1 /*
2 * block_copy API
3 *
4 * Copyright (C) 2013 Proxmox Server Solutions
5 * Copyright (c) 2019 Virtuozzo International GmbH.
6 *
7 * Authors:
8 * Dietmar Maurer (dietmar@proxmox.com)
9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 */
14
15 #include "qemu/osdep.h"
16
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "block/block_int-io.h"
21 #include "block/dirty-bitmap.h"
22 #include "block/reqlist.h"
23 #include "sysemu/block-backend.h"
24 #include "qemu/units.h"
25 #include "qemu/co-shared-resource.h"
26 #include "qemu/coroutine.h"
27 #include "qemu/ratelimit.h"
28 #include "block/aio_task.h"
29 #include "qemu/error-report.h"
30 #include "qemu/memalign.h"
31
32 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
33 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
34 #define BLOCK_COPY_MAX_MEM (128 * MiB)
35 #define BLOCK_COPY_MAX_WORKERS 64
36 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
37 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
38
39 typedef enum {
40 COPY_READ_WRITE_CLUSTER,
41 COPY_READ_WRITE,
42 COPY_WRITE_ZEROES,
43 COPY_RANGE_SMALL,
44 COPY_RANGE_FULL
45 } BlockCopyMethod;
46
47 static coroutine_fn int block_copy_task_entry(AioTask *task);
48
49 typedef struct BlockCopyCallState {
50 /* Fields initialized in block_copy_async() and never changed. */
51 BlockCopyState *s;
52 int64_t offset;
53 int64_t bytes;
54 int max_workers;
55 int64_t max_chunk;
56 bool ignore_ratelimit;
57 BlockCopyAsyncCallbackFunc cb;
58 void *cb_opaque;
59 /* Coroutine where async block-copy is running */
60 Coroutine *co;
61
62 /* Fields whose state changes throughout the execution */
63 bool finished; /* atomic */
64 QemuCoSleep sleep; /* TODO: protect API with a lock */
65 bool cancelled; /* atomic */
66 /* To reference all call states from BlockCopyState */
67 QLIST_ENTRY(BlockCopyCallState) list;
68
69 /*
70 * Fields that report information about return values and errors.
71 * Protected by lock in BlockCopyState.
72 */
73 bool error_is_read;
74 /*
75 * @ret is set concurrently by tasks under mutex. Only set once by first
76 * failed task (and untouched if no task failed).
77 * After finishing (call_state->finished is true), it is not modified
78 * anymore and may be safely read without mutex.
79 */
80 int ret;
81 } BlockCopyCallState;
82
83 typedef struct BlockCopyTask {
84 AioTask task;
85
86 /*
87 * Fields initialized in block_copy_task_create()
88 * and never changed.
89 */
90 BlockCopyState *s;
91 BlockCopyCallState *call_state;
92 /*
93 * @method can also be set again in the while loop of
94 * block_copy_dirty_clusters(), but it is never accessed concurrently
95 * because the only other function that reads it is
96 * block_copy_task_entry() and it is invoked afterwards in the same
97 * iteration.
98 */
99 BlockCopyMethod method;
100
101 /*
102 * Generally, req is protected by lock in BlockCopyState, Still req.offset
103 * is only set on task creation, so may be read concurrently after creation.
104 * req.bytes is changed at most once, and need only protecting the case of
105 * parallel read while updating @bytes value in block_copy_task_shrink().
106 */
107 BlockReq req;
108 } BlockCopyTask;
109
task_end(BlockCopyTask * task)110 static int64_t task_end(BlockCopyTask *task)
111 {
112 return task->req.offset + task->req.bytes;
113 }
114
115 typedef struct BlockCopyState {
116 /*
117 * BdrvChild objects are not owned or managed by block-copy. They are
118 * provided by block-copy user and user is responsible for appropriate
119 * permissions on these children.
120 */
121 BdrvChild *source;
122 BdrvChild *target;
123
124 /*
125 * Fields initialized in block_copy_state_new()
126 * and never changed.
127 */
128 int64_t cluster_size;
129 int64_t max_transfer;
130 uint64_t len;
131 BdrvRequestFlags write_flags;
132
133 /*
134 * Fields whose state changes throughout the execution
135 * Protected by lock.
