1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor/monitor.h" 28 #include "block/block_int.h" 29 #include "block/blockjob.h" 30 #include "qemu/module.h" 31 #include "qapi/qmp/qjson.h" 32 #include "sysemu/sysemu.h" 33 #include "qemu/notify.h" 34 #include "block/coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu/timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* The device to use for VM snapshots */ 103 static BlockDriverState *bs_snapshots; 104 105 /* If non-zero, use only whitelisted block drivers */ 106 static int use_bdrv_whitelist; 107 108 #ifdef _WIN32 109 static int is_windows_drive_prefix(const char *filename) 110 { 111 return (((filename[0] >= 'a' && filename[0] <= 'z') || 112 (filename[0] >= 'A' && filename[0] <= 'Z')) && 113 filename[1] == ':'); 114 } 115 116 int is_windows_drive(const char *filename) 117 { 118 if (is_windows_drive_prefix(filename) && 119 filename[2] == '\0') 120 return 1; 121 if (strstart(filename, "\\\\.\\", NULL) || 122 strstart(filename, "//./", NULL)) 123 return 1; 124 return 0; 125 } 126 #endif 127 128 /* throttling disk I/O limits */ 129 void bdrv_io_limits_disable(BlockDriverState *bs) 130 { 131 bs->io_limits_enabled = false; 132 133 while (qemu_co_queue_next(&bs->throttled_reqs)); 134 135 if (bs->block_timer) { 136 qemu_del_timer(bs->block_timer); 137 qemu_free_timer(bs->block_timer); 138 bs->block_timer = NULL; 139 } 140 141 bs->slice_start = 0; 142 bs->slice_end = 0; 143 bs->slice_time = 0; 144 memset(&bs->io_base, 0, sizeof(bs->io_base)); 145 } 146 147 static void bdrv_block_timer(void *opaque) 148 { 149 BlockDriverState *bs = opaque; 150 151 qemu_co_queue_next(&bs->throttled_reqs); 152 } 153 154 void bdrv_io_limits_enable(BlockDriverState *bs) 155 { 156 qemu_co_queue_init(&bs->throttled_reqs); 157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 158 bs->io_limits_enabled = true; 159 } 160 161 bool bdrv_io_limits_enabled(BlockDriverState *bs) 162 { 163 BlockIOLimit *io_limits = &bs->io_limits; 164 return io_limits->bps[BLOCK_IO_LIMIT_READ] 165 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 166 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 167 || io_limits->iops[BLOCK_IO_LIMIT_READ] 168 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 169 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 170 } 171 172 static void bdrv_io_limits_intercept(BlockDriverState *bs, 173 bool is_write, int nb_sectors) 174 { 175 int64_t wait_time = -1; 176 177 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 178 qemu_co_queue_wait(&bs->throttled_reqs); 179 } 180 181 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 182 * throttled requests will not be dequeued until the current request is 183 * allowed to be serviced. So if the current request still exceeds the 184 * limits, it will be inserted to the head. All requests followed it will 185 * be still in throttled_reqs queue. 186 */ 187 188 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 189 qemu_mod_timer(bs->block_timer, 190 wait_time + qemu_get_clock_ns(vm_clock)); 191 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 192 } 193 194 qemu_co_queue_next(&bs->throttled_reqs); 195 } 196 197 /* check if the path starts with "<protocol>:" */ 198 static int path_has_protocol(const char *path) 199 { 200 const char *p; 201 202 #ifdef _WIN32 203 if (is_windows_drive(path) || 204 is_windows_drive_prefix(path)) { 205 return 0; 206 } 207 p = path + strcspn(path, ":/\\"); 208 #else 209 p = path + strcspn(path, ":/"); 210 #endif 211 212 return *p == ':'; 213 } 214 215 int path_is_absolute(const char *path) 216 { 217 #ifdef _WIN32 218 /* specific case for names like: "\\.\d:" */ 219 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 220 return 1; 221 } 222 return (*path == '/' || *path == '\\'); 223 #else 224 return (*path == '/'); 225 #endif 226 } 227 228 /* if filename is absolute, just copy it to dest. Otherwise, build a 229 path to it by considering it is relative to base_path. URL are 230 supported. */ 231 void path_combine(char *dest, int dest_size, 232 const char *base_path, 233 const char *filename) 234 { 235 const char *p, *p1; 236 int len; 237 238 if (dest_size <= 0) 239 return; 240 if (path_is_absolute(filename)) { 241 pstrcpy(dest, dest_size, filename); 242 } else { 243 p = strchr(base_path, ':'); 244 if (p) 245 p++; 246 else 247 p = base_path; 248 p1 = strrchr(base_path, '/'); 249 #ifdef _WIN32 250 { 251 const char *p2; 252 p2 = strrchr(base_path, '\\'); 253 if (!p1 || p2 > p1) 254 p1 = p2; 255 } 256 #endif 257 if (p1) 258 p1++; 259 else 260 p1 = base_path; 261 if (p1 > p) 262 p = p1; 263 len = p - base_path; 264 if (len > dest_size - 1) 265 len = dest_size - 1; 266 memcpy(dest, base_path, len); 267 dest[len] = '\0'; 268 pstrcat(dest, dest_size, filename); 269 } 270 } 271 272 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 273 { 274 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 275 pstrcpy(dest, sz, bs->backing_file); 276 } else { 277 path_combine(dest, sz, bs->filename, bs->backing_file); 278 } 279 } 280 281 void bdrv_register(BlockDriver *bdrv) 282 { 283 /* Block drivers without coroutine functions need emulation */ 284 if (!bdrv->bdrv_co_readv) { 285 bdrv->bdrv_co_readv = bdrv_co_readv_em; 286 bdrv->bdrv_co_writev = bdrv_co_writev_em; 287 288 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 289 * the block driver lacks aio we need to emulate that too. 290 */ 291 if (!bdrv->bdrv_aio_readv) { 292 /* add AIO emulation layer */ 293 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 294 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 295 } 296 } 297 298 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 299 } 300 301 /* create a new block device (by default it is empty) */ 302 BlockDriverState *bdrv_new(const char *device_name) 303 { 304 BlockDriverState *bs; 305 306 bs = g_malloc0(sizeof(BlockDriverState)); 307 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 308 if (device_name[0] != '\0') { 309 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 310 } 311 bdrv_iostatus_disable(bs); 312 notifier_list_init(&bs->close_notifiers); 313 314 return bs; 315 } 316 317 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 318 { 319 notifier_list_add(&bs->close_notifiers, notify); 320 } 321 322 BlockDriver *bdrv_find_format(const char *format_name) 323 { 324 BlockDriver *drv1; 325 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 326 if (!strcmp(drv1->format_name, format_name)) { 327 return drv1; 328 } 329 } 330 return NULL; 331 } 332 333 static int bdrv_is_whitelisted(BlockDriver *drv) 334 { 335 static const char *whitelist[] = { 336 CONFIG_BDRV_WHITELIST 337 }; 338 const char **p; 339 340 if (!whitelist[0]) 341 return 1; /* no whitelist, anything goes */ 342 343 for (p = whitelist; *p; p++) { 344 if (!strcmp(drv->format_name, *p)) { 345 return 1; 346 } 347 } 348 return 0; 349 } 350 351 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 352 { 353 BlockDriver *drv = bdrv_find_format(format_name); 354 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 355 } 356 357 typedef struct CreateCo { 358 BlockDriver *drv; 359 char *filename; 360 QEMUOptionParameter *options; 361 int ret; 362 } CreateCo; 363 364 static void coroutine_fn bdrv_create_co_entry(void *opaque) 365 { 366 CreateCo *cco = opaque; 367 assert(cco->drv); 368 369 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 370 } 371 372 int bdrv_create(BlockDriver *drv, const char* filename, 373 QEMUOptionParameter *options) 374 { 375 int ret; 376 377 Coroutine *co; 378 CreateCo cco = { 379 .drv = drv, 380 .filename = g_strdup(filename), 381 .options = options, 382 .ret = NOT_DONE, 383 }; 384 385 if (!drv->bdrv_create) { 386 ret = -ENOTSUP; 387 goto out; 388 } 389 390 if (qemu_in_coroutine()) { 391 /* Fast-path if already in coroutine context */ 392 bdrv_create_co_entry(&cco); 393 } else { 394 co = qemu_coroutine_create(bdrv_create_co_entry); 395 qemu_coroutine_enter(co, &cco); 396 while (cco.ret == NOT_DONE) { 397 qemu_aio_wait(); 398 } 399 } 400 401 ret = cco.ret; 402 403 out: 404 g_free(cco.filename); 405 return ret; 406 } 407 408 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 409 { 410 BlockDriver *drv; 411 412 drv = bdrv_find_protocol(filename); 413 if (drv == NULL) { 414 return -ENOENT; 415 } 416 417 return bdrv_create(drv, filename, options); 418 } 419 420 /* 421 * Create a uniquely-named empty temporary file. 422 * Return 0 upon success, otherwise a negative errno value. 423 */ 424 int get_tmp_filename(char *filename, int size) 425 { 426 #ifdef _WIN32 427 char temp_dir[MAX_PATH]; 428 /* GetTempFileName requires that its output buffer (4th param) 429 have length MAX_PATH or greater. */ 430 assert(size >= MAX_PATH); 431 return (GetTempPath(MAX_PATH, temp_dir) 432 && GetTempFileName(temp_dir, "qem", 0, filename) 433 ? 0 : -GetLastError()); 434 #else 435 int fd; 436 const char *tmpdir; 437 tmpdir = getenv("TMPDIR"); 438 if (!tmpdir) 439 tmpdir = "/tmp"; 440 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 441 return -EOVERFLOW; 442 } 443 fd = mkstemp(filename); 444 if (fd < 0) { 445 return -errno; 446 } 447 if (close(fd) != 0) { 448 unlink(filename); 449 return -errno; 450 } 451 return 0; 452 #endif 453 } 454 455 /* 456 * Detect host devices. By convention, /dev/cdrom[N] is always 457 * recognized as a host CDROM. 458 */ 459 static BlockDriver *find_hdev_driver(const char *filename) 460 { 461 int score_max = 0, score; 462 BlockDriver *drv = NULL, *d; 463 464 QLIST_FOREACH(d, &bdrv_drivers, list) { 465 if (d->bdrv_probe_device) { 466 score = d->bdrv_probe_device(filename); 467 if (score > score_max) { 468 score_max = score; 469 drv = d; 470 } 471 } 472 } 473 474 return drv; 475 } 476 477 BlockDriver *bdrv_find_protocol(const char *filename) 478 { 479 BlockDriver *drv1; 480 char protocol[128]; 481 int len; 482 const char *p; 483 484 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 485 486 /* 487 * XXX(hch): we really should not let host device detection 488 * override an explicit protocol specification, but moving this 489 * later breaks access to device names with colons in them. 490 * Thanks to the brain-dead persistent naming schemes on udev- 491 * based Linux systems those actually are quite common. 492 */ 493 drv1 = find_hdev_driver(filename); 494 if (drv1) { 495 return drv1; 496 } 497 498 if (!path_has_protocol(filename)) { 499 return bdrv_find_format("file"); 500 } 501 p = strchr(filename, ':'); 502 assert(p != NULL); 503 len = p - filename; 504 if (len > sizeof(protocol) - 1) 505 len = sizeof(protocol) - 1; 506 memcpy(protocol, filename, len); 507 protocol[len] = '\0'; 508 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 509 if (drv1->protocol_name && 510 !strcmp(drv1->protocol_name, protocol)) { 511 return drv1; 512 } 513 } 514 return NULL; 515 } 516 517 static int find_image_format(BlockDriverState *bs, const char *filename, 518 BlockDriver **pdrv) 519 { 520 int score, score_max; 521 BlockDriver *drv1, *drv; 522 uint8_t buf[2048]; 523 int ret = 0; 524 525 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 526 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) { 527 drv = bdrv_find_format("raw"); 528 if (!drv) { 529 ret = -ENOENT; 530 } 531 *pdrv = drv; 532 return ret; 533 } 534 535 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 536 if (ret < 0) { 537 *pdrv = NULL; 538 return ret; 539 } 540 541 score_max = 0; 542 drv = NULL; 543 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 544 if (drv1->bdrv_probe) { 545 score = drv1->bdrv_probe(buf, ret, filename); 546 if (score > score_max) { 547 score_max = score; 548 drv = drv1; 549 } 550 } 551 } 552 if (!drv) { 553 ret = -ENOENT; 554 } 555 *pdrv = drv; 556 return ret; 557 } 558 559 /** 560 * Set the current 'total_sectors' value 561 */ 562 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 563 { 564 BlockDriver *drv = bs->drv; 565 566 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 567 if (bs->sg) 568 return 0; 569 570 /* query actual device if possible, otherwise just trust the hint */ 571 if (drv->bdrv_getlength) { 572 int64_t length = drv->bdrv_getlength(bs); 573 if (length < 0) { 574 return length; 575 } 576 hint = length >> BDRV_SECTOR_BITS; 577 } 578 579 bs->total_sectors = hint; 580 return 0; 581 } 582 583 /** 584 * Set open flags for a given discard mode 585 * 586 * Return 0 on success, -1 if the discard mode was invalid. 587 */ 588 int bdrv_parse_discard_flags(const char *mode, int *flags) 589 { 590 *flags &= ~BDRV_O_UNMAP; 591 592 if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) { 593 /* do nothing */ 594 } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) { 595 *flags |= BDRV_O_UNMAP; 596 } else { 597 return -1; 598 } 599 600 return 0; 601 } 602 603 /** 604 * Set open flags for a given cache mode 605 * 606 * Return 0 on success, -1 if the cache mode was invalid. 607 */ 608 int bdrv_parse_cache_flags(const char *mode, int *flags) 609 { 610 *flags &= ~BDRV_O_CACHE_MASK; 611 612 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 613 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 614 } else if (!strcmp(mode, "directsync")) { 615 *flags |= BDRV_O_NOCACHE; 616 } else if (!strcmp(mode, "writeback")) { 617 *flags |= BDRV_O_CACHE_WB; 618 } else if (!strcmp(mode, "unsafe")) { 619 *flags |= BDRV_O_CACHE_WB; 620 *flags |= BDRV_O_NO_FLUSH; 621 } else if (!strcmp(mode, "writethrough")) { 622 /* this is the default */ 623 } else { 624 return -1; 625 } 626 627 return 0; 628 } 629 630 /** 631 * The copy-on-read flag is actually a reference count so multiple users may 632 * use the feature without worrying about clobbering its previous state. 633 * Copy-on-read stays enabled until all users have called to disable it. 634 */ 635 void bdrv_enable_copy_on_read(BlockDriverState *bs) 636 { 637 bs->copy_on_read++; 638 } 639 640 void bdrv_disable_copy_on_read(BlockDriverState *bs) 641 { 642 assert(bs->copy_on_read > 0); 643 bs->copy_on_read--; 644 } 645 646 static int bdrv_open_flags(BlockDriverState *bs, int flags) 647 { 648 int open_flags = flags | BDRV_O_CACHE_WB; 649 650 /* 651 * Clear flags that are internal to the block layer before opening the 652 * image. 653 */ 654 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 655 656 /* 657 * Snapshots should be writable. 658 */ 659 if (bs->is_temporary) { 660 open_flags |= BDRV_O_RDWR; 661 } 662 663 return open_flags; 664 } 665 666 /* 667 * Common part for opening disk images and files 668 */ 669 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file, 670 const char *filename, 671 int flags, BlockDriver *drv) 672 { 673 int ret, open_flags; 674 675 assert(drv != NULL); 676 assert(bs->file == NULL); 677 678 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 679 680 bs->open_flags = flags; 681 bs->buffer_alignment = 512; 682 683 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 684 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 685 bdrv_enable_copy_on_read(bs); 686 } 687 688 pstrcpy(bs->filename, sizeof(bs->filename), filename); 689 690 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 691 return -ENOTSUP; 692 } 693 694 bs->drv = drv; 695 bs->opaque = g_malloc0(drv->instance_size); 696 697 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 698 open_flags = bdrv_open_flags(bs, flags); 699 700 bs->read_only = !