1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor/monitor.h" 28 #include "block/block_int.h" 29 #include "block/blockjob.h" 30 #include "qemu/module.h" 31 #include "qapi/qmp/qjson.h" 32 #include "sysemu/sysemu.h" 33 #include "qemu/notify.h" 34 #include "block/coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu/timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* If non-zero, use only whitelisted block drivers */ 103 static int use_bdrv_whitelist; 104 105 #ifdef _WIN32 106 static int is_windows_drive_prefix(const char *filename) 107 { 108 return (((filename[0] >= 'a' && filename[0] <= 'z') || 109 (filename[0] >= 'A' && filename[0] <= 'Z')) && 110 filename[1] == ':'); 111 } 112 113 int is_windows_drive(const char *filename) 114 { 115 if (is_windows_drive_prefix(filename) && 116 filename[2] == '\0') 117 return 1; 118 if (strstart(filename, "\\\\.\\", NULL) || 119 strstart(filename, "//./", NULL)) 120 return 1; 121 return 0; 122 } 123 #endif 124 125 /* throttling disk I/O limits */ 126 void bdrv_io_limits_disable(BlockDriverState *bs) 127 { 128 bs->io_limits_enabled = false; 129 130 while (qemu_co_queue_next(&bs->throttled_reqs)); 131 132 if (bs->block_timer) { 133 qemu_del_timer(bs->block_timer); 134 qemu_free_timer(bs->block_timer); 135 bs->block_timer = NULL; 136 } 137 138 bs->slice_start = 0; 139 bs->slice_end = 0; 140 } 141 142 static void bdrv_block_timer(void *opaque) 143 { 144 BlockDriverState *bs = opaque; 145 146 qemu_co_queue_next(&bs->throttled_reqs); 147 } 148 149 void bdrv_io_limits_enable(BlockDriverState *bs) 150 { 151 qemu_co_queue_init(&bs->throttled_reqs); 152 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 153 bs->io_limits_enabled = true; 154 } 155 156 bool bdrv_io_limits_enabled(BlockDriverState *bs) 157 { 158 BlockIOLimit *io_limits = &bs->io_limits; 159 return io_limits->bps[BLOCK_IO_LIMIT_READ] 160 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 161 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 162 || io_limits->iops[BLOCK_IO_LIMIT_READ] 163 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 164 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 165 } 166 167 static void bdrv_io_limits_intercept(BlockDriverState *bs, 168 bool is_write, int nb_sectors) 169 { 170 int64_t wait_time = -1; 171 172 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 173 qemu_co_queue_wait(&bs->throttled_reqs); 174 } 175 176 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 177 * throttled requests will not be dequeued until the current request is 178 * allowed to be serviced. So if the current request still exceeds the 179 * limits, it will be inserted to the head. All requests followed it will 180 * be still in throttled_reqs queue. 181 */ 182 183 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 184 qemu_mod_timer(bs->block_timer, 185 wait_time + qemu_get_clock_ns(vm_clock)); 186 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 187 } 188 189 qemu_co_queue_next(&bs->throttled_reqs); 190 } 191 192 /* check if the path starts with "<protocol>:" */ 193 static int path_has_protocol(const char *path) 194 { 195 const char *p; 196 197 #ifdef _WIN32 198 if (is_windows_drive(path) || 199 is_windows_drive_prefix(path)) { 200 return 0; 201 } 202 p = path + strcspn(path, ":/\\"); 203 #else 204 p = path + strcspn(path, ":/"); 205 #endif 206 207 return *p == ':'; 208 } 209 210 int path_is_absolute(const char *path) 211 { 212 #ifdef _WIN32 213 /* specific case for names like: "\\.\d:" */ 214 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 215 return 1; 216 } 217 return (*path == '/' || *path == '\\'); 218 #else 219 return (*path == '/'); 220 #endif 221 } 222 223 /* if filename is absolute, just copy it to dest. Otherwise, build a 224 path to it by considering it is relative to base_path. URL are 225 supported. */ 226 void path_combine(char *dest, int dest_size, 227 const char *base_path, 228 const char *filename) 229 { 230 const char *p, *p1; 231 int len; 232 233 if (dest_size <= 0) 234 return; 235 if (path_is_absolute(filename)) { 236 pstrcpy(dest, dest_size, filename); 237 } else { 238 p = strchr(base_path, ':'); 239 if (p) 240 p++; 241 else 242 p = base_path; 243 p1 = strrchr(base_path, '/'); 244 #ifdef _WIN32 245 { 246 const char *p2; 247 p2 = strrchr(base_path, '\\'); 248 if (!p1 || p2 > p1) 249 p1 = p2; 250 } 251 #endif 252 if (p1) 253 p1++; 254 else 255 p1 = base_path; 256 if (p1 > p) 257 p = p1; 258 len = p - base_path; 259 if (len > dest_size - 1) 260 len = dest_size - 1; 261 memcpy(dest, base_path, len); 262 dest[len] = '\0'; 263 pstrcat(dest, dest_size, filename); 264 } 265 } 266 267 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 268 { 269 