136 */
137 CoMutex lock;
138 int64_t in_flight_bytes;
139 BlockCopyMethod method;
140 bool discard_source;
141 BlockReqList reqs;
142 QLIST_HEAD(, BlockCopyCallState) calls;
143 /*
144 * skip_unallocated:
145 *
146 * Used by sync=top jobs, which first scan the source node for unallocated
147 * areas and clear them in the copy_bitmap. During this process, the bitmap
148 * is thus not fully initialized: It may still have bits set for areas that
149 * are unallocated and should actually not be copied.
150 *
151 * This is indicated by skip_unallocated.
152 *
153 * In this case, block_copy() will query the source’s allocation status,
154 * skip unallocated regions, clear them in the copy_bitmap, and invoke
155 * block_copy_reset_unallocated() every time it does.
156 */
157 bool skip_unallocated; /* atomic */
158 /* State fields that use a thread-safe API */
159 BdrvDirtyBitmap *copy_bitmap;
160 ProgressMeter *progress;
161 SharedResource *mem;
162 RateLimit rate_limit;
163 } BlockCopyState;
164
165 /* Called with lock held */
block_copy_chunk_size(BlockCopyState * s)166 static int64_t block_copy_chunk_size(BlockCopyState *s)
167 {
168 switch (s->method) {
169 case COPY_READ_WRITE_CLUSTER:
170 return s->cluster_size;
171 case COPY_READ_WRITE:
172 case COPY_RANGE_SMALL:
173 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
174 s->max_transfer);
175 case COPY_RANGE_FULL:
176 return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
177 s->max_transfer);
178 default:
179 /* Cannot have COPY_WRITE_ZEROES here. */
180 abort();
181 }
182 }
183
184 /*
185 * Search for the first dirty area in offset/bytes range and create task at
186 * the beginning of it.
187 */
188 static coroutine_fn BlockCopyTask *
block_copy_task_create(BlockCopyState * s,BlockCopyCallState * call_state,int64_t offset,int64_t bytes)189 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
190 int64_t offset, int64_t bytes)
191 {
192 BlockCopyTask *task;
193 int64_t max_chunk;
194
195 QEMU_LOCK_GUARD(&s->lock);
196 max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
197 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
198 offset, offset + bytes,
199 max_chunk, &offset, &bytes))
200 {
201 return NULL;
202 }
203
204 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
205 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
206
207 /* region is dirty, so no existent tasks possible in it */
208 assert(!reqlist_find_conflict(&s->reqs, offset, bytes));
209
210 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
211 s->in_flight_bytes += bytes;
212
213 task = g_new(BlockCopyTask, 1);
214 *task = (BlockCopyTask) {
215 .task.func = block_copy_task_entry,
216 .s = s,
217 .call_state = call_state,
218 .method = s->method,
219 };
220 reqlist_init_req(&s->reqs, &task->req, offset, bytes);
221
222 return task;
223 }
224
225 /*
226 * block_copy_task_shrink
227 *
228 * Drop the tail of the task to be handled later. Set dirty bits back and
229 * wake up all tasks waiting for us (may be some of them are not intersecting
230 * with shrunk task)
231 */
block_copy_task_shrink(BlockCopyTask * task,int64_t new_bytes)232 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
233 int64_t new_bytes)
234 {
235 QEMU_LOCK_GUARD(&task->s->lock);
236 if (new_bytes == task->req.bytes) {
237 return;
238 }
239
240 assert(new_bytes > 0 && new_bytes < task->req.bytes);
241
242 task->s->in_flight_bytes -= task->req.bytes - new_bytes;
243 bdrv_set_dirty_bitmap(task->s->copy_bitmap,
244 task->req.offset + new_bytes,
245 task->req.bytes - new_bytes);
246
247 reqlist_shrink_req(&task->req, new_bytes);
248 }
249
block_copy_task_end(BlockCopyTask * task,int ret)250 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
251 {
252 QEMU_LOCK_GUARD(&task->s->lock);
253 task->s->in_flight_bytes -= task->req.bytes;
254 if (ret < 0) {
255 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->req.offset,
256 task->req.bytes);
257 }
258 if (task->s->progress) {
259 progress_set_remaining(task->s->progress,
260 bdrv_get_dirty_count(task->s->copy_bitmap) +
261 task->s->in_flight_bytes);
262 }
263 reqlist_remove_req(&task->req);
264 }
265
block_copy_state_free(BlockCopyState * s)266 void block_copy_state_free(BlockCopyState *s)
267 {
268 if (!s) {
269 return;
270 }
271
272 ratelimit_destroy(&s->rate_limit);
273 bdrv_release_dirty_bitmap(s->copy_bitmap);
274 shres_destroy(s->mem);
275 g_free(s);
276 }
277
block_copy_max_transfer(BdrvChild * source,BdrvChild * target)278 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
279 {
280 return MIN_NON_ZERO(INT_MAX,
281 MIN_NON_ZERO(source->bs->bl.max_transfer,
282 target->bs->bl.max_transfer));
283 }
284
block_copy_set_copy_opts(BlockCopyState * s,bool use_copy_range,bool compress)285 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
286 bool compress)
287 {
288 /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
289 s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
290 (compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
291
292 if (s->max_transfer < s->cluster_size) {
293 /*
294 * copy_range does not respect max_transfer. We don't want to bother
295 * with requests smaller than block-copy cluster size, so fallback to
296 * buffered copying (read and write respect max_transfer on their
297 * behalf).