(open_flags & BDRV_O_RDWR); 701 702 /* Open the image, either directly or using a protocol */ 703 if (drv->bdrv_file_open) { 704 if (file != NULL) { 705 bdrv_swap(file, bs); 706 ret = 0; 707 } else { 708 ret = drv->bdrv_file_open(bs, filename, open_flags); 709 } 710 } else { 711 assert(file != NULL); 712 bs->file = file; 713 ret = drv->bdrv_open(bs, open_flags); 714 } 715 716 if (ret < 0) { 717 goto free_and_fail; 718 } 719 720 ret = refresh_total_sectors(bs, bs->total_sectors); 721 if (ret < 0) { 722 goto free_and_fail; 723 } 724 725 #ifndef _WIN32 726 if (bs->is_temporary) { 727 unlink(filename); 728 } 729 #endif 730 return 0; 731 732 free_and_fail: 733 bs->file = NULL; 734 g_free(bs->opaque); 735 bs->opaque = NULL; 736 bs->drv = NULL; 737 return ret; 738 } 739 740 /* 741 * Opens a file using a protocol (file, host_device, nbd, ...) 742 */ 743 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 744 { 745 BlockDriverState *bs; 746 BlockDriver *drv; 747 int ret; 748 749 drv = bdrv_find_protocol(filename); 750 if (!drv) { 751 return -ENOENT; 752 } 753 754 bs = bdrv_new(""); 755 ret = bdrv_open_common(bs, NULL, filename, flags, drv); 756 if (ret < 0) { 757 bdrv_delete(bs); 758 return ret; 759 } 760 bs->growable = 1; 761 *pbs = bs; 762 return 0; 763 } 764 765 int bdrv_open_backing_file(BlockDriverState *bs) 766 { 767 char backing_filename[PATH_MAX]; 768 int back_flags, ret; 769 BlockDriver *back_drv = NULL; 770 771 if (bs->backing_hd != NULL) { 772 return 0; 773 } 774 775 bs->open_flags &= ~BDRV_O_NO_BACKING; 776 if (bs->backing_file[0] == '\0') { 777 return 0; 778 } 779 780 bs->backing_hd = bdrv_new(""); 781 bdrv_get_full_backing_filename(bs, backing_filename, 782 sizeof(backing_filename)); 783 784 if (bs->backing_format[0] != '\0') { 785 back_drv = bdrv_find_format(bs->backing_format); 786 } 787 788 /* backing files always opened read-only */ 789 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 790 791 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 792 if (ret < 0) { 793 bdrv_delete(bs->backing_hd); 794 bs->backing_hd = NULL; 795 bs->open_flags |= BDRV_O_NO_BACKING; 796 return ret; 797 } 798 return 0; 799 } 800 801 /* 802 * Opens a disk image (raw, qcow2, vmdk, ...) 803 */ 804 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 805 BlockDriver *drv) 806 { 807 int ret; 808 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ 809 char tmp_filename[PATH_MAX + 1]; 810 BlockDriverState *file = NULL; 811 812 if (flags & BDRV_O_SNAPSHOT) { 813 BlockDriverState *bs1; 814 int64_t total_size; 815 int is_protocol = 0; 816 BlockDriver *bdrv_qcow2; 817 QEMUOptionParameter *options; 818 char backing_filename[PATH_MAX]; 819 820 /* if snapshot, we create a temporary backing file and open it 821 instead of opening 'filename' directly */ 822 823 /* if there is a backing file, use it */ 824 bs1 = bdrv_new(""); 825 ret = bdrv_open(bs1, filename, 0, drv); 826 if (ret < 0) { 827 bdrv_delete(bs1); 828 return ret; 829 } 830 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 831 832 if (bs1->drv && bs1->drv->protocol_name) 833 is_protocol = 1; 834 835 bdrv_delete(bs1); 836 837 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 838 if (ret < 0) { 839 return ret; 840 } 841 842 /* Real path is meaningless for protocols */ 843 if (is_protocol) 844 snprintf(backing_filename, sizeof(backing_filename), 845 "%s", filename); 846 else if (!realpath(filename, backing_filename)) 847 return -errno; 848 849 bdrv_qcow2 = bdrv_find_format("qcow2"); 850 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 851 852 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 853 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 854 if (drv) { 855 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 856 drv->format_name); 857 } 858 859 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 860 free_option_parameters(options); 861 if (ret < 0) { 862 return ret; 863 } 864 865 filename = tmp_filename; 866 drv = bdrv_qcow2; 867 bs->is_temporary = 1; 868 } 869 870 /* Open image file without format layer */ 871 if (flags & BDRV_O_RDWR) { 872 flags |= BDRV_O_ALLOW_RDWR; 873 } 874 875 ret = bdrv_file_open(&file, filename, bdrv_open_flags(bs, flags)); 876 if (ret < 0) { 877 return ret; 878 } 879 880 /* Find the right image format driver */ 881 if (!drv) { 882 ret = find_image_format(file, filename, &drv); 883 } 884 885 if (!drv) { 886 goto unlink_and_fail; 887 } 888 889 /* Open the image */ 890 ret = bdrv_open_common(bs, file, filename, flags, drv); 891 if (ret < 0) { 892 goto unlink_and_fail; 893 } 894 895 if (bs->file != file) { 896 bdrv_delete(file); 897 file = NULL; 898 } 899 900 /* If there is a backing file, use it */ 901 if ((flags & BDRV_O_NO_BACKING) == 0) { 902 ret = bdrv_open_backing_file(bs); 903 if (ret < 0) { 904 bdrv_close(bs); 905 return ret; 906 } 907 } 908 909 if (!bdrv_key_required(bs)) { 910 bdrv_dev_change_media_cb(bs, true); 911 } 912 913 /* throttling disk I/O limits */ 914 if (bs->io_limits_enabled) { 915 bdrv_io_limits_enable(bs); 916 } 917 918 return 0; 919 920 unlink_and_fail: 921 if (file != NULL) { 922 bdrv_delete(file); 923 } 924 if (bs->is_temporary) { 925 unlink(filename); 926 } 927 return ret; 928 } 929 930 typedef struct BlockReopenQueueEntry { 931 bool prepared; 932 BDRVReopenState state; 933 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 934 } BlockReopenQueueEntry; 935 936 /* 937 * Adds a BlockDriverState to a simple queue for an atomic, transactional 938 * reopen of multiple devices. 939 * 940 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 941 * already performed, or alternatively may be NULL a new BlockReopenQueue will 942 * be created and initialized. This newly created BlockReopenQueue should be 943 * passed back in for subsequent calls that are intended to be of the same 944 * atomic 'set'. 945 * 946 * bs is the BlockDriverState to add to the reopen queue. 947 * 948 * flags contains the open flags for the associated bs 949 * 950 * returns a pointer to bs_queue, which is either the newly allocated 951 * bs_queue, or the existing bs_queue being used. 952 * 953 */ 954 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 955 BlockDriverState *bs, int flags) 956 { 957 assert(bs != NULL); 958 959 BlockReopenQueueEntry *bs_entry; 960 if (bs_queue == NULL) { 961 bs_queue = g_new0(BlockReopenQueue, 1); 962 QSIMPLEQ_INIT(bs_queue); 963 } 964 965 if (bs->file) { 966 bdrv_reopen_queue(bs_queue, bs->file, flags); 967 } 968 969 bs_entry = g_new0(BlockReopenQueueEntry, 1); 970 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 971 972 bs_entry->state.bs = bs; 973 bs_entry->state.flags = flags; 974 975 return bs_queue; 976 } 977 978 /* 979 * Reopen multiple BlockDriverStates atomically & transactionally. 980 * 981 * The queue passed in (bs_queue) must have been built up previous 982 * via bdrv_reopen_queue(). 983 * 984 * Reopens all BDS specified in the queue, with the appropriate 985 * flags. All devices are prepared for reopen, and failure of any 986 * device will cause all device changes to be abandonded, and intermediate 987 * data cleaned up. 988 * 989 * If all devices prepare successfully, then the changes are committed 990 * to all devices. 991 * 992 */ 993 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 994 { 995 int ret = -1; 996 BlockReopenQueueEntry *bs_entry, *next; 997 Error *local_err = NULL; 998 999 assert(bs_queue != NULL); 1000 1001 bdrv_drain_all(); 1002 1003 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1004 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 1005 error_propagate(errp, local_err); 1006 goto cleanup; 1007 } 1008 bs_entry->prepared = true; 1009 } 1010 1011 /* If we reach this point, we have success and just need to apply the 1012 * changes 1013 */ 1014 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1015 bdrv_reopen_commit(&bs_entry->state); 1016 } 1017 1018 ret = 0; 1019 1020 cleanup: 1021 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 1022 if (ret && bs_entry->prepared) { 1023 bdrv_reopen_abort(&bs_entry->state); 1024 } 1025 g_free(bs_entry); 1026 } 1027 g_free(bs_queue); 1028 return ret; 1029 } 1030 1031 1032 /* Reopen a single BlockDriverState with the specified flags. */ 1033 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1034 { 1035 int ret = -1; 1036 Error *local_err = NULL; 1037 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1038 1039 ret = bdrv_reopen_multiple(queue, &local_err); 1040 if (local_err != NULL) { 1041 error_propagate(errp, local_err); 1042 } 1043 return ret; 1044 } 1045 1046 1047 /* 1048 * Prepares a BlockDriverState for reopen. All changes are staged in the 1049 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1050 * the block driver layer .bdrv_reopen_prepare() 1051 * 1052 * bs is the BlockDriverState to reopen 1053 * flags are the new open flags 1054 * queue is the reopen queue 1055 * 1056 * Returns 0 on success, non-zero on error. On error errp will be set 1057 * as well. 1058 * 1059 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1060 * It is the responsibility of the caller to then call the abort() or 1061 * commit() for any other BDS that have been left in a prepare() state 1062 * 1063 */ 1064 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1065 Error **errp) 1066 { 1067 int ret = -1; 1068 Error *local_err = NULL; 1069 BlockDriver *drv; 1070 1071 assert(reopen_state != NULL); 1072 assert(reopen_state->bs->drv != NULL); 1073 drv = reopen_state->bs->drv; 1074 1075 /* if we are to stay read-only, do not allow permission change 1076 * to r/w */ 1077 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1078 reopen_state->flags & BDRV_O_RDWR) { 1079 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1080 reopen_state->bs->device_name); 1081 goto error; 1082 } 1083 1084 1085 ret = bdrv_flush(reopen_state->bs); 1086 if (ret) { 1087 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1088 strerror(-ret)); 1089 goto error; 1090 } 1091 1092 if (drv->bdrv_reopen_prepare) { 1093 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1094 if (ret) { 1095 if (local_err != NULL) { 1096 error_propagate(errp, local_err); 1097 } else { 1098 error_set(errp, QERR_OPEN_FILE_FAILED, 1099 reopen_state->bs->filename); 1100 } 1101 goto error; 1102 } 1103 } else { 1104 /* It is currently mandatory to have a bdrv_reopen_prepare() 1105 * handler for each supported drv. */ 1106 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1107 drv->format_name, reopen_state->bs->device_name, 1108 "reopening of file"); 1109 ret = -1; 1110 goto error; 1111 } 1112 1113 ret = 0; 1114 1115 error: 1116 return ret; 1117 } 1118 1119 /* 1120 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1121 * makes them final by swapping the staging BlockDriverState contents into 1122 * the active BlockDriverState contents. 1123 */ 1124 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1125 { 1126 BlockDriver *drv; 1127 1128 assert(reopen_state != NULL); 1129 drv = reopen_state->bs->drv; 1130 assert(drv != NULL); 1131 1132 /* If there are any driver level actions to take */ 1133 if (drv->bdrv_reopen_commit) { 1134 drv->bdrv_reopen_commit(reopen_state); 1135 } 1136 1137 /* set BDS specific flags now */ 1138 reopen_state->bs->open_flags = reopen_state->flags; 1139 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1140 BDRV_O_CACHE_WB); 1141 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1142 } 1143 1144 /* 1145 * Abort the reopen, and delete and free the staged changes in 1146 * reopen_state 1147 */ 1148 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1149 { 1150 BlockDriver *drv; 1151 1152 assert(reopen_state != NULL); 1153 drv = reopen_state->bs->drv; 1154 assert(drv != NULL); 1155 1156 if (drv->bdrv_reopen_abort) { 1157 drv->bdrv_reopen_abort(reopen_state); 1158 } 1159 } 1160 1161 1162 void bdrv_close(BlockDriverState *bs) 1163 { 1164 bdrv_flush(bs); 1165 if (bs->job) { 1166 block_job_cancel_sync(bs->job); 1167 } 1168 bdrv_drain_all(); 1169 notifier_list_notify(&bs->close_notifiers, bs); 1170 1171 if (bs->drv) { 1172 if (bs == bs_snapshots) { 1173 bs_snapshots = NULL; 1174 } 1175 if (bs->backing_hd) { 1176 bdrv_delete(bs->backing_hd); 1177 bs->backing_hd = NULL; 1178 } 1179 bs->drv->bdrv_close(bs); 1180 g_free(bs->opaque); 1181 #ifdef _WIN32 1182 if (bs->is_temporary) { 1183 unlink(bs->filename); 1184 } 1185 #endif 1186 bs->opaque = NULL; 1187 bs->drv = NULL; 1188 bs->copy_on_read = 0; 1189 bs->backing_file[0] = '\0'; 1190 bs->backing_format[0] = '\0'; 1191 bs->total_sectors = 0; 1192 bs->encrypted = 0; 1193 bs->valid_key = 0; 1194 bs->sg = 0; 1195 bs->growable = 0; 1196 1197 if (bs->file != NULL) { 1198 bdrv_delete(bs->file); 1199 bs->file = NULL; 1200 } 1201 } 1202 1203 bdrv_dev_change_media_cb(bs, false); 1204 1205 /*throttling disk I/O limits*/ 1206 if (bs->io_limits_enabled) { 1207 bdrv_io_limits_disable(bs); 1208 } 1209 } 1210 1211 void bdrv_close_all(void) 1212 { 1213 BlockDriverState *bs; 1214 1215 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1216 bdrv_close(bs); 1217 } 1218 } 1219 1220 /* 1221 * Wait for pending requests to complete across all BlockDriverStates 1222 * 1223 * This function does not flush data to disk, use bdrv_flush_all() for that 1224 * after calling this function. 1225 * 1226 * Note that completion of an asynchronous I/O operation can trigger any 1227 * number of other I/O operations on other devices---for example a coroutine 1228 * can be arbitrarily complex and a constant flow of I/O can come until the 1229 * coroutine is complete. Because of this, it is not possible to have a 1230 * function to drain a single device's I/O queue. 1231 */ 1232 void bdrv_drain_all(void) 1233 { 1234 BlockDriverState *bs; 1235 bool busy; 1236 1237 do { 1238 busy = qemu_aio_wait(); 1239 1240 /* FIXME: We do not have timer support here, so this is effectively 1241 * a busy wait. 1242 */ 1243 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1244 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1245 qemu_co_queue_restart_all(&bs->throttled_reqs); 1246 busy = true; 1247 } 1248 } 1249 } while (busy); 1250 1251 /* If requests are still pending there is a bug somewhere */ 1252 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1253 assert(QLIST_EMPTY(&bs->tracked_requests)); 1254 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1255 } 1256 } 1257 1258 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1259 Also, NULL terminate the device_name to prevent double remove */ 1260 void bdrv_make_anon(BlockDriverState *bs) 1261 { 1262 if (bs->device_name[0] != '\0') { 1263 QTAILQ_REMOVE(&bdrv_states, bs, list); 1264 } 1265 bs->device_name[0] = '\0'; 1266 } 1267 1268 static void bdrv_rebind(BlockDriverState *bs) 1269 { 1270 if (bs->drv && bs->drv->bdrv_rebind) { 1271 bs->drv->bdrv_rebind(bs); 1272 } 1273 } 1274 1275 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1276 BlockDriverState *bs_src) 1277 { 1278 /* move some fields that need to stay attached to the device */ 1279 bs_dest->open_flags = bs_src->open_flags; 1280 1281 /* dev info */ 1282 bs_dest->dev_ops = bs_src->dev_ops; 1283 bs_dest->dev_opaque = bs_src->dev_opaque; 1284 bs_dest->dev = bs_src->dev; 1285 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1286 bs_dest->copy_on_read = bs_src->copy_on_read; 1287 1288 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1289 1290 /* i/o timing parameters */ 1291 bs_dest->slice_time = bs_src->slice_time; 1292 bs_dest->slice_start = bs_src->slice_start; 1293 bs_dest->slice_end = bs_src->slice_end; 1294 bs_dest->io_limits = bs_src->io_limits; 1295 bs_dest->io_base = bs_src->io_base; 1296 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1297 bs_dest->block_timer = bs_src->block_timer; 1298 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1299 1300 /* r/w error */ 1301 bs_dest->on_read_error = bs_src->on_read_error; 1302 bs_dest->on_write_error = bs_src->on_write_error; 1303 1304 /* i/o status */ 1305 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1306 bs_dest->iostatus = bs_src->iostatus; 1307 1308 /* dirty bitmap */ 1309 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1310 1311 /* job */ 1312 bs_dest->in_use = bs_src->in_use; 1313 bs_dest->job = bs_src->job; 1314 1315 /* keep the same entry in bdrv_states */ 1316 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1317 bs_src->device_name); 1318 bs_dest->list = bs_src->list; 1319 } 1320 1321 /* 1322 * Swap bs contents for two image chains while they are live, 1323 * while keeping required fields on the BlockDriverState that is 1324 * actually attached to a device. 