1 /* 2 * block_copy API 3 * 4 * Copyright (C) 2013 Proxmox Server Solutions 5 * Copyright (c) 2019 Virtuozzo International GmbH. 6 * 7 * Authors: 8 * Dietmar Maurer (dietmar@proxmox.com) 9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 */ 14 15 #include "qemu/osdep.h" 16 17 #include "trace.h" 18 #include "qapi/error.h" 19 #include "block/block-copy.h" 20 #include "sysemu/block-backend.h" 21 #include "qemu/units.h" 22 #include "qemu/coroutine.h" 23 #include "block/aio_task.h" 24 #include "qemu/error-report.h" 25 #include "qemu/memalign.h" 26 27 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB) 28 #define BLOCK_COPY_MAX_BUFFER (1 * MiB) 29 #define BLOCK_COPY_MAX_MEM (128 * MiB) 30 #define BLOCK_COPY_MAX_WORKERS 64 31 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */ 32 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16) 33 34 typedef enum { 35 COPY_READ_WRITE_CLUSTER, 36 COPY_READ_WRITE, 37 COPY_WRITE_ZEROES, 38 COPY_RANGE_SMALL, 39 COPY_RANGE_FULL 40 } BlockCopyMethod; 41 42 static coroutine_fn int block_copy_task_entry(AioTask *task); 43 44 typedef struct BlockCopyCallState { 45 /* Fields initialized in block_copy_async() and never changed. */ 46 BlockCopyState *s; 47 int64_t offset; 48 int64_t bytes; 49 int max_workers; 50 int64_t max_chunk; 51 bool ignore_ratelimit; 52 BlockCopyAsyncCallbackFunc cb; 53 void *cb_opaque; 54 /* Coroutine where async block-copy is running */ 55 Coroutine *co; 56 57 /* Fields whose state changes throughout the execution */ 58 bool finished; /* atomic */ 59 QemuCoSleep sleep; /* TODO: protect API with a lock */ 60 bool cancelled; /* atomic */ 61 /* To reference all call states from BlockCopyState */ 62 QLIST_ENTRY(BlockCopyCallState) list; 63 64 /* 65 * Fields that report information about return values and erros. 66 * Protected by lock in BlockCopyState. 67 */ 68 bool error_is_read; 69 /* 70 * @ret is set concurrently by tasks under mutex. Only set once by first 71 * failed task (and untouched if no task failed). 72 * After finishing (call_state->finished is true), it is not modified 73 * anymore and may be safely read without mutex. 74 */ 75 int ret; 76 } BlockCopyCallState; 77 78 typedef struct BlockCopyTask { 79 AioTask task; 80 81 /* 82 * Fields initialized in block_copy_task_create() 83 * and never changed. 84 */ 85 BlockCopyState *s; 86 BlockCopyCallState *call_state; 87 int64_t offset; 88 /* 89 * @method can also be set again in the while loop of 90 * block_copy_dirty_clusters(), but it is never accessed concurrently 91 * because the only other function that reads it is 92 * block_copy_task_entry() and it is invoked afterwards in the same 93 * iteration. 94 */ 95 BlockCopyMethod method; 96 97 /* 98 * Fields whose state changes throughout the execution 99 * Protected by lock in BlockCopyState. 100 */ 101 CoQueue wait_queue; /* coroutines blocked on this task */ 102 /* 103 * Only protect the case of parallel read while updating @bytes 104 * value in block_copy_task_shrink(). 105 */ 106 int64_t bytes; 107 QLIST_ENTRY(BlockCopyTask) list; 108 } BlockCopyTask; 109 110 static int64_t task_end(BlockCopyTask *task) 111 { 112 return task->offset + task->bytes; 113 } 114 115 typedef struct BlockCopyState { 116 /* 117 * BdrvChild objects are not owned or managed by block-copy. They are 118 * provided by block-copy user and user is responsible for appropriate 119 * permissions on these children. 120 */ 121 BdrvChild *source; 122 BdrvChild *target; 123 124 /* 125 * Fields initialized in block_copy_state_new() 126 * and never changed. 