1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor.h" 28 #include "block_int.h" 29 #include "module.h" 30 #include "qjson.h" 31 #include "qemu-coroutine.h" 32 #include "qmp-commands.h" 33 #include "qemu-timer.h" 34 35 #ifdef CONFIG_BSD 36 #include <sys/types.h> 37 #include <sys/stat.h> 38 #include <sys/ioctl.h> 39 #include <sys/queue.h> 40 #ifndef __DragonFly__ 41 #include <sys/disk.h> 42 #endif 43 #endif 44 45 #ifdef _WIN32 46 #include <windows.h> 47 #endif 48 49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 50 51 typedef enum { 52 BDRV_REQ_COPY_ON_READ = 0x1, 53 BDRV_REQ_ZERO_WRITE = 0x2, 54 } BdrvRequestFlags; 55 56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 59 BlockDriverCompletionFunc *cb, void *opaque); 60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 64 int64_t sector_num, int nb_sectors, 65 QEMUIOVector *iov); 66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 71 BdrvRequestFlags flags); 72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 76 int64_t sector_num, 77 QEMUIOVector *qiov, 78 int nb_sectors, 79 BlockDriverCompletionFunc *cb, 80 void *opaque, 81 bool is_write); 82 static void coroutine_fn bdrv_co_do_rw(void *opaque); 83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 84 int64_t sector_num, int nb_sectors); 85 86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 87 bool is_write, double elapsed_time, uint64_t *wait); 88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 89 double elapsed_time, uint64_t *wait); 90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 91 bool is_write, int64_t *wait); 92 93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 94 QTAILQ_HEAD_INITIALIZER(bdrv_states); 95 96 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 97 QLIST_HEAD_INITIALIZER(bdrv_drivers); 98 99 /* The device to use for VM snapshots */ 100 static BlockDriverState *bs_snapshots; 101 102 /* If non-zero, use only whitelisted block drivers */ 103 static int use_bdrv_whitelist; 104 105 #ifdef _WIN32 106 static int is_windows_drive_prefix(const char *filename) 107 { 108 return (((filename[0] >= 'a' && filename[0] <= 'z') || 109 (filename[0] >= 'A' && filename[0] <= 'Z')) && 110 filename[1] == ':'); 111 } 112 113 int is_windows_drive(const char *filename) 114 { 115 if (is_windows_drive_prefix(filename) && 116 filename[2] == '\0') 117 return 1; 118 if (strstart(filename, "\\\\.\\", NULL) || 119 strstart(filename, "//./", NULL)) 120 return 1; 121 return 0; 122 } 123 #endif 124 125 /* throttling disk I/O limits */ 126 void bdrv_io_limits_disable(BlockDriverState *bs) 127 { 128 bs->io_limits_enabled = false; 129 130 while (qemu_co_queue_next(&bs->throttled_reqs)); 131 132 if (bs->block_timer) { 133 qemu_del_timer(bs->block_timer); 134 qemu_free_timer(bs->block_timer); 135 bs->block_timer = NULL; 136 } 137 138 bs->slice_start = 0; 139 bs->slice_end = 0; 140 bs->slice_time = 0; 141 memset(&bs->io_base, 0, sizeof(bs->io_base)); 142 } 143 144 static void bdrv_block_timer(void *opaque) 145 { 146 BlockDriverState *bs = opaque; 147 148 qemu_co_queue_next(&bs->throttled_reqs); 149 } 150 151 void bdrv_io_limits_enable(BlockDriverState *bs) 152 { 153 qemu_co_queue_init(&bs->throttled_reqs); 154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 156 bs->slice_start = qemu_get_clock_ns(vm_clock); 157 bs->slice_end = bs->slice_start + bs->slice_time; 158 memset(&bs->io_base, 0, sizeof(bs->io_base)); 159 bs->io_limits_enabled = true; 160 } 161 162 bool bdrv_io_limits_enabled(BlockDriverState *bs) 163 { 164 BlockIOLimit *io_limits = &bs->io_limits; 165 return io_limits->bps[BLOCK_IO_LIMIT_READ] 166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 168 || io_limits->iops[BLOCK_IO_LIMIT_READ] 169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 171 } 172 173 static void bdrv_io_limits_intercept(BlockDriverState *bs, 174 bool is_write, int nb_sectors) 175 { 176 int64_t wait_time = -1; 177 178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 179 qemu_co_queue_wait(&bs->throttled_reqs); 180 } 181 182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 183 * throttled requests will not be dequeued until the current request is 184 * allowed to be serviced. So if the current request still exceeds the 185 * limits, it will be inserted to the head. All requests followed it will 186 * be still in throttled_reqs queue. 187 */ 188 189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 190 qemu_mod_timer(bs->block_timer, 191 wait_time + qemu_get_clock_ns(vm_clock)); 192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 193 } 194 195 qemu_co_queue_next(&bs->throttled_reqs); 196 } 197 198 /* check if the path starts with "<protocol>:" */ 199 static int path_has_protocol(const char *path) 200 { 201 const char *p; 202 203 #ifdef _WIN32 204 if (is_windows_drive(path) || 205 is_windows_drive_prefix(path)) { 206 return 0; 207 } 208 p = path + strcspn(path, ":/\\"); 209 #else 210 p = path + strcspn(path, ":/"); 211 #endif 212 213 return *p == ':'; 214 } 215 216 int path_is_absolute(const char *path) 217 { 218 #ifdef _WIN32 219 /* specific case for names like: "\\.\d:" */ 220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 221 return 1; 222 } 223 return (*path == '/' || *path == '\\'); 224 #else 225 return (*path == '/'); 226 #endif 227 } 228 229 /* if filename is absolute, just copy it to dest. Otherwise, build a 230 path to it by considering it is relative to base_path. URL are 231 supported. */ 232 void path_combine(char *dest, int dest_size, 233 const char *base_path, 234 const char *filename) 235 { 236 const char *p, *p1; 237 int len; 238 239 if (dest_size <= 0) 240 return; 241 if (path_is_absolute(filename)) { 242 pstrcpy(dest, dest_size, filename); 243 } else { 244 p = strchr(base_path, ':'); 245 if (p) 246 p++; 247 else 248 p = base_path; 249 p1 = strrchr(base_path, '/'); 250 #ifdef _WIN32 251 { 252 const char *p2; 253 p2 = strrchr(base_path, '\\'); 254 if (!p1 || p2 > p1) 255 p1 = p2; 256 } 257 #endif 258 if (p1) 259 p1++; 260 else 261 p1 = base_path; 262 if (p1 > p) 263 p = p1; 264 len = p - base_path; 265 if (len > dest_size - 1) 266 len = dest_size - 1; 267 memcpy(dest, base_path, len); 268 dest[len] = '\0'; 269 pstrcat(dest, dest_size, filename); 270 } 271 } 272 273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 274 { 275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 276 pstrcpy(dest, sz, bs->backing_file); 277 } else { 278 path_combine(dest, sz, bs->filename, bs->backing_file); 279 } 280 } 281 282 void bdrv_register(BlockDriver *bdrv) 283 { 284 /* Block drivers without coroutine functions need emulation */ 285 if (!bdrv->bdrv_co_readv) { 286 bdrv->bdrv_co_readv = bdrv_co_readv_em; 287 bdrv->bdrv_co_writev = bdrv_co_writev_em; 288 289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 290 * the block driver lacks aio we need to emulate that too. 291 */ 292 if (!bdrv->bdrv_aio_readv) { 293 /* add AIO emulation layer */ 294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 296 } 297 } 298 299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 300 } 301 302 /* create a new block device (by default it is empty) */ 303 BlockDriverState *bdrv_new(const char *device_name) 304 { 305 BlockDriverState *bs; 306 307 bs = g_malloc0(sizeof(BlockDriverState)); 308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 309 if (device_name[0] != '\0') { 310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 311 } 312 bdrv_iostatus_disable(bs); 313 return bs; 314 } 315 316 BlockDriver *bdrv_find_format(const char *format_name) 317 { 318 BlockDriver *drv1; 319 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 320 if (!strcmp(drv1->format_name, format_name)) { 321 return drv1; 322 } 323 } 324 return NULL; 325 } 326 327 static int bdrv_is_whitelisted(BlockDriver *drv) 328 { 329 static const char *whitelist[] = { 330 CONFIG_BDRV_WHITELIST 331 }; 332 const char **p; 333 334 if (!whitelist[0]) 335 return 1; /* no whitelist, anything goes */ 336 337 for (p = whitelist; *p; p++) { 338 if (!strcmp(drv->format_name, *p)) { 339 return 1; 340 } 341 } 342 return 0; 343 } 344 345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 346 { 347 BlockDriver *drv = bdrv_find_format(format_name); 348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 349 } 350 351 typedef struct CreateCo { 352 BlockDriver *drv; 353 char *filename; 354 QEMUOptionParameter *options; 355 int ret; 356 } CreateCo; 357 358 static void coroutine_fn bdrv_create_co_entry(void *opaque) 359 { 360 CreateCo *cco = opaque; 361 assert(cco->drv); 362 363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 364 } 365 366 int bdrv_create(BlockDriver *drv, const char* filename, 367 QEMUOptionParameter *options) 368 { 369 int ret; 370 371 Coroutine *co; 372 CreateCo cco = { 373 .drv = drv, 374 .filename = g_strdup(filename), 375 .options = options, 376 .ret = NOT_DONE, 377 }; 378 379 if (!drv->bdrv_create) { 380 return -ENOTSUP; 381 } 382 383 if (qemu_in_coroutine()) { 384 /* Fast-path if already in coroutine context */ 385 bdrv_create_co_entry(&cco); 386 } else { 387 co = qemu_coroutine_create(bdrv_create_co_entry); 388 qemu_coroutine_enter(co, &cco); 389 while (cco.ret == NOT_DONE) { 390 qemu_aio_wait(); 391 } 392 } 393 394 ret = cco.ret; 395 g_free(cco.filename); 396 397 return ret; 398 } 399 400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 401 { 402 BlockDriver *drv; 403 404 drv = bdrv_find_protocol(filename); 405 if (drv == NULL) { 406 return -ENOENT; 407 } 408 409 return bdrv_create(drv, filename, options); 410 } 411 412 /* 413 * Create a uniquely-named empty temporary file. 414 * Return 0 upon success, otherwise a negative errno value. 415 */ 416 int get_tmp_filename(char *filename, int size) 417 { 418 #ifdef _WIN32 419 char temp_dir[MAX_PATH]; 420 /* GetTempFileName requires that its output buffer (4th param) 421 have length MAX_PATH or greater. */ 422 assert(size >= MAX_PATH); 423 return (GetTempPath(MAX_PATH, temp_dir) 424 && GetTempFileName(temp_dir, "qem", 0, filename) 425 ? 0 : -GetLastError()); 426 #else 427 int fd; 428 const char *tmpdir; 429 tmpdir = getenv("TMPDIR"); 430 if (!tmpdir) 431 tmpdir = "/tmp"; 432 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 433 return -EOVERFLOW; 434 } 435 fd = mkstemp(filename); 436 if (fd < 0 || close(fd)) { 437 return -errno; 438 } 439 return 0; 440 #endif 441 } 442 443 /* 444 * Detect host devices. By convention, /dev/cdrom[N] is always 445 * recognized as a host CDROM. 446 */ 447 static BlockDriver *find_hdev_driver(const char *filename) 448 { 449 int score_max = 0, score; 450 BlockDriver *drv = NULL, *d; 451 452 QLIST_FOREACH(d, &bdrv_drivers, list) { 453 if (d->bdrv_probe_device) { 454 score = d->bdrv_probe_device(filename); 455 if (score > score_max) { 456 score_max = score; 457 drv = d; 458 } 459 } 460 } 461 462 return drv; 463 } 464 465 BlockDriver *bdrv_find_protocol(const char *filename) 466 { 467 BlockDriver *drv1; 468 char protocol[128]; 469 int len; 470 const char *p; 471 472 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 473 474 /* 475 * XXX(hch): we really should not let host device detection 476 * override an explicit protocol specification, but moving this 477 * later breaks access to device names with colons in them. 478 * Thanks to the brain-dead persistent naming schemes on udev- 479 * based Linux systems those actually are quite common. 480 */ 481 drv1 = find_hdev_driver(filename); 482 if (drv1) { 483 return drv1; 484 } 485 486 if (!path_has_protocol(filename)) { 487 return bdrv_find_format("file"); 488 } 489 p = strchr(filename, ':'); 490 assert(p != NULL); 491 len = p - filename; 492 if (len > sizeof(protocol) - 1) 493 len = sizeof(protocol) - 1; 494 memcpy(protocol, filename, len); 495 protocol[len] = '\0'; 496 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 497 if (drv1->protocol_name && 498 !strcmp(drv1->protocol_name, protocol)) { 499 return drv1; 500 } 501 } 502 return NULL; 503 } 504 505 static int find_image_format(const char *filename, BlockDriver **pdrv) 506 { 507 int ret, score, score_max; 508 BlockDriver *drv1, *drv; 509 uint8_t buf[2048]; 510 BlockDriverState *bs; 511 512 ret = bdrv_file_open(&bs, filename, 0); 513 if (ret < 0) { 514 *pdrv = NULL; 515 return ret; 516 } 517 518 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 519 if (bs->sg || !bdrv_is_inserted(bs)) { 520 bdrv_delete(bs); 521 drv = bdrv_find_format("raw"); 522 if (!drv) { 523 ret = -ENOENT; 524 } 525 *pdrv = drv; 526 return ret; 527 } 528 529 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 530 bdrv_delete(bs); 531 if (ret < 0) { 532 *pdrv = NULL; 533 return ret; 534 } 535 536 score_max = 0; 537 drv = NULL; 538 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 539 if (drv1->bdrv_probe) { 540 score = drv1->bdrv_probe(buf, ret, filename); 541 if (score > score_max) { 542 score_max = score; 543 drv = drv1; 544 } 545 } 546 } 547 if (!drv) { 548 ret = -ENOENT; 549 } 550 *pdrv = drv; 551 return ret; 552 } 553 554 /** 555 * Set the current 'total_sectors' value 556 */ 557 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 558 { 559 BlockDriver *drv = bs->drv; 560 561 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 562 if (bs->sg) 563 return 0; 564 565 /* query actual device if possible, otherwise just trust the hint */ 566 if (drv->bdrv_getlength) { 567 int64_t length = drv->bdrv_getlength(bs); 568 if (length < 0) { 569 return length; 570 } 571 hint = length >> BDRV_SECTOR_BITS; 572 } 573 574 bs->total_sectors = hint; 575 return 0; 576 } 577 578 /** 579 * Set open flags for a given cache mode 580 * 581 * Return 0 on success, -1 if the cache mode was invalid. 582 */ 583 int bdrv_parse_cache_flags(const char *mode, int *flags) 584 { 585 *flags &= ~BDRV_O_CACHE_MASK; 586 587 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 588 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 589 } else if (!strcmp(mode, "directsync")) { 590 *flags |= BDRV_O_NOCACHE; 591 } else if (!strcmp(mode, "writeback")) { 592 *flags |= BDRV_O_CACHE_WB; 593 } else if (!strcmp(mode, "unsafe")) { 594 *flags |= BDRV_O_CACHE_WB; 595 *flags |= BDRV_O_NO_FLUSH; 596 } else if (!strcmp(mode, "writethrough")) { 597 /* this is the default */ 598 } else { 599 return -1; 600 } 601 602 return 0; 603 } 604 605 /** 606 * The copy-on-read flag is actually a reference count so multiple users may 607 * use the feature without worrying about clobbering its previous state. 