1325 * 1326 * This will modify the BlockDriverState fields, and swap contents 1327 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1328 * 1329 * bs_new is required to be anonymous. 1330 * 1331 * This function does not create any image files. 1332 */ 1333 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1334 { 1335 BlockDriverState tmp; 1336 1337 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1338 assert(bs_new->device_name[0] == '\0'); 1339 assert(bs_new->dirty_bitmap == NULL); 1340 assert(bs_new->job == NULL); 1341 assert(bs_new->dev == NULL); 1342 assert(bs_new->in_use == 0); 1343 assert(bs_new->io_limits_enabled == false); 1344 assert(bs_new->block_timer == NULL); 1345 1346 tmp = *bs_new; 1347 *bs_new = *bs_old; 1348 *bs_old = tmp; 1349 1350 /* there are some fields that should not be swapped, move them back */ 1351 bdrv_move_feature_fields(&tmp, bs_old); 1352 bdrv_move_feature_fields(bs_old, bs_new); 1353 bdrv_move_feature_fields(bs_new, &tmp); 1354 1355 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1356 assert(bs_new->device_name[0] == '\0'); 1357 1358 /* Check a few fields that should remain attached to the device */ 1359 assert(bs_new->dev == NULL); 1360 assert(bs_new->job == NULL); 1361 assert(bs_new->in_use == 0); 1362 assert(bs_new->io_limits_enabled == false); 1363 assert(bs_new->block_timer == NULL); 1364 1365 bdrv_rebind(bs_new); 1366 bdrv_rebind(bs_old); 1367 } 1368 1369 /* 1370 * Add new bs contents at the top of an image chain while the chain is 1371 * live, while keeping required fields on the top layer. 1372 * 1373 * This will modify the BlockDriverState fields, and swap contents 1374 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1375 * 1376 * bs_new is required to be anonymous. 1377 * 1378 * This function does not create any image files. 1379 */ 1380 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1381 { 1382 bdrv_swap(bs_new, bs_top); 1383 1384 /* The contents of 'tmp' will become bs_top, as we are 1385 * swapping bs_new and bs_top contents. */ 1386 bs_top->backing_hd = bs_new; 1387 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1388 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1389 bs_new->filename); 1390 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1391 bs_new->drv ? bs_new->drv->format_name : ""); 1392 } 1393 1394 void bdrv_delete(BlockDriverState *bs) 1395 { 1396 assert(!bs->dev); 1397 assert(!bs->job); 1398 assert(!bs->in_use); 1399 1400 /* remove from list, if necessary */ 1401 bdrv_make_anon(bs); 1402 1403 bdrv_close(bs); 1404 1405 assert(bs != bs_snapshots); 1406 g_free(bs); 1407 } 1408 1409 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1410 /* TODO change to DeviceState *dev when all users are qdevified */ 1411 { 1412 if (bs->dev) { 1413 return -EBUSY; 1414 } 1415 bs->dev = dev; 1416 bdrv_iostatus_reset(bs); 1417 return 0; 1418 } 1419 1420 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1421 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1422 { 1423 if (bdrv_attach_dev(bs, dev) < 0) { 1424 abort(); 1425 } 1426 } 1427 1428 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1429 /* TODO change to DeviceState *dev when all users are qdevified */ 1430 { 1431 assert(bs->dev == dev); 1432 bs->dev = NULL; 1433 bs->dev_ops = NULL; 1434 bs->dev_opaque = NULL; 1435 bs->buffer_alignment = 512; 1436 } 1437 1438 /* TODO change to return DeviceState * when all users are qdevified */ 1439 void *bdrv_get_attached_dev(BlockDriverState *bs) 1440 { 1441 return bs->dev; 1442 } 1443 1444 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1445 void *opaque) 1446 { 1447 bs->dev_ops = ops; 1448 bs->dev_opaque = opaque; 1449 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1450 bs_snapshots = NULL; 1451 } 1452 } 1453 1454 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1455 enum MonitorEvent ev, 1456 BlockErrorAction action, bool is_read) 1457 { 1458 QObject *data; 1459 const char *action_str; 1460 1461 switch (action) { 1462 case BDRV_ACTION_REPORT: 1463 action_str = "report"; 1464 break; 1465 case BDRV_ACTION_IGNORE: 1466 action_str = "ignore"; 1467 break; 1468 case BDRV_ACTION_STOP: 1469 action_str = "stop"; 1470 break; 1471 default: 1472 abort(); 1473 } 1474 1475 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1476 bdrv->device_name, 1477 action_str, 1478 is_read ? "read" : "write"); 1479 monitor_protocol_event(ev, data); 1480 1481 qobject_decref(data); 1482 } 1483 1484 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1485 { 1486 QObject *data; 1487 1488 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1489 bdrv_get_device_name(bs), ejected); 1490 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1491 1492 qobject_decref(data); 1493 } 1494 1495 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1496 { 1497 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1498 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1499 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1500 if (tray_was_closed) { 1501 /* tray open */ 1502 bdrv_emit_qmp_eject_event(bs, true); 1503 } 1504 if (load) { 1505 /* tray close */ 1506 bdrv_emit_qmp_eject_event(bs, false); 1507 } 1508 } 1509 } 1510 1511 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1512 { 1513 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1514 } 1515 1516 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1517 { 1518 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1519 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1520 } 1521 } 1522 1523 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1524 { 1525 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1526 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1527 } 1528 return false; 1529 } 1530 1531 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1532 { 1533 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1534 bs->dev_ops->resize_cb(bs->dev_opaque); 1535 } 1536 } 1537 1538 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1539 { 1540 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1541 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1542 } 1543 return false; 1544 } 1545 1546 /* 1547 * Run consistency checks on an image 1548 * 1549 * Returns 0 if the check could be completed (it doesn't mean that the image is 1550 * free of errors) or -errno when an internal error occurred. The results of the 1551 * check are stored in res. 1552 */ 1553 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1554 { 1555 if (bs->drv->bdrv_check == NULL) { 1556 return -ENOTSUP; 1557 } 1558 1559 memset(res, 0, sizeof(*res)); 1560 return bs->drv->bdrv_check(bs, res, fix); 1561 } 1562 1563 #define COMMIT_BUF_SECTORS 2048 1564 1565 /* commit COW file into the raw image */ 1566 int bdrv_commit(BlockDriverState *bs) 1567 { 1568 BlockDriver *drv = bs->drv; 1569 int64_t sector, total_sectors; 1570 int n, ro, open_flags; 1571 int ret = 0; 1572 uint8_t *buf; 1573 char filename[PATH_MAX]; 1574 1575 if (!drv) 1576 return -ENOMEDIUM; 1577 1578 if (!bs->backing_hd) { 1579 return -ENOTSUP; 1580 } 1581 1582 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1583 return -EBUSY; 1584 } 1585 1586 ro = bs->backing_hd->read_only; 1587 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1588 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1589 open_flags = bs->backing_hd->open_flags; 1590 1591 if (ro) { 1592 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1593 return -EACCES; 1594 } 1595 } 1596 1597 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1598 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1599 1600 for (sector = 0; sector < total_sectors; sector += n) { 1601 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1602 1603 if (bdrv_read(bs, sector, buf, n) != 0) { 1604 ret = -EIO; 1605 goto ro_cleanup; 1606 } 1607 1608 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1609 ret = -EIO; 1610 goto ro_cleanup; 1611 } 1612 } 1613 } 1614 1615 if (drv->bdrv_make_empty) { 1616 ret = drv->bdrv_make_empty(bs); 1617 bdrv_flush(bs); 1618 } 1619 1620 /* 1621 * Make sure all data we wrote to the backing device is actually 1622 * stable on disk. 1623 */ 1624 if (bs->backing_hd) 1625 bdrv_flush(bs->backing_hd); 1626 1627 ro_cleanup: 1628 g_free(buf); 1629 1630 if (ro) { 1631 /* ignoring error return here */ 1632 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1633 } 1634 1635 return ret; 1636 } 1637 1638 int bdrv_commit_all(void) 1639 { 1640 BlockDriverState *bs; 1641 1642 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1643 if (bs->drv && bs->backing_hd) { 1644 int ret = bdrv_commit(bs); 1645 if (ret < 0) { 1646 return ret; 1647 } 1648 } 1649 } 1650 return 0; 1651 } 1652 1653 struct BdrvTrackedRequest { 1654 BlockDriverState *bs; 1655 int64_t sector_num; 1656 int nb_sectors; 1657 bool is_write; 1658 QLIST_ENTRY(BdrvTrackedRequest) list; 1659 Coroutine *co; /* owner, used for deadlock detection */ 1660 CoQueue wait_queue; /* coroutines blocked on this request */ 1661 }; 1662 1663 /** 1664 * Remove an active request from the tracked requests list 1665 * 1666 * This function should be called when a tracked request is completing. 1667 */ 1668 static void tracked_request_end(BdrvTrackedRequest *req) 1669 { 1670 QLIST_REMOVE(req, list); 1671 qemu_co_queue_restart_all(&req->wait_queue); 1672 } 1673 1674 /** 1675 * Add an active request to the tracked requests list 1676 */ 1677 static void tracked_request_begin(BdrvTrackedRequest *req, 1678 BlockDriverState *bs, 1679 int64_t sector_num, 1680 int nb_sectors, bool is_write) 1681 { 1682 *req = (BdrvTrackedRequest){ 1683 .bs = bs, 1684 .sector_num = sector_num, 1685 .nb_sectors = nb_sectors, 1686 .is_write = is_write, 1687 .co = qemu_coroutine_self(), 1688 }; 1689 1690 qemu_co_queue_init(&req->wait_queue); 1691 1692 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1693 } 1694 1695 /** 1696 * Round a region to cluster boundaries 1697 */ 1698 void bdrv_round_to_clusters(BlockDriverState *bs, 1699 int64_t sector_num, int nb_sectors, 1700 int64_t *cluster_sector_num, 1701 int *cluster_nb_sectors) 1702 { 1703 BlockDriverInfo bdi; 1704 1705 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1706 *cluster_sector_num = sector_num; 1707 *cluster_nb_sectors = nb_sectors; 1708 } else { 1709 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1710 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1711 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1712 nb_sectors, c); 1713 } 1714 } 1715 1716 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1717 int64_t sector_num, int nb_sectors) { 1718 /* aaaa bbbb */ 1719 if (sector_num >= req->sector_num + req->nb_sectors) { 1720 return false; 1721 } 1722 /* bbbb aaaa */ 1723 if (req->sector_num >= sector_num + nb_sectors) { 1724 return false; 1725 } 1726 return true; 1727 } 1728 1729 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1730 int64_t sector_num, int nb_sectors) 1731 { 1732 BdrvTrackedRequest *req; 1733 int64_t cluster_sector_num; 1734 int cluster_nb_sectors; 1735 bool retry; 1736 1737 /* If we touch the same cluster it counts as an overlap. This guarantees 1738 * that allocating writes will be serialized and not race with each other 1739 * for the same cluster. For example, in copy-on-read it ensures that the 1740 * CoR read and write operations are atomic and guest writes cannot 1741 * interleave between them. 1742 */ 1743 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 1744 &cluster_sector_num, &cluster_nb_sectors); 1745 1746 do { 1747 retry = false; 1748 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1749 if (tracked_request_overlaps(req, cluster_sector_num, 1750 cluster_nb_sectors)) { 1751 /* Hitting this means there was a reentrant request, for 1752 * example, a block driver issuing nested requests. This must 1753 * never happen since it means deadlock. 1754 */ 1755 assert(qemu_coroutine_self() != req->co); 1756 1757 qemu_co_queue_wait(&req->wait_queue); 1758 retry = true; 1759 break; 1760 } 1761 } 1762 } while (retry); 1763 } 1764 1765 /* 1766 * Return values: 1767 * 0 - success 1768 * -EINVAL - backing format specified, but no file 1769 * -ENOSPC - can't update the backing file because no space is left in the 1770 * image file header 1771 * -ENOTSUP - format driver doesn't support changing the backing file 1772 */ 1773 int bdrv_change_backing_file(BlockDriverState *bs, 1774 const char *backing_file, const char *backing_fmt) 1775 { 1776 BlockDriver *drv = bs->drv; 1777 int ret; 1778 1779 /* Backing file format doesn't make sense without a backing file */ 1780 if (backing_fmt && !backing_file) { 1781 return -EINVAL; 1782 } 1783 1784 if (drv->bdrv_change_backing_file != NULL) { 1785 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1786 } else { 1787 ret = -ENOTSUP; 1788 } 1789 1790 if (ret == 0) { 1791 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1792 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1793 } 1794 return ret; 1795 } 1796 1797 /* 1798 * Finds the image layer in the chain that has 'bs' as its backing file. 1799 * 1800 * active is the current topmost image. 1801 * 1802 * Returns NULL if bs is not found in active's image chain, 1803 * or if active == bs. 1804 */ 1805 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1806 BlockDriverState *bs) 1807 { 1808 BlockDriverState *overlay = NULL; 1809 BlockDriverState *intermediate; 1810 1811 assert(active != NULL); 1812 assert(bs != NULL); 1813 1814 /* if bs is the same as active, then by definition it has no overlay 1815 */ 1816 if (active == bs) { 1817 return NULL; 1818 } 1819 1820 intermediate = active; 1821 while (intermediate->backing_hd) { 1822 if (intermediate->backing_hd == bs) { 1823 overlay = intermediate; 1824 break; 1825 } 1826 intermediate = intermediate->backing_hd; 1827 } 1828 1829 return overlay; 1830 } 1831 1832 typedef struct BlkIntermediateStates { 1833 BlockDriverState *bs; 1834 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 1835 } BlkIntermediateStates; 1836 1837 1838 /* 1839 * Drops images above 'base' up to and including 'top', and sets the image 1840 * above 'top' to have base as its backing file. 1841 * 1842 * Requires that the overlay to 'top' is opened r/w, so that the backing file 1843 * information in 'bs' can be properly updated. 