127 */ 128 int64_t cluster_size; 129 int64_t max_transfer; 130 uint64_t len; 131 BdrvRequestFlags write_flags; 132 133 /* 134 * Fields whose state changes throughout the execution 135 * Protected by lock. 136 */ 137 CoMutex lock; 138 int64_t in_flight_bytes; 139 BlockCopyMethod method; 140 QLIST_HEAD(, BlockCopyTask) tasks; /* All tasks from all block-copy calls */ 141 QLIST_HEAD(, BlockCopyCallState) calls; 142 /* 143 * skip_unallocated: 144 * 145 * Used by sync=top jobs, which first scan the source node for unallocated 146 * areas and clear them in the copy_bitmap. During this process, the bitmap 147 * is thus not fully initialized: It may still have bits set for areas that 148 * are unallocated and should actually not be copied. 149 * 150 * This is indicated by skip_unallocated. 151 * 152 * In this case, block_copy() will query the source’s allocation status, 153 * skip unallocated regions, clear them in the copy_bitmap, and invoke 154 * block_copy_reset_unallocated() every time it does. 155 */ 156 bool skip_unallocated; /* atomic */ 157 /* State fields that use a thread-safe API */ 158 BdrvDirtyBitmap *copy_bitmap; 159 ProgressMeter *progress; 160 SharedResource *mem; 161 RateLimit rate_limit; 162 } BlockCopyState; 163 164 /* Called with lock held */ 165 static BlockCopyTask *find_conflicting_task(BlockCopyState *s, 166 int64_t offset, int64_t bytes) 167 { 168 BlockCopyTask *t; 169 170 QLIST_FOREACH(t, &s->tasks, list) { 171 if (offset + bytes > t->offset && offset < t->offset + t->bytes) { 172 return t; 173 } 174 } 175 176 return NULL; 177 } 178 179 /* 180 * If there are no intersecting tasks return false. Otherwise, wait for the 181 * first found intersecting tasks to finish and return true. 182 * 183 * Called with lock held. May temporary release the lock. 184 * Return value of 0 proves that lock was NOT released. 185 */ 186 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset, 187 int64_t bytes) 188 { 189 BlockCopyTask *task = find_conflicting_task(s, offset, bytes); 190 191 if (!task) { 192 return false; 193 } 194 195 qemu_co_queue_wait(&task->wait_queue, &s->lock); 196 197 return true; 198 } 199 200 /* Called with lock held */ 201 static int64_t block_copy_chunk_size(BlockCopyState *s) 202 { 203 switch (s->method) { 204 case COPY_READ_WRITE_CLUSTER: 205 return s->cluster_size; 206 case COPY_READ_WRITE: 207 case COPY_RANGE_SMALL: 208 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER), 209 s->max_transfer); 210 case COPY_RANGE_FULL: 211 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE), 212 s->max_transfer); 213 default: 214 /* Cannot have COPY_WRITE_ZEROES here. */ 215 abort(); 216 } 217 } 218 219 /* 220 * Search for the first dirty area in offset/bytes range and create task at 221 * the beginning of it. 222 */ 223 static coroutine_fn BlockCopyTask * 224 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state, 225 int64_t offset, int64_t bytes) 226 { 227 BlockCopyTask *task; 228 int64_t max_chunk; 229 230 QEMU_LOCK_GUARD(&s->lock); 231 max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk); 232 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap, 233 offset, offset + bytes, 234 max_chunk, &offset, &bytes)) 235 { 236 return NULL; 237 } 238 239 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 240 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size); 241 242 /* region is dirty, so no existent tasks possible in it */ 243 assert(!find_conflicting_task(s, offset, bytes)); 244 245 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); 246 s->in_flight_bytes += bytes; 247 248 task = g_new(BlockCopyTask, 1); 249 *task = (BlockCopyTask) { 250 .task.func = block_copy_task_entry, 251 .s = s, 252 .call_state = call_state, 253 .offset = offset, 254 .bytes = bytes, 255 .method = s->method, 256 }; 257 qemu_co_queue_init(&task->wait_queue); 258 QLIST_INSERT_HEAD(&s->tasks, task, list); 