xref: /openbmc/qemu/block/block-copy.c (revision d5f6cbb2)
1 /*
2  * block_copy API
3  *
4  * Copyright (C) 2013 Proxmox Server Solutions
5  * Copyright (c) 2019 Virtuozzo International GmbH.
6  *
7  * Authors:
8  *  Dietmar Maurer (dietmar@proxmox.com)
9  *  Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  */
14 
15 #include "qemu/osdep.h"
16 
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "block/block_int-io.h"
21 #include "block/dirty-bitmap.h"
22 #include "block/reqlist.h"
23 #include "sysemu/block-backend.h"
24 #include "qemu/units.h"
25 #include "qemu/co-shared-resource.h"
26 #include "qemu/coroutine.h"
27 #include "qemu/ratelimit.h"
28 #include "block/aio_task.h"
29 #include "qemu/error-report.h"
30 #include "qemu/memalign.h"
31 
32 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
33 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
34 #define BLOCK_COPY_MAX_MEM (128 * MiB)
35 #define BLOCK_COPY_MAX_WORKERS 64
36 #define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
37 #define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
38 
39 typedef enum {
40     COPY_READ_WRITE_CLUSTER,
41     COPY_READ_WRITE,
42     COPY_WRITE_ZEROES,
43     COPY_RANGE_SMALL,
44     COPY_RANGE_FULL
45 } BlockCopyMethod;
46 
47 static coroutine_fn int block_copy_task_entry(AioTask *task);
48 
49 typedef struct BlockCopyCallState {
50     /* Fields initialized in block_copy_async() and never changed. */
51     BlockCopyState *s;
52     int64_t offset;
53     int64_t bytes;
54     int max_workers;
55     int64_t max_chunk;
56     bool ignore_ratelimit;
57     BlockCopyAsyncCallbackFunc cb;
58     void *cb_opaque;
59     /* Coroutine where async block-copy is running */
60     Coroutine *co;
61 
62     /* Fields whose state changes throughout the execution */
63     bool finished; /* atomic */
64     QemuCoSleep sleep; /* TODO: protect API with a lock */
65     bool cancelled; /* atomic */
66     /* To reference all call states from BlockCopyState */
67     QLIST_ENTRY(BlockCopyCallState) list;
68 
69     /*
70      * Fields that report information about return values and errors.
71      * Protected by lock in BlockCopyState.
72      */
73     bool error_is_read;
74     /*
75      * @ret is set concurrently by tasks under mutex. Only set once by first
76      * failed task (and untouched if no task failed).
77      * After finishing (call_state->finished is true), it is not modified
78      * anymore and may be safely read without mutex.
79      */
80     int ret;
81 } BlockCopyCallState;
82 
83 typedef struct BlockCopyTask {
84     AioTask task;
85 
86     /*
87      * Fields initialized in block_copy_task_create()
88      * and never changed.
89      */
90     BlockCopyState *s;
91     BlockCopyCallState *call_state;
92     /*
93      * @method can also be set again in the while loop of
94      * block_copy_dirty_clusters(), but it is never accessed concurrently
95      * because the only other function that reads it is
96      * block_copy_task_entry() and it is invoked afterwards in the same
97      * iteration.
98      */
99     BlockCopyMethod method;
100 
101     /*
102      * Generally, req is protected by lock in BlockCopyState, Still req.offset
103      * is only set on task creation, so may be read concurrently after creation.
104      * req.bytes is changed at most once, and need only protecting the case of
105      * parallel read while updating @bytes value in block_copy_task_shrink().
106      */
107     BlockReq req;
108 } BlockCopyTask;
109 
110 static int64_t task_end(BlockCopyTask *task)
111 {
112     return task->req.offset + task->req.bytes;
113 }
114 
115 typedef struct BlockCopyState {
116     /*
117      * BdrvChild objects are not owned or managed by block-copy. They are
118      * provided by block-copy user and user is responsible for appropriate
119      * permissions on these children.
120      */
121     BdrvChild *source;
122     BdrvChild *target;
123 
124     /*
125      * Fields initialized in block_copy_state_new()
126      * and never changed.
127      */
128     int64_t cluster_size;
129     int64_t max_transfer;
130     uint64_t len;
131     BdrvRequestFlags write_flags;
132 
133     /*
134      * Fields whose state changes throughout the execution
135      * Protected by lock.