1844 * 1845 * E.g., this will convert the following chain: 1846 * bottom <- base <- intermediate <- top <- active 1847 * 1848 * to 1849 * 1850 * bottom <- base <- active 1851 * 1852 * It is allowed for bottom==base, in which case it converts: 1853 * 1854 * base <- intermediate <- top <- active 1855 * 1856 * to 1857 * 1858 * base <- active 1859 * 1860 * Error conditions: 1861 * if active == top, that is considered an error 1862 * 1863 */ 1864 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 1865 BlockDriverState *base) 1866 { 1867 BlockDriverState *intermediate; 1868 BlockDriverState *base_bs = NULL; 1869 BlockDriverState *new_top_bs = NULL; 1870 BlkIntermediateStates *intermediate_state, *next; 1871 int ret = -EIO; 1872 1873 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 1874 QSIMPLEQ_INIT(&states_to_delete); 1875 1876 if (!top->drv || !base->drv) { 1877 goto exit; 1878 } 1879 1880 new_top_bs = bdrv_find_overlay(active, top); 1881 1882 if (new_top_bs == NULL) { 1883 /* we could not find the image above 'top', this is an error */ 1884 goto exit; 1885 } 1886 1887 /* special case of new_top_bs->backing_hd already pointing to base - nothing 1888 * to do, no intermediate images */ 1889 if (new_top_bs->backing_hd == base) { 1890 ret = 0; 1891 goto exit; 1892 } 1893 1894 intermediate = top; 1895 1896 /* now we will go down through the list, and add each BDS we find 1897 * into our deletion queue, until we hit the 'base' 1898 */ 1899 while (intermediate) { 1900 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 1901 intermediate_state->bs = intermediate; 1902 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 1903 1904 if (intermediate->backing_hd == base) { 1905 base_bs = intermediate->backing_hd; 1906 break; 1907 } 1908 intermediate = intermediate->backing_hd; 1909 } 1910 if (base_bs == NULL) { 1911 /* something went wrong, we did not end at the base. safely 1912 * unravel everything, and exit with error */ 1913 goto exit; 1914 } 1915 1916 /* success - we can delete the intermediate states, and link top->base */ 1917 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 1918 base_bs->drv ? base_bs->drv->format_name : ""); 1919 if (ret) { 1920 goto exit; 1921 } 1922 new_top_bs->backing_hd = base_bs; 1923 1924 1925 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1926 /* so that bdrv_close() does not recursively close the chain */ 1927 intermediate_state->bs->backing_hd = NULL; 1928 bdrv_delete(intermediate_state->bs); 1929 } 1930 ret = 0; 1931 1932 exit: 1933 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1934 g_free(intermediate_state); 1935 } 1936 return ret; 1937 } 1938 1939 1940 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1941 size_t size) 1942 { 1943 int64_t len; 1944 1945 if (!bdrv_is_inserted(bs)) 1946 return -ENOMEDIUM; 1947 1948 if (bs->growable) 1949 return 0; 1950 1951 len = bdrv_getlength(bs); 1952 1953 if (offset < 0) 1954 return -EIO; 1955 1956 if ((offset > len) || (len - offset < size)) 1957 return -EIO; 1958 1959 return 0; 1960 } 1961 1962 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1963 int nb_sectors) 1964 { 1965 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1966 nb_sectors * BDRV_SECTOR_SIZE); 1967 } 1968 1969 typedef struct RwCo { 1970 BlockDriverState *bs; 1971 int64_t sector_num; 1972 int nb_sectors; 1973 QEMUIOVector *qiov; 1974 bool is_write; 1975 int ret; 1976 } RwCo; 1977 1978 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1979 { 1980 RwCo *rwco = opaque; 1981 1982 if (!rwco->is_write) { 1983 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1984 rwco->nb_sectors, rwco->qiov, 0); 1985 } else { 1986 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1987 rwco->nb_sectors, rwco->qiov, 0); 1988 } 1989 } 1990 1991 /* 1992 * Process a synchronous request using coroutines 1993 */ 1994 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1995 int nb_sectors, bool is_write) 1996 { 1997 QEMUIOVector qiov; 1998 struct iovec iov = { 1999 .iov_base = (void *)buf, 2000 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 2001 }; 2002 Coroutine *co; 2003 RwCo rwco = { 2004 .bs = bs, 2005 .sector_num = sector_num, 2006 .nb_sectors = nb_sectors, 2007 .qiov = &qiov, 2008 .is_write = is_write, 2009 .ret = NOT_DONE, 2010 }; 2011 2012 qemu_iovec_init_external(&qiov, &iov, 1); 2013 2014 /** 2015 * In sync call context, when the vcpu is blocked, this throttling timer 2016 * will not fire; so the I/O throttling function has to be disabled here 2017 * if it has been enabled. 2018 */ 2019 if (bs->io_limits_enabled) { 2020 fprintf(stderr, "Disabling I/O throttling on '%s' due " 2021 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 2022 bdrv_io_limits_disable(bs); 2023 } 2024 2025 if (qemu_in_coroutine()) { 2026 /* Fast-path if already in coroutine context */ 2027 bdrv_rw_co_entry(&rwco); 2028 } else { 2029 co = qemu_coroutine_create(bdrv_rw_co_entry); 2030 qemu_coroutine_enter(co, &rwco); 2031 while (rwco.ret == NOT_DONE) { 2032 qemu_aio_wait(); 2033 } 2034 } 2035 return rwco.ret; 2036 } 2037 2038 /* return < 0 if error. See bdrv_write() for the return codes */ 2039 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2040 uint8_t *buf, int nb_sectors) 2041 { 2042 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 2043 } 2044 2045 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2046 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2047 uint8_t *buf, int nb_sectors) 2048 { 2049 bool enabled; 2050 int ret; 2051 2052 enabled = bs->io_limits_enabled; 2053 bs->io_limits_enabled = false; 2054 ret = bdrv_read(bs, 0, buf, 1); 2055 bs->io_limits_enabled = enabled; 2056 return ret; 2057 } 2058 2059 /* Return < 0 if error. Important errors are: 2060 -EIO generic I/O error (may happen for all errors) 2061 -ENOMEDIUM No media inserted. 2062 -EINVAL Invalid sector number or nb_sectors 2063 -EACCES Trying to write a read-only device 2064 */ 2065 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2066 const uint8_t *buf, int nb_sectors) 2067 { 2068 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2069 } 2070 2071 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2072 void *buf, int count1) 2073 { 2074 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2075 int len, nb_sectors, count; 2076 int64_t sector_num; 2077 int ret; 2078 2079 count = count1; 2080 /* first read to align to sector start */ 2081 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2082 if (len > count) 2083 len = count; 2084 sector_num = offset >> BDRV_SECTOR_BITS; 2085 if (len > 0) { 2086 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2087 return ret; 2088 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2089 count -= len; 2090 if (count == 0) 2091 return count1; 2092 sector_num++; 2093 buf += len; 2094 } 2095 2096 /* read the sectors "in place" */ 2097 nb_sectors = count >> BDRV_SECTOR_BITS; 2098 if (nb_sectors > 0) { 2099 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2100 return ret; 2101 sector_num += nb_sectors; 2102 len = nb_sectors << BDRV_SECTOR_BITS; 2103 buf += len; 2104 count -= len; 2105 } 2106 2107 /* add data from the last sector */ 2108 if (count > 0) { 2109 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2110 return ret; 2111 memcpy(buf, tmp_buf, count); 2112 } 2113 return count1; 2114 } 2115 2116 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2117 const void *buf, int count1) 2118 { 2119 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2120 int len, nb_sectors, count; 2121 int64_t sector_num; 2122 int ret; 2123 2124 count = count1; 2125 /* first write to align to sector start */ 2126 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2127 if (len > count) 2128 len = count; 2129 sector_num = offset >> BDRV_SECTOR_BITS; 2130 if (len > 0) { 2131 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2132 return ret; 2133 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 2134 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2135 return ret; 2136 count -= len; 2137 if (count == 0) 2138 return count1; 2139 sector_num++; 2140 buf += len; 2141 } 2142 2143 /* write the sectors "in place" */ 2144 nb_sectors = count >> BDRV_SECTOR_BITS; 2145 if (nb_sectors > 0) { 2146 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 2147 return ret; 2148 sector_num += nb_sectors; 2149 len = nb_sectors << BDRV_SECTOR_BITS; 2150 buf += len; 2151 count -= len; 2152 } 2153 2154 /* add data from the last sector */ 2155 if (count > 0) { 2156 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2157 return ret; 2158 memcpy(tmp_buf, buf, count); 2159 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2160 return ret; 2161 } 2162 return count1; 2163 } 2164 2165 /* 2166 * Writes to the file and ensures that no writes are reordered across this 2167 * request (acts as a barrier) 2168 * 2169 * Returns 0 on success, -errno in error cases. 2170 */ 2171 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2172 const void *buf, int count) 2173 { 2174 int ret; 2175 2176 ret = bdrv_pwrite(bs, offset, buf, count); 2177 if (ret < 0) { 2178 return ret; 2179 } 2180 2181 /* No flush needed for cache modes that already do it */ 2182 if (bs->enable_write_cache) { 2183 bdrv_flush(bs); 2184 } 2185 2186 return 0; 2187 } 2188 2189 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2190 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2191 { 2192 /* Perform I/O through a temporary buffer so that users who scribble over 2193 * their read buffer while the operation is in progress do not end up 2194 * modifying the image file. This is critical for zero-copy guest I/O 2195 * where anything might happen inside guest memory. 2196 */ 2197 void *bounce_buffer; 2198 2199 BlockDriver *drv = bs->drv; 2200 struct iovec iov; 2201 QEMUIOVector bounce_qiov; 2202 int64_t cluster_sector_num; 2203 int cluster_nb_sectors; 2204 size_t skip_bytes; 2205 int ret; 2206 2207 /* Cover entire cluster so no additional backing file I/O is required when 2208 * allocating cluster in the image file. 2209 */ 2210 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 2211 &cluster_sector_num, &cluster_nb_sectors); 2212 2213 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2214 cluster_sector_num, cluster_nb_sectors); 2215 2216 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2217 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2218 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2219 2220 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2221 &bounce_qiov); 2222 if (ret < 0) { 2223 goto err; 2224 } 2225 2226 if (drv->bdrv_co_write_zeroes && 2227 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2228 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2229 cluster_nb_sectors); 2230 } else { 2231 /* This does not change the data on the disk, it is not necessary 2232 * to flush even in cache=writethrough mode. 2233 */ 2234 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2235 &bounce_qiov); 2236 } 2237 2238 if (ret < 0) { 2239 /* It might be okay to ignore write errors for guest requests. If this 2240 * is a deliberate copy-on-read then we don't want to ignore the error. 2241 * Simply report it in all cases. 2242 */ 2243 goto err; 2244 } 2245 2246 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2247 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2248 nb_sectors * BDRV_SECTOR_SIZE); 2249 2250 err: 2251 qemu_vfree(bounce_buffer); 2252 return ret; 2253 } 2254 2255 /* 2256 * Handle a read request in coroutine context 2257 */ 2258 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2259 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2260 BdrvRequestFlags flags) 2261 { 2262 BlockDriver *drv = bs->drv; 2263 BdrvTrackedRequest req; 2264 int ret; 2265 2266 if (!drv) { 2267 return -ENOMEDIUM; 2268 } 2269 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2270 return -EIO; 2271 } 2272 2273 /* throttling disk read I/O */ 2274 if (bs->io_limits_enabled) { 2275 bdrv_io_limits_intercept(bs, false, nb_sectors); 2276 } 2277 2278 if (bs->copy_on_read) { 2279 flags |= BDRV_REQ_COPY_ON_READ; 2280 } 2281 if (flags & BDRV_REQ_COPY_ON_READ) { 2282 bs->copy_on_read_in_flight++; 2283 } 2284 2285 if (bs->copy_on_read_in_flight) { 2286 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2287 } 2288 2289 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2290 2291 if (flags & BDRV_REQ_COPY_ON_READ) { 2292 int pnum; 2293 2294 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2295 if (ret < 0) { 2296 goto out; 2297 } 2298 2299 if (!ret || pnum != nb_sectors) { 2300 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2301 goto out; 2302 } 2303 } 2304 2305 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2306 2307 out: 2308 tracked_request_end(&req); 2309 2310 if (flags & BDRV_REQ_COPY_ON_READ) { 2311 bs->copy_on_read_in_flight--; 2312 } 2313 2314 return ret; 2315 } 2316 2317 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2318 int nb_sectors, QEMUIOVector *qiov) 2319 { 2320 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2321 2322 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2323 } 2324 2325 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2326 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2327 { 2328 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2329 2330 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2331 BDRV_REQ_COPY_ON_READ); 2332 } 2333 2334 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2335 int64_t sector_num, int nb_sectors) 2336 { 2337 BlockDriver *drv = bs->drv; 2338 QEMUIOVector qiov; 2339 struct iovec iov; 2340 int ret; 2341 2342 /* TODO Emulate only part of misaligned requests instead of letting block 2343 * drivers return -ENOTSUP and emulate everything */ 2344 2345 /* First try the efficient write zeroes operation */ 2346 if (drv->bdrv_co_write_zeroes) { 2347 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2348 if (ret != -ENOTSUP) { 2349 return ret; 2350 } 2351 } 2352 2353 /* Fall back to bounce buffer if write zeroes is unsupported */ 2354 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2355 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2356 memset(iov.iov_base, 0, iov.iov_len); 2357 qemu_iovec_init_external(&qiov, &iov, 1); 2358 2359 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2360 2361 qemu_vfree(iov.iov_base); 2362 return ret; 2363 } 2364 2365 /* 2366 * Handle a write request in coroutine context 2367 */ 2368 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2369 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2370 BdrvRequestFlags flags) 2371 { 2372 BlockDriver *drv = bs->drv; 2373 BdrvTrackedRequest req; 2374 int ret; 2375 2376 if (!bs->drv) { 2377 return -ENOMEDIUM; 2378 } 2379 if (bs->read_only) { 2380 return -EACCES; 2381 } 2382 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2383 return -EIO; 2384 } 2385 2386 /* throttling disk write I/O */ 2387 if (bs->io_limits_enabled) { 2388 bdrv_io_limits_intercept(bs, true, nb_sectors); 2389 } 2390 2391 if (bs->copy_on_read_in_flight) { 2392 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2393 } 2394 2395 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2396 2397 if (flags & BDRV_REQ_ZERO_WRITE) { 2398 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2399 } else { 2400 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2401 } 2402 2403 if (ret == 0 && !bs->enable_write_cache) { 2404 ret = bdrv_co_flush(bs); 2405 } 2406 2407 if (bs->dirty_bitmap) { 2408 bdrv_set_dirty(bs, sector_num, nb_sectors); 2409 } 2410 2411 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2412 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2413 } 2414 2415 tracked_request_end(&req); 2416 2417 return ret; 2418 } 2419 2420 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2421 int nb_sectors, QEMUIOVector *qiov) 2422 { 2423 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2424 2425 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2426 } 2427 2428 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2429 int64_t sector_num, int nb_sectors) 2430 { 2431 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2432 2433 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2434 BDRV_REQ_ZERO_WRITE); 2435 } 2436 2437 /** 2438 * Truncate file to 'offset' bytes (needed only for file protocols) 2439 */ 2440 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2441 { 2442 BlockDriver *drv = bs->drv; 2443 int ret; 2444 if (!drv) 2445 return -ENOMEDIUM; 2446 if (!drv->bdrv_truncate) 2447 return -ENOTSUP; 2448 if (bs->read_only) 2449 return -EACCES; 2450 if (bdrv_in_use(bs)) 2451 return -EBUSY; 2452 2453 /* There better not be any in-flight IOs when we truncate the device. */ 2454 bdrv_drain_all(); 2455 2456 ret = drv->bdrv_truncate(bs, offset); 2457 if (ret == 0) { 2458 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2459 bdrv_dev_resize_cb(bs); 2460 } 2461 return ret; 2462 } 2463 2464 /** 2465 * Length of a allocated file in bytes. Sparse files are counted by actual 2466 * allocated space. Return < 0 if error or unknown. 