298 */
299 s->method = COPY_READ_WRITE_CLUSTER;
300 } else if (compress) {
301 /* Compression supports only cluster-size writes and no copy-range. */
302 s->method = COPY_READ_WRITE_CLUSTER;
303 } else {
304 /*
305 * If copy range enabled, start with COPY_RANGE_SMALL, until first
306 * successful copy_range (look at block_copy_do_copy).
307 */
308 s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
309 }
310 }
311
block_copy_calculate_cluster_size(BlockDriverState * target,Error ** errp)312 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
313 Error **errp)
314 {
315 int ret;
316 BlockDriverInfo bdi;
317 bool target_does_cow;
318
319 GLOBAL_STATE_CODE();
320 GRAPH_RDLOCK_GUARD_MAINLOOP();
321
322 target_does_cow = bdrv_backing_chain_next(target);
323
324 /*
325 * If there is no backing file on the target, we cannot rely on COW if our
326 * backup cluster size is smaller than the target cluster size. Even for
327 * targets with a backing file, try to avoid COW if possible.
328 */
329 ret = bdrv_get_info(target, &bdi);
330 if (ret == -ENOTSUP && !target_does_cow) {
331 /* Cluster size is not defined */
332 warn_report("The target block device doesn't provide "
333 "information about the block size and it doesn't have a "
334 "backing file. The default block size of %u bytes is "
335 "used. If the actual block size of the target exceeds "
336 "this default, the backup may be unusable",
337 BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
338 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
339 } else if (ret < 0 && !target_does_cow) {
340 error_setg_errno(errp, -ret,
341 "Couldn't determine the cluster size of the target image, "
342 "which has no backing file");
343 error_append_hint(errp,
344 "Aborting, since this may create an unusable destination image\n");
345 return ret;
346 } else if (ret < 0 && target_does_cow) {
347 /* Not fatal; just trudge on ahead. */
348 return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
349 }
350
351 return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
352 }
353
block_copy_state_new(BdrvChild * source,BdrvChild * target,BlockDriverState * copy_bitmap_bs,const BdrvDirtyBitmap * bitmap,bool discard_source,Error ** errp)354 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
355 BlockDriverState *copy_bitmap_bs,
356 const BdrvDirtyBitmap *bitmap,
357 bool discard_source,
358 Error **errp)
359 {
360 ERRP_GUARD();
361 BlockCopyState *s;
362 int64_t cluster_size;
363 BdrvDirtyBitmap *copy_bitmap;
364 bool is_fleecing;
365
366 GLOBAL_STATE_CODE();
367
368 cluster_size = block_copy_calculate_cluster_size(target->bs, errp);
369 if (cluster_size < 0) {
370 return NULL;
371 }
372
373 copy_bitmap = bdrv_create_dirty_bitmap(copy_bitmap_bs, cluster_size, NULL,
374 errp);
375 if (!copy_bitmap) {
376 return NULL;
377 }
378 bdrv_disable_dirty_bitmap(copy_bitmap);
379 if (bitmap) {
380 if (!bdrv_merge_dirty_bitmap(copy_bitmap, bitmap, NULL, errp)) {
381 error_prepend(errp, "Failed to merge bitmap '%s' to internal "
382 "copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap));
383 bdrv_release_dirty_bitmap(copy_bitmap);
384 return NULL;
385 }
386 } else {
387 bdrv_set_dirty_bitmap(copy_bitmap, 0,
388 bdrv_dirty_bitmap_size(copy_bitmap));
389 }
390
391 /*
392 * If source is in backing chain of target assume that target is going to be
393 * used for "image fleecing", i.e. it should represent a kind of snapshot of
394 * source at backup-start point in time. And target is going to be read by
395 * somebody (for example, used as NBD export) during backup job.