259 260 return task; 261 } 262 263 /* 264 * block_copy_task_shrink 265 * 266 * Drop the tail of the task to be handled later. Set dirty bits back and 267 * wake up all tasks waiting for us (may be some of them are not intersecting 268 * with shrunk task) 269 */ 270 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task, 271 int64_t new_bytes) 272 { 273 QEMU_LOCK_GUARD(&task->s->lock); 274 if (new_bytes == task->bytes) { 275 return; 276 } 277 278 assert(new_bytes > 0 && new_bytes < task->bytes); 279 280 task->s->in_flight_bytes -= task->bytes - new_bytes; 281 bdrv_set_dirty_bitmap(task->s->copy_bitmap, 282 task->offset + new_bytes, task->bytes - new_bytes); 283 284 task->bytes = new_bytes; 285 qemu_co_queue_restart_all(&task->wait_queue); 286 } 287 288 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret) 289 { 290 QEMU_LOCK_GUARD(&task->s->lock); 291 task->s->in_flight_bytes -= task->bytes; 292 if (ret < 0) { 293 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes); 294 } 295 QLIST_REMOVE(task, list); 296 if (task->s->progress) { 297 progress_set_remaining(task->s->progress, 298 bdrv_get_dirty_count(task->s->copy_bitmap) + 299 task->s->in_flight_bytes); 300 } 301 qemu_co_queue_restart_all(&task->wait_queue); 302 } 303 304 void block_copy_state_free(BlockCopyState *s) 305 { 306 if (!s) { 307 return; 308 } 309 310 ratelimit_destroy(&s->rate_limit); 311 bdrv_release_dirty_bitmap(s->copy_bitmap); 312 shres_destroy(s->mem); 313 g_free(s); 314 } 315 316 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target) 317 { 318 return MIN_NON_ZERO(INT_MAX, 319 MIN_NON_ZERO(source->bs->bl.max_transfer, 320 target->bs->bl.max_transfer)); 321 } 322 323 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range, 324 bool compress) 325 { 326 /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */ 327 s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) | 328 (compress ? BDRV_REQ_WRITE_COMPRESSED : 0); 329 330 if (s->max_transfer < s->cluster_size) { 331 /* 332 * copy_range does not respect max_transfer. We don't want to bother 333 * with requests smaller than block-copy cluster size, so fallback to 334 * buffered copying (read and write respect max_transfer on their 335 * behalf). 336 */ 337 s->method = COPY_READ_WRITE_CLUSTER; 338 } else if (compress) { 339 /* Compression supports only cluster-size writes and no copy-range. */ 340 s->method = COPY_READ_WRITE_CLUSTER; 341 } else { 342 /* 343 * If copy range enabled, start with COPY_RANGE_SMALL, until first 344 * successful copy_range (look at block_copy_do_copy). 345 */ 346 s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE; 347 } 348 } 349 350 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target, 351 Error **errp) 352 { 353 int ret; 354 BlockDriverInfo bdi; 355 bool target_does_cow = bdrv_backing_chain_next(target); 356 357 /* 358 * If there is no backing file on the target, we cannot rely on COW if our 359 * backup cluster size is smaller than the target cluster size. Even for 360 * targets with a backing file, try to avoid COW if possible. 361 */ 362 ret = bdrv_get_info(target, &bdi); 363 if (ret == -ENOTSUP && !target_does_cow) { 364 /* Cluster size is not defined */ 365 warn_report("The target block device doesn't provide " 366 "information about the block size and it doesn't have a " 367 "backing file. The default block size of %u bytes is " 368 "used. If the actual block size of the target exceeds " 369 "this default, the backup may be unusable", 370 BLOCK_COPY_CLUSTER_SIZE_DEFAULT); 371 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT; 372 } else if (ret < 0 && !target_does_cow) { 373 error_setg_errno(errp, -ret, 374 "Couldn't determine the cluster