2467 */ 2468 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2469 { 2470 BlockDriver *drv = bs->drv; 2471 if (!drv) { 2472 return -ENOMEDIUM; 2473 } 2474 if (drv->bdrv_get_allocated_file_size) { 2475 return drv->bdrv_get_allocated_file_size(bs); 2476 } 2477 if (bs->file) { 2478 return bdrv_get_allocated_file_size(bs->file); 2479 } 2480 return -ENOTSUP; 2481 } 2482 2483 /** 2484 * Length of a file in bytes. Return < 0 if error or unknown. 2485 */ 2486 int64_t bdrv_getlength(BlockDriverState *bs) 2487 { 2488 BlockDriver *drv = bs->drv; 2489 if (!drv) 2490 return -ENOMEDIUM; 2491 2492 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2493 if (drv->bdrv_getlength) { 2494 return drv->bdrv_getlength(bs); 2495 } 2496 } 2497 return bs->total_sectors * BDRV_SECTOR_SIZE; 2498 } 2499 2500 /* return 0 as number of sectors if no device present or error */ 2501 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2502 { 2503 int64_t length; 2504 length = bdrv_getlength(bs); 2505 if (length < 0) 2506 length = 0; 2507 else 2508 length = length >> BDRV_SECTOR_BITS; 2509 *nb_sectors_ptr = length; 2510 } 2511 2512 /* throttling disk io limits */ 2513 void bdrv_set_io_limits(BlockDriverState *bs, 2514 BlockIOLimit *io_limits) 2515 { 2516 bs->io_limits = *io_limits; 2517 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2518 } 2519 2520 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2521 BlockdevOnError on_write_error) 2522 { 2523 bs->on_read_error = on_read_error; 2524 bs->on_write_error = on_write_error; 2525 } 2526 2527 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2528 { 2529 return is_read ? bs->on_read_error : bs->on_write_error; 2530 } 2531 2532 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2533 { 2534 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2535 2536 switch (on_err) { 2537 case BLOCKDEV_ON_ERROR_ENOSPC: 2538 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2539 case BLOCKDEV_ON_ERROR_STOP: 2540 return BDRV_ACTION_STOP; 2541 case BLOCKDEV_ON_ERROR_REPORT: 2542 return BDRV_ACTION_REPORT; 2543 case BLOCKDEV_ON_ERROR_IGNORE: 2544 return BDRV_ACTION_IGNORE; 2545 default: 2546 abort(); 2547 } 2548 } 2549 2550 /* This is done by device models because, while the block layer knows 2551 * about the error, it does not know whether an operation comes from 2552 * the device or the block layer (from a job, for example). 2553 */ 2554 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2555 bool is_read, int error) 2556 { 2557 assert(error >= 0); 2558 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2559 if (action == BDRV_ACTION_STOP) { 2560 vm_stop(RUN_STATE_IO_ERROR); 2561 bdrv_iostatus_set_err(bs, error); 2562 } 2563 } 2564 2565 int bdrv_is_read_only(BlockDriverState *bs) 2566 { 2567 return bs->read_only; 2568 } 2569 2570 int bdrv_is_sg(BlockDriverState *bs) 2571 { 2572 return bs->sg; 2573 } 2574 2575 int bdrv_enable_write_cache(BlockDriverState *bs) 2576 { 2577 return bs->enable_write_cache; 2578 } 2579 2580 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2581 { 2582 bs->enable_write_cache = wce; 2583 2584 /* so a reopen() will preserve wce */ 2585 if (wce) { 2586 bs->open_flags |= BDRV_O_CACHE_WB; 2587 } else { 2588 bs->open_flags &= ~BDRV_O_CACHE_WB; 2589 } 2590 } 2591 2592 int bdrv_is_encrypted(BlockDriverState *bs) 2593 { 2594 if (bs->backing_hd && bs->backing_hd->encrypted) 2595 return 1; 2596 return bs->encrypted; 2597 } 2598 2599 int bdrv_key_required(BlockDriverState *bs) 2600 { 2601 BlockDriverState *backing_hd = bs->backing_hd; 2602 2603 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2604 return 1; 2605 return (bs->encrypted && !bs->valid_key); 2606 } 2607 2608 int bdrv_set_key(BlockDriverState *bs, const char *key) 2609 { 2610 int ret; 2611 if (bs->backing_hd && bs->backing_hd->encrypted) { 2612 ret = bdrv_set_key(bs->backing_hd, key); 2613 if (ret < 0) 2614 return ret; 2615 if (!bs->encrypted) 2616 return 0; 2617 } 2618 if (!bs->encrypted) { 2619 return -EINVAL; 2620 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2621 return -ENOMEDIUM; 2622 } 2623 ret = bs->drv->bdrv_set_key(bs, key); 2624 if (ret < 0) { 2625 bs->valid_key = 0; 2626 } else if (!bs->valid_key) { 2627 bs->valid_key = 1; 2628 /* call the change callback now, we skipped it on open */ 2629 bdrv_dev_change_media_cb(bs, true); 2630 } 2631 return ret; 2632 } 2633 2634 const char *bdrv_get_format_name(BlockDriverState *bs) 2635 { 2636 return bs->drv ? bs->drv->format_name : NULL; 2637 } 2638 2639 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2640 void *opaque) 2641 { 2642 BlockDriver *drv; 2643 2644 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2645 it(opaque, drv->format_name); 2646 } 2647 } 2648 2649 BlockDriverState *bdrv_find(const char *name) 2650 { 2651 BlockDriverState *bs; 2652 2653 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2654 if (!strcmp(name, bs->device_name)) { 2655 return bs; 2656 } 2657 } 2658 return NULL; 2659 } 2660 2661 BlockDriverState *bdrv_next(BlockDriverState *bs) 2662 { 2663 if (!bs) { 2664 return QTAILQ_FIRST(&bdrv_states); 2665 } 2666 return QTAILQ_NEXT(bs, list); 2667 } 2668 2669 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2670 { 2671 BlockDriverState *bs; 2672 2673 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2674 it(opaque, bs); 2675 } 2676 } 2677 2678 const char *bdrv_get_device_name(BlockDriverState *bs) 2679 { 2680 return bs->device_name; 2681 } 2682 2683 int bdrv_get_flags(BlockDriverState *bs) 2684 { 2685 return bs->open_flags; 2686 } 2687 2688 void bdrv_flush_all(void) 2689 { 2690 BlockDriverState *bs; 2691 2692 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2693 bdrv_flush(bs); 2694 } 2695 } 2696 2697 int bdrv_has_zero_init(BlockDriverState *bs) 2698 { 2699 assert(bs->drv); 2700 2701 if (bs->drv->bdrv_has_zero_init) { 2702 return bs->drv->bdrv_has_zero_init(bs); 2703 } 2704 2705 return 1; 2706 } 2707 2708 typedef struct BdrvCoIsAllocatedData { 2709 BlockDriverState *bs; 2710 BlockDriverState *base; 2711 int64_t sector_num; 2712 int nb_sectors; 2713 int *pnum; 2714 int ret; 2715 bool done; 2716 } BdrvCoIsAllocatedData; 2717 2718 /* 2719 * Returns true iff the specified sector is present in the disk image. Drivers 2720 * not implementing the functionality are assumed to not support backing files, 2721 * hence all their sectors are reported as allocated. 2722 * 2723 * If 'sector_num' is beyond the end of the disk image the return value is 0 2724 * and 'pnum' is set to 0. 2725 * 2726 * 'pnum' is set to the number of sectors (including and immediately following 2727 * the specified sector) that are known to be in the same 2728 * allocated/unallocated state. 2729 * 2730 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2731 * beyond the end of the disk image it will be clamped. 2732 */ 2733 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2734 int nb_sectors, int *pnum) 2735 { 2736 int64_t n; 2737 2738 if (sector_num >= bs->total_sectors) { 2739 *pnum = 0; 2740 return 0; 2741 } 2742 2743 n = bs->total_sectors - sector_num; 2744 if (n < nb_sectors) { 2745 nb_sectors = n; 2746 } 2747 2748 if (!bs->drv->bdrv_co_is_allocated) { 2749 *pnum = nb_sectors; 2750 return 1; 2751 } 2752 2753 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2754 } 2755 2756 /* Coroutine wrapper for bdrv_is_allocated() */ 2757 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2758 { 2759 BdrvCoIsAllocatedData *data = opaque; 2760 BlockDriverState *bs = data->bs; 2761 2762 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2763 data->pnum); 2764 data->done = true; 2765 } 2766 2767 /* 2768 * Synchronous wrapper around bdrv_co_is_allocated(). 2769 * 2770 * See bdrv_co_is_allocated() for details. 2771 */ 2772 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2773 int *pnum) 2774 { 2775 Coroutine *co; 2776 BdrvCoIsAllocatedData data = { 2777 .bs = bs, 2778 .sector_num = sector_num, 2779 .nb_sectors = nb_sectors, 2780 .pnum = pnum, 2781 .done = false, 2782 }; 2783 2784 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2785 qemu_coroutine_enter(co, &data); 2786 while (!data.done) { 2787 qemu_aio_wait(); 2788 } 2789 return data.ret; 2790 } 2791 2792 /* 2793 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2794 * 2795 * Return true if the given sector is allocated in any image between 2796 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2797 * sector is allocated in any image of the chain. Return false otherwise. 2798 * 2799 * 'pnum' is set to the number of sectors (including and immediately following 2800 * the specified sector) that are known to be in the same 2801 * allocated/unallocated state. 2802 * 2803 */ 2804 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2805 BlockDriverState *base, 2806 int64_t sector_num, 2807 int nb_sectors, int *pnum) 2808 { 2809 BlockDriverState *intermediate; 2810 int ret, n = nb_sectors; 2811 2812 intermediate = top; 2813 while (intermediate && intermediate != base) { 2814 int pnum_inter; 2815 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2816 &pnum_inter); 2817 if (ret < 0) { 2818 return ret; 2819 } else if (ret) { 2820 *pnum = pnum_inter; 2821 return 1; 2822 } 2823 2824 /* 2825 * [sector_num, nb_sectors] is unallocated on top but intermediate 2826 * might have 2827 * 2828 * [sector_num+x, nr_sectors] allocated. 2829 */ 2830 if (n > pnum_inter && 2831 (intermediate == top || 2832 sector_num + pnum_inter < intermediate->total_sectors)) { 2833 n = pnum_inter; 2834 } 2835 2836 intermediate = intermediate->backing_hd; 2837 } 2838 2839 *pnum = n; 2840 return 0; 2841 } 2842 2843 /* Coroutine wrapper for bdrv_is_allocated_above() */ 2844 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque) 2845 { 2846 BdrvCoIsAllocatedData *data = opaque; 2847 BlockDriverState *top = data->bs; 2848 BlockDriverState *base = data->base; 2849 2850 data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num, 2851 data->nb_sectors, data->pnum); 2852 data->done = true; 2853 } 2854 2855 /* 2856 * Synchronous wrapper around bdrv_co_is_allocated_above(). 2857 * 2858 * See bdrv_co_is_allocated_above() for details. 2859 */ 2860 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base, 2861 int64_t sector_num, int nb_sectors, int *pnum) 2862 { 2863 Coroutine *co; 2864 BdrvCoIsAllocatedData data = { 2865 .bs = top, 2866 .base = base, 2867 .sector_num = sector_num, 2868 .nb_sectors = nb_sectors, 2869 .pnum = pnum, 2870 .done = false, 2871 }; 2872 2873 co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry); 2874 qemu_coroutine_enter(co, &data); 2875 while (!data.done) { 2876 qemu_aio_wait(); 2877 } 2878 return data.ret; 2879 } 2880 2881 BlockInfo *bdrv_query_info(BlockDriverState *bs) 2882 { 2883 BlockInfo *info = g_malloc0(sizeof(*info)); 2884 info->device = g_strdup(bs->device_name); 2885 info->type = g_strdup("unknown"); 2886 info->locked = bdrv_dev_is_medium_locked(bs); 2887 info->removable = bdrv_dev_has_removable_media(bs); 2888 2889 if (bdrv_dev_has_removable_media(bs)) { 2890 info->has_tray_open = true; 2891 info->tray_open = bdrv_dev_is_tray_open(bs); 2892 } 2893 2894 if (bdrv_iostatus_is_enabled(bs)) { 2895 info->has_io_status = true; 2896 info->io_status = bs->iostatus; 2897 } 2898 2899 if (bs->dirty_bitmap) { 2900 info->has_dirty = true; 2901 info->dirty = g_malloc0(sizeof(*info->dirty)); 2902 info->dirty->count = bdrv_get_dirty_count(bs) * BDRV_SECTOR_SIZE; 2903 info->dirty->granularity = 2904 ((int64_t) BDRV_SECTOR_SIZE << hbitmap_granularity(bs->dirty_bitmap)); 2905 } 2906 2907 if (bs->drv) { 2908 info->has_inserted = true; 2909 info->inserted = g_malloc0(sizeof(*info->inserted)); 2910 info->inserted->file = g_strdup(bs->filename); 2911 info->inserted->ro = bs->read_only; 2912 info->inserted->drv = g_strdup(bs->drv->format_name); 2913 info->inserted->encrypted = bs->encrypted; 2914 info->inserted->encryption_key_missing = bdrv_key_required(bs); 2915 2916 if (bs->backing_file[0]) { 2917 info->inserted->has_backing_file = true; 2918 info->inserted->backing_file = g_strdup(bs->backing_file); 2919 } 2920 2921 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs); 2922 2923 if (bs->io_limits_enabled) { 2924 info->inserted->bps = 2925 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2926 info->inserted->bps_rd = 2927 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2928 info->inserted->bps_wr = 2929 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2930 info->inserted->iops = 2931 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2932 info->inserted->iops_rd = 2933 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2934 info->inserted->iops_wr = 2935 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2936 } 2937 } 2938 return info; 2939 } 2940 2941 BlockInfoList *qmp_query_block(Error **errp) 2942 { 2943 BlockInfoList *head = NULL, **p_next = &head; 2944 BlockDriverState *bs; 2945 2946 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2947 BlockInfoList *info = g_malloc0(sizeof(*info)); 2948 info->value = bdrv_query_info(bs); 2949 2950 *p_next = info; 2951 p_next = &info->next; 2952 } 2953 2954 return head; 2955 } 2956 2957 BlockStats *bdrv_query_stats(const BlockDriverState *bs) 2958 { 2959 BlockStats *s; 2960 2961 s = g_malloc0(sizeof(*s)); 2962 2963 if (bs->device_name[0]) { 2964 s->has_device = true; 2965 s->device = g_strdup(bs->device_name); 2966 } 2967 2968 s->stats = g_malloc0(sizeof(*s->stats)); 2969 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2970 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2971 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2972 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2973 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2974 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2975 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2976 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2977 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2978 2979 if (bs->file) { 2980 s->has_parent = true; 2981 s->parent = bdrv_query_stats(bs->file); 2982 } 2983 2984 return s; 2985 } 2986 2987 BlockStatsList *qmp_query_blockstats(Error **errp) 2988 { 2989 BlockStatsList *head = NULL, **p_next = &head; 2990 BlockDriverState *bs; 2991 2992 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2993 BlockStatsList *info = g_malloc0(sizeof(*info)); 2994 info->value = bdrv_query_stats(bs); 2995 2996 *p_next = info; 2997 p_next = &info->next; 2998 } 2999 3000 return head; 3001 } 3002 3003 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 3004 { 3005 if (bs->backing_hd && bs->backing_hd->encrypted) 3006 return bs->backing_file; 3007 else if (bs->encrypted) 3008 return bs->filename; 3009 else 3010 return NULL; 3011 } 3012 3013 void bdrv_get_backing_filename(BlockDriverState *bs, 3014 char *filename, int filename_size) 3015 { 3016 pstrcpy(filename, filename_size, bs->backing_file); 3017 } 3018 3019 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 3020 const uint8_t *buf, int nb_sectors) 3021 { 3022 BlockDriver *drv = bs->drv; 3023 if (!drv) 3024 return -ENOMEDIUM; 3025 if (!drv->bdrv_write_compressed) 3026 return -ENOTSUP; 3027 if (bdrv_check_request(bs, sector_num, nb_sectors)) 3028 return -EIO; 3029 3030 assert(!bs->dirty_bitmap); 3031 3032 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 3033 } 3034 3035 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 3036 { 3037 BlockDriver *drv = bs->drv; 3038 if (!drv) 3039 return -ENOMEDIUM; 3040 if (!drv->bdrv_get_info) 3041 return -ENOTSUP; 3042 memset(bdi, 0, sizeof(*bdi)); 3043 return drv->bdrv_get_info(bs, bdi); 3044 } 3045 3046 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 3047 int64_t pos, int size) 3048 { 3049 BlockDriver *drv = bs->drv; 3050 if (!drv) 3051 return -ENOMEDIUM; 3052 if (drv->bdrv_save_vmstate) 3053 return drv->bdrv_save_vmstate(bs, buf, pos, size); 3054 if (bs->file) 3055 return bdrv_save_vmstate(bs->file, buf, pos, size); 3056 return -ENOTSUP; 3057 } 3058 3059 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3060 int64_t pos, int size) 3061 { 3062 BlockDriver *drv = bs->drv; 3063 if (!drv) 3064 return -ENOMEDIUM; 3065 if (drv->bdrv_load_vmstate) 3066 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3067 if (bs->file) 3068 return bdrv_load_vmstate(bs->file, buf, pos, size); 3069 return -ENOTSUP; 3070 } 3071 3072 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3073 { 3074 BlockDriver *drv = bs->drv; 3075 3076 if (!drv || !drv->bdrv_debug_event) { 3077 return; 3078 } 3079 3080 drv->bdrv_debug_event(bs, event); 3081 } 3082 3083 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event, 3084 const char *tag) 3085 { 3086 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) { 3087 bs = bs->file; 3088 } 3089 3090 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) { 3091 return bs->drv->bdrv_debug_breakpoint(bs, event, tag); 3092 } 3093 3094 return -ENOTSUP; 3095 } 3096 3097 int bdrv_debug_resume(BlockDriverState *bs, const char *tag) 3098 { 3099 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) { 3100 bs = bs->file; 3101 } 3102 3103 if (bs && bs->drv && bs->drv->bdrv_debug_resume) { 3104 return bs->drv->bdrv_debug_resume(bs, tag); 3105 } 3106 3107 return -ENOTSUP; 3108 } 3109 3110 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag) 3111 { 3112 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) { 3113 bs = bs->file; 3114 } 3115 3116 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) { 3117 return bs->drv->bdrv_debug_is_suspended(bs, tag); 3118 } 3119 3120 return false; 3121 } 3122 3123 /**************************************************************/ 3124 /* handling of snapshots */ 3125 3126 int bdrv_can_snapshot(BlockDriverState *bs) 3127 { 3128 BlockDriver *drv = bs->drv; 3129 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3130 return 0; 3131 } 3132 3133 if (!drv->bdrv_snapshot_create) { 3134 if (bs->file != NULL) { 3135 return bdrv_can_snapshot(bs->file); 3136 } 3137 return 0; 3138 } 3139 3140 return 1; 3141 } 3142 3143 int bdrv_is_snapshot(BlockDriverState *bs) 3144 { 3145 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3146 } 3147 3148 BlockDriverState *bdrv_snapshots(void) 3149 { 3150 BlockDriverState *bs; 3151 3152 if (bs_snapshots) { 3153 return bs_snapshots; 3154 } 3155 3156 bs = NULL; 3157 while ((bs = bdrv_next(bs))) { 3158 if (bdrv_can_snapshot(bs)) { 3159 bs_snapshots = bs; 3160 return bs; 3161 } 3162 } 3163 return NULL; 3164 } 3165 3166 int bdrv_snapshot_create(BlockDriverState *bs, 3167 QEMUSnapshotInfo *sn_info) 3168 { 3169 BlockDriver *drv = bs->drv; 3170 if (!drv) 3171 return -ENOMEDIUM; 3172 if (drv->bdrv_snapshot_create) 3173 return drv->bdrv_snapshot_create(bs, sn_info); 3174 if (bs->file) 3175 return bdrv_snapshot_create(bs->file, sn_info); 3176 return -ENOTSUP; 3177 } 3178 3179 int bdrv_snapshot_goto(BlockDriverState *bs, 3180 const char *snapshot_id) 3181 { 3182 BlockDriver *drv = bs->drv; 3183 int ret, open_ret; 3184 3185 if (!drv) 3186 return -ENOMEDIUM; 3187 if (drv->bdrv_snapshot_goto) 3188 return drv->bdrv_snapshot_goto(bs, snapshot_id); 3189 3190 if (bs->file) { 3191 drv->bdrv_close(bs); 3192 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 3193 open_ret = drv->bdrv_open(bs, bs->open_flags); 3194 if (open_ret < 0) { 3195 bdrv_delete(bs->file); 3196 bs->drv = NULL; 3197 return open_ret; 3198 } 3199 return ret; 3200 } 3201 3202 return -ENOTSUP; 3203 } 3204 3205 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 3206 { 3207 BlockDriver *drv = bs->drv; 3208 if (!drv) 3209 return -ENOMEDIUM; 3210 if (drv->bdrv_snapshot_delete) 3211 return drv->bdrv_snapshot_delete(bs, snapshot_id); 3212 if (bs->file) 3213 return bdrv_snapshot_delete(bs->file, snapshot_id); 3214 return -ENOTSUP; 3215 } 3216 3217 int bdrv_snapshot_list(BlockDriverState *bs, 3218 QEMUSnapshotInfo **psn_info) 3219 { 3220 BlockDriver *drv = bs->drv; 3221 if (!drv) 3222 return -ENOMEDIUM; 3223 if (drv->bdrv_snapshot_list) 3224 return drv->bdrv_snapshot_list(bs, psn_info); 3225 if (bs->file) 3226 return bdrv_snapshot_list(bs->file, psn_info); 3227 return -ENOTSUP; 3228 } 3229 3230 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 3231 const char *snapshot_name) 3232 { 3233 BlockDriver *drv = bs->drv; 3234 if (!drv) { 3235 return -ENOMEDIUM; 3236 } 3237 if (!bs->read_only) { 3238 return -EINVAL; 3239 } 3240 if (drv->bdrv_snapshot_load_tmp) { 3241 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 3242 } 3243 return -ENOTSUP; 3244 } 3245 3246 /* backing_file can either be relative, or absolute, or a protocol. If it is 3247 * relative, it must be relative to the chain. So, passing in bs->filename 3248 * from a BDS as backing_file should not be done, as that may be relative to 3249 * the CWD rather than the chain. */ 3250 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3251 const char *backing_file) 3252 { 3253 char *filename_full = NULL; 3254 char *backing_file_full = NULL; 3255 char *filename_tmp = NULL; 3256 int is_protocol = 0; 3257 BlockDriverState *curr_bs = NULL; 3258 BlockDriverState *retval = NULL; 3259 3260 if (!bs || !bs->drv || !backing_file) { 3261 return NULL; 3262 } 3263 3264 filename_full = g_malloc(PATH_MAX); 3265 backing_file_full = g_malloc(PATH_MAX); 3266 filename_tmp = g_malloc(PATH_MAX); 3267 3268 is_protocol = path_has_protocol(backing_file); 3269 3270 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3271 3272 /* If either of the filename paths is actually a protocol, then 3273 * compare unmodified paths; otherwise make paths relative */ 3274 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3275 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3276 retval = curr_bs->backing_hd; 3277 break; 3278 } 3279 } else { 3280 /* If not an absolute filename path, make it relative to the current 3281 * image's filename path */ 3282 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3283 backing_file); 3284 3285 /* We are going to compare absolute pathnames */ 3286 if (!realpath(filename_tmp, filename_full)) { 3287 continue; 3288 } 3289 3290 /* We need to make sure the backing filename we are comparing against 3291 * is relative to the current image filename (or absolute) */ 3292 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3293 curr_bs->backing_file); 3294 3295 if (!realpath(filename_tmp, backing_file_full)) { 3296 continue; 3297 } 3298 3299 if (strcmp(backing_file_full, filename_full) == 0) { 3300 retval = curr_bs->backing_hd; 3301 break; 3302 } 3303 } 3304 } 3305 3306 g_free(filename_full); 3307 g_free(backing_file_full); 3308 g_free(filename_tmp); 3309 return retval; 3310 } 3311 3312 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3313 { 3314 if (!bs->drv) { 3315 return 0; 3316 } 3317 3318 if (!bs->backing_hd) { 3319 return 0; 3320 } 3321 3322 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3323 } 3324 3325 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3326 { 3327 BlockDriverState *curr_bs = NULL; 3328 3329 if (!bs) { 3330 return NULL; 3331 } 3332 3333 curr_bs = bs; 3334 3335 while (curr_bs->backing_hd) { 3336 curr_bs = curr_bs->backing_hd; 3337 } 3338 return curr_bs; 3339 } 3340 3341 #define NB_SUFFIXES 4 3342 3343 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 3344 { 3345 static const char suffixes[NB_SUFFIXES] = "KMGT"; 3346 int64_t base; 3347 int i; 3348 3349 if (size <= 999) { 3350 snprintf(buf, buf_size, "%" PRId64, size); 3351 } else { 3352 base = 1024; 3353 for(i = 0; i < NB_SUFFIXES; i++) { 3354 if (size < (10 * base)) { 3355 snprintf(buf, buf_size, "%0.1f%c", 3356 (double)size / base, 3357 suffixes[i]); 3358 break; 3359 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3360 snprintf(buf, buf_size, "%" PRId64 "%c", 3361 ((size + (base >> 1)) / base), 3362 suffixes[i]); 3363 break; 3364 } 3365 base = base * 1024; 3366 } 3367 } 3368 return buf; 3369 } 3370 3371 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3372 { 3373 char buf1[128], date_buf[128], clock_buf[128]; 3374 struct tm tm; 3375 time_t ti; 3376 int64_t secs; 3377 3378 if (!sn) { 3379 snprintf(buf, buf_size, 3380 "%-10s%-20s%7s%20s%15s", 3381 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3382 } else { 3383 ti = sn->date_sec; 3384 localtime_r(&ti, &tm); 3385 strftime(date_buf, sizeof(date_buf), 3386 "%Y-%m-%d %H:%M:%S", &tm); 3387 secs = sn->vm_clock_nsec / 1000000000; 3388 snprintf(clock_buf, sizeof(clock_buf), 3389 "%02d:%02d:%02d.%03d", 3390 (int)(secs / 3600), 3391 (int)((secs / 60) % 60), 3392 (int)(secs % 60), 3393 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3394 snprintf(buf, buf_size, 3395 "%-10s%-20s%7s%20s%15s", 3396 sn->id_str, sn->name, 3397 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3398 date_buf, 3399 clock_buf); 3400 } 3401 return buf; 3402 } 3403 3404 /**************************************************************/ 3405 /* async I/Os */ 3406 3407 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3408 QEMUIOVector *qiov, int nb_sectors, 3409 BlockDriverCompletionFunc *cb, void *opaque) 3410 { 3411 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3412 3413 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3414 cb, opaque, false); 3415 } 3416 3417 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3418 QEMUIOVector *qiov, int nb_sectors, 3419 BlockDriverCompletionFunc *cb, void *opaque) 3420 { 3421 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3422 3423 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3424 cb, opaque, true); 3425 } 3426 3427 3428 typedef struct MultiwriteCB { 3429 int error; 3430 int num_requests; 3431 int num_callbacks; 3432 struct { 3433 BlockDriverCompletionFunc *cb; 3434 void *opaque; 3435 QEMUIOVector *free_qiov; 3436 } callbacks[]; 3437 } MultiwriteCB; 3438 3439 static void multiwrite_user_cb(MultiwriteCB *mcb) 3440 { 3441 int i; 3442 3443 for (i = 0; i < mcb->num_callbacks; i++) { 3444 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3445 if (mcb->callbacks[i].free_qiov) { 3446 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3447 } 3448 g_free(mcb->callbacks[i].free_qiov); 3449 } 3450 } 3451 3452 static void multiwrite_cb(void *opaque, int ret) 3453 { 3454 MultiwriteCB *mcb = opaque; 3455 3456 trace_multiwrite_cb(mcb, ret); 3457 3458 if (ret < 0 && !mcb->error) { 3459 mcb->error = ret; 3460 } 3461 3462 mcb->num_requests--; 3463 if (mcb->num_requests == 0) { 3464 multiwrite_user_cb(mcb); 3465 g_free(mcb); 3466 } 3467 } 3468 3469 static int multiwrite_req_compare(const void *a, const void *b) 3470 { 3471 const BlockRequest *req1 = a, *req2 = b; 3472 3473 /* 3474 * Note that we can't simply subtract req2->sector from req1->sector 3475 * here as that could overflow the return value. 3476 */ 3477 if (req1->sector > req2->sector) { 3478 return 1; 3479 } else if (req1->sector < req2->sector) { 3480 return -1; 3481 } else { 3482 return 0; 3483 } 3484 } 3485 3486 /* 3487 * Takes a bunch of requests and tries to merge them. Returns the number of 3488 * requests that remain after merging. 3489 */ 3490 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3491 int num_reqs, MultiwriteCB *mcb) 3492 { 3493 int i, outidx; 3494 3495 // Sort requests by start sector 3496 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3497 3498 // Check if adjacent requests touch the same clusters. If so, combine them, 3499 // filling up gaps with zero sectors. 3500 outidx = 0; 3501 for (i = 1; i < num_reqs; i++) { 3502 int merge = 0; 3503 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3504 3505 // Handle exactly sequential writes and overlapping writes. 3506 if (reqs[i].sector <= oldreq_last) { 3507 merge = 1; 3508 } 3509 3510 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3511 merge = 0; 3512 } 3513 3514 if (merge) { 3515 size_t size; 3516 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3517 qemu_iovec_init(qiov, 3518 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3519 3520 // Add the first request to the merged one. If the requests are 3521 // overlapping, drop the last sectors of the first request. 