136      */
137     CoMutex lock;
138     int64_t in_flight_bytes;
139     BlockCopyMethod method;
140     bool discard_source;
141     BlockReqList reqs;
142     QLIST_HEAD(, BlockCopyCallState) calls;
143     /*
144      * skip_unallocated:
145      *
146      * Used by sync=top jobs, which first scan the source node for unallocated
147      * areas and clear them in the copy_bitmap.  During this process, the bitmap
148      * is thus not fully initialized: It may still have bits set for areas that
149      * are unallocated and should actually not be copied.
150      *
151      * This is indicated by skip_unallocated.
152      *
153      * In this case, block_copy() will query the source’s allocation status,
154      * skip unallocated regions, clear them in the copy_bitmap, and invoke
155      * block_copy_reset_unallocated() every time it does.
156      */
157     bool skip_unallocated; /* atomic */
158     /* State fields that use a thread-safe API */
159     BdrvDirtyBitmap *copy_bitmap;
160     ProgressMeter *progress;
161     SharedResource *mem;
162     RateLimit rate_limit;
163 } BlockCopyState;
164 
165 /* Called with lock held */
166 static int64_t block_copy_chunk_size(BlockCopyState *s)
167 {
168     switch (s->method) {
169     case COPY_READ_WRITE_CLUSTER:
170         return s->cluster_size;
171     case COPY_READ_WRITE:
172     case COPY_RANGE_SMALL:
173         return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
174                    s->max_transfer);
175     case COPY_RANGE_FULL:
176         return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
177                    s->max_transfer);
178     default:
179         /* Cannot have COPY_WRITE_ZEROES here.  */
180         abort();
181     }
182 }
183 
184 /*
185  * Search for the first dirty area in offset/bytes range and create task at
186  * the beginning of it.
187  */
188 static coroutine_fn BlockCopyTask *
189 block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
190                        int64_t offset, int64_t bytes)
191 {
192     BlockCopyTask *task;
193     int64_t max_chunk;
194 
195     QEMU_LOCK_GUARD(&s->lock);
196     max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
197     if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
198                                            offset, offset + bytes,
199                                            max_chunk, &offset, &bytes))
200     {
201         return NULL;
202     }
203 
204     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
205     bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
206 
207     /* region is dirty, so no existent tasks possible in it */
208     assert(!reqlist_find_conflict(&s->reqs, offset, bytes));
209 
210     bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
211     s->in_flight_bytes += bytes;
212 
213     task = g_new(BlockCopyTask, 1);
214     *task = (BlockCopyTask) {
215         .task.func = block_copy_task_entry,
216         .s = s,
217         .call_state = call_state,
218         .method = s->method,
219     };
220     reqlist_init_req(&s->reqs, &task->req, offset, bytes);
221 
222     return task;
223 }
224 
225 /*
226  * block_copy_task_shrink
227  *
228  * Drop the tail of the task to be handled later. Set dirty bits back and
229  * wake up all tasks waiting for us (may be some of them are not intersecting
230  * with shrunk task)
231  */
232 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
233                                                 int64_t new_bytes)
234 {
235     QEMU_LOCK_GUARD(&task->s->lock);
236     if (new_bytes == task->req.bytes) {
237         return;
238     }
239 
240     assert(new_bytes > 0 && new_bytes < task->req.bytes);
241 
242     task->s->in_flight_bytes -= task->req.bytes - new_bytes;
243     bdrv_set_dirty_bitmap(task->s->copy_bitmap,
244                           task->req.offset + new_bytes,
245                           task->req.bytes - new_bytes);
246 
247     reqlist_shrink_req(&task->req, new_bytes);
248 }
249 
250 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
251 {
252     QEMU_LOCK_GUARD(&task->s->lock);
253     task->s->in_flight_bytes -= task->req.bytes;
254     if (ret < 0) {
255         bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->req.offset,
256                               task->req.bytes);
257     }
258     if (task->s->progress) {
259         progress_set_remaining(task->s->progress,
260                                bdrv_get_dirty_count(task->s->copy_bitmap) +
261                                task->s->in_flight_bytes);
262     }
263     reqlist_remove_req(&task->req);
264 }
265 
266 void block_copy_state_free(BlockCopyState *s)
267 {
268     if (!s) {
269         return;
270     }
271 
272     ratelimit_destroy(&s->rate_limit);
273     bdrv_release_dirty_bitmap(s->copy_bitmap);
274     shres_destroy(s->mem);
275     g_free(s);
276 }
277 
278 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
279 {
280     return MIN_NON_ZERO(INT_MAX,
281                         MIN_NON_ZERO(source->bs->bl.max_transfer,
282                                      target->bs->bl.max_transfer));
283 }
284 
285 void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
286                               bool compress)
287 {
288     /* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
289     s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
290         (compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
291 
292     if (s->max_transfer < s->cluster_size) {
293         /*
294          * copy_range does not respect max_transfer. We don't want to bother
295          * with requests smaller than block-copy cluster size, so fallback to
296          * buffered copying (read and write respect max_transfer on their
297          * behalf).