size of the target image, " 375 "which has no backing file"); 376 error_append_hint(errp, 377 "Aborting, since this may create an unusable destination image\n"); 378 return ret; 379 } else if (ret < 0 && target_does_cow) { 380 /* Not fatal; just trudge on ahead. */ 381 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT; 382 } 383 384 return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size); 385 } 386 387 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target, 388 Error **errp) 389 { 390 BlockCopyState *s; 391 int64_t cluster_size; 392 BdrvDirtyBitmap *copy_bitmap; 393 bool is_fleecing; 394 395 cluster_size = block_copy_calculate_cluster_size(target->bs, errp); 396 if (cluster_size < 0) { 397 return NULL; 398 } 399 400 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL, 401 errp); 402 if (!copy_bitmap) { 403 return NULL; 404 } 405 bdrv_disable_dirty_bitmap(copy_bitmap); 406 407 /* 408 * If source is in backing chain of target assume that target is going to be 409 * used for "image fleecing", i.e. it should represent a kind of snapshot of 410 * source at backup-start point in time. And target is going to be read by 411 * somebody (for example, used as NBD export) during backup job. 412 * 413 * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid 414 * intersection of backup writes and third party reads from target, 415 * otherwise reading from target we may occasionally read already updated by 416 * guest data. 417 * 418 * For more information see commit f8d59dfb40bb and test 419 * tests/qemu-iotests/222 420 */ 421 is_fleecing = bdrv_chain_contains(target->bs, source->bs); 422 423 s = g_new(BlockCopyState, 1); 424 *s = (BlockCopyState) { 425 .source = source, 426 .target = target, 427 .copy_bitmap = copy_bitmap, 428 .cluster_size = cluster_size, 429 .len = bdrv_dirty_bitmap_size(copy_bitmap), 430 .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0), 431 .mem = shres_create(BLOCK_COPY_MAX_MEM), 432 .max_transfer = QEMU_ALIGN_DOWN( 433 block_copy_max_transfer(source, target), 434 cluster_size), 435 }; 436 437 block_copy_set_copy_opts(s, false, false); 438 439 ratelimit_init(&s->rate_limit); 440 qemu_co_mutex_init(&s->lock); 441 QLIST_INIT(&s->tasks); 442 QLIST_INIT(&s->calls); 443 444 return s; 445 } 446 447 /* Only set before running the job, no need for locking. */ 448 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm) 449 { 450 s->progress = pm; 451 } 452 453 /* 454 * Takes ownership of @task 455 * 456 * If pool is NULL directly run the task, otherwise schedule it into the pool. 457 * 458 * Returns: task.func return code if pool is NULL 459 * otherwise -ECANCELED if pool status is bad 460 * otherwise 0 (successfully scheduled) 461 */ 462 static coroutine_fn int block_copy_task_run(AioTaskPool *pool, 463 BlockCopyTask *task) 464 { 465 if (!pool) { 466 int ret = task->task.func(&task->task); 467 468 g_free(task); 469 return ret; 470 } 471 472 aio_task_pool_wait_slot(pool); 473 if (aio_task_pool_status(pool) < 0) { 474 co_put_to_shres(task->s->mem, task->bytes); 475 block_copy_task_end(task, -ECANCELED); 476 g_free(task); 477 return -ECANCELED; 478 } 479 480 aio_task_pool_start_task(pool, &task->task); 481 482 return 0; 483 } 484 485 /* 486 * block_copy_do_copy 487 * 488 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed 489 * s->len only to cover last cluster when s->len is not aligned to clusters. 490 * 491 * No sync here: nor bitmap neighter intersecting requests handling, only copy. 492 * 493 * @method is an in-out argument, so that copy_range can be either extended to 494 * a full-size buffer or disabled if the copy_range attempt fails. The output 495 * value of @method should be used for subsequent tasks. 