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 270 pstrcpy(dest, sz, bs->backing_file); 271 } else { 272 path_combine(dest, sz, bs->filename, bs->backing_file); 273 } 274 } 275 276 void bdrv_register(BlockDriver *bdrv) 277 { 278 /* Block drivers without coroutine functions need emulation */ 279 if (!bdrv->bdrv_co_readv) { 280 bdrv->bdrv_co_readv = bdrv_co_readv_em; 281 bdrv->bdrv_co_writev = bdrv_co_writev_em; 282 283 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 284 * the block driver lacks aio we need to emulate that too. 285 */ 286 if (!bdrv->bdrv_aio_readv) { 287 /* add AIO emulation layer */ 288 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 289 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 290 } 291 } 292 293 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 294 } 295 296 /* create a new block device (by default it is empty) */ 297 BlockDriverState *bdrv_new(const char *device_name) 298 { 299 BlockDriverState *bs; 300 301 bs = g_malloc0(sizeof(BlockDriverState)); 302 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 303 if (device_name[0] != '\0') { 304 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 305 } 306 bdrv_iostatus_disable(bs); 307 notifier_list_init(&bs->close_notifiers); 308 309 return bs; 310 } 311 312 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 313 { 314 notifier_list_add(&bs->close_notifiers, notify); 315 } 316 317 BlockDriver *bdrv_find_format(const char *format_name) 318 { 319 BlockDriver *drv1; 320 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 321 if (!strcmp(drv1->format_name, format_name)) { 322 return drv1; 323 } 324 } 325 return NULL; 326 } 327 328 static int bdrv_is_whitelisted(BlockDriver *drv, bool read_only) 329 { 330 static const char *whitelist_rw[] = { 331 CONFIG_BDRV_RW_WHITELIST 332 }; 333 static const char *whitelist_ro[] = { 334 CONFIG_BDRV_RO_WHITELIST 335 }; 336 const char **p; 337 338 if (!whitelist_rw[0] && !whitelist_ro[0]) { 339 return 1; /* no whitelist, anything goes */ 340 } 341 342 for (p = whitelist_rw; *p; p++) { 343 if (!strcmp(drv->format_name, *p)) { 344 return 1; 345 } 346 } 347 if (read_only) { 348 for (p = whitelist_ro; *p; p++) { 349 if (!strcmp(drv->format_name, *p)) { 350 return 1; 351 } 352 } 353 } 354 return 0; 355 } 356 357 BlockDriver *bdrv_find_whitelisted_format(const char *format_name, 358 bool read_only) 359 { 360 BlockDriver *drv = bdrv_find_format(format_name); 361 return drv && bdrv_is_whitelisted(drv, read_only) ? drv : NULL; 362 } 363 364 typedef struct CreateCo { 365 BlockDriver *drv; 366 char *filename; 367 QEMUOptionParameter *options; 368 int ret; 369 } CreateCo; 370 371 static void coroutine_fn bdrv_create_co_entry(void *opaque) 372 { 373 CreateCo *cco = opaque; 374 assert(cco->drv); 375 376 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 377 } 378 379 int bdrv_create(BlockDriver *drv, const char* filename, 380 QEMUOptionParameter *options) 381 { 382 int ret; 383 384 Coroutine *co; 385 CreateCo cco = { 386 .drv = drv, 387 .filename = g_strdup(filename), 388 .options = options, 389 .ret = NOT_DONE, 390 }; 391 392 if (!drv->bdrv_create) { 393 ret = -ENOTSUP; 394 goto out; 395 } 396 397 if (qemu_in_coroutine()) { 398 /* Fast-path if already in coroutine context */ 399 bdrv_create_co_entry(&cco); 400 } else { 401 co = qemu_coroutine_create(bdrv_create_co_entry); 402 qemu_coroutine_enter(co, &cco); 403 while (cco.ret == NOT_DONE) { 404 qemu_aio_wait(); 405 } 406 } 407 408 ret = cco.ret; 409 410 out: 411 g_free(cco.filename); 412 return ret; 413 } 414 415 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 416 { 417 BlockDriver *drv; 418 419 drv = bdrv_find_protocol(filename); 420 if (drv == NULL) { 421 return -ENOENT; 422 } 423 424 return bdrv_create(drv, filename, options); 425 } 426 427 /* 428 * Create a uniquely-named empty temporary file. 429 * Return 0 upon success, otherwise a negative errno value. 430 */ 431 int get_tmp_filename(char *filename, int size) 432 { 433 #ifdef _WIN32 434 char temp_dir[MAX_PATH]; 435 /* GetTempFileName requires that its output buffer (4th param) 436 have length MAX_PATH or greater. */ 437 assert(size >= MAX_PATH); 438 return (GetTempPath(MAX_PATH, temp_dir) 439 && GetTempFileName(temp_dir, "qem", 0, filename) 440 ? 0 : -GetLastError()); 441 #else 442 int fd; 443 const char *tmpdir; 444 tmpdir = getenv("TMPDIR"); 445 if (!tmpdir) 446 tmpdir = "/tmp"; 447 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 448 return -EOVERFLOW; 449 } 450 fd = mkstemp(filename); 451 if (fd < 0) { 452 return -errno; 453 } 454 if (close(fd) != 0) { 455 unlink(filename); 456 return -errno; 457 } 458 return 0; 459 #endif 460 } 461 462 /* 463 * Detect host devices. By convention, /dev/cdrom[N] is always 464 * recognized as a host CDROM. 