608 * Copy-on-read stays enabled until all users have called to disable it. 609 */ 610 void bdrv_enable_copy_on_read(BlockDriverState *bs) 611 { 612 bs->copy_on_read++; 613 } 614 615 void bdrv_disable_copy_on_read(BlockDriverState *bs) 616 { 617 assert(bs->copy_on_read > 0); 618 bs->copy_on_read--; 619 } 620 621 /* 622 * Common part for opening disk images and files 623 */ 624 static int bdrv_open_common(BlockDriverState *bs, const char *filename, 625 int flags, BlockDriver *drv) 626 { 627 int ret, open_flags; 628 629 assert(drv != NULL); 630 assert(bs->file == NULL); 631 632 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 633 634 bs->open_flags = flags; 635 bs->buffer_alignment = 512; 636 637 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 638 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 639 bdrv_enable_copy_on_read(bs); 640 } 641 642 pstrcpy(bs->filename, sizeof(bs->filename), filename); 643 644 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 645 return -ENOTSUP; 646 } 647 648 bs->drv = drv; 649 bs->opaque = g_malloc0(drv->instance_size); 650 651 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 652 open_flags = flags | BDRV_O_CACHE_WB; 653 654 /* 655 * Clear flags that are internal to the block layer before opening the 656 * image. 657 */ 658 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 659 660 /* 661 * Snapshots should be writable. 662 */ 663 if (bs->is_temporary) { 664 open_flags |= BDRV_O_RDWR; 665 } 666 667 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR); 668 669 /* Open the image, either directly or using a protocol */ 670 if (drv->bdrv_file_open) { 671 ret = drv->bdrv_file_open(bs, filename, open_flags); 672 } else { 673 ret = bdrv_file_open(&bs->file, filename, open_flags); 674 if (ret >= 0) { 675 ret = drv->bdrv_open(bs, open_flags); 676 } 677 } 678 679 if (ret < 0) { 680 goto free_and_fail; 681 } 682 683 ret = refresh_total_sectors(bs, bs->total_sectors); 684 if (ret < 0) { 685 goto free_and_fail; 686 } 687 688 #ifndef _WIN32 689 if (bs->is_temporary) { 690 unlink(filename); 691 } 692 #endif 693 return 0; 694 695 free_and_fail: 696 if (bs->file) { 697 bdrv_delete(bs->file); 698 bs->file = NULL; 699 } 700 g_free(bs->opaque); 701 bs->opaque = NULL; 702 bs->drv = NULL; 703 return ret; 704 } 705 706 /* 707 * Opens a file using a protocol (file, host_device, nbd, ...) 708 */ 709 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 710 { 711 BlockDriverState *bs; 712 BlockDriver *drv; 713 int ret; 714 715 drv = bdrv_find_protocol(filename); 716 if (!drv) { 717 return -ENOENT; 718 } 719 720 bs = bdrv_new(""); 721 ret = bdrv_open_common(bs, filename, flags, drv); 722 if (ret < 0) { 723 bdrv_delete(bs); 724 return ret; 725 } 726 bs->growable = 1; 727 *pbs = bs; 728 return 0; 729 } 730 731 /* 732 * Opens a disk image (raw, qcow2, vmdk, ...) 733 */ 734 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 735 BlockDriver *drv) 736 { 737 int ret; 738 char tmp_filename[PATH_MAX]; 739 740 if (flags & BDRV_O_SNAPSHOT) { 741 BlockDriverState *bs1; 742 int64_t total_size; 743 int is_protocol = 0; 744 BlockDriver *bdrv_qcow2; 745 QEMUOptionParameter *options; 746 char backing_filename[PATH_MAX]; 747 748 /* if snapshot, we create a temporary backing file and open it 749 instead of opening 'filename' directly */ 750 751 /* if there is a backing file, use it */ 752 bs1 = bdrv_new(""); 753 ret = bdrv_open(bs1, filename, 0, drv); 754 if (ret < 0) { 755 bdrv_delete(bs1); 756 return ret; 757 } 758 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 759 760 if (bs1->drv && bs1->drv->protocol_name) 761 is_protocol = 1; 762 763 bdrv_delete(bs1); 764 765 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 766 if (ret < 0) { 767 return ret; 768 } 769 770 /* Real path is meaningless for protocols */ 771 if (is_protocol) 772 snprintf(backing_filename, sizeof(backing_filename), 773 "%s", filename); 774 else if (!realpath(filename, backing_filename)) 775 return -errno; 776 777 bdrv_qcow2 = bdrv_find_format("qcow2"); 778 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 779 780 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 781 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 782 if (drv) { 783 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 784 drv->format_name); 785 } 786 787 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 788 free_option_parameters(options); 789 if (ret < 0) { 790 return ret; 791 } 792 793 filename = tmp_filename; 794 drv = bdrv_qcow2; 795 bs->is_temporary = 1; 796 } 797 798 /* Find the right image format driver */ 799 if (!drv) { 800 ret = find_image_format(filename, &drv); 801 } 802 803 if (!drv) { 804 goto unlink_and_fail; 805 } 806 807 /* Open the image */ 808 ret = bdrv_open_common(bs, filename, flags, drv); 809 if (ret < 0) { 810 goto unlink_and_fail; 811 } 812 813 /* If there is a backing file, use it */ 814 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') { 815 char backing_filename[PATH_MAX]; 816 int back_flags; 817 BlockDriver *back_drv = NULL; 818 819 bs->backing_hd = bdrv_new(""); 820 bdrv_get_full_backing_filename(bs, backing_filename, 821 sizeof(backing_filename)); 822 823 if (bs->backing_format[0] != '\0') { 824 back_drv = bdrv_find_format(bs->backing_format); 825 } 826 827 /* backing files always opened read-only */ 828 back_flags = 829 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 830 831 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 832 if (ret < 0) { 833 bdrv_close(bs); 834 return ret; 835 } 836 if (bs->is_temporary) { 837 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR); 838 } else { 839 /* base image inherits from "parent" */ 840 bs->backing_hd->keep_read_only = bs->keep_read_only; 841 } 842 } 843 844 if (!bdrv_key_required(bs)) { 845 bdrv_dev_change_media_cb(bs, true); 846 } 847 848 /* throttling disk I/O limits */ 849 if (bs->io_limits_enabled) { 850 bdrv_io_limits_enable(bs); 851 } 852 853 return 0; 854 855 unlink_and_fail: 856 if (bs->is_temporary) { 857 unlink(filename); 858 } 859 return ret; 860 } 861 862 void bdrv_close(BlockDriverState *bs) 863 { 864 bdrv_flush(bs); 865 if (bs->drv) { 866 if (bs->job) { 867 block_job_cancel_sync(bs->job); 868 } 869 bdrv_drain_all(); 870 871 if (bs == bs_snapshots) { 872 bs_snapshots = NULL; 873 } 874 if (bs->backing_hd) { 875 bdrv_delete(bs->backing_hd); 876 bs->backing_hd = NULL; 877 } 878 bs->drv->bdrv_close(bs); 879 g_free(bs->opaque); 880 #ifdef _WIN32 881 if (bs->is_temporary) { 882 unlink(bs->filename); 883 } 884 #endif 885 bs->opaque = NULL; 886 bs->drv = NULL; 887 bs->copy_on_read = 0; 888 bs->backing_file[0] = '\0'; 889 bs->backing_format[0] = '\0'; 890 bs->total_sectors = 0; 891 bs->encrypted = 0; 892 bs->valid_key = 0; 893 bs->sg = 0; 894 bs->growable = 0; 895 896 if (bs->file != NULL) { 897 bdrv_delete(bs->file); 898 bs->file = NULL; 899 } 900 901 bdrv_dev_change_media_cb(bs, false); 902 } 903 904 /*throttling disk I/O limits*/ 905 if (bs->io_limits_enabled) { 906 bdrv_io_limits_disable(bs); 907 } 908 } 909 910 void bdrv_close_all(void) 911 { 912 BlockDriverState *bs; 913 914 QTAILQ_FOREACH(bs, &bdrv_states, list) { 915 bdrv_close(bs); 916 } 917 } 918 919 /* 920 * Wait for pending requests to complete across all BlockDriverStates 921 * 922 * This function does not flush data to disk, use bdrv_flush_all() for that 923 * after calling this function. 924 * 925 * Note that completion of an asynchronous I/O operation can trigger any 926 * number of other I/O operations on other devices---for example a coroutine 927 * can be arbitrarily complex and a constant flow of I/O can come until the 928 * coroutine is complete. Because of this, it is not possible to have a 929 * function to drain a single device's I/O queue. 930 */ 931 void bdrv_drain_all(void) 932 { 933 BlockDriverState *bs; 934 bool busy; 935 936 do { 937 busy = qemu_aio_wait(); 938 939 /* FIXME: We do not have timer support here, so this is effectively 940 * a busy wait. 941 */ 942 QTAILQ_FOREACH(bs, &bdrv_states, list) { 943 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 944 qemu_co_queue_restart_all(&bs->throttled_reqs); 945 busy = true; 946 } 947 } 948 } while (busy); 949 950 /* If requests are still pending there is a bug somewhere */ 951 QTAILQ_FOREACH(bs, &bdrv_states, list) { 952 assert(QLIST_EMPTY(&bs->tracked_requests)); 953 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 954 } 955 } 956 957 /* make a BlockDriverState anonymous by removing from bdrv_state list. 958 Also, NULL terminate the device_name to prevent double remove */ 959 void bdrv_make_anon(BlockDriverState *bs) 960 { 961 if (bs->device_name[0] != '\0') { 962 QTAILQ_REMOVE(&bdrv_states, bs, list); 963 } 964 bs->device_name[0] = '\0'; 965 } 966 967 static void bdrv_rebind(BlockDriverState *bs) 968 { 969 if (bs->drv && bs->drv->bdrv_rebind) { 970 bs->drv->bdrv_rebind(bs); 971 } 972 } 973 974 /* 975 * Add new bs contents at the top of an image chain while the chain is 976 * live, while keeping required fields on the top layer. 977 * 978 * This will modify the BlockDriverState fields, and swap contents 979 * between bs_new and bs_top. Both bs_new and bs_top are modified. 980 * 981 * bs_new is required to be anonymous. 982 * 983 * This function does not create any image files. 984 */ 985 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 986 { 987 BlockDriverState tmp; 988 989 /* bs_new must be anonymous */ 990 assert(bs_new->device_name[0] == '\0'); 991 992 tmp = *bs_new; 993 994 /* there are some fields that need to stay on the top layer: */ 995 tmp.open_flags = bs_top->open_flags; 996 997 /* dev info */ 998 tmp.dev_ops = bs_top->dev_ops; 999 tmp.dev_opaque = bs_top->dev_opaque; 1000 tmp.dev = bs_top->dev; 1001 tmp.buffer_alignment = bs_top->buffer_alignment; 1002 tmp.copy_on_read = bs_top->copy_on_read; 1003 1004 tmp.enable_write_cache = bs_top->enable_write_cache; 1005 1006 /* i/o timing parameters */ 1007 tmp.slice_time = bs_top->slice_time; 1008 tmp.slice_start = bs_top->slice_start; 1009 tmp.slice_end = bs_top->slice_end; 1010 tmp.io_limits = bs_top->io_limits; 1011 tmp.io_base = bs_top->io_base; 1012 tmp.throttled_reqs = bs_top->throttled_reqs; 1013 tmp.block_timer = bs_top->block_timer; 1014 tmp.io_limits_enabled = bs_top->io_limits_enabled; 1015 1016 /* geometry */ 1017 tmp.cyls = bs_top->cyls; 1018 tmp.heads = bs_top->heads; 1019 tmp.secs = bs_top->secs; 1020 tmp.translation = bs_top->translation; 1021 1022 /* r/w error */ 1023 tmp.on_read_error = bs_top->on_read_error; 1024 tmp.on_write_error = bs_top->on_write_error; 1025 1026 /* i/o status */ 1027 tmp.iostatus_enabled = bs_top->iostatus_enabled; 1028 tmp.iostatus = bs_top->iostatus; 1029 1030 /* keep the same entry in bdrv_states */ 1031 pstrcpy(tmp.device_name, sizeof(tmp.device_name), bs_top->device_name); 1032 tmp.list = bs_top->list; 1033 1034 /* The contents of 'tmp' will become bs_top, as we are 1035 * swapping bs_new and bs_top contents. */ 1036 tmp.backing_hd = bs_new; 1037 pstrcpy(tmp.backing_file, sizeof(tmp.backing_file), bs_top->filename); 1038 pstrcpy(tmp.backing_format, sizeof(tmp.backing_format), 1039 bs_top->drv ? bs_top->drv->format_name : ""); 1040 1041 /* swap contents of the fixed new bs and the current top */ 1042 *bs_new = *bs_top; 1043 *bs_top = tmp; 1044 1045 /* device_name[] was carried over from the old bs_top. bs_new 1046 * shouldn't be in bdrv_states, so we need to make device_name[] 1047 * reflect the anonymity of bs_new 1048 */ 1049 bs_new->device_name[0] = '\0'; 1050 1051 /* clear the copied fields in the new backing file */ 1052 bdrv_detach_dev(bs_new, bs_new->dev); 1053 1054 qemu_co_queue_init(&bs_new->throttled_reqs); 1055 memset(&bs_new->io_base, 0, sizeof(bs_new->io_base)); 1056 memset(&bs_new->io_limits, 0, sizeof(bs_new->io_limits)); 1057 bdrv_iostatus_disable(bs_new); 1058 1059 /* we don't use bdrv_io_limits_disable() for this, because we don't want 1060 * to affect or delete the block_timer, as it has been moved to bs_top */ 1061 bs_new->io_limits_enabled = false; 1062 bs_new->block_timer = NULL; 1063 bs_new->slice_time = 0; 1064 bs_new->slice_start = 0; 1065 bs_new->slice_end = 0; 1066 1067 bdrv_rebind(bs_new); 1068 bdrv_rebind(bs_top); 1069 } 1070 1071 void bdrv_delete(BlockDriverState *bs) 1072 { 1073 assert(!bs->dev); 1074 assert(!bs->job); 1075 assert(!bs->in_use); 1076 1077 /* remove from list, if necessary */ 1078 bdrv_make_anon(bs); 1079 1080 bdrv_close(bs); 1081 1082 assert(bs != bs_snapshots); 1083 g_free(bs); 1084 } 1085 1086 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1087 /* TODO change to DeviceState *dev when all users are qdevified */ 1088 { 1089 if (bs->dev) { 1090 return -EBUSY; 1091 } 1092 bs->dev = dev; 1093 bdrv_iostatus_reset(bs); 1094 return 0; 1095 } 1096 1097 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1098 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1099 { 1100 if (bdrv_attach_dev(bs, dev) < 0) { 1101 abort(); 1102 } 1103 } 1104 1105 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1106 /* TODO change to DeviceState *dev when all users are qdevified */ 1107 { 1108 assert(bs->dev == dev); 1109 bs->dev = NULL; 1110 bs->dev_ops = NULL; 1111 bs->dev_opaque = NULL; 1112 bs->buffer_alignment = 512; 1113 } 1114 1115 /* TODO change to return DeviceState * when all users are qdevified */ 1116 void *bdrv_get_attached_dev(BlockDriverState *bs) 1117 { 1118 return bs->dev; 1119 } 1120 1121 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1122 void *opaque) 1123 { 1124 bs->dev_ops = ops; 1125 bs->dev_opaque = opaque; 1126 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1127 bs_snapshots = NULL; 1128 } 1129 } 1130 1131 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1132 BlockQMPEventAction action, int is_read) 1133 { 1134 QObject *data; 1135 const char *action_str; 1136 1137 switch (action) { 1138 case BDRV_ACTION_REPORT: 1139 action_str = "report"; 1140 break; 1141 case BDRV_ACTION_IGNORE: 1142 action_str = "ignore"; 1143 break; 1144 case BDRV_ACTION_STOP: 1145 action_str = "stop"; 1146 break; 1147 default: 1148 abort(); 1149 } 1150 1151 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1152 bdrv->device_name, 1153 action_str, 1154 is_read ? "read" : "write"); 1155 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data); 1156 1157 qobject_decref(data); 1158 } 1159 1160 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1161 { 1162 QObject *data; 1163 1164 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1165 bdrv_get_device_name(bs), ejected); 1166 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1167 1168 qobject_decref(data); 1169 } 1170 1171 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1172 { 1173 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1174 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1175 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1176 