 
179     task = g_new(BlockCopyTask, 1);
180     *task = (BlockCopyTask) {
181         .task.func = block_copy_task_entry,
182         .s = s,
183         .call_state = call_state,
184         .offset = offset,
185         .bytes = bytes,
186     };
187     qemu_co_queue_init(&task->wait_queue);
188     QLIST_INSERT_HEAD(&s->tasks, task, list);
189 
190     return task;
191 }
192 
193 /*
194  * block_copy_task_shrink
195  *
196  * Drop the tail of the task to be handled later. Set dirty bits back and
197  * wake up all tasks waiting for us (may be some of them are not intersecting
198  * with shrunk task)
199  */
200 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
201                                                 int64_t new_bytes)
202 {
203     if (new_bytes == task->bytes) {
204         return;
205     }
206 
207     assert(new_bytes > 0 && new_bytes < task->bytes);
208 
209     task->s->in_flight_bytes -= task->bytes - new_bytes;
210     bdrv_set_dirty_bitmap(task->s->copy_bitmap,
211                           task->offset + new_bytes, task->bytes - new_bytes);
212 
213     task->bytes = new_bytes;
214     qemu_co_queue_restart_all(&task->wait_queue);
215 }
216 
217 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
218 {
219     task->s->in_flight_bytes -= task->bytes;
220     if (ret < 0) {
221         bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
222     }
223     QLIST_REMOVE(task, list);
224     qemu_co_queue_restart_all(&task->wait_queue);
225 }
226 
227 void block_copy_state_free(BlockCopyState *s)
228 {
229     if (!s) {
230         return;
231     }
232 
233     bdrv_release_dirty_bitmap(s->copy_bitmap);
234     shres_destroy(s->mem);
235     g_free(s);
236 }
237 
238 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
239 {
240     return MIN_NON_ZERO(INT_MAX,
241                         MIN_NON_ZERO(source->bs->bl.max_transfer,
242                                      target->bs->bl.max_transfer));
243 }
244 
245 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
246                                      int64_t cluster_size, bool use_copy_range,
247                                      BdrvRequestFlags write_flags, Error **errp)
248 {
249     BlockCopyState *s;
250     BdrvDirtyBitmap *copy_bitmap;
251 
252     copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
253                                            errp);
254     if (!copy_bitmap) {
255         return NULL;
256     }
257     bdrv_disable_dirty_bitmap(copy_bitmap);
258 
259     s = g_new(BlockCopyState, 1);
260     *s = (BlockCopyState) {
261         .source = source,
262         .target = target,
263         .copy_bitmap = copy_bitmap,
264         .cluster_size = cluster_size,
265         .len = bdrv_dirty_bitmap_size(copy_bitmap),
266         .write_flags = write_flags,
267         .mem = shres_create(BLOCK_COPY_MAX_MEM),
268     };
269 
270     if (block_copy_max_transfer(source, target) < cluster_size) {
271         /*
272          * copy_range does not respect max_transfer. We don't want to bother
273          * with requests smaller than block-copy cluster size, so fallback to
274          * buffered copying (read and write respect max_transfer on their
275          * behalf).
276          */
277         s->use_copy_range = false;
278         s->copy_size = cluster_size;
279     } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
280         /* Compression supports only cluster-size writes and no copy-range. */
281         s->use_copy_range = false;
282         s->copy_size = cluster_size;
283     } else {
284         /*
285          * We enable copy-range, but keep small copy_size, until first
286          * successful copy_range (look at block_copy_do_copy).
287          */
288         s->use_copy_range = use_copy_range;
289         s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
290     }
291 
292     QLIST_INIT(&s->tasks);
293     QLIST_INIT(&s->calls);
294 
295     return s;
296 }
297 
298 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
299 {
300     s->progress = pm;
301 }
302 
303 /*
304  * Takes ownership of @task
305  *
306  * If pool is NULL directly run the task, otherwise schedule it into the pool.
307  *
308  * Returns: task.func return code if pool is NULL
309  *          otherwise -ECANCELED if pool status is bad
310  *          otherwise 0 (successfully scheduled)
311  */
312 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
313                                             BlockCopyTask *task)
314 {
315     if (!pool) {
316         int ret = task->task.func(&task->task);
317 
318         g_free(task);
319         return ret;
320     }
321 
322     aio_task_pool_wait_slot(pool);
323     if (aio_task_pool_status(pool) < 0) {
324         co_put_to_shres(task->s->mem, task->bytes);
325         block_copy_task_end(task, -ECANCELED);
326         g_free(task);
327         return -ECANCELED;
328     }
329 
330     aio_task_pool_start_task(pool, &task->task);
331 
332     return 0;
333 }
334 
335 /*
336  * block_copy_do_copy
337  *
338  * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
339  * s->len only to cover last cluster when s->len is not aligned to clusters.