298          */
299         s->method = COPY_READ_WRITE_CLUSTER;
300     } else if (compress) {
301         /* Compression supports only cluster-size writes and no copy-range. */
302         s->method = COPY_READ_WRITE_CLUSTER;
303     } else {
304         /*
305          * If copy range enabled, start with COPY_RANGE_SMALL, until first
306          * successful copy_range (look at block_copy_do_copy).
307          */
308         s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
309     }
310 }
311 
312 static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
313                                                  Error **errp)
314 {
315     int ret;
316     BlockDriverInfo bdi;
317     bool target_does_cow;
318 
319     GLOBAL_STATE_CODE();
320     GRAPH_RDLOCK_GUARD_MAINLOOP();
321 
322     target_does_cow = bdrv_backing_chain_next(target);
323 
324     /*
325      * If there is no backing file on the target, we cannot rely on COW if our
326      * backup cluster size is smaller than the target cluster size. Even for
327      * targets with a backing file, try to avoid COW if possible.
328      */
329     ret = bdrv_get_info(target, &bdi);
330     if (ret == -ENOTSUP && !target_does_cow) {
331         /* Cluster size is not defined */
332         warn_report("The target block device doesn't provide "
333                     "information about the block size and it doesn't have a "
334                     "backing file. The default block size of %u bytes is "
335                     "used. If the actual block size of the target exceeds "
336                     "this default, the backup may be unusable",
337                     BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
338         return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
339     } else if (ret < 0 && !target_does_cow) {
340         error_setg_errno(errp, -ret,
341             "Couldn't determine the cluster size of the target image, "
342             "which has no backing file");
343         error_append_hint(errp,
344             "Aborting, since this may create an unusable destination image\n");
345         return ret;
346     } else if (ret < 0 && target_does_cow) {
347         /* Not fatal; just trudge on ahead. */
348         return BLOCK_COPY_CLUSTER_SIZE_DEFAULT;
349     }
350 
351     return MAX(BLOCK_COPY_CLUSTER_SIZE_DEFAULT, bdi.cluster_size);
352 }
353 
354 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
355                                      BlockDriverState *copy_bitmap_bs,
356                                      const BdrvDirtyBitmap *bitmap,
357                                      bool discard_source,
358                                      Error **errp)
359 {
360     ERRP_GUARD();
361     BlockCopyState *s;
362     int64_t cluster_size;
363     BdrvDirtyBitmap *copy_bitmap;
364     bool is_fleecing;
365 
366     GLOBAL_STATE_CODE();
367 
368     cluster_size = block_copy_calculate_cluster_size(target->bs, errp);
369     if (cluster_size < 0) {
370         return NULL;
371     }
372 
373     copy_bitmap = bdrv_create_dirty_bitmap(copy_bitmap_bs, cluster_size, NULL,
374                                            errp);
375     if (!copy_bitmap) {
376         return NULL;
377     }
378     bdrv_disable_dirty_bitmap(copy_bitmap);
379     if (bitmap) {
380         if (!bdrv_merge_dirty_bitmap(copy_bitmap, bitmap, NULL, errp)) {
381             error_prepend(errp, "Failed to merge bitmap '%s' to internal "
382                           "copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap));
383             bdrv_release_dirty_bitmap(copy_bitmap);
384             return NULL;
385         }
386     } else {
387         bdrv_set_dirty_bitmap(copy_bitmap, 0,
388                               bdrv_dirty_bitmap_size(copy_bitmap));
389     }
390 
391     /*
392      * If source is in backing chain of target assume that target is going to be
393      * used for "image fleecing", i.e. it should represent a kind of snapshot of
394      * source at backup-start point in time. And target is going to be read by
395      * somebody (for example, used as NBD export) during backup job.