465 */ 466 static BlockDriver *find_hdev_driver(const char *filename) 467 { 468 int score_max = 0, score; 469 BlockDriver *drv = NULL, *d; 470 471 QLIST_FOREACH(d, &bdrv_drivers, list) { 472 if (d->bdrv_probe_device) { 473 score = d->bdrv_probe_device(filename); 474 if (score > score_max) { 475 score_max = score; 476 drv = d; 477 } 478 } 479 } 480 481 return drv; 482 } 483 484 BlockDriver *bdrv_find_protocol(const char *filename) 485 { 486 BlockDriver *drv1; 487 char protocol[128]; 488 int len; 489 const char *p; 490 491 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 492 493 /* 494 * XXX(hch): we really should not let host device detection 495 * override an explicit protocol specification, but moving this 496 * later breaks access to device names with colons in them. 497 * Thanks to the brain-dead persistent naming schemes on udev- 498 * based Linux systems those actually are quite common. 499 */ 500 drv1 = find_hdev_driver(filename); 501 if (drv1) { 502 return drv1; 503 } 504 505 if (!path_has_protocol(filename)) { 506 return bdrv_find_format("file"); 507 } 508 p = strchr(filename, ':'); 509 assert(p != NULL); 510 len = p - filename; 511 if (len > sizeof(protocol) - 1) 512 len = sizeof(protocol) - 1; 513 memcpy(protocol, filename, len); 514 protocol[len] = '\0'; 515 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 516 if (drv1->protocol_name && 517 !strcmp(drv1->protocol_name, protocol)) { 518 return drv1; 519 } 520 } 521 return NULL; 522 } 523 524 static int find_image_format(BlockDriverState *bs, const char *filename, 525 BlockDriver **pdrv) 526 { 527 int score, score_max; 528 BlockDriver *drv1, *drv; 529 uint8_t buf[2048]; 530 int ret = 0; 531 532 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 533 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) { 534 drv = bdrv_find_format("raw"); 535 if (!drv) { 536 ret = -ENOENT; 537 } 538 *pdrv = drv; 539 return ret; 540 } 541 542 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 543 if (ret < 0) { 544 *pdrv = NULL; 545 return ret; 546 } 547 548 score_max = 0; 549 drv = NULL; 550 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 551 if (drv1->bdrv_probe) { 552 score = drv1->bdrv_probe(buf, ret, filename); 553 if (score > score_max) { 554 score_max = score; 555 drv = drv1; 556 } 557 } 558 } 559 if (!drv) { 560 ret = -ENOENT; 561 } 562 *pdrv = drv; 563 return ret; 564 } 565 566 /** 567 * Set the current 'total_sectors' value 568 */ 569 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 570 { 571 BlockDriver *drv = bs->drv; 572 573 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 574 if (bs->sg) 575 return 0; 576 577 /* query actual device if possible, otherwise just trust the hint */ 578 if (drv->bdrv_getlength) { 579 int64_t length = drv->bdrv_getlength(bs); 580 if (length < 0) { 581 return length; 582 } 583 hint = length >> BDRV_SECTOR_BITS; 584 } 585 586 bs->total_sectors = hint; 587 return 0; 588 } 589 590 /** 591 * Set open flags for a given discard mode 592 * 593 * Return 0 on success, -1 if the discard mode was invalid. 594 */ 595 int bdrv_parse_discard_flags(const char *mode, int *flags) 596 { 597 *flags &= ~BDRV_O_UNMAP; 598 599 if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) { 600 /* do nothing */ 601 } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) { 602 *flags |= BDRV_O_UNMAP; 603 } else { 604 return -1; 605 } 606 607 return 0; 608 } 609 610 /** 611 * Set open flags for a given cache mode 612 * 613 * Return 0 on success, -1 if the cache mode was invalid. 614 */ 615 int bdrv_parse_cache_flags(const char *mode, int *flags) 616 { 617 *flags &= ~BDRV_O_CACHE_MASK; 618 619 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 620 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 621 } else if (!strcmp(mode, "directsync")) { 622 *flags |= BDRV_O_NOCACHE; 623 } else if (!strcmp(mode, "writeback")) { 624 *flags |= BDRV_O_CACHE_WB; 625 } else if (!strcmp(mode, "unsafe")) { 626 *flags |= BDRV_O_CACHE_WB; 627 *flags |= BDRV_O_NO_FLUSH; 628 } else if (!strcmp(mode, "writethrough")) { 629 /* this is the default */ 630 } else { 631 return -1; 632 } 633 634 return 0; 635 } 636 637 /** 638 * The copy-on-read flag is actually a reference count so multiple users may 639 * use the feature without worrying about clobbering its previous state. 640 * Copy-on-read stays enabled until all users have called to disable it. 641 */ 642 void bdrv_enable_copy_on_read(BlockDriverState *bs) 643 { 644 bs->copy_on_read++; 645 } 646 647 void bdrv_disable_copy_on_read(BlockDriverState *bs) 648 { 649 assert(bs->copy_on_read > 0); 650 bs->copy_on_read--; 651 } 652 653 static int bdrv_open_flags(BlockDriverState *bs, int flags) 654 { 655 int open_flags = flags | BDRV_O_CACHE_WB; 656 657 /* 658 * Clear flags that are internal to the block layer before opening the 659 * image. 