340  *
341  * No sync here: nor bitmap neighter intersecting requests handling, only copy.
342  *
343  * Returns 0 on success.
344  */
345 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
346                                            int64_t offset, int64_t bytes,
347                                            bool zeroes, bool *error_is_read)
348 {
349     int ret;
350     int64_t nbytes = MIN(offset + bytes, s->len) - offset;
351     void *bounce_buffer = NULL;
352 
353     assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
354     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
355     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
356     assert(offset < s->len);
357     assert(offset + bytes <= s->len ||
358            offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
359     assert(nbytes < INT_MAX);
360 
361     if (zeroes) {
362         ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
363                                     ~BDRV_REQ_WRITE_COMPRESSED);
364         if (ret < 0) {
365             trace_block_copy_write_zeroes_fail(s, offset, ret);
366             *error_is_read = false;
367         }
368         return ret;
369     }
370 
371     if (s->use_copy_range) {
372         ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
373                                  0, s->write_flags);
374         if (ret < 0) {
375             trace_block_copy_copy_range_fail(s, offset, ret);
376             s->use_copy_range = false;
377             s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
378             /* Fallback to read+write with allocated buffer */
379         } else {
380             if (s->use_copy_range) {
381                 /*
382                  * Successful copy-range. Now increase copy_size.  copy_range
383                  * does not respect max_transfer (it's a TODO), so we factor
384                  * that in here.
385                  *
386                  * Note: we double-check s->use_copy_range for the case when
387                  * parallel block-copy request unsets it during previous
388                  * bdrv_co_copy_range call.
389                  */
390                 s->copy_size =
391                         MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
392                             QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source,
393                                                                     s->target),
394                                             s->cluster_size));
395             }
396             goto out;
397         }
398     }
399 
400     /*
401      * In case of failed copy_range request above, we may proceed with buffered
402      * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
403      * be properly limited, so don't care too much. Moreover the most likely
404      * case (copy_range is unsupported for the configuration, so the very first
405      * copy_range request fails) is handled by setting large copy_size only
406      * after first successful copy_range.
407      */
408 
409     bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
410 
411     ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
412     if (ret < 0) {
413         trace_block_copy_read_fail(s, offset, ret);
414         *error_is_read = true;
415         goto out;
416     }
417 
418     ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
419                          s->write_flags);
420     if (ret < 0) {
421         trace_block_copy_write_fail(s, offset, ret);
422         *error_is_read = false;
423         goto out;
424     }
425 
426 out:
427     qemu_vfree(bounce_buffer);
428 
429     return ret;
430 }
431 
432 static coroutine_fn int block_copy_task_entry(AioTask *task)
433 {
434     BlockCopyTask *t = container_of(task, BlockCopyTask, task);
435     bool error_is_read = false;
436     int ret;
437 
438     ret = block_copy_do_copy(t->s, t->offset, t->bytes, t->zeroes,
439                              &error_is_read);
440     if (ret < 0 && !t->call_state->ret) {
441         t->call_state->ret = ret;
442         t->call_state->error_is_read = error_is_read;
443     } else {
444         progress_work_done(t->s->progress, t->bytes);
445     }
446     co_put_to_shres(t->s->mem, t->bytes);
447     block_copy_task_end(t, ret);
448 
449     return ret;
450 }
451 
452 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
453                                    int64_t bytes, int64_t *pnum)
454 {
455     int64_t num;
456     BlockDriverState *base;
457     int ret;
458 
459     if (s->skip_unallocated) {
460         base = bdrv_backing_chain_next(s->source->bs);
461     } else {
462         base = NULL;
463     }
464 
465     ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
466                                   NULL, NULL);
467     if (ret < 0 || num < s->cluster_size) {
468         /*
469          * On error or if failed to obtain large enough chunk just fallback to
470          * copy one cluster.
471          */
472         num = s->cluster_size;
473         ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
474     } else if (offset + num == s->len) {
475         num = QEMU_ALIGN_UP(num, s->cluster_size);
476     } else {
477         num = QEMU_ALIGN_DOWN(num, s->cluster_size);
478     }
479 
480     *pnum = num;
481     return ret;
482 }
483 
484 /*
485  * Check if the cluster starting at offset is allocated or not.
486  * return via pnum the number of contiguous clusters sharing this allocation.
487  */
488 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
489                                            int64_t *pnum)
490 {
491     BlockDriverState *bs = s->source->bs;
492     int64_t count, total_count = 0;
493     int64_t bytes = s->len - offset;
494     int ret;
495 
496     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
497 
498     while (true) {
499         ret = bdrv_is_allocated(bs, offset, bytes, &count);
500         if (ret < 0) {
501             return ret;
502         }
503 
504         total_count += count;
505 
506         if (ret || count == 0) {
507             /*
508              * ret: partial segment(s) are considered allocated.