396      *
397      * In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
398      * intersection of backup writes and third party reads from target,
399      * otherwise reading from target we may occasionally read already updated by
400      * guest data.
401      *
402      * For more information see commit f8d59dfb40bb and test
403      * tests/qemu-iotests/222
404      */
405     bdrv_graph_rdlock_main_loop();
406     is_fleecing = bdrv_chain_contains(target->bs, source->bs);
407     bdrv_graph_rdunlock_main_loop();
408 
409     s = g_new(BlockCopyState, 1);
410     *s = (BlockCopyState) {
411         .source = source,
412         .target = target,
413         .copy_bitmap = copy_bitmap,
414         .cluster_size = cluster_size,
415         .len = bdrv_dirty_bitmap_size(copy_bitmap),
416         .write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
417         .mem = shres_create(BLOCK_COPY_MAX_MEM),
418         .max_transfer = QEMU_ALIGN_DOWN(
419                                     block_copy_max_transfer(source, target),
420                                     cluster_size),
421     };
422 
423     s->discard_source = discard_source;
424     block_copy_set_copy_opts(s, false, false);
425 
426     ratelimit_init(&s->rate_limit);
427     qemu_co_mutex_init(&s->lock);
428     QLIST_INIT(&s->reqs);
429     QLIST_INIT(&s->calls);
430 
431     return s;
432 }
433 
434 /* Only set before running the job, no need for locking. */
435 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
436 {
437     s->progress = pm;
438 }
439 
440 /*
441  * Takes ownership of @task
442  *
443  * If pool is NULL directly run the task, otherwise schedule it into the pool.
444  *
445  * Returns: task.func return code if pool is NULL
446  *          otherwise -ECANCELED if pool status is bad
447  *          otherwise 0 (successfully scheduled)
448  */
449 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
450                                             BlockCopyTask *task)
451 {
452     if (!pool) {
453         int ret = task->task.func(&task->task);
454 
455         g_free(task);
456         return ret;
457     }
458 
459     aio_task_pool_wait_slot(pool);
460     if (aio_task_pool_status(pool) < 0) {
461         co_put_to_shres(task->s->mem, task->req.bytes);
462         block_copy_task_end(task, -ECANCELED);
463         g_free(task);
464         return -ECANCELED;
465     }
466 
467     aio_task_pool_start_task(pool, &task->task);
468 
469     return 0;
470 }
471 
472 /*
473  * block_copy_do_copy
474  *
475  * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
476  * s->len only to cover last cluster when s->len is not aligned to clusters.
477  *
478  * No sync here: neither bitmap nor intersecting requests handling, only copy.
479  *
480  * @method is an in-out argument, so that copy_range can be either extended to
481  * a full-size buffer or disabled if the copy_range attempt fails.  The output
482  * value of @method should be used for subsequent tasks.
483  * Returns 0 on success.
484  */
485 static int coroutine_fn GRAPH_RDLOCK
486 block_copy_do_copy(BlockCopyState *s, int64_t offset, int64_t bytes,
487                    BlockCopyMethod *method, bool *error_is_read)
488 {
489     int ret;
490     int64_t nbytes = MIN(offset + bytes, s->len) - offset;
491     void *bounce_buffer = NULL;
492 
493     assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
494     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
495     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
496     assert(offset < s->len);
497     assert(offset + bytes <= s->len ||
498            offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
499     assert(nbytes < INT_MAX);
500 
501     switch (*method) {
502     case COPY_WRITE_ZEROES:
503         ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
504                                     ~BDRV_REQ_WRITE_COMPRESSED);
505         if (ret < 0) {
506             trace_block_copy_write_zeroes_fail(s, offset, ret);
507             *error_is_read = false;
508         }
509         return ret;
510 
511     case COPY_RANGE_SMALL:
512     case COPY_RANGE_FULL:
513         ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
514                                  0, s->write_flags);
515         if (ret >= 0) {
516             /* Successful copy-range, increase chunk size.  */
517             *method = COPY_RANGE_FULL;
518             return 0;
519         }
520 
521         trace_block_copy_copy_range_fail(s, offset, ret);
522         *method = COPY_READ_WRITE;
523         /* Fall through to read+write with allocated buffer */
524 
525     case COPY_READ_WRITE_CLUSTER:
526     case COPY_READ_WRITE:
527         /*
528          * In case of failed copy_range request above, we may proceed with
529          * buffered request larger than BLOCK_COPY_MAX_BUFFER.