660 */ 661 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 662 663 /* 664 * Snapshots should be writable. 665 */ 666 if (bs->is_temporary) { 667 open_flags |= BDRV_O_RDWR; 668 } 669 670 return open_flags; 671 } 672 673 /* 674 * Common part for opening disk images and files 675 * 676 * Removes all processed options from *options. 677 */ 678 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file, 679 QDict *options, int flags, BlockDriver *drv) 680 { 681 int ret, open_flags; 682 const char *filename; 683 684 assert(drv != NULL); 685 assert(bs->file == NULL); 686 assert(options != NULL && bs->options != options); 687 688 if (file != NULL) { 689 filename = file->filename; 690 } else { 691 filename = qdict_get_try_str(options, "filename"); 692 } 693 694 trace_bdrv_open_common(bs, filename ?: "", flags, drv->format_name); 695 696 /* bdrv_open() with directly using a protocol as drv. This layer is already 697 * opened, so assign it to bs (while file becomes a closed BlockDriverState) 698 * and return immediately. */ 699 if (file != NULL && drv->bdrv_file_open) { 700 bdrv_swap(file, bs); 701 return 0; 702 } 703 704 bs->open_flags = flags; 705 bs->buffer_alignment = 512; 706 open_flags = bdrv_open_flags(bs, flags); 707 bs->read_only = !(open_flags & BDRV_O_RDWR); 708 709 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv, bs->read_only)) { 710 return -ENOTSUP; 711 } 712 713 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 714 if (!bs->read_only && (flags & BDRV_O_COPY_ON_READ)) { 715 bdrv_enable_copy_on_read(bs); 716 } 717 718 if (filename != NULL) { 719 pstrcpy(bs->filename, sizeof(bs->filename), filename); 720 } else { 721 bs->filename[0] = '\0'; 722 } 723 724 bs->drv = drv; 725 bs->opaque = g_malloc0(drv->instance_size); 726 727 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 728 729 /* Open the image, either directly or using a protocol */ 730 if (drv->bdrv_file_open) { 731 assert(file == NULL); 732 assert(drv->bdrv_parse_filename || filename != NULL); 733 ret = drv->bdrv_file_open(bs, options, open_flags); 734 } else { 735 if (file == NULL) { 736 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't use '%s' as a " 737 "block driver for the protocol level", 738 drv->format_name); 739 ret = -EINVAL; 740 goto free_and_fail; 741 } 742 assert(file != NULL); 743 bs->file = file; 744 ret = drv->bdrv_open(bs, options, open_flags); 745 } 746 747 if (ret < 0) { 748 goto free_and_fail; 749 } 750 751 ret = refresh_total_sectors(bs, bs->total_sectors); 752 if (ret < 0) { 753 goto free_and_fail; 754 } 755 756 #ifndef _WIN32 757 if (bs->is_temporary) { 758 assert(filename != NULL); 759 unlink(filename); 760 } 761 #endif 762 return 0; 763 764 free_and_fail: 765 bs->file = NULL; 766 g_free(bs->opaque); 767 bs->opaque = NULL; 768 bs->drv = NULL; 769 return ret; 770 } 771 772 /* 773 * Opens a file using a protocol (file, host_device, nbd, ...) 774 * 775 * options is a QDict of options to pass to the block drivers, or NULL for an 776 * empty set of options. The reference to the QDict belongs to the block layer 777 * after the call (even on failure), so if the caller intends to reuse the 778 * dictionary, it needs to use QINCREF() before calling bdrv_file_open. 779 */ 780 int bdrv_file_open(BlockDriverState **pbs, const char *filename, 781 QDict *options, int flags) 782 { 783 BlockDriverState *bs; 784 BlockDriver *drv; 785 const char *drvname; 786 int ret; 787 788 /* NULL means an empty set of options */ 789 if (options == NULL) { 790 options = qdict_new(); 791 } 792 793 bs = bdrv_new(""); 794 bs->options = options; 795 options = qdict_clone_shallow(options); 796 797 /* Fetch the file name from the options QDict if necessary */ 798 if (!filename) { 799 filename = qdict_get_try_str(options, "filename"); 800 } else if (filename && !qdict_haskey(options, "filename")) { 801 qdict_put(options, "filename", qstring_from_str(filename)); 802 } else { 803 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't specify 'file' and " 804 "'filename' options at the same time"); 805 ret = -EINVAL; 806 goto fail; 807 } 808 809 /* Find the right block driver */ 810 drvname = qdict_get_try_str(options, "driver"); 811 if (drvname) { 812 drv = bdrv_find_whitelisted_format(drvname, !