396 *
397 * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
398 * intersection of backup writes and third party reads from target,
399 * otherwise reading from target we may occasionally read already updated by
400 * guest data.
401 *
402 * For more information see commit f8d59dfb40bb and test
403 * tests/qemu-iotests/222
404 */
405 bdrv_graph_rdlock_main_loop();
406 is_fleecing = bdrv_chain_contains(target->bs, source->bs);
407 bdrv_graph_rdunlock_main_loop();
408
409 s = g_new(BlockCopyState, 1);
410 *s = (BlockCopyState) {
411 .source = source,
412 .target = target,
413 .copy_bitmap = copy_bitmap,
414 .cluster_size = cluster_size,
415 .len = bdrv_dirty_bitmap_size(copy_bitmap),
416 .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
417 .mem = shres_create(BLOCK_COPY_MAX_MEM),
418 .max_transfer = QEMU_ALIGN_DOWN(
419 block_copy_max_transfer(source, target),
420 cluster_size),
421 };
422
423 s->discard_source = discard_source;
424 block_copy_set_copy_opts(s, false, false);
425
426 ratelimit_init(&s->rate_limit);
427 qemu_co_mutex_init(&s->lock);
428 QLIST_INIT(&s->reqs);
429 QLIST_INIT(&s->calls);
430
431 return s;
432 }
433
434 /* Only set before running the job, no need for locking. */
block_copy_set_progress_meter(BlockCopyState * s,ProgressMeter * pm)435 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
436 {
437 s->progress = pm;
438 }
439
440 /*
441 * Takes ownership of @task
442 *
443 * If pool is NULL directly run the task, otherwise schedule it into the pool.
444 *
445 * Returns: task.func return code if pool is NULL
446 * otherwise -ECANCELED if pool status is bad
447 * otherwise 0 (successfully scheduled)
448 */
block_copy_task_run(AioTaskPool * pool,BlockCopyTask * task)449 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
450 BlockCopyTask *task)
451 {
452 if (!pool) {
453 int ret = task->task.func(&task->task);
454
455 g_free(task);
456 return ret;
457 }
458
459 aio_task_pool_wait_slot(pool);
460 if (aio_task_pool_status(pool) < 0) {
461 co_put_to_shres(task->s->mem, task->req.bytes);
462 block_copy_task_end(task, -ECANCELED);
463 g_free(task);
464 return -ECANCELED;
465 }
466
467 aio_task_pool_start_task(pool, &task->task);
468
469 return 0;
470 }
471
472 /*
473 * block_copy_do_copy
474 *
475 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
476 * s->len only to cover last cluster when s->len is not aligned to clusters.
477 *
478 * No sync here: neither bitmap nor intersecting requests handling, only copy.
479 *
480 * @method is an in-out argument, so that copy_range can be either extended to
481 * a full-size buffer or disabled if the copy_range attempt fails. The output
482 * value of @method should be used for subsequent tasks.
483 * Returns 0 on success.
484 */
485 static int coroutine_fn GRAPH_RDLOCK
block_copy_do_copy(BlockCopyState * s,int64_t offset,int64_t bytes,BlockCopyMethod * method,bool * error_is_read)486 block_copy_do_copy(BlockCopyState *s, int64_t offset, int64_t bytes,
487 BlockCopyMethod *method, bool *error_is_read)
488 {
489 int ret;
490 int64_t nbytes = MIN(offset + bytes, s->len) - offset;
491 void *bounce_buffer = NULL;
492
493 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
494 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
495 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
496 assert(offset < s->len);
497 assert(offset + bytes <= s->len ||
498 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
499 assert(nbytes < INT_MAX);
500
501 switch (*method) {
502 case COPY_WRITE_ZEROES:
503 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
504 ~BDRV_REQ_WRITE_COMPRESSED);
505 if (ret < 0) {
506 trace_block_copy_write_zeroes_fail(s, offset, ret);
507 *error_is_read = false;
508 }
509 return ret;
510
511 case COPY_RANGE_SMALL:
512 case COPY_RANGE_FULL:
513 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
514 0, s->write_flags);
515 if (ret >= 0) {
516 /* Successful copy-range, increase chunk size. */
517 *method = COPY_RANGE_FULL;
518 return 0;
519 }
520
521 trace_block_copy_copy_range_fail(s, offset, ret);
522 *method = COPY_READ_WRITE;
523 /* Fall through to read+write with allocated buffer */
524
525 case COPY_READ_WRITE_CLUSTER:
526 case COPY_READ_WRITE:
527 /*
528 * In case of failed copy_range request above, we may proceed with
529 * buffered request larger than BLOCK_COPY_MAX_BUFFER.