530          * Still, further requests will be properly limited, so don't care too
531          * much. Moreover the most likely case (copy_range is unsupported for
532          * the configuration, so the very first copy_range request fails)
533          * is handled by setting large copy_size only after first successful
534          * copy_range.
535          */
536 
537         bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
538 
539         ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
540         if (ret < 0) {
541             trace_block_copy_read_fail(s, offset, ret);
542             *error_is_read = true;
543             goto out;
544         }
545 
546         ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
547                              s->write_flags);
548         if (ret < 0) {
549             trace_block_copy_write_fail(s, offset, ret);
550             *error_is_read = false;
551             goto out;
552         }
553 
554     out:
555         qemu_vfree(bounce_buffer);
556         break;
557 
558     default:
559         abort();
560     }
561 
562     return ret;
563 }
564 
565 static coroutine_fn int block_copy_task_entry(AioTask *task)
566 {
567     BlockCopyTask *t = container_of(task, BlockCopyTask, task);
568     BlockCopyState *s = t->s;
569     bool error_is_read = false;
570     BlockCopyMethod method = t->method;
571     int ret;
572 
573     WITH_GRAPH_RDLOCK_GUARD() {
574         ret = block_copy_do_copy(s, t->req.offset, t->req.bytes, &method,
575                                  &error_is_read);
576     }
577 
578     WITH_QEMU_LOCK_GUARD(&s->lock) {
579         if (s->method == t->method) {
580             s->method = method;
581         }
582 
583         if (ret < 0) {
584             if (!t->call_state->ret) {
585                 t->call_state->ret = ret;
586                 t->call_state->error_is_read = error_is_read;
587             }
588         } else if (s->progress) {
589             progress_work_done(s->progress, t->req.bytes);
590         }
591     }
592     co_put_to_shres(s->mem, t->req.bytes);
593     block_copy_task_end(t, ret);
594 
595     if (s->discard_source && ret == 0) {
596         int64_t nbytes =
597             MIN(t->req.offset + t->req.bytes, s->len) - t->req.offset;
598         WITH_GRAPH_RDLOCK_GUARD() {
599             bdrv_co_pdiscard(s->source, t->req.offset, nbytes);
600         }
601     }
602 
603     return ret;
604 }
605 
606 static coroutine_fn GRAPH_RDLOCK
607 int block_copy_block_status(BlockCopyState *s, int64_t offset, int64_t bytes,
608                             int64_t *pnum)
609 {
610     int64_t num;
611     BlockDriverState *base;
612     int ret;
613 
614     if (qatomic_read(&s->skip_unallocated)) {
615         base = bdrv_backing_chain_next(s->source->bs);
616     } else {
617         base = NULL;
618     }
619 
620     ret = bdrv_co_block_status_above(s->source->bs, base, offset, bytes, &num,
621                                      NULL, NULL);
622     if (ret < 0 || num < s->cluster_size) {
623         /*
624          * On error or if failed to obtain large enough chunk just fallback to
625          * copy one cluster.
626          */
627         num = s->cluster_size;
628         ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
629     } else if (offset + num == s->len) {
630         num = QEMU_ALIGN_UP(num, s->cluster_size);
631     } else {
632         num = QEMU_ALIGN_DOWN(num, s->cluster_size);
633     }
634 
635     *pnum = num;
636     return ret;
637 }
638 
639 /*
640  * Check if the cluster starting at offset is allocated or not.
641  * return via pnum the number of contiguous clusters sharing this allocation.