496 * Returns 0 on success. 497 */ 498 static int coroutine_fn block_copy_do_copy(BlockCopyState *s, 499 int64_t offset, int64_t bytes, 500 BlockCopyMethod *method, 501 bool *error_is_read) 502 { 503 int ret; 504 int64_t nbytes = MIN(offset + bytes, s->len) - offset; 505 void *bounce_buffer = NULL; 506 507 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes); 508 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 509 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); 510 assert(offset < s->len); 511 assert(offset + bytes <= s->len || 512 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size)); 513 assert(nbytes < INT_MAX); 514 515 switch (*method) { 516 case COPY_WRITE_ZEROES: 517 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags & 518 ~BDRV_REQ_WRITE_COMPRESSED); 519 if (ret < 0) { 520 trace_block_copy_write_zeroes_fail(s, offset, ret); 521 *error_is_read = false; 522 } 523 return ret; 524 525 case COPY_RANGE_SMALL: 526 case COPY_RANGE_FULL: 527 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes, 528 0, s->write_flags); 529 if (ret >= 0) { 530 /* Successful copy-range, increase chunk size. */ 531 *method = COPY_RANGE_FULL; 532 return 0; 533 } 534 535 trace_block_copy_copy_range_fail(s, offset, ret); 536 *method = COPY_READ_WRITE; 537 /* Fall through to read+write with allocated buffer */ 538 539 case COPY_READ_WRITE_CLUSTER: 540 case COPY_READ_WRITE: 541 /* 542 * In case of failed copy_range request above, we may proceed with 543 * buffered request larger than BLOCK_COPY_MAX_BUFFER. 544 * Still, further requests will be properly limited, so don't care too 545 * much. Moreover the most likely case (copy_range is unsupported for 546 * the configuration, so the very first copy_range request fails) 547 * is handled by setting large copy_size only after first successful 548 * copy_range. 549 */ 550 551 bounce_buffer = qemu_blockalign(s->source->bs, nbytes); 552 553 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0); 554 if (ret < 0) { 555 trace_block_copy_read_fail(s, offset, ret); 556 *error_is_read = true; 557 goto out; 558 } 559 560 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer, 561 s->write_flags); 562 if (ret < 0) { 563 trace_block_copy_write_fail(s, offset, ret); 564 *error_is_read = false; 565 goto out; 566 } 567 568 out: 569 qemu_vfree(bounce_buffer); 570 break; 571 572 default: 573 abort(); 574 } 575 576 return ret; 577 } 578 579 static coroutine_fn int block_copy_task_entry(AioTask *task) 580 { 581 BlockCopyTask *t = container_of(task, BlockCopyTask, task); 582 BlockCopyState *s = t->s; 583 bool error_is_read = false; 584 BlockCopyMethod method = t->method; 585 int ret; 586 587 ret = block_copy_do_copy(s, t->offset, t->bytes, &method, &error_is_read); 588 589 WITH_QEMU_LOCK_GUARD(&s->lock) { 590 if (s->method == t->method) { 591 s->method = method; 592 } 593 594 if (ret < 0) { 595 if (!t->call_state->ret) { 596 t->call_state->ret = ret; 597 t->call_state->error_is_read = error_is_read; 598 } 599 } else if (s->progress) { 600 progress_work_done(s->progress, t->bytes); 601 } 602 } 603 co_put_to_shres(s->mem, t->bytes); 604 block_copy_task_end(t, ret); 605 606 return ret; 607 } 608 609 static int block_copy_block_status(BlockCopyState *s, int64_t offset, 610 int64_t bytes, int64_t *pnum) 611 { 612 int64_t num; 613 BlockDriverState *base; 614 int ret; 615 616 if (qatomic_read(&s->skip_unallocated)) { 617 base = bdrv_backing_chain_next(s->source->bs); 618 } else { 619 base = NULL; 620 } 621 622 ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num, 623 NULL, NULL); 624 if (ret < 0 || num < s->cluster_size) { 625 /* 626 * On error or if failed to obtain large enough chunk just fallback to 627 * copy one cluster. 