if (tray_was_closed) { 1177 /* tray open */ 1178 bdrv_emit_qmp_eject_event(bs, true); 1179 } 1180 if (load) { 1181 /* tray close */ 1182 bdrv_emit_qmp_eject_event(bs, false); 1183 } 1184 } 1185 } 1186 1187 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1188 { 1189 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1190 } 1191 1192 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1193 { 1194 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1195 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1196 } 1197 } 1198 1199 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1200 { 1201 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1202 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1203 } 1204 return false; 1205 } 1206 1207 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1208 { 1209 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1210 bs->dev_ops->resize_cb(bs->dev_opaque); 1211 } 1212 } 1213 1214 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1215 { 1216 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1217 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1218 } 1219 return false; 1220 } 1221 1222 /* 1223 * Run consistency checks on an image 1224 * 1225 * Returns 0 if the check could be completed (it doesn't mean that the image is 1226 * free of errors) or -errno when an internal error occurred. The results of the 1227 * check are stored in res. 1228 */ 1229 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1230 { 1231 if (bs->drv->bdrv_check == NULL) { 1232 return -ENOTSUP; 1233 } 1234 1235 memset(res, 0, sizeof(*res)); 1236 return bs->drv->bdrv_check(bs, res, fix); 1237 } 1238 1239 #define COMMIT_BUF_SECTORS 2048 1240 1241 /* commit COW file into the raw image */ 1242 int bdrv_commit(BlockDriverState *bs) 1243 { 1244 BlockDriver *drv = bs->drv; 1245 BlockDriver *backing_drv; 1246 int64_t sector, total_sectors; 1247 int n, ro, open_flags; 1248 int ret = 0, rw_ret = 0; 1249 uint8_t *buf; 1250 char filename[1024]; 1251 BlockDriverState *bs_rw, *bs_ro; 1252 1253 if (!drv) 1254 return -ENOMEDIUM; 1255 1256 if (!bs->backing_hd) { 1257 return -ENOTSUP; 1258 } 1259 1260 if (bs->backing_hd->keep_read_only) { 1261 return -EACCES; 1262 } 1263 1264 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1265 return -EBUSY; 1266 } 1267 1268 backing_drv = bs->backing_hd->drv; 1269 ro = bs->backing_hd->read_only; 1270 strncpy(filename, bs->backing_hd->filename, sizeof(filename)); 1271 open_flags = bs->backing_hd->open_flags; 1272 1273 if (ro) { 1274 /* re-open as RW */ 1275 bdrv_delete(bs->backing_hd); 1276 bs->backing_hd = NULL; 1277 bs_rw = bdrv_new(""); 1278 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR, 1279 backing_drv); 1280 if (rw_ret < 0) { 1281 bdrv_delete(bs_rw); 1282 /* try to re-open read-only */ 1283 bs_ro = bdrv_new(""); 1284 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR, 1285 backing_drv); 1286 if (ret < 0) { 1287 bdrv_delete(bs_ro); 1288 /* drive not functional anymore */ 1289 bs->drv = NULL; 1290 return ret; 1291 } 1292 bs->backing_hd = bs_ro; 1293 return rw_ret; 1294 } 1295 bs->backing_hd = bs_rw; 1296 } 1297 1298 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1299 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1300 1301 for (sector = 0; sector < total_sectors; sector += n) { 1302 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1303 1304 if (bdrv_read(bs, sector, buf, n) != 0) { 1305 ret = -EIO; 1306 goto ro_cleanup; 1307 } 1308 1309 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1310 ret = -EIO; 1311 goto ro_cleanup; 1312 } 1313 } 1314 } 1315 1316 if (drv->bdrv_make_empty) { 1317 ret = drv->bdrv_make_empty(bs); 1318 bdrv_flush(bs); 1319 } 1320 1321 /* 1322 * Make sure all data we wrote to the backing device is actually 1323 * stable on disk. 1324 */ 1325 if (bs->backing_hd) 1326 bdrv_flush(bs->backing_hd); 1327 1328 ro_cleanup: 1329 g_free(buf); 1330 1331 if (ro) { 1332 /* re-open as RO */ 1333 bdrv_delete(bs->backing_hd); 1334 bs->backing_hd = NULL; 1335 bs_ro = bdrv_new(""); 1336 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR, 1337 backing_drv); 1338 if (ret < 0) { 1339 bdrv_delete(bs_ro); 1340 /* drive not functional anymore */ 1341 bs->drv = NULL; 1342 return ret; 1343 } 1344 bs->backing_hd = bs_ro; 1345 bs->backing_hd->keep_read_only = 0; 1346 } 1347 1348 return ret; 1349 } 1350 1351 int bdrv_commit_all(void) 1352 { 1353 BlockDriverState *bs; 1354 1355 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1356 int ret = bdrv_commit(bs); 1357 if (ret < 0) { 1358 return ret; 1359 } 1360 } 1361 return 0; 1362 } 1363 1364 struct BdrvTrackedRequest { 1365 BlockDriverState *bs; 1366 int64_t sector_num; 1367 int nb_sectors; 1368 bool is_write; 1369 QLIST_ENTRY(BdrvTrackedRequest) list; 1370 Coroutine *co; /* owner, used for deadlock detection */ 1371 CoQueue wait_queue; /* coroutines blocked on this request */ 1372 }; 1373 1374 /** 1375 * Remove an active request from the tracked requests list 1376 * 1377 * This function should be called when a tracked request is completing. 1378 */ 1379 static void tracked_request_end(BdrvTrackedRequest *req) 1380 { 1381 QLIST_REMOVE(req, list); 1382 qemu_co_queue_restart_all(&req->wait_queue); 1383 } 1384 1385 /** 1386 * Add an active request to the tracked requests list 1387 */ 1388 static void tracked_request_begin(BdrvTrackedRequest *req, 1389 BlockDriverState *bs, 1390 int64_t sector_num, 1391 int nb_sectors, bool is_write) 1392 { 1393 *req = (BdrvTrackedRequest){ 1394 .bs = bs, 1395 .sector_num = sector_num, 1396 .nb_sectors = nb_sectors, 1397 .is_write = is_write, 1398 .co = qemu_coroutine_self(), 1399 }; 1400 1401 qemu_co_queue_init(&req->wait_queue); 1402 1403 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1404 } 1405 1406 /** 1407 * Round a region to cluster boundaries 1408 */ 1409 static void round_to_clusters(BlockDriverState *bs, 1410 int64_t sector_num, int nb_sectors, 1411 int64_t *cluster_sector_num, 1412 int *cluster_nb_sectors) 1413 { 1414 BlockDriverInfo bdi; 1415 1416 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1417 *cluster_sector_num = sector_num; 1418 *cluster_nb_sectors = nb_sectors; 1419 } else { 1420 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1421 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1422 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1423 nb_sectors, c); 1424 } 1425 } 1426 1427 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1428 int64_t sector_num, int nb_sectors) { 1429 /* aaaa bbbb */ 1430 if (sector_num >= req->sector_num + req->nb_sectors) { 1431 return false; 1432 } 1433 /* bbbb aaaa */ 1434 if (req->sector_num >= sector_num + nb_sectors) { 1435 return false; 1436 } 1437 return true; 1438 } 1439 1440 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1441 int64_t sector_num, int nb_sectors) 1442 { 1443 BdrvTrackedRequest *req; 1444 int64_t cluster_sector_num; 1445 int cluster_nb_sectors; 1446 bool retry; 1447 1448 /* If we touch the same cluster it counts as an overlap. This guarantees 1449 * that allocating writes will be serialized and not race with each other 1450 * for the same cluster. For example, in copy-on-read it ensures that the 1451 * CoR read and write operations are atomic and guest writes cannot 1452 * interleave between them. 1453 */ 1454 round_to_clusters(bs, sector_num, nb_sectors, 1455 &cluster_sector_num, &cluster_nb_sectors); 1456 1457 do { 1458 retry = false; 1459 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1460 if (tracked_request_overlaps(req, cluster_sector_num, 1461 cluster_nb_sectors)) { 1462 /* Hitting this means there was a reentrant request, for 1463 * example, a block driver issuing nested requests. This must 1464 * never happen since it means deadlock. 1465 */ 1466 assert(qemu_coroutine_self() != req->co); 1467 1468 qemu_co_queue_wait(&req->wait_queue); 1469 retry = true; 1470 break; 1471 } 1472 } 1473 } while (retry); 1474 } 1475 1476 /* 1477 * Return values: 1478 * 0 - success 1479 * -EINVAL - backing format specified, but no file 1480 * -ENOSPC - can't update the backing file because no space is left in the 1481 * image file header 1482 * -ENOTSUP - format driver doesn't support changing the backing file 1483 */ 1484 int bdrv_change_backing_file(BlockDriverState *bs, 1485 const char *backing_file, const char *backing_fmt) 1486 { 1487 BlockDriver *drv = bs->drv; 1488 int ret; 1489 1490 /* Backing file format doesn't make sense without a backing file */ 1491 if (backing_fmt && !backing_file) { 1492 return -EINVAL; 1493 } 1494 1495 if (drv->bdrv_change_backing_file != NULL) { 1496 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1497 } else { 1498 ret = -ENOTSUP; 1499 } 1500 1501 if (ret == 0) { 1502 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1503 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1504 } 1505 return ret; 1506 } 1507 1508 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1509 size_t size) 1510 { 1511 int64_t len; 1512 1513 if (!bdrv_is_inserted(bs)) 1514 return -ENOMEDIUM; 1515 1516 if (bs->growable) 1517 return 0; 1518 1519 len = bdrv_getlength(bs); 1520 1521 if (offset < 0) 1522 return -EIO; 1523 1524 if ((offset > len) || (len - offset < size)) 1525 return -EIO; 1526 1527 return 0; 1528 } 1529 1530 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1531 int nb_sectors) 1532 { 1533 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1534 nb_sectors * BDRV_SECTOR_SIZE); 1535 } 1536 1537 typedef struct RwCo { 1538 BlockDriverState *bs; 1539 int64_t sector_num; 1540 int nb_sectors; 1541 QEMUIOVector *qiov; 1542 bool is_write; 1543 int ret; 1544 } RwCo; 1545 1546 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1547 { 1548 RwCo *rwco = opaque; 1549 1550 if (!rwco->is_write) { 1551 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1552 rwco->nb_sectors, rwco->qiov, 0); 1553 } else { 1554 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1555 rwco->nb_sectors, rwco->qiov, 0); 1556 } 1557 } 1558 1559 /* 1560 * Process a synchronous request using coroutines 1561 */ 1562 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1563 int nb_sectors, bool is_write) 1564 { 1565 QEMUIOVector qiov; 1566 struct iovec iov = { 1567 .iov_base = (void *)buf, 1568 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1569 }; 1570 Coroutine *co; 1571 RwCo rwco = { 1572 .bs = bs, 1573 .sector_num = sector_num, 1574 .nb_sectors = nb_sectors, 1575 .qiov = &qiov, 1576 .is_write = is_write, 1577 .ret = NOT_DONE, 1578 }; 1579 1580 qemu_iovec_init_external(&qiov, &iov, 1); 1581 1582 /** 1583 * In sync call context, when the vcpu is blocked, this throttling timer 1584 * will not fire; so the I/O throttling function has to be disabled here 1585 * if it has been enabled. 1586 */ 1587 if (bs->io_limits_enabled) { 1588 fprintf(stderr, "Disabling I/O throttling on '%s' due " 1589 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 1590 bdrv_io_limits_disable(bs); 1591 } 1592 1593 if (qemu_in_coroutine()) { 1594 /* Fast-path if already in coroutine context */ 1595 bdrv_rw_co_entry(&rwco); 1596 } else { 1597 co = qemu_coroutine_create(bdrv_rw_co_entry); 1598 qemu_coroutine_enter(co, &rwco); 1599 while (rwco.ret == NOT_DONE) { 1600 qemu_aio_wait(); 1601 } 1602 } 1603 return rwco.ret; 1604 } 1605 1606 /* return < 0 if error. See bdrv_write() for the return codes */ 1607 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 1608 uint8_t *buf, int nb_sectors) 1609 { 1610 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 1611 } 1612 1613 #define BITS_PER_LONG (sizeof(unsigned long) * 8) 1614 1615 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num, 1616 int nb_sectors, int dirty) 1617 { 1618 int64_t start, end; 1619 unsigned long val, idx, bit; 1620 1621 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK; 1622 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK; 1623 1624 for (; start <= end; start++) { 1625 idx = start / BITS_PER_LONG; 1626 bit = start % BITS_PER_LONG; 1627 val = bs->dirty_bitmap[idx]; 1628 if (dirty) { 1629 if (!(val & (1UL << bit))) { 1630 bs->dirty_count++; 1631 val |= 1UL << bit; 1632 } 1633 } else { 1634 if (val & (1UL << bit)) { 1635 bs->dirty_count--; 1636 val &= ~(1UL << bit); 1637 } 1638 } 1639 bs->dirty_bitmap[idx] = val; 1640 } 1641 } 1642 1643 /* Return < 0 if error. Important errors are: 1644 -EIO generic I/O error (may happen for all errors) 1645 -ENOMEDIUM No media inserted. 1646 -EINVAL Invalid sector number or nb_sectors 1647 -EACCES Trying to write a read-only device 1648 */ 1649 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 1650 const uint8_t *buf, int nb_sectors) 1651 { 1652 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 1653 } 1654 1655 int bdrv_pread(BlockDriverState *bs, int64_t offset, 1656 void *buf, int count1) 1657 { 1658 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 1659 int len, nb_sectors, count; 1660 int64_t sector_num; 1661 int ret; 1662 1663 count = count1; 1664 /* first read to align to sector start */ 1665 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 1666 if (len > count) 1667 len = count; 1668 sector_num = offset >> BDRV_SECTOR_BITS; 1669 if (len > 0) { 1670 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1671 return ret; 1672 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 1673 count -= len; 1674 if (count == 0) 1675 return count1; 1676 sector_num++; 1677 buf += len; 1678 } 1679 1680 /* read the sectors "in place" */ 1681 nb_sectors = count >> BDRV_SECTOR_BITS; 1682 if (nb_sectors > 0) { 1683 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 1684 return ret; 1685 sector_num += nb_sectors; 1686 len = nb_sectors << BDRV_SECTOR_BITS; 1687 buf += len; 1688 count -= len; 1689 } 1690 1691 /* add data from the last sector */ 1692 if (count > 0) { 1693 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1694 return ret; 1695 memcpy(buf, tmp_buf, count); 1696 } 1697 return count1; 1698 } 1699 1700 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 1701 const void *buf, int count1) 1702 { 1703 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 1704 int len, nb_sectors, count; 1705 int64_t sector_num; 1706 int ret; 1707 1708 count = count1; 1709 /* first write to align to sector start */ 1710 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 1711 if (len > count) 1712 len = count; 1713 sector_num = offset >> BDRV_SECTOR_BITS; 1714 if (len > 0) { 1715 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1716 return ret; 1717 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 1718 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 1719 return ret; 1720 count -= len; 1721 if (count == 0) 1722 return count1; 1723 sector_num++; 1724 buf += len; 1725 } 1726 1727 /* write the sectors "in place" */ 1728 nb_sectors = count >> BDRV_SECTOR_BITS; 1729 if (nb_sectors > 0) { 1730 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 1731 return ret; 1732 sector_num += nb_sectors; 1733 len = nb_sectors << BDRV_SECTOR_BITS; 1734 buf += len; 1735 count -= len; 1736 } 1737 1738 /* add data from the last sector */ 1739 if (count > 0) { 1740 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1741 return ret; 1742 memcpy(tmp_buf, buf, count); 1743 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 1744 return ret; 1745 } 1746 return count1; 1747 } 1748 1749 /* 1750 * Writes to the file and ensures that no writes are reordered across this 1751 * request (acts as a barrier) 1752 * 1753 * Returns 0 on success, -errno in error cases. 