509              * otherwise: unallocated tail is treated as an entire segment.
510              */
511             *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
512             return ret;
513         }
514 
515         /* Unallocated segment(s) with uncertain following segment(s) */
516         if (total_count >= s->cluster_size) {
517             *pnum = total_count / s->cluster_size;
518             return 0;
519         }
520 
521         offset += count;
522         bytes -= count;
523     }
524 }
525 
526 /*
527  * Reset bits in copy_bitmap starting at offset if they represent unallocated
528  * data in the image. May reset subsequent contiguous bits.
529  * @return 0 when the cluster at @offset was unallocated,
530  *         1 otherwise, and -ret on error.
531  */
532 int64_t block_copy_reset_unallocated(BlockCopyState *s,
533                                      int64_t offset, int64_t *count)
534 {
535     int ret;
536     int64_t clusters, bytes;
537 
538     ret = block_copy_is_cluster_allocated(s, offset, &clusters);
539     if (ret < 0) {
540         return ret;
541     }
542 
543     bytes = clusters * s->cluster_size;
544 
545     if (!ret) {
546         bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
547         progress_set_remaining(s->progress,
548                                bdrv_get_dirty_count(s->copy_bitmap) +
549                                s->in_flight_bytes);
550     }
551 
552     *count = bytes;
553     return ret;
554 }
555 
556 /*
557  * block_copy_dirty_clusters
558  *
559  * Copy dirty clusters in @offset/@bytes range.
560  * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
561  * clusters found and -errno on failure.
562  */
563 static int coroutine_fn
564 block_copy_dirty_clusters(BlockCopyCallState *call_state)
565 {
566     BlockCopyState *s = call_state->s;
567     int64_t offset = call_state->offset;
568     int64_t bytes = call_state->bytes;
569 
570     int ret = 0;
571     bool found_dirty = false;
572     int64_t end = offset + bytes;
573     AioTaskPool *aio = NULL;
574 
575     /*
576      * block_copy() user is responsible for keeping source and target in same
577      * aio context
578      */
579     assert(bdrv_get_aio_context(s->source->bs) ==
580            bdrv_get_aio_context(s->target->bs));
581 
582     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
583     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
584 
585     while (bytes && aio_task_pool_status(aio) == 0 && !call_state->cancelled) {
586         BlockCopyTask *task;
587         int64_t status_bytes;
588 
589         task = block_copy_task_create(s, call_state, offset, bytes);
590         if (!task) {
591             /* No more dirty bits in the bitmap */
592             trace_block_copy_skip_range(s, offset, bytes);
593             break;
594         }
595         if (task->offset > offset) {
596             trace_block_copy_skip_range(s, offset, task->offset - offset);
597         }
598 
599         found_dirty = true;
600 
601         ret = block_copy_block_status(s, task->offset, task->bytes,
602                                       &status_bytes);
603         assert(ret >= 0); /* never fail */
604         if (status_bytes < task->bytes) {
605             block_copy_task_shrink(task, status_bytes);
606         }
607         if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) {
608             block_copy_task_end(task, 0);
609             progress_set_remaining(s->progress,
610                                    bdrv_get_dirty_count(s->copy_bitmap) +
611                                    s->in_flight_bytes);
612             trace_block_copy_skip_range(s, task->offset, task->bytes);
613             offset = task_end(task);
614             bytes = end - offset;
615             g_free(task);
616             continue;
617         }
618         task->zeroes = ret & BDRV_BLOCK_ZERO;
619 
620         if (s->speed) {
621             if (!call_state->ignore_ratelimit) {
622                 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
623                 if (ns > 0) {
624                     block_copy_task_end(task, -EAGAIN);
625                     g_free(task);
626                     qemu_co_sleep_ns_wakeable(QEMU_CLOCK_REALTIME, ns,
627                                               &call_state->sleep_state);
628                     continue;
629                 }
630             }
631 
632             ratelimit_calculate_delay(&s->rate_limit, task->bytes);
633         }
634 
635         trace_block_copy_process(s, task->offset);
636 
637         co_get_from_shres(s->mem, task->bytes);
638 
639         offset = task_end(task);
640         bytes = end - offset;
641 
642         if (!aio && bytes) {
643             aio = aio_task_pool_new(call_state->max_workers);
644         }
645 
646         ret = block_copy_task_run(aio, task);
647         if (ret < 0) {
648             goto out;
649         }
650     }
651 
652 out:
653     if (aio) {
654         aio_task_pool_wait_all(aio);
655 
656         /*
657          * We are not really interested in -ECANCELED returned from
658          * block_copy_task_run. If it fails, it means some task already failed
659          * for real reason, let's return first failure.
660          * Still, assert that we don't rewrite failure by success.