628 */ 629 num = s->cluster_size; 630 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA; 631 } else if (offset + num == s->len) { 632 num = QEMU_ALIGN_UP(num, s->cluster_size); 633 } else { 634 num = QEMU_ALIGN_DOWN(num, s->cluster_size); 635 } 636 637 *pnum = num; 638 return ret; 639 } 640 641 /* 642 * Check if the cluster starting at offset is allocated or not. 643 * return via pnum the number of contiguous clusters sharing this allocation. 644 */ 645 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset, 646 int64_t *pnum) 647 { 648 BlockDriverState *bs = s->source->bs; 649 int64_t count, total_count = 0; 650 int64_t bytes = s->len - offset; 651 int ret; 652 653 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 654 655 while (true) { 656 ret = bdrv_is_allocated(bs, offset, bytes, &count); 657 if (ret < 0) { 658 return ret; 659 } 660 661 total_count += count; 662 663 if (ret || count == 0) { 664 /* 665 * ret: partial segment(s) are considered allocated. 666 * otherwise: unallocated tail is treated as an entire segment. 667 */ 668 *pnum = DIV_ROUND_UP(total_count, s->cluster_size); 669 return ret; 670 } 671 672 /* Unallocated segment(s) with uncertain following segment(s) */ 673 if (total_count >= s->cluster_size) { 674 *pnum = total_count / s->cluster_size; 675 return 0; 676 } 677 678 offset += count; 679 bytes -= count; 680 } 681 } 682 683 /* 684 * Reset bits in copy_bitmap starting at offset if they represent unallocated 685 * data in the image. May reset subsequent contiguous bits. 686 * @return 0 when the cluster at @offset was unallocated, 687 * 1 otherwise, and -ret on error. 688 */ 689 int64_t block_copy_reset_unallocated(BlockCopyState *s, 690 int64_t offset, int64_t *count) 691 { 692 int ret; 693 int64_t clusters, bytes; 694 695 ret = block_copy_is_cluster_allocated(s, offset, &clusters); 696 if (ret < 0) { 697 return ret; 698 } 699 700 bytes = clusters * s->cluster_size; 701 702 if (!ret) { 703 qemu_co_mutex_lock(&s->lock); 704 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); 705 if (s->progress) { 706 progress_set_remaining(s->progress, 707 bdrv_get_dirty_count(s->copy_bitmap) + 708 s->in_flight_bytes); 709 } 710 qemu_co_mutex_unlock(&s->lock); 711 } 712 713 *count = bytes; 714 return ret; 715 } 716 717 /* 718 * block_copy_dirty_clusters 719 * 720 * Copy dirty clusters in @offset/@bytes range. 721 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty 722 * clusters found and -errno on failure. 723 */ 724 static int coroutine_fn 725 block_copy_dirty_clusters(BlockCopyCallState *call_state) 726 { 727 BlockCopyState *s = call_state->s; 728 int64_t offset = call_state->offset; 729 int64_t bytes = call_state->bytes; 730 731 int ret = 0; 732 bool found_dirty = false; 733 int64_t end = offset + bytes; 734 AioTaskPool *aio = NULL; 735 736 /* 737 * block_copy() user is responsible for keeping source and target in same 738 * aio context 739 */ 740 assert(bdrv_get_aio_context(s->source->bs) == 741 bdrv_get_aio_context(s->target->bs)); 742 743 assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); 744 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); 745 746 while (bytes && aio_task_pool_status(aio) == 0 && 747 !qatomic_read(&call_state->cancelled)) { 748 BlockCopyTask *task; 749 int64_t status_bytes; 750 751 task = block_copy_task_create(s, call_state, offset, bytes); 752 if (!task) { 753 /* No more dirty bits in the bitmap */ 754 trace_block_copy_skip_range(s, offset, bytes); 755 break; 756 } 757 if (task->offset > offset) { 758 trace_block_copy_skip_range(s, offset, task->offset - offset); 759 } 760 761 found_dirty = true; 762 763 ret = block_copy_block_status(s, task->offset, task->bytes, 764 &status_bytes); 765 assert(ret >= 0); /* never fail */ 766 if (status_bytes < task->bytes) { 767 block_copy_task_shrink(task, status_bytes); 768 } 769 if (qatomic_read(&s->skip_unallocated) && 770 !