1754 */ 1755 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 1756 const void *buf, int count) 1757 { 1758 int ret; 1759 1760 ret = bdrv_pwrite(bs, offset, buf, count); 1761 if (ret < 0) { 1762 return ret; 1763 } 1764 1765 /* No flush needed for cache modes that already do it */ 1766 if (bs->enable_write_cache) { 1767 bdrv_flush(bs); 1768 } 1769 1770 return 0; 1771 } 1772 1773 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 1774 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1775 { 1776 /* Perform I/O through a temporary buffer so that users who scribble over 1777 * their read buffer while the operation is in progress do not end up 1778 * modifying the image file. This is critical for zero-copy guest I/O 1779 * where anything might happen inside guest memory. 1780 */ 1781 void *bounce_buffer; 1782 1783 BlockDriver *drv = bs->drv; 1784 struct iovec iov; 1785 QEMUIOVector bounce_qiov; 1786 int64_t cluster_sector_num; 1787 int cluster_nb_sectors; 1788 size_t skip_bytes; 1789 int ret; 1790 1791 /* Cover entire cluster so no additional backing file I/O is required when 1792 * allocating cluster in the image file. 1793 */ 1794 round_to_clusters(bs, sector_num, nb_sectors, 1795 &cluster_sector_num, &cluster_nb_sectors); 1796 1797 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 1798 cluster_sector_num, cluster_nb_sectors); 1799 1800 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 1801 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 1802 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 1803 1804 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 1805 &bounce_qiov); 1806 if (ret < 0) { 1807 goto err; 1808 } 1809 1810 if (drv->bdrv_co_write_zeroes && 1811 buffer_is_zero(bounce_buffer, iov.iov_len)) { 1812 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 1813 cluster_nb_sectors); 1814 } else { 1815 /* This does not change the data on the disk, it is not necessary 1816 * to flush even in cache=writethrough mode. 1817 */ 1818 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 1819 &bounce_qiov); 1820 } 1821 1822 if (ret < 0) { 1823 /* It might be okay to ignore write errors for guest requests. If this 1824 * is a deliberate copy-on-read then we don't want to ignore the error. 1825 * Simply report it in all cases. 1826 */ 1827 goto err; 1828 } 1829 1830 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 1831 qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes, 1832 nb_sectors * BDRV_SECTOR_SIZE); 1833 1834 err: 1835 qemu_vfree(bounce_buffer); 1836 return ret; 1837 } 1838 1839 /* 1840 * Handle a read request in coroutine context 1841 */ 1842 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 1843 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1844 BdrvRequestFlags flags) 1845 { 1846 BlockDriver *drv = bs->drv; 1847 BdrvTrackedRequest req; 1848 int ret; 1849 1850 if (!drv) { 1851 return -ENOMEDIUM; 1852 } 1853 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 1854 return -EIO; 1855 } 1856 1857 /* throttling disk read I/O */ 1858 if (bs->io_limits_enabled) { 1859 bdrv_io_limits_intercept(bs, false, nb_sectors); 1860 } 1861 1862 if (bs->copy_on_read) { 1863 flags |= BDRV_REQ_COPY_ON_READ; 1864 } 1865 if (flags & BDRV_REQ_COPY_ON_READ) { 1866 bs->copy_on_read_in_flight++; 1867 } 1868 1869 if (bs->copy_on_read_in_flight) { 1870 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 1871 } 1872 1873 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 1874 1875 if (flags & BDRV_REQ_COPY_ON_READ) { 1876 int pnum; 1877 1878 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 1879 if (ret < 0) { 1880 goto out; 1881 } 1882 1883 if (!ret || pnum != nb_sectors) { 1884 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 1885 goto out; 1886 } 1887 } 1888 1889 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1890 1891 out: 1892 tracked_request_end(&req); 1893 1894 if (flags & BDRV_REQ_COPY_ON_READ) { 1895 bs->copy_on_read_in_flight--; 1896 } 1897 1898 return ret; 1899 } 1900 1901 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 1902 int nb_sectors, QEMUIOVector *qiov) 1903 { 1904 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 1905 1906 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 1907 } 1908 1909 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 1910 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1911 { 1912 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 1913 1914 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 1915 BDRV_REQ_COPY_ON_READ); 1916 } 1917 1918 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 1919 int64_t sector_num, int nb_sectors) 1920 { 1921 BlockDriver *drv = bs->drv; 1922 QEMUIOVector qiov; 1923 struct iovec iov; 1924 int ret; 1925 1926 /* TODO Emulate only part of misaligned requests instead of letting block 1927 * drivers return -ENOTSUP and emulate everything */ 1928 1929 /* First try the efficient write zeroes operation */ 1930 if (drv->bdrv_co_write_zeroes) { 1931 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 1932 if (ret != -ENOTSUP) { 1933 return ret; 1934 } 1935 } 1936 1937 /* Fall back to bounce buffer if write zeroes is unsupported */ 1938 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 1939 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 1940 memset(iov.iov_base, 0, iov.iov_len); 1941 qemu_iovec_init_external(&qiov, &iov, 1); 1942 1943 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 1944 1945 qemu_vfree(iov.iov_base); 1946 return ret; 1947 } 1948 1949 /* 1950 * Handle a write request in coroutine context 1951 */ 1952 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 1953 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1954 BdrvRequestFlags flags) 1955 { 1956 BlockDriver *drv = bs->drv; 1957 BdrvTrackedRequest req; 1958 int ret; 1959 1960 if (!bs->drv) { 1961 return -ENOMEDIUM; 1962 } 1963 if (bs->read_only) { 1964 return -EACCES; 1965 } 1966 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 1967 return -EIO; 1968 } 1969 1970 /* throttling disk write I/O */ 1971 if (bs->io_limits_enabled) { 1972 bdrv_io_limits_intercept(bs, true, nb_sectors); 1973 } 1974 1975 if (bs->copy_on_read_in_flight) { 1976 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 1977 } 1978 1979 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 1980 1981 if (flags & BDRV_REQ_ZERO_WRITE) { 1982 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 1983 } else { 1984 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 1985 } 1986 1987 if (ret == 0 && !bs->enable_write_cache) { 1988 ret = bdrv_co_flush(bs); 1989 } 1990 1991 if (bs->dirty_bitmap) { 1992 set_dirty_bitmap(bs, sector_num, nb_sectors, 1); 1993 } 1994 1995 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 1996 bs->wr_highest_sector = sector_num + nb_sectors - 1; 1997 } 1998 1999 tracked_request_end(&req); 2000 2001 return ret; 2002 } 2003 2004 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2005 int nb_sectors, QEMUIOVector *qiov) 2006 { 2007 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2008 2009 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2010 } 2011 2012 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2013 int64_t sector_num, int nb_sectors) 2014 { 2015 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2016 2017 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2018 BDRV_REQ_ZERO_WRITE); 2019 } 2020 2021 /** 2022 * Truncate file to 'offset' bytes (needed only for file protocols) 2023 */ 2024 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2025 { 2026 BlockDriver *drv = bs->drv; 2027 int ret; 2028 if (!drv) 2029 return -ENOMEDIUM; 2030 if (!drv->bdrv_truncate) 2031 return -ENOTSUP; 2032 if (bs->read_only) 2033 return -EACCES; 2034 if (bdrv_in_use(bs)) 2035 return -EBUSY; 2036 ret = drv->bdrv_truncate(bs, offset); 2037 if (ret == 0) { 2038 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2039 bdrv_dev_resize_cb(bs); 2040 } 2041 return ret; 2042 } 2043 2044 /** 2045 * Length of a allocated file in bytes. Sparse files are counted by actual 2046 * allocated space. Return < 0 if error or unknown. 2047 */ 2048 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2049 { 2050 BlockDriver *drv = bs->drv; 2051 if (!drv) { 2052 return -ENOMEDIUM; 2053 } 2054 if (drv->bdrv_get_allocated_file_size) { 2055 return drv->bdrv_get_allocated_file_size(bs); 2056 } 2057 if (bs->file) { 2058 return bdrv_get_allocated_file_size(bs->file); 2059 } 2060 return -ENOTSUP; 2061 } 2062 2063 /** 2064 * Length of a file in bytes. Return < 0 if error or unknown. 2065 */ 2066 int64_t bdrv_getlength(BlockDriverState *bs) 2067 { 2068 BlockDriver *drv = bs->drv; 2069 if (!drv) 2070 return -ENOMEDIUM; 2071 2072 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2073 if (drv->bdrv_getlength) { 2074 return drv->bdrv_getlength(bs); 2075 } 2076 } 2077 return bs->total_sectors * BDRV_SECTOR_SIZE; 2078 } 2079 2080 /* return 0 as number of sectors if no device present or error */ 2081 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2082 { 2083 int64_t length; 2084 length = bdrv_getlength(bs); 2085 if (length < 0) 2086 length = 0; 2087 else 2088 length = length >> BDRV_SECTOR_BITS; 2089 *nb_sectors_ptr = length; 2090 } 2091 2092 struct partition { 2093 uint8_t boot_ind; /* 0x80 - active */ 2094 uint8_t head; /* starting head */ 2095 uint8_t sector; /* starting sector */ 2096 uint8_t cyl; /* starting cylinder */ 2097 uint8_t sys_ind; /* What partition type */ 2098 uint8_t end_head; /* end head */ 2099 uint8_t end_sector; /* end sector */ 2100 uint8_t end_cyl; /* end cylinder */ 2101 uint32_t start_sect; /* starting sector counting from 0 */ 2102 uint32_t nr_sects; /* nr of sectors in partition */ 2103 } QEMU_PACKED; 2104 2105 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */ 2106 static int guess_disk_lchs(BlockDriverState *bs, 2107 int *pcylinders, int *pheads, int *psectors) 2108 { 2109 uint8_t buf[BDRV_SECTOR_SIZE]; 2110 int ret, i, heads, sectors, cylinders; 2111 struct partition *p; 2112 uint32_t nr_sects; 2113 uint64_t nb_sectors; 2114 bool enabled; 2115 2116 bdrv_get_geometry(bs, &nb_sectors); 2117 2118 /** 2119 * The function will be invoked during startup not only in sync I/O mode, 2120 * but also in async I/O mode. So the I/O throttling function has to 2121 * be disabled temporarily here, not permanently. 2122 */ 2123 enabled = bs->io_limits_enabled; 2124 bs->io_limits_enabled = false; 2125 ret = bdrv_read(bs, 0, buf, 1); 2126 bs->io_limits_enabled = enabled; 2127 if (ret < 0) 2128 return -1; 2129 /* test msdos magic */ 2130 if (buf[510] != 0x55 || buf[511] != 0xaa) 2131 return -1; 2132 for(i = 0; i < 4; i++) { 2133 p = ((struct partition *)(buf + 0x1be)) + i; 2134 nr_sects = le32_to_cpu(p->nr_sects); 2135 if (nr_sects && p->end_head) { 2136 /* We make the assumption that the partition terminates on 2137 a cylinder boundary */ 2138 heads = p->end_head + 1; 2139 sectors = p->end_sector & 63; 2140 if (sectors == 0) 2141 continue; 2142 cylinders = nb_sectors / (heads * sectors); 2143 if (cylinders < 1 || cylinders > 16383) 2144 continue; 2145 *pheads = heads; 2146 *psectors = sectors; 2147 *pcylinders = cylinders; 2148 #if 0 2149 printf("guessed geometry: LCHS=%d %d %d\n", 2150 cylinders, heads, sectors); 2151 #endif 2152 return 0; 2153 } 2154 } 2155 return -1; 2156 } 2157 2158 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs) 2159 { 2160 int translation, lba_detected = 0; 2161 int cylinders, heads, secs; 2162 uint64_t nb_sectors; 2163 2164 /* if a geometry hint is available, use it */ 2165 bdrv_get_geometry(bs, &nb_sectors); 2166 bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs); 2167 translation = bdrv_get_translation_hint(bs); 2168 if (cylinders != 0) { 2169 *pcyls = cylinders; 2170 *pheads = heads; 2171 *psecs = secs; 2172 } else { 2173 if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) { 2174 if (heads > 16) { 2175 /* if heads > 16, it means that a BIOS LBA 2176 translation was active, so the default 2177 hardware geometry is OK */ 2178 lba_detected = 1; 2179 goto default_geometry; 2180 } else { 2181 *pcyls = cylinders; 2182 *pheads = heads; 2183 *psecs = secs; 2184 /* disable any translation to be in sync with 2185 the logical geometry */ 2186 if (translation == BIOS_ATA_TRANSLATION_AUTO) { 2187 bdrv_set_translation_hint(bs, 2188 BIOS_ATA_TRANSLATION_NONE); 2189 } 2190 } 2191 } else { 2192 default_geometry: 2193 /* if no geometry, use a standard physical disk geometry */ 2194 cylinders = nb_sectors / (16 * 63); 2195 2196 if (cylinders > 16383) 2197 cylinders = 16383; 2198 else if (cylinders < 2) 2199 cylinders = 2; 2200 *pcyls = cylinders; 2201 *pheads = 16; 2202 *psecs = 63; 2203 if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) { 2204 if ((*pcyls * *pheads) <= 131072) { 2205 bdrv_set_translation_hint(bs, 2206 BIOS_ATA_TRANSLATION_LARGE); 2207 } else { 2208 bdrv_set_translation_hint(bs, 2209 BIOS_ATA_TRANSLATION_LBA); 2210 } 2211 } 2212 } 2213 bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs); 2214 } 2215 } 2216 2217 void bdrv_set_geometry_hint(BlockDriverState *bs, 2218 int cyls, int heads, int secs) 2219 { 2220 bs->cyls = cyls; 2221 bs->heads = heads; 2222 bs->secs = secs; 2223 } 2224 2225 void bdrv_set_translation_hint(BlockDriverState *bs, int translation) 2226 { 2227 bs->translation = translation; 2228 } 2229 2230 void bdrv_get_geometry_hint(BlockDriverState *bs, 2231 int *pcyls, int *pheads, int *psecs) 2232 { 2233 *pcyls = bs->cyls; 2234 *pheads = bs->heads; 2235 *psecs = bs->secs; 2236 } 2237 2238 /* throttling disk io limits */ 2239 void bdrv_set_io_limits(BlockDriverState *bs, 2240 BlockIOLimit *io_limits) 2241 { 2242 bs->io_limits = *io_limits; 2243 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2244 } 2245 2246 /* Recognize floppy formats */ 2247 typedef struct FDFormat { 2248 FDriveType drive; 2249 uint8_t last_sect; 2250 uint8_t max_track; 2251 uint8_t max_head; 2252 FDriveRate rate; 2253 } FDFormat; 2254 2255 static const FDFormat fd_formats[] = { 2256 /* First entry is default format */ 2257 /* 1.44 MB 3"1/2 floppy disks */ 2258 { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, }, 2259 { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, }, 2260 { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, }, 2261 { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, }, 2262 { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, }, 2263 { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, }, 2264 { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, }, 2265 { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, }, 2266 /* 2.88 MB 3"1/2 floppy disks */ 2267 { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, }, 2268 { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, }, 2269 { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, }, 2270 { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, }, 2271 { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, }, 2272 /* 720 kB 3"1/2 floppy disks */ 2273 { FDRIVE_DRV_144, 9, 80, 1, FDRIVE_RATE_250K, }, 2274 { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, }, 2275 { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, }, 2276 { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, }, 2277 { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, }, 2278 { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, }, 2279 /* 1.2 MB 5"1/4 floppy disks */ 2280 { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, }, 2281 { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, }, 2282 { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, }, 2283 { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, }, 2284 { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, }, 2285 /* 720 kB 5"1/4 floppy disks */ 2286 { FDRIVE_DRV_120, 9, 80, 1, FDRIVE_RATE_250K, }, 2287 { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, }, 2288 /* 360 kB 5"1/4 floppy disks */ 2289 { FDRIVE_DRV_120, 9, 40, 1, FDRIVE_RATE_300K, }, 2290 { FDRIVE_DRV_120, 9, 40, 0, FDRIVE_RATE_300K, }, 2291 { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, }, 2292 { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, }, 2293 /* 320 kB 5"1/4 floppy disks */ 2294 { FDRIVE_DRV_120, 8, 40, 1, FDRIVE_RATE_250K, }, 2295 { FDRIVE_DRV_120, 8, 40, 0, FDRIVE_RATE_250K, }, 2296 /* 360 kB must match 5"1/4 better than 3"1/2... */ 2297 { FDRIVE_DRV_144, 9, 80, 0, FDRIVE_RATE_250K, }, 2298 /* end */ 2299 { FDRIVE_DRV_NONE, -1, -1, 0, 0, }, 2300 }; 2301 2302 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads, 2303 int *max_track, int *last_sect, 2304 FDriveType drive_in, FDriveType *drive, 2305 FDriveRate *rate) 2306 { 2307 const FDFormat *parse; 2308 uint64_t nb_sectors, size; 2309 int i, first_match, match; 2310 2311 bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect); 2312 if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) { 2313 /* User defined disk */ 2314 *rate = FDRIVE_RATE_500K; 2315 } else { 2316 bdrv_get_geometry(bs, &nb_sectors); 2317 match = -1; 2318 first_match = -1; 2319 for (i = 0; ; i++) { 2320 parse = &fd_formats[i]; 2321 if (parse->drive == FDRIVE_DRV_NONE) { 2322 break; 2323 } 2324 if (drive_in == parse->drive || 2325 drive_in == FDRIVE_DRV_NONE) { 2326 size = (parse->max_head + 1) * parse->max_track * 2327 parse->last_sect; 2328 if (nb_sectors == size) { 2329 match = i; 2330 break; 2331 } 2332 if (first_match == -1) { 2333 first_match = i; 2334 } 2335 } 2336 } 2337 if (match == -1) { 2338 if (first_match == -1) { 2339 match = 1; 2340 } else { 2341 match = first_match; 2342 } 2343 parse = &fd_formats[match]; 2344 } 2345 *nb_heads = parse->max_head + 1; 2346 *max_track = parse->max_track; 2347 *last_sect = parse->last_sect; 2348 *drive = parse->drive; 2349 *rate = parse->rate; 2350 } 2351 } 2352 2353 int bdrv_get_translation_hint(BlockDriverState *bs) 2354 { 2355 return bs->translation; 2356 } 2357 2358 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error, 2359 BlockErrorAction on_write_error) 2360 { 2361 bs->on_read_error = on_read_error; 2362 bs->on_write_error = on_write_error; 2363 } 2364 2365 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read) 2366 { 2367 return is_read ? bs->on_read_error : bs->on_write_error; 2368 } 2369 2370 int bdrv_is_read_only(BlockDriverState *bs) 2371 { 2372 return bs->read_only; 2373 } 2374 2375 int bdrv_is_sg(BlockDriverState *bs) 2376 { 2377 return bs->sg; 2378 } 2379 2380 int bdrv_enable_write_cache(BlockDriverState *bs) 2381 { 2382 return bs->enable_write_cache; 2383 } 2384 2385 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2386 { 2387 bs->enable_write_cache = wce; 2388 } 2389 2390 int bdrv_is_encrypted(BlockDriverState *bs) 2391 { 2392 if (bs->backing_hd && bs->backing_hd->encrypted) 2393 return 1; 2394 return bs->encrypted; 2395 } 2396 2397 int bdrv_key_required(BlockDriverState *bs) 2398 { 2399 BlockDriverState *backing_hd = bs->backing_hd; 2400 2401 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2402 return 1; 2403 return (bs->encrypted && !bs->valid_key); 2404 } 2405 2406 int bdrv_set_key(BlockDriverState *bs, const char *key) 2407 { 2408 int ret; 2409 if (bs->backing_hd && bs->backing_hd->encrypted) { 2410 ret = bdrv_set_key(bs->backing_hd, key); 2411 if (ret < 0) 2412 return ret; 2413 if (!bs->encrypted) 2414 return 0; 2415 } 2416 if (!bs->encrypted) { 2417 return -EINVAL; 2418 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2419 return -ENOMEDIUM; 2420 } 2421 ret = bs->drv->bdrv_set_key(bs, key); 2422 if (ret < 0) { 2423 bs->valid_key = 0; 2424 } else if (!bs->valid_key) { 2425 bs->valid_key = 1; 2426 /* call the change callback now, we skipped it on open */ 2427 bdrv_dev_change_media_cb(bs, true); 2428 } 2429 return ret; 2430 } 2431 2432 const char *bdrv_get_format_name(BlockDriverState *bs) 2433 { 2434 return bs->drv ? bs->drv->format_name : NULL; 2435 } 2436 2437 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2438 void *opaque) 2439 { 2440 BlockDriver *drv; 2441 2442 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2443 it(opaque, drv->format_name); 2444 } 2445 } 2446 2447 BlockDriverState *bdrv_find(const char *name) 2448 { 2449 BlockDriverState *bs; 2450 2451 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2452 if (!strcmp(name, bs->device_name)) { 2453 return bs; 2454 } 2455 } 2456 return NULL; 2457 } 2458 2459 BlockDriverState *bdrv_next(BlockDriverState *bs) 2460 { 2461 if (!bs) { 2462 return QTAILQ_FIRST(&bdrv_states); 2463 } 2464 return QTAILQ_NEXT(bs, list); 2465 } 2466 2467 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2468 { 2469 BlockDriverState *bs; 2470 2471 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2472 it(opaque, bs); 2473 } 2474 } 2475 2476 const char *bdrv_get_device_name(BlockDriverState *bs) 2477 { 2478 return bs->device_name; 2479 } 2480 2481 int bdrv_get_flags(BlockDriverState *bs) 2482 { 2483 return bs->open_flags; 2484 } 2485 2486 void bdrv_flush_all(void) 2487 { 2488 BlockDriverState *bs; 2489 2490 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2491 bdrv_flush(bs); 2492 } 2493 } 2494 2495 int bdrv_has_zero_init(BlockDriverState *bs) 2496 { 2497 assert(bs->drv); 2498 2499 if (bs->drv->bdrv_has_zero_init) { 2500 return bs->drv->bdrv_has_zero_init(bs); 2501 } 2502 2503 return 1; 2504 } 2505 2506 typedef struct BdrvCoIsAllocatedData { 2507 BlockDriverState *bs; 2508 int64_t sector_num; 2509 int nb_sectors; 2510 int *pnum; 2511 int ret; 2512 bool done; 2513 } BdrvCoIsAllocatedData; 2514 2515 /* 2516 * Returns true iff the specified sector is present in the disk image. Drivers 2517 * not implementing the functionality are assumed to not support backing files, 2518 * hence all their sectors are reported as allocated. 2519 * 2520 * If 'sector_num' is beyond the end of the disk image the return value is 0 2521 * and 'pnum' is set to 0. 2522 * 2523 * 'pnum' is set to the number of sectors (including and immediately following 2524 * the specified sector) that are known to be in the same 2525 * allocated/unallocated state. 2526 * 2527 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2528 * beyond the end of the disk image it will be clamped. 2529 */ 2530 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2531 int nb_sectors, int *pnum) 2532 { 2533 int64_t n; 2534 2535 if (sector_num >= bs->total_sectors) { 2536 *pnum = 0; 2537 return 0; 2538 } 2539 2540 n = bs->total_sectors - sector_num; 2541 if (n < nb_sectors) { 2542 nb_sectors = n; 2543 } 2544 2545 if (!bs->drv->bdrv_co_is_allocated) { 2546 *pnum = nb_sectors; 2547 return 1; 2548 } 2549 2550 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2551 } 2552 2553 /* Coroutine wrapper for bdrv_is_allocated() */ 2554 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2555 { 2556 BdrvCoIsAllocatedData *data = opaque; 2557 BlockDriverState *bs = data->bs; 2558 2559 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2560 data->pnum); 2561 data->done = true; 2562 } 2563 2564 /* 2565 * Synchronous wrapper around bdrv_co_is_allocated(). 2566 * 2567 * See bdrv_co_is_allocated() for details. 2568 */ 2569 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2570 int *pnum) 2571 { 2572 Coroutine *co; 2573 BdrvCoIsAllocatedData data = { 2574 .bs = bs, 2575 .sector_num = sector_num, 2576 .nb_sectors = nb_sectors, 2577 .pnum = pnum, 2578 .done = false, 2579 }; 2580 2581 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2582 qemu_coroutine_enter(co, &data); 2583 while (!data.done) { 2584 qemu_aio_wait(); 2585 } 2586 return data.ret; 2587 } 2588 2589 /* 2590 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2591 * 2592 * Return true if the given sector is allocated in any image between 2593 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2594 * sector is allocated in any image of the chain. Return false otherwise. 2595 * 2596 * 'pnum' is set to the number of sectors (including and immediately following 2597 * the specified sector) that are known to be in the same 2598 * allocated/unallocated state. 2599 * 2600 */ 2601 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2602 BlockDriverState *base, 2603 int64_t sector_num, 2604 int nb_sectors, int *pnum) 2605 { 2606 BlockDriverState *intermediate; 2607 int ret, n = nb_sectors; 2608 2609 intermediate = top; 2610 while (intermediate && intermediate != base) { 2611 int pnum_inter; 2612 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2613 &pnum_inter); 2614 if (ret < 0) { 2615 return ret; 2616 } else if (ret) { 2617 *pnum = pnum_inter; 2618 return 1; 2619 } 2620 2621 /* 2622 * [sector_num, nb_sectors] is unallocated on top but intermediate 2623 * might have 2624 * 2625 * [sector_num+x, nr_sectors] allocated. 2626 */ 2627 if (n > pnum_inter) { 2628 n = pnum_inter; 2629 } 2630 2631 intermediate = intermediate->backing_hd; 2632 } 2633 2634 *pnum = n; 2635 return 0; 2636 } 2637 2638 BlockInfoList *qmp_query_block(Error **errp) 2639 { 2640 BlockInfoList *head = NULL, *cur_item = NULL; 2641 BlockDriverState *bs; 2642 2643 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2644 BlockInfoList *info = g_malloc0(sizeof(*info)); 2645 2646 info->value = g_malloc0(sizeof(*info->value)); 2647 info->value->device = g_strdup(bs->device_name); 2648 info->value->type = g_strdup("unknown"); 2649 info->value->locked = bdrv_dev_is_medium_locked(bs); 2650 info->value->removable = bdrv_dev_has_removable_media(bs); 2651 2652 if (bdrv_dev_has_removable_media(bs)) { 2653 info->value->has_tray_open = true; 2654 info->value->tray_open = bdrv_dev_is_tray_open(bs); 2655 } 2656 2657 if (bdrv_iostatus_is_enabled(bs)) { 2658 info->value->has_io_status = true; 2659 info->value->io_status = bs->iostatus; 2660 } 2661 2662 if (bs->drv) { 2663 info->value->has_inserted = true; 2664 info->value->inserted = g_malloc0(sizeof(*info->value->inserted)); 2665 info->value->inserted->file = g_strdup(bs->filename); 2666 info->value->inserted->ro = bs->read_only; 2667 info->value->inserted->drv = g_strdup(bs->drv->format_name); 2668 info->value->inserted->encrypted = bs->encrypted; 2669 if (bs->backing_file[0]) { 2670 info->value->inserted->has_backing_file = true; 2671 info->value->inserted->backing_file = g_strdup(bs->backing_file); 2672 } 2673 2674 if (bs->io_limits_enabled) { 2675 info->value->inserted->bps = 2676 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2677 info->value->inserted->bps_rd = 2678 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2679 info->value->inserted->bps_wr = 2680 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2681 info->value->inserted->iops = 2682 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2683 info->value->inserted->iops_rd = 2684 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2685 info->value->inserted->iops_wr = 2686 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2687 } 2688 } 2689 2690 /* XXX: waiting for the qapi to support GSList */ 2691 if (!cur_item) { 2692 head = cur_item = info; 2693 } else { 2694 cur_item->next = info; 2695 cur_item = info; 2696 } 2697 } 2698 2699 return head; 2700 } 2701 2702 /* Consider exposing this as a full fledged QMP command */ 2703 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp) 2704 { 2705 BlockStats *s; 2706 2707 s = g_malloc0(sizeof(*s)); 2708 2709 if (bs->device_name[0]) { 2710 s->has_device = true; 2711 s->device = g_strdup(bs->device_name); 2712 } 2713 2714 s->stats = g_malloc0(sizeof(*s->stats)); 2715 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2716 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2717 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2718 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2719 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2720 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2721 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2722 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2723 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2724 2725 if (bs->file) { 2726 s->has_parent = true; 2727 s->parent = qmp_query_blockstat(bs->file, NULL); 2728 } 2729 2730 return s; 2731 } 2732 2733 BlockStatsList *qmp_query_blockstats(Error **errp) 2734 { 2735 BlockStatsList *head = NULL, *cur_item = NULL; 2736 BlockDriverState *bs; 2737 2738 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2739 BlockStatsList *info = g_malloc0(sizeof(*info)); 2740 info->value = qmp_query_blockstat(bs, NULL); 2741 2742 /* XXX: waiting for the qapi to support GSList */ 2743 if (!cur_item) { 2744 head = cur_item = info; 2745 } else { 2746 cur_item->next = info; 2747 cur_item = info; 2748 } 2749 } 2750 2751 return head; 2752 } 2753 2754 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 2755 { 2756 if (bs->backing_hd && bs->backing_hd->encrypted) 2757 return bs->backing_file; 2758 else if (bs->encrypted) 2759 return bs->filename; 2760 else 2761 return NULL; 2762 } 2763 2764 void bdrv_get_backing_filename(BlockDriverState *bs, 2765 char *filename, int filename_size) 2766 { 2767 pstrcpy(filename, filename_size, bs->backing_file); 2768 } 2769 2770 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 2771 const uint8_t *buf, int nb_sectors) 2772 { 2773 BlockDriver *drv = bs->drv; 2774 if (!drv) 2775 return -ENOMEDIUM; 2776 if (!drv->bdrv_write_compressed) 2777 return -ENOTSUP; 2778 if (bdrv_check_request(bs, sector_num, nb_sectors)) 2779 return -EIO; 2780 2781 if (bs->dirty_bitmap) { 2782 set_dirty_bitmap(bs, sector_num, nb_sectors, 1); 2783 } 2784 2785 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 2786 } 2787 2788 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 2789 { 2790 BlockDriver *drv = bs->drv; 2791 if (!drv) 2792 return -ENOMEDIUM; 2793 if (!drv->bdrv_get_info) 2794 return -ENOTSUP; 2795 memset(bdi, 0, sizeof(*bdi)); 2796 return drv->bdrv_get_info(bs, bdi); 2797 } 2798 2799 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2800 int64_t pos, int size) 2801 { 2802 BlockDriver *drv = bs->drv; 2803 if (!drv) 2804 return -ENOMEDIUM; 2805 if (drv->bdrv_save_vmstate) 2806 return drv->bdrv_save_vmstate(bs, buf, pos, size); 2807 if (bs->file) 2808 return bdrv_save_vmstate(bs->file, buf, pos, size); 2809 return -ENOTSUP; 2810 } 2811 2812 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2813 int64_t pos, int size) 2814 { 2815 BlockDriver *drv = bs->drv; 2816 if (!drv) 2817 return -ENOMEDIUM; 2818 if (drv->bdrv_load_vmstate) 2819 return drv->bdrv_load_vmstate(bs, buf, pos, size); 2820 if (bs->file) 2821 return bdrv_load_vmstate(bs->file, buf, pos, size); 2822 return -ENOTSUP; 2823 } 2824 2825 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 2826 { 2827 BlockDriver *drv = bs->drv; 2828 2829 if (!drv || !drv->bdrv_debug_event) { 2830 return; 2831 } 2832 2833 return drv->bdrv_debug_event(bs, event); 2834 2835 } 2836 2837 /**************************************************************/ 2838 /* handling of snapshots */ 2839 2840 int bdrv_can_snapshot(BlockDriverState *bs) 2841 { 2842 BlockDriver *drv = bs->drv; 2843 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 2844 return 0; 2845 } 2846 2847 if (!drv->bdrv_snapshot_create) { 2848 if (bs->file != NULL) { 2849 return bdrv_can_snapshot(bs->file); 2850 } 2851 return 0; 2852 } 2853 2854 return 1; 2855 } 2856 2857 int bdrv_is_snapshot(BlockDriverState *bs) 2858 { 2859 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 2860 } 2861 2862 BlockDriverState *bdrv_snapshots(void) 2863 { 2864 BlockDriverState *bs; 2865 2866 if (bs_snapshots) { 2867 return bs_snapshots; 2868 } 2869 2870 bs = NULL; 2871 while ((bs = bdrv_next(bs))) { 2872 if (bdrv_can_snapshot(bs)) { 2873 bs_snapshots = bs; 2874 return bs; 2875 } 2876 } 2877 return NULL; 2878 } 2879 2880 int bdrv_snapshot_create(BlockDriverState *bs, 2881 QEMUSnapshotInfo *sn_info) 2882 { 2883 BlockDriver *drv = bs->drv; 2884 if (!drv) 2885 return -ENOMEDIUM; 2886 if (drv->bdrv_snapshot_create) 2887 return drv->bdrv_snapshot_create(bs, sn_info); 2888 if (bs->file) 2889 return bdrv_snapshot_create(bs->file, sn_info); 2890 return -ENOTSUP; 2891 } 2892 2893 int bdrv_snapshot_goto(BlockDriverState *bs, 2894 const char *snapshot_id) 2895 { 2896 BlockDriver *drv = bs->drv; 2897 int ret, open_ret; 2898 2899 if (!drv) 2900 return -ENOMEDIUM; 2901 if (drv->bdrv_snapshot_goto) 2902 return drv->bdrv_snapshot_goto(bs, snapshot_id); 2903 2904 if (bs->file) { 2905 drv->bdrv_close(bs); 2906 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 2907 open_ret = drv->bdrv_open(bs, bs->open_flags); 2908 if (open_ret < 0) { 2909 bdrv_delete(bs->file); 2910 bs->drv = NULL; 2911 return open_ret; 2912 } 2913 return ret; 2914 } 2915 2916 return -ENOTSUP; 2917 } 2918 2919 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 2920 { 2921 BlockDriver *drv = bs->drv; 2922 if (!drv) 2923 return -ENOMEDIUM; 2924 if (drv->bdrv_snapshot_delete) 2925 return drv->bdrv_snapshot_delete(bs, snapshot_id); 2926 if (bs->file) 2927 return bdrv_snapshot_delete(bs->file, snapshot_id); 2928 return -ENOTSUP; 2929 } 2930 2931 int bdrv_snapshot_list(BlockDriverState *bs, 2932 QEMUSnapshotInfo **psn_info) 2933 { 2934 BlockDriver *drv = bs->drv; 2935 if (!drv) 2936 return -ENOMEDIUM; 2937 if (drv->bdrv_snapshot_list) 2938 return drv->bdrv_snapshot_list(bs, psn_info); 2939 if (bs->file) 2940 return bdrv_snapshot_list(bs->file, psn_info); 2941 return -ENOTSUP; 2942 } 2943 2944 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 2945 const char *snapshot_name) 2946 { 2947 BlockDriver *drv = bs->drv; 2948 if (!drv) { 2949 return -ENOMEDIUM; 2950 } 2951 if (!bs->read_only) { 2952 return -EINVAL; 2953 } 2954 if (drv->bdrv_snapshot_load_tmp) { 2955 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 2956 } 2957 return -ENOTSUP; 2958 } 2959 2960 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 2961 const char *backing_file) 2962 { 2963 if (!bs->drv) { 2964 return NULL; 2965 } 2966 2967 if (bs->backing_hd) { 2968 if (strcmp(bs->backing_file, backing_file) == 0) { 2969 return bs->backing_hd; 2970 } else { 2971 return bdrv_find_backing_image(bs->backing_hd, backing_file); 2972 } 2973 } 2974 2975 return NULL; 2976 } 2977 2978 #define NB_SUFFIXES 4 2979 2980 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 2981 { 2982 static const char suffixes[NB_SUFFIXES] = "KMGT"; 2983 int64_t base; 2984 int i; 2985 2986 if (size <= 999) { 2987 snprintf(buf, buf_size, "%" PRId64, size); 2988 } else { 2989 base = 1024; 2990 for(i = 0; i < NB_SUFFIXES; i++) { 2991 if (size < (10 * base)) { 2992 snprintf(buf, buf_size, "%0.1f%c", 2993 (double)size / base, 2994 suffixes[i]); 2995 break; 2996 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 2997 snprintf(buf, buf_size, "%" PRId64 "%c", 2998 ((size + (base >> 1)) / base), 2999 suffixes[i]); 3000 break; 3001 } 3002 base = base * 1024; 3003 } 3004 } 3005 return buf; 3006 } 3007 3008 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3009 { 3010 char buf1[128], date_buf[128], clock_buf[128]; 3011 #ifdef _WIN32 3012 struct tm *ptm; 3013 #else 3014 struct tm tm; 3015 #endif 3016 time_t ti; 3017 int64_t secs; 3018 3019 if (!sn) { 3020 snprintf(buf, buf_size, 3021 "%-10s%-20s%7s%20s%15s", 3022 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3023 } else { 3024 ti = sn->date_sec; 3025 #ifdef _WIN32 3026 ptm = localtime(&ti); 3027 strftime(date_buf, sizeof(date_buf), 3028 "%Y-%m-%d %H:%M:%S", ptm); 3029 #else 3030 localtime_r(&ti, &tm); 3031 strftime(date_buf, sizeof(date_buf), 3032 "%Y-%m-%d %H:%M:%S", &tm); 3033 #endif 3034 secs = sn->vm_clock_nsec / 1000000000; 3035 snprintf(clock_buf, sizeof(clock_buf), 3036 "%02d:%02d:%02d.%03d", 3037 (int)(secs / 3600), 3038 (int)((secs / 60) % 60), 3039 (int)(secs % 60), 3040 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3041 snprintf(buf, buf_size, 3042 "%-10s%-20s%7s%20s%15s", 3043 sn->id_str, sn->name, 3044 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3045 date_buf, 3046 clock_buf); 3047 } 3048 return buf; 3049 } 3050 3051 /**************************************************************/ 3052 /* async I/Os */ 3053 3054 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3055 QEMUIOVector *qiov, int nb_sectors, 3056 BlockDriverCompletionFunc *cb, void *opaque) 3057 { 3058 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3059 3060 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3061 cb, opaque, false); 3062 } 3063 3064 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3065 QEMUIOVector *qiov, int nb_sectors, 3066 BlockDriverCompletionFunc *cb, void *opaque) 3067 { 3068 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3069 3070 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3071 cb, opaque, true); 3072 } 3073 3074 3075 typedef struct MultiwriteCB { 3076 int error; 3077 int num_requests; 3078 int num_callbacks; 3079 struct { 3080 BlockDriverCompletionFunc *cb; 3081 void *opaque; 3082 QEMUIOVector *free_qiov; 3083 } callbacks[]; 3084 } MultiwriteCB; 3085 3086 static void multiwrite_user_cb(MultiwriteCB *mcb) 3087 { 3088 int i; 3089 3090 for (i = 0; i < mcb->num_callbacks; i++) { 3091 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3092 if (mcb->callbacks[i].free_qiov) { 3093 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3094 } 3095 g_free(mcb->callbacks[i].free_qiov); 3096 } 3097 } 3098 3099 static void multiwrite_cb(void *opaque, int ret) 3100 { 3101 MultiwriteCB *mcb = opaque; 3102 3103 trace_multiwrite_cb(mcb, ret); 3104 3105 if (ret < 0 && !mcb->error) { 3106 mcb->error = ret; 3107 } 3108 3109 mcb->num_requests--; 3110 if (mcb->num_requests == 0) { 3111 multiwrite_user_cb(mcb); 3112 g_free(mcb); 3113 } 3114 } 3115 3116 static int multiwrite_req_compare(const void *a, const void *b) 3117 { 3118 const BlockRequest *req1 = a, *req2 = b; 3119 3120 /* 3121 * Note that we can't simply subtract req2->sector from req1->sector 3122 * here as that could overflow the return value. 3123 */ 3124 if (req1->sector > req2->sector) { 3125 return 1; 3126 } else if (req1->sector < req2->sector) { 3127 return -1; 3128 } else { 3129 return 0; 3130 } 3131 } 3132 3133 /* 3134 * Takes a bunch of requests and tries to merge them. Returns the number of 3135 * requests that remain after merging. 3136 */ 3137 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3138 int num_reqs, MultiwriteCB *mcb) 3139 { 3140 int i, outidx; 3141 3142 // Sort requests by start sector 3143 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3144 3145 // Check if adjacent requests touch the same clusters. If so, combine them, 3146 // filling up gaps with zero sectors. 3147 outidx = 0; 3148 for (i = 1; i < num_reqs; i++) { 3149 int merge = 0; 3150 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3151 3152 // Handle exactly sequential writes and overlapping writes. 3153 if (reqs[i].sector <= oldreq_last) { 3154 merge = 1; 3155 } 3156 3157 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3158 merge = 0; 3159 } 3160 3161 if (merge) { 3162 size_t size; 3163 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3164 qemu_iovec_init(qiov, 3165 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3166 3167 // Add the first request to the merged one. If the requests are 3168 // overlapping, drop the last sectors of the first request. 3169 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3170 qemu_iovec_concat(qiov, reqs[outidx].qiov, size); 3171 3172 // We should need to add any zeros between the two requests 3173 assert (reqs[i].sector <= oldreq_last); 3174 3175 // Add the second request 3176 qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size); 3177 3178 reqs[outidx].nb_sectors = qiov->size >> 9; 3179 reqs[outidx].qiov = qiov; 3180 3181 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3182 } else { 3183 outidx++; 3184 reqs[outidx].sector = reqs[i].sector; 3185 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3186 reqs[outidx].qiov = reqs[i].qiov; 3187 } 3188 } 3189 3190 return outidx + 1; 3191 } 3192 3193 /* 3194 * Submit multiple AIO write requests at once. 3195 * 3196 * On success, the function returns 0 and all requests in the reqs array have 3197 * been submitted. In error case this function returns -1, and any of the 3198 * requests may or may not be submitted yet. In particular, this means that the 3199 * callback will be called for some of the requests, for others it won't. The 3200 * caller must check the error field of the BlockRequest to wait for the right 3201 * callbacks (if error != 0, no callback will be called). 3202 * 3203 * The implementation may modify the contents of the reqs array, e.g. to merge 3204 * requests. However, the fields opaque and error are left unmodified as they 3205 * are used to signal failure for a single request to the caller. 3206 */ 3207 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3208 { 3209 MultiwriteCB *mcb; 3210 int i; 3211 3212 /* don't submit writes if we don't have a medium */ 3213 if (bs->drv == NULL) { 3214 for (i = 0; i < num_reqs; i++) { 3215 reqs[i].error = -ENOMEDIUM; 3216 } 3217 return -1; 3218 } 3219 3220 if (num_reqs == 0) { 3221 return 0; 3222 } 3223 3224 // Create MultiwriteCB structure 3225 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3226 mcb->num_requests = 0; 3227 mcb->num_callbacks = num_reqs; 3228 3229 for (i = 0; i < num_reqs; i++) { 3230 mcb->callbacks[i].cb = reqs[i].cb; 3231 mcb->callbacks[i].opaque = reqs[i].opaque; 3232 } 3233 3234 // Check for mergable requests 3235 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3236 3237 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3238 3239 /* Run the aio requests. */ 3240 mcb->num_requests = num_reqs; 3241 for (i = 0; i < num_reqs; i++) { 3242 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3243 reqs[i].nb_sectors, multiwrite_cb, mcb); 3244 } 3245 3246 return 0; 3247 } 3248 3249 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3250 { 3251 acb->pool->cancel(acb); 3252 } 3253 3254 /* block I/O throttling */ 3255 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3256 bool is_write, double elapsed_time, uint64_t *wait) 3257 { 3258 uint64_t bps_limit = 0; 3259 double bytes_limit, bytes_base, bytes_res; 3260 double slice_time, wait_time; 3261 3262 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3263 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3264 } else if (bs->io_limits.bps[is_write]) { 3265 bps_limit = bs->io_limits.bps[is_write]; 3266 } else { 3267 if (wait) { 3268 *wait = 0; 3269 } 3270 3271 return false; 3272 } 3273 3274 slice_time = bs->slice_end - bs->slice_start; 3275 slice_time /= (NANOSECONDS_PER_SECOND); 3276 bytes_limit = bps_limit * slice_time; 3277 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3278 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3279 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3280 } 3281 3282 /* bytes_base: the bytes of data which have been read/written; and 3283 * it is obtained from the history statistic info. 3284 * bytes_res: the remaining bytes of data which need to be read/written. 