3522 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3523 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3524 3525 // We should need to add any zeros between the two requests 3526 assert (reqs[i].sector <= oldreq_last); 3527 3528 // Add the second request 3529 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3530 3531 reqs[outidx].nb_sectors = qiov->size >> 9; 3532 reqs[outidx].qiov = qiov; 3533 3534 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3535 } else { 3536 outidx++; 3537 reqs[outidx].sector = reqs[i].sector; 3538 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3539 reqs[outidx].qiov = reqs[i].qiov; 3540 } 3541 } 3542 3543 return outidx + 1; 3544 } 3545 3546 /* 3547 * Submit multiple AIO write requests at once. 3548 * 3549 * On success, the function returns 0 and all requests in the reqs array have 3550 * been submitted. In error case this function returns -1, and any of the 3551 * requests may or may not be submitted yet. In particular, this means that the 3552 * callback will be called for some of the requests, for others it won't. The 3553 * caller must check the error field of the BlockRequest to wait for the right 3554 * callbacks (if error != 0, no callback will be called). 3555 * 3556 * The implementation may modify the contents of the reqs array, e.g. to merge 3557 * requests. However, the fields opaque and error are left unmodified as they 3558 * are used to signal failure for a single request to the caller. 3559 */ 3560 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3561 { 3562 MultiwriteCB *mcb; 3563 int i; 3564 3565 /* don't submit writes if we don't have a medium */ 3566 if (bs->drv == NULL) { 3567 for (i = 0; i < num_reqs; i++) { 3568 reqs[i].error = -ENOMEDIUM; 3569 } 3570 return -1; 3571 } 3572 3573 if (num_reqs == 0) { 3574 return 0; 3575 } 3576 3577 // Create MultiwriteCB structure 3578 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3579 mcb->num_requests = 0; 3580 mcb->num_callbacks = num_reqs; 3581 3582 for (i = 0; i < num_reqs; i++) { 3583 mcb->callbacks[i].cb = reqs[i].cb; 3584 mcb->callbacks[i].opaque = reqs[i].opaque; 3585 } 3586 3587 // Check for mergable requests 3588 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3589 3590 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3591 3592 /* Run the aio requests. */ 3593 mcb->num_requests = num_reqs; 3594 for (i = 0; i < num_reqs; i++) { 3595 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3596 reqs[i].nb_sectors, multiwrite_cb, mcb); 3597 } 3598 3599 return 0; 3600 } 3601 3602 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3603 { 3604 acb->aiocb_info->cancel(acb); 3605 } 3606 3607 /* block I/O throttling */ 3608 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3609 bool is_write, double elapsed_time, uint64_t *wait) 3610 { 3611 uint64_t bps_limit = 0; 3612 double bytes_limit, bytes_base, bytes_res; 3613 double slice_time, wait_time; 3614 3615 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3616 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3617 } else if (bs->io_limits.bps[is_write]) { 3618 bps_limit = bs->io_limits.bps[is_write]; 3619 } else { 3620 if (wait) { 3621 *wait = 0; 3622 } 3623 3624 return false; 3625 } 3626 3627 slice_time = bs->slice_end - bs->slice_start; 3628 slice_time /= (NANOSECONDS_PER_SECOND); 3629 bytes_limit = bps_limit * slice_time; 3630 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3631 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3632 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3633 } 3634 3635 /* bytes_base: the bytes of data which have been read/written; and 3636 * it is obtained from the history statistic info. 3637 * bytes_res: the remaining bytes of data which need to be read/written. 3638 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3639 * the total time for completing reading/writting all data. 3640 */ 3641 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3642 3643 if (bytes_base + bytes_res <= bytes_limit) { 3644 if (wait) { 3645 *wait = 0; 3646 } 3647 3648 return false; 3649 } 3650 3651 /* Calc approx time to dispatch */ 3652 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3653 3654 /* When the I/O rate at runtime exceeds the limits, 3655 * bs->slice_end need to be extended in order that the current statistic 3656 * info can be kept until the timer fire, so it is increased and tuned 3657 * based on the result of experiment. 3658 */ 3659 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3660 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3661 if (wait) { 3662 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3663 } 3664 3665 return true; 3666 } 3667 3668 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3669 double elapsed_time, uint64_t *wait) 3670 { 3671 uint64_t iops_limit = 0; 3672 double ios_limit, ios_base; 3673 double slice_time, wait_time; 3674 3675 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3676 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3677 } else if (bs->io_limits.iops[is_write]) { 3678 iops_limit = bs->io_limits.iops[is_write]; 3679 } else { 3680 if (wait) { 3681 *wait = 0; 3682 } 3683 3684 return false; 3685 } 3686 3687 slice_time = bs->slice_end - bs->slice_start; 3688 slice_time /= (NANOSECONDS_PER_SECOND); 3689 ios_limit = iops_limit * slice_time; 3690 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3691 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3692 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3693 } 3694 3695 if (ios_base + 1 <= ios_limit) { 3696 if (wait) { 3697 *wait = 0; 3698 } 3699 3700 return false; 3701 } 3702 3703 /* Calc approx time to dispatch */ 3704 wait_time = (ios_base + 1) / iops_limit; 3705 if (wait_time > elapsed_time) { 3706 wait_time = wait_time - elapsed_time; 3707 } else { 3708 wait_time = 0; 3709 } 3710 3711 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3712 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3713 if (wait) { 3714 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3715 } 3716 3717 return true; 3718 } 3719 3720 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3721 bool is_write, int64_t *wait) 3722 { 3723 int64_t now, max_wait; 3724 uint64_t bps_wait = 0, iops_wait = 0; 3725 double elapsed_time; 3726 int bps_ret, iops_ret; 3727 3728 now = qemu_get_clock_ns(vm_clock); 3729 if ((bs->slice_start < now) 3730 && (bs->slice_end > now)) { 3731 bs->slice_end = now + bs->slice_time; 3732 } else { 3733 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3734 bs->slice_start = now; 3735 bs->slice_end = now + bs->slice_time; 3736 3737 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3738 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3739 3740 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3741 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3742 } 3743 3744 elapsed_time = now - bs->slice_start; 3745 elapsed_time /= (NANOSECONDS_PER_SECOND); 3746 3747 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3748 is_write, elapsed_time, &bps_wait); 3749 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3750 elapsed_time, &iops_wait); 3751 if (bps_ret || iops_ret) { 3752 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3753 if (wait) { 3754 *wait = max_wait; 3755 } 3756 3757 now = qemu_get_clock_ns(vm_clock); 3758 if (bs->slice_end < now + max_wait) { 3759 bs->slice_end = now + max_wait; 3760 } 3761 3762 return true; 3763 } 3764 3765 if (wait) { 3766 *wait = 0; 3767 } 3768 3769 return false; 3770 } 3771 3772 /**************************************************************/ 3773 /* async block device emulation */ 3774 3775 typedef struct BlockDriverAIOCBSync { 3776 BlockDriverAIOCB common; 3777 QEMUBH *bh; 3778 int ret; 3779 /* vector translation state */ 3780 QEMUIOVector *qiov; 3781 uint8_t *bounce; 3782 int is_write; 3783 } BlockDriverAIOCBSync; 3784 3785 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3786 { 3787 BlockDriverAIOCBSync *acb = 3788 container_of(blockacb, BlockDriverAIOCBSync, common); 3789 qemu_bh_delete(acb->bh); 3790 acb->bh = NULL; 3791 qemu_aio_release(acb); 3792 } 3793 3794 static const AIOCBInfo bdrv_em_aiocb_info = { 3795 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3796 .cancel = bdrv_aio_cancel_em, 3797 }; 3798 3799 static void bdrv_aio_bh_cb(void *opaque) 3800 { 3801 BlockDriverAIOCBSync *acb = opaque; 3802 3803 if (!acb->is_write) 3804 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3805 qemu_vfree(acb->bounce); 3806 acb->common.cb(acb->common.opaque, acb->ret); 3807 qemu_bh_delete(acb->bh); 3808 acb->bh = NULL; 3809 qemu_aio_release(acb); 3810 } 3811 3812 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3813 int64_t sector_num, 3814 QEMUIOVector *qiov, 3815 int nb_sectors, 3816 BlockDriverCompletionFunc *cb, 3817 void *opaque, 3818 int is_write) 3819 3820 { 3821 BlockDriverAIOCBSync *acb; 3822 3823 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 3824 acb->is_write = is_write; 3825 acb->qiov = qiov; 3826 acb->bounce = qemu_blockalign(bs, qiov->size); 3827 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3828 3829 if (is_write) { 3830 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3831 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3832 } else { 3833 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3834 } 3835 3836 qemu_bh_schedule(acb->bh); 3837 3838 return &acb->common; 3839 } 3840 3841 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3842 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3843 BlockDriverCompletionFunc *cb, void *opaque) 3844 { 3845 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3846 } 3847 3848 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3849 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3850 BlockDriverCompletionFunc *cb, void *opaque) 3851 { 3852 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3853 } 3854 3855 3856 typedef struct BlockDriverAIOCBCoroutine { 3857 BlockDriverAIOCB common; 3858 BlockRequest req; 3859 bool is_write; 3860 bool *done; 3861 QEMUBH* bh; 3862 } BlockDriverAIOCBCoroutine; 3863 3864 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3865 { 3866 BlockDriverAIOCBCoroutine *acb = 3867 container_of(blockacb, BlockDriverAIOCBCoroutine, common); 3868 bool done = false; 3869 3870 acb->done = &done; 3871 while (!done) { 3872 qemu_aio_wait(); 3873 } 3874 } 3875 3876 static const AIOCBInfo bdrv_em_co_aiocb_info = { 3877 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3878 .cancel = bdrv_aio_co_cancel_em, 3879 }; 3880 3881 static void bdrv_co_em_bh(void *opaque) 3882 { 3883 BlockDriverAIOCBCoroutine *acb = opaque; 3884 3885 acb->common.cb(acb->common.opaque, acb->req.error); 3886 3887 if (acb->done) { 3888 *acb->done = true; 3889 } 3890 3891 qemu_bh_delete(acb->bh); 3892 qemu_aio_release(acb); 3893 } 3894 3895 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3896 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3897 { 3898 BlockDriverAIOCBCoroutine *acb = opaque; 3899 BlockDriverState *bs = acb->common.bs; 3900 3901 if (!acb->is_write) { 3902 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3903 acb->req.nb_sectors, acb->req.qiov, 0); 3904 } else { 3905 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3906 acb->req.nb_sectors, acb->req.qiov, 0); 3907 } 3908 3909 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3910 qemu_bh_schedule(acb->bh); 3911 } 3912 3913 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3914 int64_t sector_num, 3915 QEMUIOVector *qiov, 3916 int nb_sectors, 3917 BlockDriverCompletionFunc *cb, 3918 void *opaque, 3919 bool is_write) 3920 { 3921 Coroutine *co; 3922 BlockDriverAIOCBCoroutine *acb; 3923 3924 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3925 acb->req.sector = sector_num; 3926 acb->req.nb_sectors = nb_sectors; 3927 acb->req.qiov = qiov; 3928 acb->is_write = is_write; 3929 acb->done = NULL; 3930 3931 co = qemu_coroutine_create(bdrv_co_do_rw); 3932 qemu_coroutine_enter(co, acb); 3933 3934 return &acb->common; 3935 } 3936 3937 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3938 { 3939 BlockDriverAIOCBCoroutine *acb = opaque; 3940 BlockDriverState *bs = acb->common.bs; 3941 3942 acb->req.error = bdrv_co_flush(bs); 3943 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3944 qemu_bh_schedule(acb->bh); 3945 } 3946 3947 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3948 BlockDriverCompletionFunc *cb, void *opaque) 3949 { 3950 trace_bdrv_aio_flush(bs, opaque); 3951 3952 Coroutine *co; 3953 BlockDriverAIOCBCoroutine *acb; 3954 3955 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3956 acb->done = NULL; 3957 3958 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3959 qemu_coroutine_enter(co, acb); 3960 3961 return &acb->common; 3962 } 3963 3964 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3965 { 3966 BlockDriverAIOCBCoroutine *acb = opaque; 3967 BlockDriverState *bs = acb->common.bs; 3968 3969 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3970 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3971 qemu_bh_schedule(acb->bh); 3972 } 3973 3974 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3975 int64_t sector_num, int nb_sectors, 3976 BlockDriverCompletionFunc *cb, void *opaque) 3977 { 3978 Coroutine *co; 3979 BlockDriverAIOCBCoroutine *acb; 3980 3981 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3982 3983 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3984 acb->req.sector = sector_num; 3985 acb->req.nb_sectors = nb_sectors; 3986 acb->done = NULL; 3987 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3988 qemu_coroutine_enter(co, acb); 3989 3990 return &acb->common; 3991 } 3992 3993 void bdrv_init(void) 3994 { 3995 module_call_init(MODULE_INIT_BLOCK); 3996 } 3997 3998 void bdrv_init_with_whitelist(void) 3999 { 4000 use_bdrv_whitelist = 1; 4001 bdrv_init(); 4002 } 4003 4004 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 4005 BlockDriverCompletionFunc *cb, void *opaque) 4006 { 4007 BlockDriverAIOCB *acb; 4008 4009 acb = g_slice_alloc(aiocb_info->aiocb_size); 4010 acb->aiocb_info = aiocb_info; 4011 acb->bs = bs; 4012 acb->cb = cb; 4013 acb->opaque = opaque; 4014 return acb; 4015 } 4016 4017 void qemu_aio_release(void *p) 4018 { 4019 BlockDriverAIOCB *acb = p; 4020 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 4021 } 4022 4023 /**************************************************************/ 4024 /* Coroutine block device emulation */ 4025 4026 typedef struct CoroutineIOCompletion { 4027 Coroutine *coroutine; 4028 int ret; 4029 } CoroutineIOCompletion; 4030 4031 static void bdrv_co_io_em_complete(void *opaque, int ret) 4032 { 4033 CoroutineIOCompletion *co = opaque; 4034 4035 co->ret = ret; 4036 qemu_coroutine_enter(co->coroutine, NULL); 4037 } 4038 4039 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 4040 int nb_sectors, QEMUIOVector *iov, 4041 bool is_write) 4042 { 4043 CoroutineIOCompletion co = { 4044 .coroutine = qemu_coroutine_self(), 4045 }; 4046 BlockDriverAIOCB *acb; 4047 4048 if (is_write) { 4049 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 4050 bdrv_co_io_em_complete, &co); 4051 } else { 4052 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 4053 bdrv_co_io_em_complete, &co); 4054 } 4055 4056 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 4057 if (!acb) { 4058 return -EIO; 4059 } 4060 qemu_coroutine_yield(); 4061 4062 return co.ret; 4063 } 4064 4065 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 4066 int64_t sector_num, int nb_sectors, 4067 QEMUIOVector *iov) 4068 { 4069 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 4070 } 4071 4072 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 4073 int64_t sector_num, int nb_sectors, 4074 QEMUIOVector *iov) 4075 { 4076 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 4077 } 4078 4079 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 4080 { 4081 RwCo *rwco = opaque; 4082 4083 rwco->ret = bdrv_co_flush(rwco->bs); 4084 } 4085 4086 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 4087 { 4088 int ret; 4089 4090 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 4091 return 0; 4092 } 4093 4094 /* Write back cached data to the OS even with cache=unsafe */ 4095 if (bs->drv->bdrv_co_flush_to_os) { 4096 ret = bs->drv->bdrv_co_flush_to_os(bs); 4097 if (ret < 0) { 4098 return ret; 4099 } 4100 } 4101 4102 /* But don't actually force it to the disk with cache=unsafe */ 4103 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4104 goto flush_parent; 4105 } 4106 4107 if (bs->drv->bdrv_co_flush_to_disk) { 4108 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4109 } else if (bs->drv->bdrv_aio_flush) { 4110 BlockDriverAIOCB *acb; 4111 CoroutineIOCompletion co = { 4112 .coroutine = qemu_coroutine_self(), 4113 }; 4114 4115 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4116 if (acb == NULL) { 4117 ret = -EIO; 4118 } else { 4119 qemu_coroutine_yield(); 4120 ret = co.ret; 4121 } 4122 } else { 4123 /* 4124 * Some block drivers always operate in either writethrough or unsafe 4125 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4126 * know how the server works (because the behaviour is hardcoded or 4127 * depends on server-side configuration), so we can't ensure that 4128 * everything is safe on disk. Returning an error doesn't work because 4129 * that would break guests even if the server operates in writethrough 4130 * mode. 4131 * 4132 * Let's hope the user knows what he's doing. 