530 * Still, further requests will be properly limited, so don't care too
531 * much. Moreover the most likely case (copy_range is unsupported for
532 * the configuration, so the very first copy_range request fails)
533 * is handled by setting large copy_size only after first successful
534 * copy_range.
535 */
536
537 bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
538
539 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
540 if (ret < 0) {
541 trace_block_copy_read_fail(s, offset, ret);
542 *error_is_read = true;
543 goto out;
544 }
545
546 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
547 s->write_flags);
548 if (ret < 0) {
549 trace_block_copy_write_fail(s, offset, ret);
550 *error_is_read = false;
551 goto out;
552 }
553
554 out:
555 qemu_vfree(bounce_buffer);
556 break;
557
558 default:
559 abort();
560 }
561
562 return ret;
563 }
564
block_copy_task_entry(AioTask * task)565 static coroutine_fn int block_copy_task_entry(AioTask *task)
566 {
567 BlockCopyTask *t = container_of(task, BlockCopyTask, task);
568 BlockCopyState *s = t->s;
569 bool error_is_read = false;
570 BlockCopyMethod method = t->method;
571 int ret;
572
573 WITH_GRAPH_RDLOCK_GUARD() {
574 ret = block_copy_do_copy(s, t->req.offset, t->req.bytes, &method,
575 &error_is_read);
576 }
577
578 WITH_QEMU_LOCK_GUARD(&s->lock) {
579 if (s->method == t->method) {
580 s->method = method;
581 }
582
583 if (ret < 0) {
584 if (!t->call_state->ret) {
585 t->call_state->ret = ret;
586 t->call_state->error_is_read = error_is_read;
587 }
588 } else if (s->progress) {
589 progress_work_done(s->progress, t->req.bytes);
590 }
591 }
592 co_put_to_shres(s->mem, t->req.bytes);
593 block_copy_task_end(t, ret);
594
595 if (s->discard_source && ret == 0) {
596 int64_t nbytes =
597 MIN(t->req.offset + t->req.bytes, s->len) - t->req.offset;
598 WITH_GRAPH_RDLOCK_GUARD() {
599 bdrv_co_pdiscard(s->source, t->req.offset, nbytes);
600 }
601 }
602
603 return ret;
604 }
605
606 static coroutine_fn GRAPH_RDLOCK
block_copy_block_status(BlockCopyState * s,int64_t offset,int64_t bytes,int64_t * pnum)607 int block_copy_block_status(BlockCopyState *s, int64_t offset, int64_t bytes,
608 int64_t *pnum)
609 {
610 int64_t num;
611 BlockDriverState *base;
612 int ret;
613
614 if (qatomic_read(&s->skip_unallocated)) {
615 base = bdrv_backing_chain_next(s->source->bs);
616 } else {
617 base = NULL;
618 }
619
620 ret = bdrv_co_block_status_above(s->source->bs, base, offset, bytes, &num,
621 NULL, NULL);
622 if (ret < 0 || num < s->cluster_size) {
623 /*
624 * On error or if failed to obtain large enough chunk just fallback to
625 * copy one cluster.
626 */
627 num = s->cluster_size;
628 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
629 } else if (offset + num == s->len) {
630 num = QEMU_ALIGN_UP(num, s->cluster_size);
631 } else {
632 num = QEMU_ALIGN_DOWN(num, s->cluster_size);
633 }
634
635 *pnum = num;
636 return ret;
637 }
638
639 /*
640 * Check if the cluster starting at offset is allocated or not.
641 * return via pnum the number of contiguous clusters sharing this allocation.
642 */
643 static int coroutine_fn GRAPH_RDLOCK
block_copy_is_cluster_allocated(BlockCopyState * s,int64_t offset,int64_t * pnum)644 block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
645 int64_t *pnum)
646 {
647 BlockDriverState *bs = s->source->bs;
648 int64_t count, total_count = 0;
649 int64_t bytes = s->len - offset;
650 int ret;
651
652 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
653
654 while (true) {
655 /* protected in backup_run() */
656 ret = bdrv_co_is_allocated(bs, offset, bytes, &count);
657 if (ret < 0) {
658 return ret;
659 }
660
661 total_count += count;
662
663 if (ret || count == 0) {
664 /*
665 * ret: partial segment(s) are considered allocated.