(ret & BDRV_BLOCK_ALLOCATED)) { 771 block_copy_task_end(task, 0); 772 trace_block_copy_skip_range(s, task->offset, task->bytes); 773 offset = task_end(task); 774 bytes = end - offset; 775 g_free(task); 776 continue; 777 } 778 if (ret & BDRV_BLOCK_ZERO) { 779 task->method = COPY_WRITE_ZEROES; 780 } 781 782 if (!call_state->ignore_ratelimit) { 783 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0); 784 if (ns > 0) { 785 block_copy_task_end(task, -EAGAIN); 786 g_free(task); 787 qemu_co_sleep_ns_wakeable(&call_state->sleep, 788 QEMU_CLOCK_REALTIME, ns); 789 continue; 790 } 791 } 792 793 ratelimit_calculate_delay(&s->rate_limit, task->bytes); 794 795 trace_block_copy_process(s, task->offset); 796 797 co_get_from_shres(s->mem, task->bytes); 798 799 offset = task_end(task); 800 bytes = end - offset; 801 802 if (!aio && bytes) { 803 aio = aio_task_pool_new(call_state->max_workers); 804 } 805 806 ret = block_copy_task_run(aio, task); 807 if (ret < 0) { 808 goto out; 809 } 810 } 811 812 out: 813 if (aio) { 814 aio_task_pool_wait_all(aio); 815 816 /* 817 * We are not really interested in -ECANCELED returned from 818 * block_copy_task_run. If it fails, it means some task already failed 819 * for real reason, let's return first failure. 820 * Still, assert that we don't rewrite failure by success. 821 * 822 * Note: ret may be positive here because of block-status result. 823 */ 824 assert(ret >= 0 || aio_task_pool_status(aio) < 0); 825 ret = aio_task_pool_status(aio); 826 827 aio_task_pool_free(aio); 828 } 829 830 return ret < 0 ? ret : found_dirty; 831 } 832 833 void block_copy_kick(BlockCopyCallState *call_state) 834 { 835 qemu_co_sleep_wake(&call_state->sleep); 836 } 837 838 /* 839 * block_copy_common 840 * 841 * Copy requested region, accordingly to dirty bitmap. 842 * Collaborate with parallel block_copy requests: if they succeed it will help 843 * us. If they fail, we will retry not-copied regions. So, if we return error, 844 * it means that some I/O operation failed in context of _this_ block_copy call, 845 * not some parallel operation. 846 */ 847 static int coroutine_fn block_copy_common(BlockCopyCallState *call_state) 848 { 849 int ret; 850 BlockCopyState *s = call_state->s; 851 852 qemu_co_mutex_lock(&s->lock); 853 QLIST_INSERT_HEAD(&s->calls, call_state, list); 854 qemu_co_mutex_unlock(&s->lock); 855 856 do { 857 ret = block_copy_dirty_clusters(call_state); 858 859 if (ret == 0 && !qatomic_read(&call_state->cancelled)) { 860 WITH_QEMU_LOCK_GUARD(&s->lock) { 861 /* 862 * Check that there is no task we still need to 863 * wait to complete 864 */ 865 ret = block_copy_wait_one(s, call_state->offset, 866 call_state->bytes); 867 if (ret == 0) { 868 /* 869 * No pending tasks, but check again the bitmap in this 870 * same critical section, since a task might have failed 871 * between this and the critical section in 872 * block_copy_dirty_clusters(). 873 * 874 * block_copy_wait_one return value 0 also means that it 875 * didn't release the lock. So, we are still in the same 876 * critical section, not interrupted by any concurrent 877 * access to state. 878 */ 879 ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap, 880 call_state->offset, 881 call_state->bytes) >= 0; 882 } 883 } 884 } 885 886 /* 887 * We retry in two cases: 888 * 1. Some progress done 889 * Something was copied, which means that there were yield points 890 * and some new dirty bits may have appeared (due to failed parallel 891 * block-copy requests). 