4133 */ 4134 ret = 0; 4135 } 4136 if (ret < 0) { 4137 return ret; 4138 } 4139 4140 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4141 * in the case of cache=unsafe, so there are no useless flushes. 4142 */ 4143 flush_parent: 4144 return bdrv_co_flush(bs->file); 4145 } 4146 4147 void bdrv_invalidate_cache(BlockDriverState *bs) 4148 { 4149 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4150 bs->drv->bdrv_invalidate_cache(bs); 4151 } 4152 } 4153 4154 void bdrv_invalidate_cache_all(void) 4155 { 4156 BlockDriverState *bs; 4157 4158 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4159 bdrv_invalidate_cache(bs); 4160 } 4161 } 4162 4163 void bdrv_clear_incoming_migration_all(void) 4164 { 4165 BlockDriverState *bs; 4166 4167 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4168 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4169 } 4170 } 4171 4172 int bdrv_flush(BlockDriverState *bs) 4173 { 4174 Coroutine *co; 4175 RwCo rwco = { 4176 .bs = bs, 4177 .ret = NOT_DONE, 4178 }; 4179 4180 if (qemu_in_coroutine()) { 4181 /* Fast-path if already in coroutine context */ 4182 bdrv_flush_co_entry(&rwco); 4183 } else { 4184 co = qemu_coroutine_create(bdrv_flush_co_entry); 4185 qemu_coroutine_enter(co, &rwco); 4186 while (rwco.ret == NOT_DONE) { 4187 qemu_aio_wait(); 4188 } 4189 } 4190 4191 return rwco.ret; 4192 } 4193 4194 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4195 { 4196 RwCo *rwco = opaque; 4197 4198 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4199 } 4200 4201 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4202 int nb_sectors) 4203 { 4204 if (!bs->drv) { 4205 return -ENOMEDIUM; 4206 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4207 return -EIO; 4208 } else if (bs->read_only) { 4209 return -EROFS; 4210 } 4211 4212 if (bs->dirty_bitmap) { 4213 bdrv_reset_dirty(bs, sector_num, nb_sectors); 4214 } 4215 4216 /* Do nothing if disabled. */ 4217 if (!(bs->open_flags & BDRV_O_UNMAP)) { 4218 return 0; 4219 } 4220 4221 if (bs->drv->bdrv_co_discard) { 4222 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4223 } else if (bs->drv->bdrv_aio_discard) { 4224 BlockDriverAIOCB *acb; 4225 CoroutineIOCompletion co = { 4226 .coroutine = qemu_coroutine_self(), 4227 }; 4228 4229 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4230 bdrv_co_io_em_complete, &co); 4231 if (acb == NULL) { 4232 return -EIO; 4233 } else { 4234 qemu_coroutine_yield(); 4235 return co.ret; 4236 } 4237 } else { 4238 return 0; 4239 } 4240 } 4241 4242 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4243 { 4244 Coroutine *co; 4245 RwCo rwco = { 4246 .bs = bs, 4247 .sector_num = sector_num, 4248 .nb_sectors = nb_sectors, 4249 .ret = NOT_DONE, 4250 }; 4251 4252 if (qemu_in_coroutine()) { 4253 /* Fast-path if already in coroutine context */ 4254 bdrv_discard_co_entry(&rwco); 4255 } else { 4256 co = qemu_coroutine_create(bdrv_discard_co_entry); 4257 qemu_coroutine_enter(co, &rwco); 4258 while (rwco.ret == NOT_DONE) { 4259 qemu_aio_wait(); 4260 } 4261 } 4262 4263 return rwco.ret; 4264 } 4265 4266 /**************************************************************/ 4267 /* removable device support */ 4268 4269 /** 4270 * Return TRUE if the media is present 4271 */ 4272 int bdrv_is_inserted(BlockDriverState *bs) 4273 { 4274 BlockDriver *drv = bs->drv; 4275 4276 if (!drv) 4277 return 0; 4278 if (!drv->bdrv_is_inserted) 4279 return 1; 4280 return drv->bdrv_is_inserted(bs); 4281 } 4282 4283 /** 4284 * Return whether the media changed since the last call to this 4285 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4286 */ 4287 int bdrv_media_changed(BlockDriverState *bs) 4288 { 4289 BlockDriver *drv = bs->drv; 4290 4291 if (drv && drv->bdrv_media_changed) { 4292 return drv->bdrv_media_changed(bs); 4293 } 4294 return -ENOTSUP; 4295 } 4296 4297 /** 4298 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4299 */ 4300 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4301 { 4302 BlockDriver *drv = bs->drv; 4303 4304 if (drv && drv->bdrv_eject) { 4305 drv->bdrv_eject(bs, eject_flag); 4306 } 4307 4308 if (bs->device_name[0] != '\0') { 4309 bdrv_emit_qmp_eject_event(bs, eject_flag); 4310 } 4311 } 4312 4313 /** 4314 * Lock or unlock the media (if it is locked, the user won't be able 4315 * to eject it manually). 4316 */ 4317 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4318 { 4319 BlockDriver *drv = bs->drv; 4320 4321 trace_bdrv_lock_medium(bs, locked); 4322 4323 if (drv && drv->bdrv_lock_medium) { 4324 drv->bdrv_lock_medium(bs, locked); 4325 } 4326 } 4327 4328 /* needed for generic scsi interface */ 4329 4330 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4331 { 4332 BlockDriver *drv = bs->drv; 4333 4334 if (drv && drv->bdrv_ioctl) 4335 return drv->bdrv_ioctl(bs, req, buf); 4336 return -ENOTSUP; 4337 } 4338 4339 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4340 unsigned long int req, void *buf, 4341 BlockDriverCompletionFunc *cb, void *opaque) 4342 { 4343 BlockDriver *drv = bs->drv; 4344 4345 if (drv && drv->bdrv_aio_ioctl) 4346 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4347 return NULL; 4348 } 4349 4350 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4351 { 4352 bs->buffer_alignment = align; 4353 } 4354 4355 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4356 { 4357 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4358 } 4359 4360 /* 4361 * Check if all memory in this vector is sector aligned. 4362 */ 4363 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 4364 { 4365 int i; 4366 4367 for (i = 0; i < qiov->niov; i++) { 4368 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) { 4369 return false; 4370 } 4371 } 4372 4373 return true; 4374 } 4375 4376 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity) 4377 { 4378 int64_t bitmap_size; 4379 4380 assert((granularity & (granularity - 1)) == 0); 4381 4382 if (granularity) { 4383 granularity >>= BDRV_SECTOR_BITS; 4384 assert(!bs->dirty_bitmap); 4385 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS); 4386 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1); 4387 } else { 4388 if (bs->dirty_bitmap) { 4389 hbitmap_free(bs->dirty_bitmap); 4390 bs->dirty_bitmap = NULL; 4391 } 4392 } 4393 } 4394 4395 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4396 { 4397 if (bs->dirty_bitmap) { 4398 return hbitmap_get(bs->dirty_bitmap, sector); 4399 } else { 4400 return 0; 4401 } 4402 } 4403 4404 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi) 4405 { 4406 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0); 4407 } 4408 4409 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4410 int nr_sectors) 4411 { 4412 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors); 4413 } 4414 4415 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4416 int nr_sectors) 4417 { 4418 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors); 4419 } 4420 4421 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4422 { 4423 if (bs->dirty_bitmap) { 4424 return hbitmap_count(bs->dirty_bitmap); 4425 } else { 4426 return 0; 4427 } 4428 } 4429 4430 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4431 { 4432 assert(bs->in_use != in_use); 4433 bs->in_use = in_use; 4434 } 4435 4436 int bdrv_in_use(BlockDriverState *bs) 4437 { 4438 return bs->in_use; 4439 } 4440 4441 void bdrv_iostatus_enable(BlockDriverState *bs) 4442 { 4443 bs->iostatus_enabled = true; 4444 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4445 } 4446 4447 /* The I/O status is only enabled if the drive explicitly 4448 * enables it _and_ the VM is configured to stop on errors */ 4449 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4450 { 4451 return (bs->iostatus_enabled && 4452 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4453 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4454 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4455 } 4456 4457 void bdrv_iostatus_disable(BlockDriverState *bs) 4458 { 4459 bs->iostatus_enabled = false; 4460 } 4461 4462 void bdrv_iostatus_reset(BlockDriverState *bs) 4463 { 4464 if (bdrv_iostatus_is_enabled(bs)) { 4465 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4466 if (bs->job) { 4467 block_job_iostatus_reset(bs->job); 4468 } 4469 } 4470 } 4471 4472 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4473 { 4474 assert(bdrv_iostatus_is_enabled(bs)); 4475 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4476 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4477 BLOCK_DEVICE_IO_STATUS_FAILED; 4478 } 4479 } 4480 4481 void 4482 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4483 enum BlockAcctType type) 4484 { 4485 assert(type < BDRV_MAX_IOTYPE); 4486 4487 cookie->bytes = bytes; 4488 cookie->start_time_ns = get_clock(); 4489 cookie->type = type; 4490 } 4491 4492 void 4493 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4494 { 4495 assert(cookie->type < BDRV_MAX_IOTYPE); 4496 4497 bs->nr_bytes[cookie->type] += cookie->bytes; 4498 bs->nr_ops[cookie->type]++; 4499 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4500 } 4501 4502 void bdrv_img_create(const char *filename, const char *fmt, 4503 const char *base_filename, const char *base_fmt, 4504 char *options, uint64_t img_size, int flags, 4505 Error **errp, bool quiet) 4506 { 4507 QEMUOptionParameter *param = NULL, *create_options = NULL; 4508 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4509 BlockDriverState *bs = NULL; 4510 BlockDriver *drv, *proto_drv; 4511 BlockDriver *backing_drv = NULL; 4512 int ret = 0; 4513 4514 /* Find driver and parse its options */ 4515 drv = bdrv_find_format(fmt); 4516 if (!drv) { 4517 error_setg(errp, "Unknown file format '%s'", fmt); 4518 return; 4519 } 4520 4521 proto_drv = bdrv_find_protocol(filename); 4522 if (!proto_drv) { 4523 error_setg(errp, "Unknown protocol '%s'", filename); 4524 return; 4525 } 4526 4527 create_options = append_option_parameters(create_options, 4528 drv->create_options); 4529 create_options = append_option_parameters(create_options, 4530 proto_drv->create_options); 4531 4532 /* Create parameter list with default values */ 4533 param = parse_option_parameters("", create_options, param); 4534 4535 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4536 4537 /* Parse -o options */ 4538 if (options) { 4539 param = parse_option_parameters(options, create_options, param); 4540 if (param == NULL) { 4541 error_setg(errp, "Invalid options for file format '%s'.", fmt); 4542 goto out; 4543 } 4544 } 4545 4546 if (base_filename) { 4547 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4548 base_filename)) { 4549 error_setg(errp, "Backing file not supported for file format '%s'", 4550 fmt); 4551 goto out; 4552 } 4553 } 4554 4555 if (base_fmt) { 4556 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4557 error_setg(errp, "Backing file format not supported for file " 4558 "format '%s'", fmt); 4559 goto out; 4560 } 4561 } 4562 4563 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4564 if (backing_file && backing_file->value.s) { 4565 if (!strcmp(filename, backing_file->value.s)) { 4566 error_setg(errp, "Error: Trying to create an image with the " 4567 "same filename as the backing file"); 4568 goto out; 4569 } 4570 } 4571 4572 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4573 if (backing_fmt && backing_fmt->value.s) { 4574 backing_drv = bdrv_find_format(backing_fmt->value.s); 4575 if (!backing_drv) { 4576 error_setg(errp, "Unknown backing file format '%s'", 4577 backing_fmt->value.s); 4578 goto out; 4579 } 4580 } 4581 4582 // The size for the image must always be specified, with one exception: 4583 // If we are using a backing file, we can obtain the size from there 4584 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4585 if (size && size->value.n == -1) { 4586 if (backing_file && backing_file->value.s) { 4587 uint64_t size; 4588 char buf[32]; 4589 int back_flags; 4590 4591 /* backing files always opened read-only */ 4592 back_flags = 4593 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4594 4595 bs = bdrv_new(""); 4596 4597 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4598 if (ret < 0) { 4599 error_setg_errno(errp, -ret, "Could not open '%s'", 4600 backing_file->value.s); 4601 goto out; 4602 } 4603 bdrv_get_geometry(bs, &size); 4604 size *= 512; 4605 4606 snprintf(buf, sizeof(buf), "%" PRId64, size); 4607 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4608 } else { 4609 error_setg(errp, "Image creation needs a size parameter"); 4610 goto out; 4611 } 4612 } 4613 4614 if (!quiet) { 4615 printf("Formatting '%s', fmt=%s ", filename, fmt); 4616 print_option_parameters(param); 4617 puts(""); 4618 } 4619 ret = bdrv_create(drv, filename, param); 4620 if (ret < 0) { 4621 if (ret == -ENOTSUP) { 4622 error_setg(errp,"Formatting or formatting option not supported for " 4623 "file format '%s'", fmt); 4624 } else if (ret == -EFBIG) { 4625 error_setg(errp, "The image size is too large for file format '%s'", 4626 fmt); 4627 } else { 4628 error_setg(errp, "%s: error while creating %s: %s", filename, fmt, 4629 strerror(-ret)); 4630 } 4631 } 4632 4633 out: 4634 free_option_parameters(create_options); 4635 free_option_parameters(param); 4636 4637 if (bs) { 4638 bdrv_delete(bs); 4639 } 4640 } 4641