(flags & BDRV_O_RDWR)); 813 qdict_del(options, "driver"); 814 } else if (filename) { 815 drv = bdrv_find_protocol(filename); 816 } else { 817 qerror_report(ERROR_CLASS_GENERIC_ERROR, 818 "Must specify either driver or file"); 819 drv = NULL; 820 } 821 822 if (!drv) { 823 ret = -ENOENT; 824 goto fail; 825 } 826 827 /* Parse the filename and open it */ 828 if (drv->bdrv_parse_filename && filename) { 829 Error *local_err = NULL; 830 drv->bdrv_parse_filename(filename, options, &local_err); 831 if (error_is_set(&local_err)) { 832 qerror_report_err(local_err); 833 error_free(local_err); 834 ret = -EINVAL; 835 goto fail; 836 } 837 qdict_del(options, "filename"); 838 } else if (!drv->bdrv_parse_filename && !filename) { 839 qerror_report(ERROR_CLASS_GENERIC_ERROR, 840 "The '%s' block driver requires a file name", 841 drv->format_name); 842 ret = -EINVAL; 843 goto fail; 844 } 845 846 ret = bdrv_open_common(bs, NULL, options, flags, drv); 847 if (ret < 0) { 848 goto fail; 849 } 850 851 /* Check if any unknown options were used */ 852 if (qdict_size(options) != 0) { 853 const QDictEntry *entry = qdict_first(options); 854 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block protocol '%s' doesn't " 855 "support the option '%s'", 856 drv->format_name, entry->key); 857 ret = -EINVAL; 858 goto fail; 859 } 860 QDECREF(options); 861 862 bs->growable = 1; 863 *pbs = bs; 864 return 0; 865 866 fail: 867 QDECREF(options); 868 if (!bs->drv) { 869 QDECREF(bs->options); 870 } 871 bdrv_delete(bs); 872 return ret; 873 } 874 875 /* 876 * Opens the backing file for a BlockDriverState if not yet open 877 * 878 * options is a QDict of options to pass to the block drivers, or NULL for an 879 * empty set of options. The reference to the QDict is transferred to this 880 * function (even on failure), so if the caller intends to reuse the dictionary, 881 * it needs to use QINCREF() before calling bdrv_file_open. 882 */ 883 int bdrv_open_backing_file(BlockDriverState *bs, QDict *options) 884 { 885 char backing_filename[PATH_MAX]; 886 int back_flags, ret; 887 BlockDriver *back_drv = NULL; 888 889 if (bs->backing_hd != NULL) { 890 QDECREF(options); 891 return 0; 892 } 893 894 /* NULL means an empty set of options */ 895 if (options == NULL) { 896 options = qdict_new(); 897 } 898 899 bs->open_flags &= ~BDRV_O_NO_BACKING; 900 if (qdict_haskey(options, "file.filename")) { 901 backing_filename[0] = '\0'; 902 } else if (bs->backing_file[0] == '\0' && qdict_size(options) == 0) { 903 QDECREF(options); 904 return 0; 905 } 906 907 bs->backing_hd = bdrv_new(""); 908 bdrv_get_full_backing_filename(bs, backing_filename, 909 sizeof(backing_filename)); 910 911 if (bs->backing_format[0] != '\0') { 912 back_drv = bdrv_find_format(bs->backing_format); 913 } 914 915 /* backing files always opened read-only */ 916 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 917 918 ret = bdrv_open(bs->backing_hd, 919 *backing_filename ? backing_filename : NULL, options, 920 back_flags, back_drv); 921 if (ret < 0) { 922 bdrv_delete(bs->backing_hd); 923 bs->backing_hd = NULL; 924 bs->open_flags |= BDRV_O_NO_BACKING; 925 return ret; 926 } 927 return 0; 928 } 929 930 static void extract_subqdict(QDict *src, QDict **dst, const char *start) 931 { 932 const QDictEntry *entry, *next; 933 const char *p; 934 935 *dst = qdict_new(); 936 entry = qdict_first(src); 937 938 while (entry != NULL) { 939 next = qdict_next(src, entry); 940 if (strstart(entry->key, start, &p)) { 941 qobject_incref(entry->value); 942 qdict_put_obj(*dst, p, entry->value); 943 qdict_del(src, entry->key); 944 } 945 entry = next; 946 } 947 } 948 949 /* 950 * Opens a disk image (raw, qcow2, vmdk, ...) 951 * 952 * options is a QDict of options to pass to the block drivers, or NULL for an 953 * empty set of options. The reference to the QDict belongs to the block layer 954 * after the call (even on failure), so if the caller intends to reuse the 955 * dictionary, it needs to use QINCREF() before calling bdrv_open. 956 */ 957 int bdrv_open(BlockDriverState *bs, const char *filename, QDict *options, 958 int flags, BlockDriver *drv) 959 { 960 int ret; 961 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ 962 char tmp_filename[PATH_MAX + 1]; 963 BlockDriverState *file = NULL; 964 QDict *file_options = NULL; 965 966 /* NULL means an empty set of options */ 967 if (options == NULL) { 968 options = qdict_new(); 969 } 970 971 bs->options = options; 972 options = qdict_clone_shallow(options); 973 974 /* For snapshot=on, create a temporary qcow2 overlay */ 975 if (flags & BDRV_O_SNAPSHOT) { 976 BlockDriverState *bs1; 977 int64_t total_size; 978 BlockDriver *bdrv_qcow2; 979 QEMUOptionParameter *create_options; 980 char backing_filename[PATH_MAX]; 981 982 if (qdict_size(options) != 0) { 983 error_report("Can't use snapshot=on with driver-specific options"); 984 ret = -EINVAL; 985 goto fail; 986 } 987 assert(filename != NULL); 988 989 /* if snapshot, we create a temporary backing file and open it 990 instead of opening 