892 * 2. We have waited for some intersecting block-copy request 893 * It may have failed and produced new dirty bits. 894 */ 895 } while (ret > 0 && !qatomic_read(&call_state->cancelled)); 896 897 qatomic_store_release(&call_state->finished, true); 898 899 if (call_state->cb) { 900 call_state->cb(call_state->cb_opaque); 901 } 902 903 qemu_co_mutex_lock(&s->lock); 904 QLIST_REMOVE(call_state, list); 905 qemu_co_mutex_unlock(&s->lock); 906 907 return ret; 908 } 909 910 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes, 911 bool ignore_ratelimit) 912 { 913 BlockCopyCallState call_state = { 914 .s = s, 915 .offset = start, 916 .bytes = bytes, 917 .ignore_ratelimit = ignore_ratelimit, 918 .max_workers = BLOCK_COPY_MAX_WORKERS, 919 }; 920 921 return block_copy_common(&call_state); 922 } 923 924 static void coroutine_fn block_copy_async_co_entry(void *opaque) 925 { 926 block_copy_common(opaque); 927 } 928 929 BlockCopyCallState *block_copy_async(BlockCopyState *s, 930 int64_t offset, int64_t bytes, 931 int max_workers, int64_t max_chunk, 932 BlockCopyAsyncCallbackFunc cb, 933 void *cb_opaque) 934 { 935 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1); 936 937 *call_state = (BlockCopyCallState) { 938 .s = s, 939 .offset = offset, 940 .bytes = bytes, 941 .max_workers = max_workers, 942 .max_chunk = max_chunk, 943 .cb = cb, 944 .cb_opaque = cb_opaque, 945 946 .co = qemu_coroutine_create(block_copy_async_co_entry, call_state), 947 }; 948 949 qemu_coroutine_enter(call_state->co); 950 951 return call_state; 952 } 953 954 void block_copy_call_free(BlockCopyCallState *call_state) 955 { 956 if (!call_state) { 957 return; 958 } 959 960 assert(qatomic_read(&call_state->finished)); 961 g_free(call_state); 962 } 963 964 bool block_copy_call_finished(BlockCopyCallState *call_state) 965 { 966 return qatomic_read(&call_state->finished); 967 } 968 969 bool block_copy_call_succeeded(BlockCopyCallState *call_state) 970 { 971 return qatomic_load_acquire(&call_state->finished) && 972 !qatomic_read(&call_state->cancelled) && 973 call_state->ret == 0; 974 } 975 976 bool block_copy_call_failed(BlockCopyCallState *call_state) 977 { 978 return qatomic_load_acquire(&call_state->finished) && 979 !qatomic_read(&call_state->cancelled) && 980 call_state->ret < 0; 981 } 982 983 bool block_copy_call_cancelled(BlockCopyCallState *call_state) 984 { 985 return qatomic_read(&call_state->cancelled); 986 } 987 988 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read) 989 { 990 assert(qatomic_load_acquire(&call_state->finished)); 991 if (error_is_read) { 992 *error_is_read = call_state->error_is_read; 993 } 994 return call_state->ret; 995 } 996 997 /* 998 * Note that cancelling and finishing are racy. 999 * User can cancel a block-copy that is already finished. 1000 */ 1001 void block_copy_call_cancel(BlockCopyCallState *call_state) 1002 { 1003 qatomic_set(&call_state->cancelled, true); 1004 block_copy_kick(call_state); 1005 } 1006 1007 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s) 1008 { 1009 return s->copy_bitmap; 1010 } 1011 1012 int64_t block_copy_cluster_size(BlockCopyState *s) 1013 { 1014 return s->cluster_size; 1015 } 1016 1017 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip) 1018 { 1019 qatomic_set(&s->skip_unallocated, skip); 1020 } 1021 1022 void block_copy_set_speed(BlockCopyState *s, uint64_t speed) 1023 { 1024 ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME); 1025 1026 /* 1027 * Note: it's good to kick all call states from here, but it should be done 1028 * only from a coroutine, to not crash if s->calls list changed while 1029 * entering one call. So for now, the only user of this function kicks its 1030 * only one call_state by hand. 1031 */ 1032 } 1033