3285 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3286 * the total time for completing reading/writting all data. 3287 */ 3288 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3289 3290 if (bytes_base + bytes_res <= bytes_limit) { 3291 if (wait) { 3292 *wait = 0; 3293 } 3294 3295 return false; 3296 } 3297 3298 /* Calc approx time to dispatch */ 3299 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3300 3301 /* When the I/O rate at runtime exceeds the limits, 3302 * bs->slice_end need to be extended in order that the current statistic 3303 * info can be kept until the timer fire, so it is increased and tuned 3304 * based on the result of experiment. 3305 */ 3306 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3307 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3308 if (wait) { 3309 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3310 } 3311 3312 return true; 3313 } 3314 3315 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3316 double elapsed_time, uint64_t *wait) 3317 { 3318 uint64_t iops_limit = 0; 3319 double ios_limit, ios_base; 3320 double slice_time, wait_time; 3321 3322 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3323 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3324 } else if (bs->io_limits.iops[is_write]) { 3325 iops_limit = bs->io_limits.iops[is_write]; 3326 } else { 3327 if (wait) { 3328 *wait = 0; 3329 } 3330 3331 return false; 3332 } 3333 3334 slice_time = bs->slice_end - bs->slice_start; 3335 slice_time /= (NANOSECONDS_PER_SECOND); 3336 ios_limit = iops_limit * slice_time; 3337 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3338 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3339 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3340 } 3341 3342 if (ios_base + 1 <= ios_limit) { 3343 if (wait) { 3344 *wait = 0; 3345 } 3346 3347 return false; 3348 } 3349 3350 /* Calc approx time to dispatch */ 3351 wait_time = (ios_base + 1) / iops_limit; 3352 if (wait_time > elapsed_time) { 3353 wait_time = wait_time - elapsed_time; 3354 } else { 3355 wait_time = 0; 3356 } 3357 3358 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3359 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3360 if (wait) { 3361 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3362 } 3363 3364 return true; 3365 } 3366 3367 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3368 bool is_write, int64_t *wait) 3369 { 3370 int64_t now, max_wait; 3371 uint64_t bps_wait = 0, iops_wait = 0; 3372 double elapsed_time; 3373 int bps_ret, iops_ret; 3374 3375 now = qemu_get_clock_ns(vm_clock); 3376 if ((bs->slice_start < now) 3377 && (bs->slice_end > now)) { 3378 bs->slice_end = now + bs->slice_time; 3379 } else { 3380 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3381 bs->slice_start = now; 3382 bs->slice_end = now + bs->slice_time; 3383 3384 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3385 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3386 3387 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3388 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3389 } 3390 3391 elapsed_time = now - bs->slice_start; 3392 elapsed_time /= (NANOSECONDS_PER_SECOND); 3393 3394 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3395 is_write, elapsed_time, &bps_wait); 3396 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3397 elapsed_time, &iops_wait); 3398 if (bps_ret || iops_ret) { 3399 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3400 if (wait) { 3401 *wait = max_wait; 3402 } 3403 3404 now = qemu_get_clock_ns(vm_clock); 3405 if (bs->slice_end < now + max_wait) { 3406 bs->slice_end = now + max_wait; 3407 } 3408 3409 return true; 3410 } 3411 3412 if (wait) { 3413 *wait = 0; 3414 } 3415 3416 return false; 3417 } 3418 3419 /**************************************************************/ 3420 /* async block device emulation */ 3421 3422 typedef struct BlockDriverAIOCBSync { 3423 BlockDriverAIOCB common; 3424 QEMUBH *bh; 3425 int ret; 3426 /* vector translation state */ 3427 QEMUIOVector *qiov; 3428 uint8_t *bounce; 3429 int is_write; 3430 } BlockDriverAIOCBSync; 3431 3432 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3433 { 3434 BlockDriverAIOCBSync *acb = 3435 container_of(blockacb, BlockDriverAIOCBSync, common); 3436 qemu_bh_delete(acb->bh); 3437 acb->bh = NULL; 3438 qemu_aio_release(acb); 3439 } 3440 3441 static AIOPool bdrv_em_aio_pool = { 3442 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3443 .cancel = bdrv_aio_cancel_em, 3444 }; 3445 3446 static void bdrv_aio_bh_cb(void *opaque) 3447 { 3448 BlockDriverAIOCBSync *acb = opaque; 3449 3450 if (!acb->is_write) 3451 qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size); 3452 qemu_vfree(acb->bounce); 3453 acb->common.cb(acb->common.opaque, acb->ret); 3454 qemu_bh_delete(acb->bh); 3455 acb->bh = NULL; 3456 qemu_aio_release(acb); 3457 } 3458 3459 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3460 int64_t sector_num, 3461 QEMUIOVector *qiov, 3462 int nb_sectors, 3463 BlockDriverCompletionFunc *cb, 3464 void *opaque, 3465 int is_write) 3466 3467 { 3468 BlockDriverAIOCBSync *acb; 3469 3470 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque); 3471 acb->is_write = is_write; 3472 acb->qiov = qiov; 3473 acb->bounce = qemu_blockalign(bs, qiov->size); 3474 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3475 3476 if (is_write) { 3477 qemu_iovec_to_buffer(acb->qiov, acb->bounce); 3478 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3479 } else { 3480 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3481 } 3482 3483 qemu_bh_schedule(acb->bh); 3484 3485 return &acb->common; 3486 } 3487 3488 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3489 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3490 BlockDriverCompletionFunc *cb, void *opaque) 3491 { 3492 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3493 } 3494 3495 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3496 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3497 BlockDriverCompletionFunc *cb, void *opaque) 3498 { 3499 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3500 } 3501 3502 3503 typedef struct BlockDriverAIOCBCoroutine { 3504 BlockDriverAIOCB common; 3505 BlockRequest req; 3506 bool is_write; 3507 QEMUBH* bh; 3508 } BlockDriverAIOCBCoroutine; 3509 3510 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3511 { 3512 qemu_aio_flush(); 3513 } 3514 3515 static AIOPool bdrv_em_co_aio_pool = { 3516 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3517 .cancel = bdrv_aio_co_cancel_em, 3518 }; 3519 3520 static void bdrv_co_em_bh(void *opaque) 3521 { 3522 BlockDriverAIOCBCoroutine *acb = opaque; 3523 3524 acb->common.cb(acb->common.opaque, acb->req.error); 3525 qemu_bh_delete(acb->bh); 3526 qemu_aio_release(acb); 3527 } 3528 3529 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3530 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3531 { 3532 BlockDriverAIOCBCoroutine *acb = opaque; 3533 BlockDriverState *bs = acb->common.bs; 3534 3535 if (!acb->is_write) { 3536 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3537 acb->req.nb_sectors, acb->req.qiov, 0); 3538 } else { 3539 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3540 acb->req.nb_sectors, acb->req.qiov, 0); 3541 } 3542 3543 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3544 qemu_bh_schedule(acb->bh); 3545 } 3546 3547 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3548 int64_t sector_num, 3549 QEMUIOVector *qiov, 3550 int nb_sectors, 3551 BlockDriverCompletionFunc *cb, 3552 void *opaque, 3553 bool is_write) 3554 { 3555 Coroutine *co; 3556 BlockDriverAIOCBCoroutine *acb; 3557 3558 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3559 acb->req.sector = sector_num; 3560 acb->req.nb_sectors = nb_sectors; 3561 acb->req.qiov = qiov; 3562 acb->is_write = is_write; 3563 3564 co = qemu_coroutine_create(bdrv_co_do_rw); 3565 qemu_coroutine_enter(co, acb); 3566 3567 return &acb->common; 3568 } 3569 3570 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3571 { 3572 BlockDriverAIOCBCoroutine *acb = opaque; 3573 BlockDriverState *bs = acb->common.bs; 3574 3575 acb->req.error = bdrv_co_flush(bs); 3576 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3577 qemu_bh_schedule(acb->bh); 3578 } 3579 3580 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3581 BlockDriverCompletionFunc *cb, void *opaque) 3582 { 3583 trace_bdrv_aio_flush(bs, opaque); 3584 3585 Coroutine *co; 3586 BlockDriverAIOCBCoroutine *acb; 3587 3588 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3589 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3590 qemu_coroutine_enter(co, acb); 3591 3592 return &acb->common; 3593 } 3594 3595 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3596 { 3597 BlockDriverAIOCBCoroutine *acb = opaque; 3598 BlockDriverState *bs = acb->common.bs; 3599 3600 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3601 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3602 qemu_bh_schedule(acb->bh); 3603 } 3604 3605 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3606 int64_t sector_num, int nb_sectors, 3607 BlockDriverCompletionFunc *cb, void *opaque) 3608 { 3609 Coroutine *co; 3610 BlockDriverAIOCBCoroutine *acb; 3611 3612 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3613 3614 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3615 acb->req.sector = sector_num; 3616 acb->req.nb_sectors = nb_sectors; 3617 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3618 qemu_coroutine_enter(co, acb); 3619 3620 return &acb->common; 3621 } 3622 3623 void bdrv_init(void) 3624 { 3625 module_call_init(MODULE_INIT_BLOCK); 3626 } 3627 3628 void bdrv_init_with_whitelist(void) 3629 { 3630 use_bdrv_whitelist = 1; 3631 bdrv_init(); 3632 } 3633 3634 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs, 3635 BlockDriverCompletionFunc *cb, void *opaque) 3636 { 3637 BlockDriverAIOCB *acb; 3638 3639 if (pool->free_aiocb) { 3640 acb = pool->free_aiocb; 3641 pool->free_aiocb = acb->next; 3642 } else { 3643 acb = g_malloc0(pool->aiocb_size); 3644 acb->pool = pool; 3645 } 3646 acb->bs = bs; 3647 acb->cb = cb; 3648 acb->opaque = opaque; 3649 return acb; 3650 } 3651 3652 void qemu_aio_release(void *p) 3653 { 3654 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p; 3655 AIOPool *pool = acb->pool; 3656 acb->next = pool->free_aiocb; 3657 pool->free_aiocb = acb; 3658 } 3659 3660 /**************************************************************/ 3661 /* Coroutine block device emulation */ 3662 3663 typedef struct CoroutineIOCompletion { 3664 Coroutine *coroutine; 3665 int ret; 3666 } CoroutineIOCompletion; 3667 3668 static void bdrv_co_io_em_complete(void *opaque, int ret) 3669 { 3670 CoroutineIOCompletion *co = opaque; 3671 3672 co->ret = ret; 3673 qemu_coroutine_enter(co->coroutine, NULL); 3674 } 3675 3676 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 3677 int nb_sectors, QEMUIOVector *iov, 3678 bool is_write) 3679 { 3680 CoroutineIOCompletion co = { 3681 .coroutine = qemu_coroutine_self(), 3682 }; 3683 BlockDriverAIOCB *acb; 3684 3685 if (is_write) { 3686 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 3687 bdrv_co_io_em_complete, &co); 3688 } else { 3689 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 3690 bdrv_co_io_em_complete, &co); 3691 } 3692 3693 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 3694 if (!acb) { 3695 return -EIO; 3696 } 3697 qemu_coroutine_yield(); 3698 3699 return co.ret; 3700 } 3701 3702 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 3703 int64_t sector_num, int nb_sectors, 3704 QEMUIOVector *iov) 3705 { 3706 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 3707 } 3708 3709 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 3710 int64_t sector_num, int nb_sectors, 3711 QEMUIOVector *iov) 3712 { 3713 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 3714 } 3715 3716 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 3717 { 3718 RwCo *rwco = opaque; 3719 3720 rwco->ret = bdrv_co_flush(rwco->bs); 3721 } 3722 3723 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 3724 { 3725 int ret; 3726 3727 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3728 return 0; 3729 } 3730 3731 /* Write back cached data to the OS even with cache=unsafe */ 3732 if (bs->drv->bdrv_co_flush_to_os) { 3733 ret = bs->drv->bdrv_co_flush_to_os(bs); 3734 if (ret < 0) { 3735 return ret; 3736 } 3737 } 3738 3739 /* But don't actually force it to the disk with cache=unsafe */ 3740 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3741 return 0; 3742 } 3743 3744 if (bs->drv->bdrv_co_flush_to_disk) { 3745 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3746 } else if (bs->drv->bdrv_aio_flush) { 3747 BlockDriverAIOCB *acb; 3748 CoroutineIOCompletion co = { 3749 .coroutine = qemu_coroutine_self(), 3750 }; 3751 3752 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3753 if (acb == NULL) { 3754 ret = -EIO; 3755 } else { 3756 qemu_coroutine_yield(); 3757 ret = co.ret; 3758 } 3759 } else { 3760 /* 3761 * Some block drivers always operate in either writethrough or unsafe 3762 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3763 * know how the server works (because the behaviour is hardcoded or 3764 * depends on server-side configuration), so we can't ensure that 3765 * everything is safe on disk. Returning an error doesn't work because 3766 * that would break guests even if the server operates in writethrough 3767 * mode. 3768 * 3769 * Let's hope the user knows what he's doing. 3770 */ 3771 ret = 0; 3772 } 3773 if (ret < 0) { 3774 return ret; 3775 } 3776 3777 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3778 * in the case of cache=unsafe, so there are no useless flushes. 