'filename' directly */ 991 992 /* if there is a backing file, use it */ 993 bs1 = bdrv_new(""); 994 ret = bdrv_open(bs1, filename, NULL, 0, drv); 995 if (ret < 0) { 996 bdrv_delete(bs1); 997 goto fail; 998 } 999 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 1000 1001 bdrv_delete(bs1); 1002 1003 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 1004 if (ret < 0) { 1005 goto fail; 1006 } 1007 1008 /* Real path is meaningless for protocols */ 1009 if (path_has_protocol(filename)) { 1010 snprintf(backing_filename, sizeof(backing_filename), 1011 "%s", filename); 1012 } else if (!realpath(filename, backing_filename)) { 1013 ret = -errno; 1014 goto fail; 1015 } 1016 1017 bdrv_qcow2 = bdrv_find_format("qcow2"); 1018 create_options = parse_option_parameters("", bdrv_qcow2->create_options, 1019 NULL); 1020 1021 set_option_parameter_int(create_options, BLOCK_OPT_SIZE, total_size); 1022 set_option_parameter(create_options, BLOCK_OPT_BACKING_FILE, 1023 backing_filename); 1024 if (drv) { 1025 set_option_parameter(create_options, BLOCK_OPT_BACKING_FMT, 1026 drv->format_name); 1027 } 1028 1029 ret = bdrv_create(bdrv_qcow2, tmp_filename, create_options); 1030 free_option_parameters(create_options); 1031 if (ret < 0) { 1032 goto fail; 1033 } 1034 1035 filename = tmp_filename; 1036 drv = bdrv_qcow2; 1037 bs->is_temporary = 1; 1038 } 1039 1040 /* Open image file without format layer */ 1041 if (flags & BDRV_O_RDWR) { 1042 flags |= BDRV_O_ALLOW_RDWR; 1043 } 1044 1045 extract_subqdict(options, &file_options, "file."); 1046 1047 ret = bdrv_file_open(&file, filename, file_options, 1048 bdrv_open_flags(bs, flags)); 1049 if (ret < 0) { 1050 goto fail; 1051 } 1052 1053 /* Find the right image format driver */ 1054 if (!drv) { 1055 ret = find_image_format(file, filename, &drv); 1056 } 1057 1058 if (!drv) { 1059 goto unlink_and_fail; 1060 } 1061 1062 /* Open the image */ 1063 ret = bdrv_open_common(bs, file, options, flags, drv); 1064 if (ret < 0) { 1065 goto unlink_and_fail; 1066 } 1067 1068 if (bs->file != file) { 1069 bdrv_delete(file); 1070 file = NULL; 1071 } 1072 1073 /* If there is a backing file, use it */ 1074 if ((flags & BDRV_O_NO_BACKING) == 0) { 1075 QDict *backing_options; 1076 1077 extract_subqdict(options, &backing_options, "backing."); 1078 ret = bdrv_open_backing_file(bs, backing_options); 1079 if (ret < 0) { 1080 goto close_and_fail; 1081 } 1082 } 1083 1084 /* Check if any unknown options were used */ 1085 if (qdict_size(options) != 0) { 1086 const QDictEntry *entry = qdict_first(options); 1087 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block format '%s' used by " 1088 "device '%s' doesn't support the option '%s'", 1089 drv->format_name, bs->device_name, entry->key); 1090 1091 ret = -EINVAL; 1092 goto close_and_fail; 1093 } 1094 QDECREF(options); 1095 1096 if (!bdrv_key_required(bs)) { 1097 bdrv_dev_change_media_cb(bs, true); 1098 } 1099 1100 /* throttling disk I/O limits */ 1101 if (bs->io_limits_enabled) { 1102 bdrv_io_limits_enable(bs); 1103 } 1104 1105 return 0; 1106 1107 unlink_and_fail: 1108 if (file != NULL) { 1109 bdrv_delete(file); 1110 } 1111 if (bs->is_temporary) { 1112 unlink(filename); 1113 } 1114 fail: 1115 QDECREF(bs->options); 1116 QDECREF(options); 1117 bs->options = NULL; 1118 return ret; 1119 1120 close_and_fail: 1121 bdrv_close(bs); 1122 QDECREF(options); 1123 return ret; 1124 } 1125 1126 typedef struct BlockReopenQueueEntry { 1127 bool prepared; 1128 BDRVReopenState state; 1129 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 1130 } BlockReopenQueueEntry; 1131 1132 /* 1133 * Adds a BlockDriverState to a simple queue for an atomic, transactional 1134 * reopen of multiple devices. 1135 * 1136 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 1137 * already performed, or alternatively may be NULL a new BlockReopenQueue will 1138 * be created and initialized. This newly created BlockReopenQueue should be 1139 * passed back in for subsequent calls that are intended to be of the same 1140 * atomic 'set'. 1141 * 1142 * bs is the BlockDriverState to add to the reopen queue. 1143 * 1144 * flags contains the open flags for the associated bs 1145 * 1146 * returns a pointer to bs_queue, which is either the newly allocated 1147 * bs_queue, or the existing bs_queue being used. 1148 * 1149 */ 1150 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 1151 BlockDriverState *bs, int flags) 1152 { 1153 assert(bs != NULL); 1154 1155 BlockReopenQueueEntry *bs_entry; 1156 if (bs_queue == NULL) { 1157 bs_queue = g_new0(BlockReopenQueue, 1); 1158 QSIMPLEQ_INIT(bs_queue); 1159 } 1160 1161 if (bs->file) { 1162 bdrv_reopen_queue(bs_queue, bs->file, flags); 1163 } 1164 1165 bs_entry = g_new0(BlockReopenQueueEntry, 1); 1166 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 1167 1168 bs_entry->state.bs = bs; 1169 bs_entry->state.flags = flags; 1170 1171 return bs_queue; 1172 } 1173 1174 /* 1175 * Reopen multiple BlockDriverStates atomically & transactionally. 