661          *
662          * Note: ret may be positive here because of block-status result.
663          */
664         assert(ret >= 0 || aio_task_pool_status(aio) < 0);
665         ret = aio_task_pool_status(aio);
666 
667         aio_task_pool_free(aio);
668     }
669 
670     return ret < 0 ? ret : found_dirty;
671 }
672 
673 void block_copy_kick(BlockCopyCallState *call_state)
674 {
675     if (call_state->sleep_state) {
676         qemu_co_sleep_wake(call_state->sleep_state);
677     }
678 }
679 
680 /*
681  * block_copy_common
682  *
683  * Copy requested region, accordingly to dirty bitmap.
684  * Collaborate with parallel block_copy requests: if they succeed it will help
685  * us. If they fail, we will retry not-copied regions. So, if we return error,
686  * it means that some I/O operation failed in context of _this_ block_copy call,
687  * not some parallel operation.
688  */
689 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state)
690 {
691     int ret;
692 
693     QLIST_INSERT_HEAD(&call_state->s->calls, call_state, list);
694 
695     do {
696         ret = block_copy_dirty_clusters(call_state);
697 
698         if (ret == 0 && !call_state->cancelled) {
699             ret = block_copy_wait_one(call_state->s, call_state->offset,
700                                       call_state->bytes);
701         }
702 
703         /*
704          * We retry in two cases:
705          * 1. Some progress done
706          *    Something was copied, which means that there were yield points
707          *    and some new dirty bits may have appeared (due to failed parallel
708          *    block-copy requests).
709          * 2. We have waited for some intersecting block-copy request
710          *    It may have failed and produced new dirty bits.
711          */
712     } while (ret > 0 && !call_state->cancelled);
713 
714     call_state->finished = true;
715 
716     if (call_state->cb) {
717         call_state->cb(call_state->cb_opaque);
718     }
719 
720     QLIST_REMOVE(call_state, list);
721 
722     return ret;
723 }
724 
725 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
726                             bool ignore_ratelimit)
727 {
728     BlockCopyCallState call_state = {
729         .s = s,
730         .offset = start,
731         .bytes = bytes,
732         .ignore_ratelimit = ignore_ratelimit,
733         .max_workers = BLOCK_COPY_MAX_WORKERS,
734     };
735 
736     return block_copy_common(&call_state);
737 }
738 
739 static void coroutine_fn block_copy_async_co_entry(void *opaque)
740 {
741     block_copy_common(opaque);
742 }
743 
744 BlockCopyCallState *block_copy_async(BlockCopyState *s,
745                                      int64_t offset, int64_t bytes,
746                                      int max_workers, int64_t max_chunk,
747                                      BlockCopyAsyncCallbackFunc cb,
748                                      void *cb_opaque)
749 {
750     BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
751 
752     *call_state = (BlockCopyCallState) {
753         .s = s,
754         .offset = offset,
755         .bytes = bytes,
756         .max_workers = max_workers,
757         .max_chunk = max_chunk,
758         .cb = cb,
759         .cb_opaque = cb_opaque,
760 
761         .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
762     };
763 
764     qemu_coroutine_enter(call_state->co);
765 
766     return call_state;
767 }
768 
769 void block_copy_call_free(BlockCopyCallState *call_state)
770 {
771     if (!call_state) {
772         return;
773     }
774 
775     assert(call_state->finished);
776     g_free(call_state);
777 }
778 
779 bool block_copy_call_finished(BlockCopyCallState *call_state)
780 {
781     return call_state->finished;
782 }
783 
784 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
785 {
786     return call_state->finished && !call_state->cancelled &&
787         call_state->ret == 0;
788 }
789 
790 bool block_copy_call_failed(BlockCopyCallState *call_state)
791 {
792     return call_state->finished && !call_state->cancelled &&
793         call_state->ret < 0;
794 }
795 
796 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
797 {
798     return call_state->cancelled;
799 }
800 
801 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
802 {
803     assert(call_state->finished);
804     if (error_is_read) {
805         *error_is_read = call_state->error_is_read;
806     }
807     return call_state->ret;
808 }
809 
810 void block_copy_call_cancel(BlockCopyCallState *call_state)
811 {
812     call_state->cancelled = true;
813     block_copy_kick(call_state);
814 }
815 
816 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
817 {
818     return s->copy_bitmap;
819 }
820 
821 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
822 {
823     s->skip_unallocated = skip;
824 }
825 
826 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
827 {
828     s->speed = speed;
829     if (speed > 0) {
830         ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
831     }
832 
833     /*
834      * Note: it's good to kick all call states from here, but it should be done
835      * only from a coroutine, to not crash if s->calls list changed while
836      * entering one call. So for now, the only user of this function kicks its
837      * only one call_state by hand.
838      */
839 }
840