642  */
643 static int coroutine_fn GRAPH_RDLOCK
644 block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
645                                 int64_t *pnum)
646 {
647     BlockDriverState *bs = s->source->bs;
648     int64_t count, total_count = 0;
649     int64_t bytes = s->len - offset;
650     int ret;
651 
652     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
653 
654     while (true) {
655         /* protected in backup_run() */
656         ret = bdrv_co_is_allocated(bs, offset, bytes, &count);
657         if (ret < 0) {
658             return ret;
659         }
660 
661         total_count += count;
662 
663         if (ret || count == 0) {
664             /*
665              * ret: partial segment(s) are considered allocated.
666              * otherwise: unallocated tail is treated as an entire segment.
667              */
668             *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
669             return ret;
670         }
671 
672         /* Unallocated segment(s) with uncertain following segment(s) */
673         if (total_count >= s->cluster_size) {
674             *pnum = total_count / s->cluster_size;
675             return 0;
676         }
677 
678         offset += count;
679         bytes -= count;
680     }
681 }
682 
683 void block_copy_reset(BlockCopyState *s, int64_t offset, int64_t bytes)
684 {
685     QEMU_LOCK_GUARD(&s->lock);
686 
687     bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
688     if (s->progress) {
689         progress_set_remaining(s->progress,
690                                bdrv_get_dirty_count(s->copy_bitmap) +
691                                s->in_flight_bytes);
692     }
693 }
694 
695 /*
696  * Reset bits in copy_bitmap starting at offset if they represent unallocated
697  * data in the image. May reset subsequent contiguous bits.
698  * @return 0 when the cluster at @offset was unallocated,
699  *         1 otherwise, and -ret on error.
700  */
701 int64_t coroutine_fn block_copy_reset_unallocated(BlockCopyState *s,
702                                                   int64_t offset,
703                                                   int64_t *count)
704 {
705     int ret;
706     int64_t clusters, bytes;
707 
708     ret = block_copy_is_cluster_allocated(s, offset, &clusters);
709     if (ret < 0) {
710         return ret;
711     }
712 
713     bytes = clusters * s->cluster_size;
714 
715     if (!ret) {
716         block_copy_reset(s, offset, bytes);
717     }
718 
719     *count = bytes;
720     return ret;
721 }
722 
723 /*
724  * block_copy_dirty_clusters
725  *
726  * Copy dirty clusters in @offset/@bytes range.
727  * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
728  * clusters found and -errno on failure.
729  */
730 static int coroutine_fn GRAPH_RDLOCK
731 block_copy_dirty_clusters(BlockCopyCallState *call_state)
732 {
733     BlockCopyState *s = call_state->s;
734     int64_t offset = call_state->offset;
735     int64_t bytes = call_state->bytes;
736 
737     int ret = 0;
738     bool found_dirty = false;
739     int64_t end = offset + bytes;
740     AioTaskPool *aio = NULL;
741 
742     /*
743      * block_copy() user is responsible for keeping source and target in same
744      * aio context
745      */
746     assert(bdrv_get_aio_context(s->source->bs) ==
747            bdrv_get_aio_context(s->target->bs));
748 
749     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
750     assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
751 
752     while (bytes && aio_task_pool_status(aio) == 0 &&
753            !qatomic_read(&call_state->cancelled)) {
754         BlockCopyTask *task;
755         int64_t status_bytes;
756 
757         task = block_copy_task_create(s, call_state, offset, bytes);
758         if (!task) {
759             /* No more dirty bits in the bitmap */
760             trace_block_copy_skip_range(s, offset, bytes);
761             break;
762         }
763         if (task->req.offset > offset) {
764             trace_block_copy_skip_range(s, offset, task->req.offset - offset);
765         }
766 
767         found_dirty = true;
768 
769         ret = block_copy_block_status(s, task->req.offset, task->req.bytes,
770                                       &status_bytes);
771         assert(ret >= 0); /* never fail */
772         if (status_bytes < task->req.bytes) {
773             block_copy_task_shrink(task, status_bytes);
774         }
775         if (qatomic_read(&s->skip_unallocated) &&
776             !(ret & BDRV_BLOCK_ALLOCATED)) {
777             block_copy_task_end(task, 0);
778             trace_block_copy_skip_range(s, task->req.offset, task->req.bytes);
779             offset = task_end(task);
780             bytes = end - offset;
781             g_free(task);
782             continue;
783         }
784         if (ret & BDRV_BLOCK_ZERO) {
785             task->method = COPY_WRITE_ZEROES;
786         }
787 
788         if (!call_state->ignore_ratelimit) {
789             uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
790             if (ns > 0) {
791                 block_copy_task_end(task, -EAGAIN);
792                 g_free(task);
793                 qemu_co_sleep_ns_wakeable(&call_state->sleep,
794                                           QEMU_CLOCK_REALTIME, ns);
795                 continue;
796             }
797         }
798 
799         ratelimit_calculate_delay(&s->rate_limit, task->req.bytes);
800 
801         trace_block_copy_process(s, task->req.offset);
802 
803         co_get_from_shres(s->mem, task->req.bytes);
804 
805         offset = task_end(task);
806         bytes = end - offset;
807 
808         if (!aio && bytes) {
809             aio = aio_task_pool_new(call_state->max_workers);
810         }
811 
812         ret = block_copy_task_run(aio, task);
813         if (ret < 0) {
814             goto out;
815         }
816     }
817 
818 out:
819     if (aio) {
820         aio_task_pool_wait_all(aio);
821 
822         /*
823          * We are not really interested in -ECANCELED returned from
824          * block_copy_task_run. If it fails, it means some task already failed
825          * for real reason, let's return first failure.