1176 * 1177 * The queue passed in (bs_queue) must have been built up previous 1178 * via bdrv_reopen_queue(). 1179 * 1180 * Reopens all BDS specified in the queue, with the appropriate 1181 * flags. All devices are prepared for reopen, and failure of any 1182 * device will cause all device changes to be abandonded, and intermediate 1183 * data cleaned up. 1184 * 1185 * If all devices prepare successfully, then the changes are committed 1186 * to all devices. 1187 * 1188 */ 1189 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 1190 { 1191 int ret = -1; 1192 BlockReopenQueueEntry *bs_entry, *next; 1193 Error *local_err = NULL; 1194 1195 assert(bs_queue != NULL); 1196 1197 bdrv_drain_all(); 1198 1199 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1200 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 1201 error_propagate(errp, local_err); 1202 goto cleanup; 1203 } 1204 bs_entry->prepared = true; 1205 } 1206 1207 /* If we reach this point, we have success and just need to apply the 1208 * changes 1209 */ 1210 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1211 bdrv_reopen_commit(&bs_entry->state); 1212 } 1213 1214 ret = 0; 1215 1216 cleanup: 1217 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 1218 if (ret && bs_entry->prepared) { 1219 bdrv_reopen_abort(&bs_entry->state); 1220 } 1221 g_free(bs_entry); 1222 } 1223 g_free(bs_queue); 1224 return ret; 1225 } 1226 1227 1228 /* Reopen a single BlockDriverState with the specified flags. */ 1229 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1230 { 1231 int ret = -1; 1232 Error *local_err = NULL; 1233 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1234 1235 ret = bdrv_reopen_multiple(queue, &local_err); 1236 if (local_err != NULL) { 1237 error_propagate(errp, local_err); 1238 } 1239 return ret; 1240 } 1241 1242 1243 /* 1244 * Prepares a BlockDriverState for reopen. All changes are staged in the 1245 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1246 * the block driver layer .bdrv_reopen_prepare() 1247 * 1248 * bs is the BlockDriverState to reopen 1249 * flags are the new open flags 1250 * queue is the reopen queue 1251 * 1252 * Returns 0 on success, non-zero on error. On error errp will be set 1253 * as well. 1254 * 1255 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1256 * It is the responsibility of the caller to then call the abort() or 1257 * commit() for any other BDS that have been left in a prepare() state 1258 * 1259 */ 1260 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1261 Error **errp) 1262 { 1263 int ret = -1; 1264 Error *local_err = NULL; 1265 BlockDriver *drv; 1266 1267 assert(reopen_state != NULL); 1268 assert(reopen_state->bs->drv != NULL); 1269 drv = reopen_state->bs->drv; 1270 1271 /* if we are to stay read-only, do not allow permission change 1272 * to r/w */ 1273 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1274 reopen_state->flags & BDRV_O_RDWR) { 1275 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1276 reopen_state->bs->device_name); 1277 goto error; 1278 } 1279 1280 1281 ret = bdrv_flush(reopen_state->bs); 1282 if (ret) { 1283 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1284 strerror(-ret)); 1285 goto error; 1286 } 1287 1288 if (drv->bdrv_reopen_prepare) { 1289 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1290 if (ret) { 1291 if (local_err != NULL) { 1292 error_propagate(errp, local_err); 1293 } else { 1294 error_setg(errp, "failed while preparing to reopen image '%s'", 1295 reopen_state->bs->filename); 1296 } 1297 goto error; 1298 } 1299 } else { 1300 /* It is currently mandatory to have a bdrv_reopen_prepare() 1301 * handler for each supported drv. */ 1302 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1303 drv->format_name, reopen_state->bs->device_name, 1304 "reopening of file"); 1305 ret = -1; 1306 goto error; 1307 } 1308 1309 ret = 0; 1310 1311 error: 1312 return ret; 1313 } 1314 1315 /* 1316 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1317 * makes them final by swapping the staging BlockDriverState contents into 1318 * the active BlockDriverState contents. 