666 * otherwise: unallocated tail is treated as an entire segment.
667 */
668 *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
669 return ret;
670 }
671
672 /* Unallocated segment(s) with uncertain following segment(s) */
673 if (total_count >= s->cluster_size) {
674 *pnum = total_count / s->cluster_size;
675 return 0;
676 }
677
678 offset += count;
679 bytes -= count;
680 }
681 }
682
block_copy_reset(BlockCopyState * s,int64_t offset,int64_t bytes)683 void block_copy_reset(BlockCopyState *s, int64_t offset, int64_t bytes)
684 {
685 QEMU_LOCK_GUARD(&s->lock);
686
687 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
688 if (s->progress) {
689 progress_set_remaining(s->progress,
690 bdrv_get_dirty_count(s->copy_bitmap) +
691 s->in_flight_bytes);
692 }
693 }
694
695 /*
696 * Reset bits in copy_bitmap starting at offset if they represent unallocated
697 * data in the image. May reset subsequent contiguous bits.
698 * @return 0 when the cluster at @offset was unallocated,
699 * 1 otherwise, and -ret on error.
700 */
block_copy_reset_unallocated(BlockCopyState * s,int64_t offset,int64_t * count)701 int64_t coroutine_fn block_copy_reset_unallocated(BlockCopyState *s,
702 int64_t offset,
703 int64_t *count)
704 {
705 int ret;
706 int64_t clusters, bytes;
707
708 ret = block_copy_is_cluster_allocated(s, offset, &clusters);
709 if (ret < 0) {
710 return ret;
711 }
712
713 bytes = clusters * s->cluster_size;
714
715 if (!ret) {
716 block_copy_reset(s, offset, bytes);
717 }
718
719 *count = bytes;
720 return ret;
721 }
722
723 /*
724 * block_copy_dirty_clusters
725 *
726 * Copy dirty clusters in @offset/@bytes range.
727 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
728 * clusters found and -errno on failure.
729 */
730 static int coroutine_fn GRAPH_RDLOCK
block_copy_dirty_clusters(BlockCopyCallState * call_state)731 block_copy_dirty_clusters(BlockCopyCallState *call_state)
732 {
733 BlockCopyState *s = call_state->s;
734 int64_t offset = call_state->offset;
735 int64_t bytes = call_state->bytes;
736
737 int ret = 0;
738 bool found_dirty = false;
739 int64_t end = offset + bytes;
740 AioTaskPool *aio = NULL;
741
742 /*
743 * block_copy() user is responsible for keeping source and target in same
744 * aio context
745 */
746 assert(bdrv_get_aio_context(s->source->bs) ==
747 bdrv_get_aio_context(s->target->bs));
748
749 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
750 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
751
752 while (bytes && aio_task_pool_status(aio) == 0 &&
753 !qatomic_read(&call_state->cancelled)) {
754 BlockCopyTask *task;
755 int64_t status_bytes;
756
757 task = block_copy_task_create(s, call_state, offset, bytes);
758 if (!task) {
759 /* No more dirty bits in the bitmap */
760 trace_block_copy_skip_range(s, offset, bytes);
761 break;
762 }
763 if (task->req.offset > offset) {
764 trace_block_copy_skip_range(s, offset, task->req.offset - offset);
765 }
766
767 found_dirty = true;
768
769 ret = block_copy_block_status(s, task->req.offset, task->req.bytes,
770 &status_bytes);
771 assert(ret >= 0); /* never fail */
772 if (status_bytes < task->req.bytes) {
773 block_copy_task_shrink(task, status_bytes);
774 }
775 if (qatomic_read(&s->skip_unallocated) &&
776 !(ret & BDRV_BLOCK_ALLOCATED)) {
777 block_copy_task_end(task, 0);
778 trace_block_copy_skip_range(s, task->req.offset, task->req.bytes);
779 offset = task_end(task);
780 bytes = end - offset;
781 g_free(task);
782 continue;
783 }
784 if (ret & BDRV_BLOCK_ZERO) {
785 task->method = COPY_WRITE_ZEROES;
786 }
787
788 if (!call_state->ignore_ratelimit) {
789 uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
790 if (ns > 0) {
791 block_copy_task_end(task, -EAGAIN);
792 g_free(task);
793 qemu_co_sleep_ns_wakeable(&call_state->sleep,
794 QEMU_CLOCK_REALTIME, ns);
795 continue;
796 }
797 }
798
799 ratelimit_calculate_delay(&s->rate_limit, task->req.bytes);
800
801 trace_block_copy_process(s, task->req.offset);
802
803 co_get_from_shres(s->mem, task->req.bytes);
804
805 offset = task_end(task);
806 bytes = end - offset;
807
808 if (!aio && bytes) {
809 aio = aio_task_pool_new(call_state->max_workers);
810 }
811
812 ret = block_copy_task_run(aio, task);
813 if (ret < 0) {
814 goto out;
815 }
816 }
817
818 out:
819 if (aio) {
820 aio_task_pool_wait_all(aio);
821
822 /*
823 * We are not really interested in -ECANCELED returned from
824 * block_copy_task_run. If it fails, it means some task already failed
825 * for real reason, let's return first failure.