826          * Still, assert that we don't rewrite failure by success.
827          *
828          * Note: ret may be positive here because of block-status result.
829          */
830         assert(ret >= 0 || aio_task_pool_status(aio) < 0);
831         ret = aio_task_pool_status(aio);
832 
833         aio_task_pool_free(aio);
834     }
835 
836     return ret < 0 ? ret : found_dirty;
837 }
838 
839 void block_copy_kick(BlockCopyCallState *call_state)
840 {
841     qemu_co_sleep_wake(&call_state->sleep);
842 }
843 
844 /*
845  * block_copy_common
846  *
847  * Copy requested region, accordingly to dirty bitmap.
848  * Collaborate with parallel block_copy requests: if they succeed it will help
849  * us. If they fail, we will retry not-copied regions. So, if we return error,
850  * it means that some I/O operation failed in context of _this_ block_copy call,
851  * not some parallel operation.
852  */
853 static int coroutine_fn GRAPH_RDLOCK
854 block_copy_common(BlockCopyCallState *call_state)
855 {
856     int ret;
857     BlockCopyState *s = call_state->s;
858 
859     qemu_co_mutex_lock(&s->lock);
860     QLIST_INSERT_HEAD(&s->calls, call_state, list);
861     qemu_co_mutex_unlock(&s->lock);
862 
863     do {
864         ret = block_copy_dirty_clusters(call_state);
865 
866         if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
867             WITH_QEMU_LOCK_GUARD(&s->lock) {
868                 /*
869                  * Check that there is no task we still need to
870                  * wait to complete
871                  */
872                 ret = reqlist_wait_one(&s->reqs, call_state->offset,
873                                        call_state->bytes, &s->lock);
874                 if (ret == 0) {
875                     /*
876                      * No pending tasks, but check again the bitmap in this
877                      * same critical section, since a task might have failed
878                      * between this and the critical section in
879                      * block_copy_dirty_clusters().
880                      *
881                      * reqlist_wait_one return value 0 also means that it
882                      * didn't release the lock. So, we are still in the same
883                      * critical section, not interrupted by any concurrent
884                      * access to state.
885                      */
886                     ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
887                                                        call_state->offset,
888                                                        call_state->bytes) >= 0;
889                 }
890             }
891         }
892 
893         /*
894          * We retry in two cases:
895          * 1. Some progress done
896          *    Something was copied, which means that there were yield points
897          *    and some new dirty bits may have appeared (due to failed parallel
898          *    block-copy requests).
899          * 2. We have waited for some intersecting block-copy request
900          *    It may have failed and produced new dirty bits.