3779 */ 3780 return bdrv_co_flush(bs->file); 3781 } 3782 3783 void bdrv_invalidate_cache(BlockDriverState *bs) 3784 { 3785 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 3786 bs->drv->bdrv_invalidate_cache(bs); 3787 } 3788 } 3789 3790 void bdrv_invalidate_cache_all(void) 3791 { 3792 BlockDriverState *bs; 3793 3794 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3795 bdrv_invalidate_cache(bs); 3796 } 3797 } 3798 3799 void bdrv_clear_incoming_migration_all(void) 3800 { 3801 BlockDriverState *bs; 3802 3803 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3804 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 3805 } 3806 } 3807 3808 int bdrv_flush(BlockDriverState *bs) 3809 { 3810 Coroutine *co; 3811 RwCo rwco = { 3812 .bs = bs, 3813 .ret = NOT_DONE, 3814 }; 3815 3816 if (qemu_in_coroutine()) { 3817 /* Fast-path if already in coroutine context */ 3818 bdrv_flush_co_entry(&rwco); 3819 } else { 3820 co = qemu_coroutine_create(bdrv_flush_co_entry); 3821 qemu_coroutine_enter(co, &rwco); 3822 while (rwco.ret == NOT_DONE) { 3823 qemu_aio_wait(); 3824 } 3825 } 3826 3827 return rwco.ret; 3828 } 3829 3830 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 3831 { 3832 RwCo *rwco = opaque; 3833 3834 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 3835 } 3836 3837 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 3838 int nb_sectors) 3839 { 3840 if (!bs->drv) { 3841 return -ENOMEDIUM; 3842 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 3843 return -EIO; 3844 } else if (bs->read_only) { 3845 return -EROFS; 3846 } else if (bs->drv->bdrv_co_discard) { 3847 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 3848 } else if (bs->drv->bdrv_aio_discard) { 3849 BlockDriverAIOCB *acb; 3850 CoroutineIOCompletion co = { 3851 .coroutine = qemu_coroutine_self(), 3852 }; 3853 3854 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 3855 bdrv_co_io_em_complete, &co); 3856 if (acb == NULL) { 3857 return -EIO; 3858 } else { 3859 qemu_coroutine_yield(); 3860 return co.ret; 3861 } 3862 } else { 3863 return 0; 3864 } 3865 } 3866 3867 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 3868 { 3869 Coroutine *co; 3870 RwCo rwco = { 3871 .bs = bs, 3872 .sector_num = sector_num, 3873 .nb_sectors = nb_sectors, 3874 .ret = NOT_DONE, 3875 }; 3876 3877 if (qemu_in_coroutine()) { 3878 /* Fast-path if already in coroutine context */ 3879 bdrv_discard_co_entry(&rwco); 3880 } else { 3881 co = qemu_coroutine_create(bdrv_discard_co_entry); 3882 qemu_coroutine_enter(co, &rwco); 3883 while (rwco.ret == NOT_DONE) { 3884 qemu_aio_wait(); 3885 } 3886 } 3887 3888 return rwco.ret; 3889 } 3890 3891 /**************************************************************/ 3892 /* removable device support */ 3893 3894 /** 3895 * Return TRUE if the media is present 3896 */ 3897 int bdrv_is_inserted(BlockDriverState *bs) 3898 { 3899 BlockDriver *drv = bs->drv; 3900 3901 if (!drv) 3902 return 0; 3903 if (!drv->bdrv_is_inserted) 3904 return 1; 3905 return drv->bdrv_is_inserted(bs); 3906 } 3907 3908 /** 3909 * Return whether the media changed since the last call to this 3910 * function, or -ENOTSUP if we don't know. Most drivers don't know. 3911 */ 3912 int bdrv_media_changed(BlockDriverState *bs) 3913 { 3914 BlockDriver *drv = bs->drv; 3915 3916 if (drv && drv->bdrv_media_changed) { 3917 return drv->bdrv_media_changed(bs); 3918 } 3919 return -ENOTSUP; 3920 } 3921 3922 /** 3923 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 3924 */ 3925 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 3926 { 3927 BlockDriver *drv = bs->drv; 3928 3929 if (drv && drv->bdrv_eject) { 3930 drv->bdrv_eject(bs, eject_flag); 3931 } 3932 3933 if (bs->device_name[0] != '\0') { 3934 bdrv_emit_qmp_eject_event(bs, eject_flag); 3935 } 3936 } 3937 3938 /** 3939 * Lock or unlock the media (if it is locked, the user won't be able 3940 * to eject it manually). 3941 */ 3942 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 3943 { 3944 BlockDriver *drv = bs->drv; 3945 3946 trace_bdrv_lock_medium(bs, locked); 3947 3948 if (drv && drv->bdrv_lock_medium) { 3949 drv->bdrv_lock_medium(bs, locked); 3950 } 3951 } 3952 3953 /* needed for generic scsi interface */ 3954 3955 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 3956 { 3957 BlockDriver *drv = bs->drv; 3958 3959 if (drv && drv->bdrv_ioctl) 3960 return drv->bdrv_ioctl(bs, req, buf); 3961 return -ENOTSUP; 3962 } 3963 3964 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 3965 unsigned long int req, void *buf, 3966 BlockDriverCompletionFunc *cb, void *opaque) 3967 { 3968 BlockDriver *drv = bs->drv; 3969 3970 if (drv && drv->bdrv_aio_ioctl) 3971 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 3972 return NULL; 3973 } 3974 3975 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 3976 { 3977 bs->buffer_alignment = align; 3978 } 3979 3980 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3981 { 3982 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 3983 } 3984 3985 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable) 3986 { 3987 int64_t bitmap_size; 3988 3989 bs->dirty_count = 0; 3990 if (enable) { 3991 if (!bs->dirty_bitmap) { 3992 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) + 3993 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1; 3994 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 3995 3996 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size); 3997 } 3998 } else { 3999 if (bs->dirty_bitmap) { 4000 g_free(bs->dirty_bitmap); 4001 bs->dirty_bitmap = NULL; 4002 } 4003 } 4004 } 4005 4006 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4007 { 4008 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4009 4010 if (bs->dirty_bitmap && 4011 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) { 4012 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] & 4013 (1UL << (chunk % (sizeof(unsigned long) * 8)))); 4014 } else { 4015 return 0; 4016 } 4017 } 4018 4019 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4020 int nr_sectors) 4021 { 4022 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0); 4023 } 4024 4025 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4026 { 4027 return bs->dirty_count; 4028 } 4029 4030 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4031 { 4032 assert(bs->in_use != in_use); 4033 bs->in_use = in_use; 4034 } 4035 4036 int bdrv_in_use(BlockDriverState *bs) 4037 { 4038 return bs->in_use; 4039 } 4040 4041 void bdrv_iostatus_enable(BlockDriverState *bs) 4042 { 4043 bs->iostatus_enabled = true; 4044 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4045 } 4046 4047 /* The I/O status is only enabled if the drive explicitly 4048 * enables it _and_ the VM is configured to stop on errors */ 4049 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4050 { 4051 return (bs->iostatus_enabled && 4052 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC || 4053 bs->on_write_error == BLOCK_ERR_STOP_ANY || 4054 bs->on_read_error == BLOCK_ERR_STOP_ANY)); 4055 } 4056 4057 void bdrv_iostatus_disable(BlockDriverState *bs) 4058 { 4059 bs->iostatus_enabled = false; 4060 } 4061 4062 void bdrv_iostatus_reset(BlockDriverState *bs) 4063 { 4064 if (bdrv_iostatus_is_enabled(bs)) { 4065 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4066 } 4067 } 4068 4069 /* XXX: Today this is set by device models because it makes the implementation 4070 quite simple. However, the block layer knows about the error, so it's 4071 possible to implement this without device models being involved */ 4072 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4073 { 4074 if (bdrv_iostatus_is_enabled(bs) && 4075 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4076 assert(error >= 0); 4077 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4078 BLOCK_DEVICE_IO_STATUS_FAILED; 4079 } 4080 } 4081 4082 void 4083 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4084 enum BlockAcctType type) 4085 { 4086 assert(type < BDRV_MAX_IOTYPE); 4087 4088 cookie->bytes = bytes; 4089 cookie->start_time_ns = get_clock(); 4090 cookie->type = type; 4091 } 4092 4093 void 4094 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4095 { 4096 assert(cookie->type < BDRV_MAX_IOTYPE); 4097 4098 bs->nr_bytes[cookie->type] += cookie->bytes; 4099 bs->nr_ops[cookie->type]++; 4100 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4101 } 4102 4103 int bdrv_img_create(const char *filename, const char *fmt, 4104 const char *base_filename, const char *base_fmt, 4105 char *options, uint64_t img_size, int flags) 4106 { 4107 QEMUOptionParameter *param = NULL, *create_options = NULL; 4108 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4109 BlockDriverState *bs = NULL; 4110 BlockDriver *drv, *proto_drv; 4111 BlockDriver *backing_drv = NULL; 4112 int ret = 0; 4113 4114 /* Find driver and parse its options */ 4115 drv = bdrv_find_format(fmt); 4116 if (!drv) { 4117 error_report("Unknown file format '%s'", fmt); 4118 ret = -EINVAL; 4119 goto out; 4120 } 4121 4122 proto_drv = bdrv_find_protocol(filename); 4123 if (!proto_drv) { 4124 error_report("Unknown protocol '%s'", filename); 4125 ret = -EINVAL; 4126 goto out; 4127 } 4128 4129 create_options = append_option_parameters(create_options, 4130 drv->create_options); 4131 create_options = append_option_parameters(create_options, 4132 proto_drv->create_options); 4133 4134 /* Create parameter list with default values */ 4135 param = parse_option_parameters("", create_options, param); 4136 4137 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4138 4139 /* Parse -o options */ 4140 if (options) { 4141 param = parse_option_parameters(options, create_options, param); 4142 if (param == NULL) { 4143 error_report("Invalid options for file format '%s'.", fmt); 4144 ret = -EINVAL; 4145 goto out; 4146 } 4147 } 4148 4149 if (base_filename) { 4150 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4151 base_filename)) { 4152 error_report("Backing file not supported for file format '%s'", 4153 fmt); 4154 ret = -EINVAL; 4155 goto out; 4156 } 4157 } 4158 4159 if (base_fmt) { 4160 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4161 error_report("Backing file format not supported for file " 4162 "format '%s'", fmt); 4163 ret = -EINVAL; 4164 goto out; 4165 } 4166 } 4167 4168 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4169 if (backing_file && backing_file->value.s) { 4170 if (!strcmp(filename, backing_file->value.s)) { 4171 error_report("Error: Trying to create an image with the " 4172 "same filename as the backing file"); 4173 ret = -EINVAL; 4174 goto out; 4175 } 4176 } 4177 4178 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4179 if (backing_fmt && backing_fmt->value.s) { 4180 backing_drv = bdrv_find_format(backing_fmt->value.s); 4181 if (!backing_drv) { 4182 error_report("Unknown backing file format '%s'", 4183 backing_fmt->value.s); 4184 ret = -EINVAL; 4185 goto out; 4186 } 4187 } 4188 4189 // The size for the image must always be specified, with one exception: 4190 // If we are using a backing file, we can obtain the size from there 4191 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4192 if (size && size->value.n == -1) { 4193 if (backing_file && backing_file->value.s) { 4194 uint64_t size; 4195 char buf[32]; 4196 int back_flags; 4197 4198 /* backing files always opened read-only */ 4199 back_flags = 4200 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4201 4202 bs = bdrv_new(""); 4203 4204 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4205 if (ret < 0) { 4206 error_report("Could not open '%s'", backing_file->value.s); 4207 goto out; 4208 } 4209 bdrv_get_geometry(bs, &size); 4210 size *= 512; 4211 4212 snprintf(buf, sizeof(buf), "%" PRId64, size); 4213 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4214 } else { 4215 error_report("Image creation needs a size parameter"); 4216 ret = -EINVAL; 4217 goto out; 4218 } 4219 } 4220 4221 printf("Formatting '%s', fmt=%s ", filename, fmt); 4222 print_option_parameters(param); 4223 puts(""); 4224 4225 ret = bdrv_create(drv, filename, param); 4226 4227 if (ret < 0) { 4228 if (ret == -ENOTSUP) { 4229 error_report("Formatting or formatting option not supported for " 4230 "file format '%s'", fmt); 4231 } else if (ret == -EFBIG) { 4232 error_report("The image size is too large for file format '%s'", 4233 fmt); 4234 } else { 4235 error_report("%s: error while creating %s: %s", filename, fmt, 4236 strerror(-ret)); 4237 } 4238 } 4239 4240 out: 4241 free_option_parameters(create_options); 4242 free_option_parameters(param); 4243 4244 if (bs) { 4245 bdrv_delete(bs); 4246 } 4247 4248 return ret; 4249 } 4250 4251 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs, 4252 int64_t speed, BlockDriverCompletionFunc *cb, 4253 void *opaque, Error **errp) 4254 { 4255 BlockJob *job; 4256 4257 if (bs->job || bdrv_in_use(bs)) { 4258 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs)); 4259 return NULL; 4260 } 4261 bdrv_set_in_use(bs, 1); 4262 4263 job = g_malloc0(job_type->instance_size); 4264 job->job_type = job_type; 4265 job->bs = bs; 4266 job->cb = cb; 4267 job->opaque = opaque; 4268 job->busy = true; 4269 bs->job = job; 4270 4271 /* Only set speed when necessary to avoid NotSupported error */ 4272 if (speed != 0) { 4273 Error *local_err = NULL; 4274 4275 block_job_set_speed(job, speed, &local_err); 4276 if (error_is_set(&local_err)) { 4277 bs->job = NULL; 4278 g_free(job); 4279 bdrv_set_in_use(bs, 0); 4280 error_propagate(errp, local_err); 4281 return NULL; 4282 } 4283 } 4284 return job; 4285 } 4286 4287 void block_job_complete(BlockJob *job, int ret) 4288 { 4289 BlockDriverState *bs = job->bs; 4290 4291 assert(bs->job == job); 4292 job->cb(job->opaque, ret); 4293 bs->job = NULL; 4294 g_free(job); 4295 bdrv_set_in_use(bs, 0); 4296 } 4297 4298 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp) 4299 { 4300 Error *local_err = NULL; 4301 4302 if (!job->job_type->set_speed) { 4303 error_set(errp, QERR_NOT_SUPPORTED); 4304 return; 4305 } 4306 job->job_type->set_speed(job, speed, &local_err); 4307 if (error_is_set(&local_err)) { 4308 error_propagate(errp, local_err); 4309 return; 4310 } 4311 4312 job->speed = speed; 4313 } 4314 4315 void block_job_cancel(BlockJob *job) 4316 { 4317 job->cancelled = true; 4318 if (job->co && !job->busy) { 4319 qemu_coroutine_enter(job->co, NULL); 4320 } 4321 } 4322 4323 bool block_job_is_cancelled(BlockJob *job) 4324 { 4325 return job->cancelled; 4326 } 4327 4328 struct BlockCancelData { 4329 BlockJob *job; 4330 BlockDriverCompletionFunc *cb; 4331 void *opaque; 4332 bool cancelled; 4333 int ret; 4334 }; 4335 4336 static void block_job_cancel_cb(void *opaque, int ret) 4337 { 4338 struct BlockCancelData *data = opaque; 4339 4340 data->cancelled = block_job_is_cancelled(data->job); 4341 data->ret = ret; 4342 data->cb(data->opaque, ret); 4343 } 4344 4345 int block_job_cancel_sync(BlockJob *job) 4346 { 4347 struct BlockCancelData data; 4348 BlockDriverState *bs = job->bs; 4349 4350 assert(bs->job == job); 4351 4352 /* Set up our own callback to store the result and chain to 4353 * the original callback. 4354 */ 4355 data.job = job; 4356 data.cb = job->cb; 4357 data.opaque = job->opaque; 4358 data.ret = -EINPROGRESS; 4359 job->cb = block_job_cancel_cb; 4360 job->opaque = &data; 4361 block_job_cancel(job); 4362 while (data.ret == -EINPROGRESS) { 4363 qemu_aio_wait(); 4364 } 4365 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret; 4366 } 4367 4368 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns) 4369 { 4370 /* Check cancellation *before* setting busy = false, too! */ 4371 if (!block_job_is_cancelled(job)) { 4372 job->busy = false; 4373 co_sleep_ns(clock, ns); 4374 job->busy = true; 4375 } 4376 } 4377