826 * Still, assert that we don't rewrite failure by success.
827 *
828 * Note: ret may be positive here because of block-status result.
829 */
830 assert(ret >= 0 || aio_task_pool_status(aio) < 0);
831 ret = aio_task_pool_status(aio);
832
833 aio_task_pool_free(aio);
834 }
835
836 return ret < 0 ? ret : found_dirty;
837 }
838
block_copy_kick(BlockCopyCallState * call_state)839 void block_copy_kick(BlockCopyCallState *call_state)
840 {
841 qemu_co_sleep_wake(&call_state->sleep);
842 }
843
844 /*
845 * block_copy_common
846 *
847 * Copy requested region, accordingly to dirty bitmap.
848 * Collaborate with parallel block_copy requests: if they succeed it will help
849 * us. If they fail, we will retry not-copied regions. So, if we return error,
850 * it means that some I/O operation failed in context of _this_ block_copy call,
851 * not some parallel operation.
852 */
853 static int coroutine_fn GRAPH_RDLOCK
block_copy_common(BlockCopyCallState * call_state)854 block_copy_common(BlockCopyCallState *call_state)
855 {
856 int ret;
857 BlockCopyState *s = call_state->s;
858
859 qemu_co_mutex_lock(&s->lock);
860 QLIST_INSERT_HEAD(&s->calls, call_state, list);
861 qemu_co_mutex_unlock(&s->lock);
862
863 do {
864 ret = block_copy_dirty_clusters(call_state);
865
866 if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
867 WITH_QEMU_LOCK_GUARD(&s->lock) {
868 /*
869 * Check that there is no task we still need to
870 * wait to complete
871 */
872 ret = reqlist_wait_one(&s->reqs, call_state->offset,
873 call_state->bytes, &s->lock);
874 if (ret == 0) {
875 /*
876 * No pending tasks, but check again the bitmap in this
877 * same critical section, since a task might have failed
878 * between this and the critical section in
879 * block_copy_dirty_clusters().
880 *
881 * reqlist_wait_one return value 0 also means that it
882 * didn't release the lock. So, we are still in the same
883 * critical section, not interrupted by any concurrent
884 * access to state.
885 */
886 ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
887 call_state->offset,
888 call_state->bytes) >= 0;
889 }
890 }
891 }
892
893 /*
894 * We retry in two cases:
895 * 1. Some progress done
896 * Something was copied, which means that there were yield points
897 * and some new dirty bits may have appeared (due to failed parallel
898 * block-copy requests).
899 * 2. We have waited for some intersecting block-copy request
900 * It may have failed and produced new dirty bits.