901          */
902     } while (ret > 0 && !qatomic_read(&call_state->cancelled));
903 
904     qatomic_store_release(&call_state->finished, true);
905 
906     if (call_state->cb) {
907         call_state->cb(call_state->cb_opaque);
908     }
909 
910     qemu_co_mutex_lock(&s->lock);
911     QLIST_REMOVE(call_state, list);
912     qemu_co_mutex_unlock(&s->lock);
913 
914     return ret;
915 }
916 
917 static void coroutine_fn block_copy_async_co_entry(void *opaque)
918 {
919     GRAPH_RDLOCK_GUARD();
920     block_copy_common(opaque);
921 }
922 
923 int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
924                             bool ignore_ratelimit, uint64_t timeout_ns,
925                             BlockCopyAsyncCallbackFunc cb,
926                             void *cb_opaque)
927 {
928     int ret;
929     BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
930 
931     *call_state = (BlockCopyCallState) {
932         .s = s,
933         .offset = start,
934         .bytes = bytes,
935         .ignore_ratelimit = ignore_ratelimit,
936         .max_workers = BLOCK_COPY_MAX_WORKERS,
937         .cb = cb,
938         .cb_opaque = cb_opaque,
939     };
940 
941     ret = qemu_co_timeout(block_copy_async_co_entry, call_state, timeout_ns,
942                           g_free);
943     if (ret < 0) {
944         assert(ret == -ETIMEDOUT);
945         block_copy_call_cancel(call_state);
946         /* call_state will be freed by running coroutine. */
947         return ret;
948     }
949 
950     ret = call_state->ret;
951     g_free(call_state);
952 
953     return ret;
954 }
955 
956 BlockCopyCallState *block_copy_async(BlockCopyState *s,
957                                      int64_t offset, int64_t bytes,
958                                      int max_workers, int64_t max_chunk,
959                                      BlockCopyAsyncCallbackFunc cb,
960                                      void *cb_opaque)
961 {
962     BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
963 
964     *call_state = (BlockCopyCallState) {
965         .s = s,
966         .offset = offset,
967         .bytes = bytes,
968         .max_workers = max_workers,
969         .max_chunk = max_chunk,
970         .cb = cb,
971         .cb_opaque = cb_opaque,
972 
973         .co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
974     };
975 
976     qemu_coroutine_enter(call_state->co);
977 
978     return call_state;
979 }
980 
981 void block_copy_call_free(BlockCopyCallState *call_state)
982 {
983     if (!call_state) {
984         return;
985     }
986 
987     assert(qatomic_read(&call_state->finished));
988     g_free(call_state);
989 }
990 
991 bool block_copy_call_finished(BlockCopyCallState *call_state)
992 {
993     return qatomic_read(&call_state->finished);
994 }
995 
996 bool block_copy_call_succeeded(BlockCopyCallState *call_state)
997 {
998     return qatomic_load_acquire(&call_state->finished) &&
999            !qatomic_read(&call_state->cancelled) &&
1000            call_state->ret == 0;
1001 }
1002 
1003 bool block_copy_call_failed(BlockCopyCallState *call_state)
1004 {
1005     return qatomic_load_acquire(&call_state->finished) &&
1006            !qatomic_read(&call_state->cancelled) &&
1007            call_state->ret < 0;
1008 }
1009 
1010 bool block_copy_call_cancelled(BlockCopyCallState *call_state)
1011 {
1012     return qatomic_read(&call_state->cancelled);
1013 }
1014 
1015 int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
1016 {
1017     assert(qatomic_load_acquire(&call_state->finished));
1018     if (error_is_read) {
1019         *error_is_read = call_state->error_is_read;
1020     }
1021     return call_state->ret;
1022 }
1023 
1024 /*
1025  * Note that cancelling and finishing are racy.
1026  * User can cancel a block-copy that is already finished.
1027  */
1028 void block_copy_call_cancel(BlockCopyCallState *call_state)
1029 {
1030     qatomic_set(&call_state->cancelled, true);
1031     block_copy_kick(call_state);
1032 }
1033 
1034 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
1035 {
1036     return s->copy_bitmap;
1037 }
1038 
1039 int64_t block_copy_cluster_size(BlockCopyState *s)
1040 {
1041     return s->cluster_size;
1042 }
1043 
1044 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
1045 {
1046     qatomic_set(&s->skip_unallocated, skip);
1047 }
1048 
1049 void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
1050 {
1051     ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
1052 
1053     /*
1054      * Note: it's good to kick all call states from here, but it should be done
1055      * only from a coroutine, to not crash if s->calls list changed while
1056      * entering one call. So for now, the only user of this function kicks its
1057      * only one call_state by hand.
1058      */
1059 }
1060