901 */
902 } while (ret > 0 && !qatomic_read(&call_state->cancelled));
903
904 qatomic_store_release(&call_state->finished, true);
905
906 if (call_state->cb) {
907 call_state->cb(call_state->cb_opaque);
908 }
909
910 qemu_co_mutex_lock(&s->lock);
911 QLIST_REMOVE(call_state, list);
912 qemu_co_mutex_unlock(&s->lock);
913
914 return ret;
915 }
916
block_copy_async_co_entry(void * opaque)917 static void coroutine_fn block_copy_async_co_entry(void *opaque)
918 {
919 GRAPH_RDLOCK_GUARD();
920 block_copy_common(opaque);
921 }
922
block_copy(BlockCopyState * s,int64_t start,int64_t bytes,bool ignore_ratelimit,uint64_t timeout_ns,BlockCopyAsyncCallbackFunc cb,void * cb_opaque)923 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
924 bool ignore_ratelimit, uint64_t timeout_ns,
925 BlockCopyAsyncCallbackFunc cb,
926 void *cb_opaque)
927 {
928 int ret;
929 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
930
931 *call_state = (BlockCopyCallState) {
932 .s = s,
933 .offset = start,
934 .bytes = bytes,
935 .ignore_ratelimit = ignore_ratelimit,
936 .max_workers = BLOCK_COPY_MAX_WORKERS,
937 .cb = cb,
938 .cb_opaque = cb_opaque,
939 };
940
941 ret = qemu_co_timeout(block_copy_async_co_entry, call_state, timeout_ns,
942 g_free);
943 if (ret < 0) {
944 assert(ret == -ETIMEDOUT);
945 block_copy_call_cancel(call_state);
946 /* call_state will be freed by running coroutine. */
947 return ret;
948 }
949
950 ret = call_state->ret;
951 g_free(call_state);
952
953 return ret;
954 }
955
block_copy_async(BlockCopyState * s,int64_t offset,int64_t bytes,int max_workers,int64_t max_chunk,BlockCopyAsyncCallbackFunc cb,void * cb_opaque)956 BlockCopyCallState *block_copy_async(BlockCopyState *s,
957 int64_t offset, int64_t bytes,
958 int max_workers, int64_t max_chunk,
959 BlockCopyAsyncCallbackFunc cb,
960 void *cb_opaque)
961 {
962 BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
963
964 *call_state = (BlockCopyCallState) {
965 .s = s,
966 .offset = offset,
967 .bytes = bytes,
968 .max_workers = max_workers,
969 .max_chunk = max_chunk,
970 .cb = cb,
971 .cb_opaque = cb_opaque,
972
973 .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
974 };
975
976 qemu_coroutine_enter(call_state->co);
977
978 return call_state;
979 }
980
block_copy_call_free(BlockCopyCallState * call_state)981 void block_copy_call_free(BlockCopyCallState *call_state)
982 {
983 if (!call_state) {
984 return;
985 }
986
987 assert(qatomic_read(&call_state->finished));
988 g_free(call_state);
989 }
990
block_copy_call_finished(BlockCopyCallState * call_state)991 bool block_copy_call_finished(BlockCopyCallState *call_state)
992 {
993 return qatomic_read(&call_state->finished);
994 }
995
block_copy_call_succeeded(BlockCopyCallState * call_state)996 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
997 {
998 return qatomic_load_acquire(&call_state->finished) &&
999 !qatomic_read(&call_state->cancelled) &&
1000 call_state->ret == 0;
1001 }
1002
block_copy_call_failed(BlockCopyCallState * call_state)1003 bool block_copy_call_failed(BlockCopyCallState *call_state)
1004 {
1005 return qatomic_load_acquire(&call_state->finished) &&
1006 !qatomic_read(&call_state->cancelled) &&
1007 call_state->ret < 0;
1008 }
1009
block_copy_call_cancelled(BlockCopyCallState * call_state)1010 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
1011 {
1012 return qatomic_read(&call_state->cancelled);
1013 }
1014
block_copy_call_status(BlockCopyCallState * call_state,bool * error_is_read)1015 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
1016 {
1017 assert(qatomic_load_acquire(&call_state->finished));
1018 if (error_is_read) {
1019 *error_is_read = call_state->error_is_read;
1020 }
1021 return call_state->ret;
1022 }
1023
1024 /*
1025 * Note that cancelling and finishing are racy.
1026 * User can cancel a block-copy that is already finished.
1027 */
block_copy_call_cancel(BlockCopyCallState * call_state)1028 void block_copy_call_cancel(BlockCopyCallState *call_state)
1029 {
1030 qatomic_set(&call_state->cancelled, true);
1031 block_copy_kick(call_state);
1032 }
1033
block_copy_dirty_bitmap(BlockCopyState * s)1034 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
1035 {
1036 return s->copy_bitmap;
1037 }
1038
block_copy_cluster_size(BlockCopyState * s)1039 int64_t block_copy_cluster_size(BlockCopyState *s)
1040 {
1041 return s->cluster_size;
1042 }
1043
block_copy_set_skip_unallocated(BlockCopyState * s,bool skip)1044 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
1045 {
1046 qatomic_set(&s->skip_unallocated, skip);
1047 }
1048
block_copy_set_speed(BlockCopyState * s,uint64_t speed)1049 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
1050 {
1051 ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
1052
1053 /*
1054 * Note: it's good to kick all call states from here, but it should be done
1055 * only from a coroutine, to not crash if s->calls list changed while
1056 * entering one call. So for now, the only user of this function kicks its
1057 * only one call_state by hand.
1058 */
1059 }
1060