1319 */ 1320 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1321 { 1322 BlockDriver *drv; 1323 1324 assert(reopen_state != NULL); 1325 drv = reopen_state->bs->drv; 1326 assert(drv != NULL); 1327 1328 /* If there are any driver level actions to take */ 1329 if (drv->bdrv_reopen_commit) { 1330 drv->bdrv_reopen_commit(reopen_state); 1331 } 1332 1333 /* set BDS specific flags now */ 1334 reopen_state->bs->open_flags = reopen_state->flags; 1335 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1336 BDRV_O_CACHE_WB); 1337 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1338 } 1339 1340 /* 1341 * Abort the reopen, and delete and free the staged changes in 1342 * reopen_state 1343 */ 1344 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1345 { 1346 BlockDriver *drv; 1347 1348 assert(reopen_state != NULL); 1349 drv = reopen_state->bs->drv; 1350 assert(drv != NULL); 1351 1352 if (drv->bdrv_reopen_abort) { 1353 drv->bdrv_reopen_abort(reopen_state); 1354 } 1355 } 1356 1357 1358 void bdrv_close(BlockDriverState *bs) 1359 { 1360 bdrv_flush(bs); 1361 if (bs->job) { 1362 block_job_cancel_sync(bs->job); 1363 } 1364 bdrv_drain_all(); 1365 notifier_list_notify(&bs->close_notifiers, bs); 1366 1367 if (bs->drv) { 1368 if (bs->backing_hd) { 1369 bdrv_delete(bs->backing_hd); 1370 bs->backing_hd = NULL; 1371 } 1372 bs->drv->bdrv_close(bs); 1373 g_free(bs->opaque); 1374 #ifdef _WIN32 1375 if (bs->is_temporary) { 1376 unlink(bs->filename); 1377 } 1378 #endif 1379 bs->opaque = NULL; 1380 bs->drv = NULL; 1381 bs->copy_on_read = 0; 1382 bs->backing_file[0] = '\0'; 1383 bs->backing_format[0] = '\0'; 1384 bs->total_sectors = 0; 1385 bs->encrypted = 0; 1386 bs->valid_key = 0; 1387 bs->sg = 0; 1388 bs->growable = 0; 1389 QDECREF(bs->options); 1390 bs->options = NULL; 1391 1392 if (bs->file != NULL) { 1393 bdrv_delete(bs->file); 1394 bs->file = NULL; 1395 } 1396 } 1397 1398 bdrv_dev_change_media_cb(bs, false); 1399 1400 /*throttling disk I/O limits*/ 1401 if (bs->io_limits_enabled) { 1402 bdrv_io_limits_disable(bs); 1403 } 1404 } 1405 1406 void bdrv_close_all(void) 1407 { 1408 BlockDriverState *bs; 1409 1410 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1411 bdrv_close(bs); 1412 } 1413 } 1414 1415 /* 1416 * Wait for pending requests to complete across all BlockDriverStates 1417 * 1418 * This function does not flush data to disk, use bdrv_flush_all() for that 1419 * after calling this function. 1420 * 1421 * Note that completion of an asynchronous I/O operation can trigger any 1422 * number of other I/O operations on other devices---for example a coroutine 1423 * can be arbitrarily complex and a constant flow of I/O can come until the 1424 * coroutine is complete. Because of this, it is not possible to have a 1425 * function to drain a single device's I/O queue. 1426 */ 1427 void bdrv_drain_all(void) 1428 { 1429 BlockDriverState *bs; 1430 bool busy; 1431 1432 do { 1433 busy = qemu_aio_wait(); 1434 1435 /* FIXME: We do not have timer support here, so this is effectively 1436 * a busy wait. 1437 */ 1438 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1439 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1440 qemu_co_queue_restart_all(&bs->throttled_reqs); 1441 busy = true; 1442 } 1443 } 1444 } while (busy); 1445 1446 /* If requests are still pending there is a bug somewhere */ 1447 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1448 assert(QLIST_EMPTY(&bs->tracked_requests)); 1449 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1450 } 1451 } 1452 1453 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1454 Also, NULL terminate the device_name to prevent double remove */ 1455 void bdrv_make_anon(BlockDriverState *bs) 1456 { 1457 if (bs->device_name[0] != '\0') { 1458 QTAILQ_REMOVE(&bdrv_states, bs, list); 1459 } 1460 bs->device_name[0] = '\0'; 1461 } 1462 1463 static void bdrv_rebind(BlockDriverState *bs) 1464 { 1465 if (bs->drv && bs->drv->bdrv_rebind) { 1466 bs->drv->bdrv_rebind(bs); 1467 } 1468 } 1469 1470 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1471 BlockDriverState *bs_src) 1472 { 1473 /* move some fields that need to stay attached to the device */ 1474 bs_dest->open_flags = bs_src->open_flags; 1475 1476 /* dev info */ 1477 bs_dest->dev_ops = bs_src->dev_ops; 1478 bs_dest->dev_opaque = bs_src->dev_opaque; 1479 bs_dest->dev = bs_src->dev; 1480 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1481 bs_dest->copy_on_read = bs_src->copy_on_read; 1482 1483 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1484 1485 /* i/o timing parameters */ 1486 bs_dest->slice_start = bs_src->slice_start; 1487 bs_dest->slice_end = bs_src->slice_end; 1488 bs_dest->slice_submitted = bs_src->slice_submitted; 1489 bs_dest->io_limits = bs_src->io_limits; 1490 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1491 bs_dest->block_timer = bs_src->block_timer; 1492 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1493 1494 /* r/w error */ 1495 bs_dest->on_read_error = bs_src->on_read_error; 1496 bs_dest->on_write_error = bs_src->on_write_error; 1497 1498 /* i/o status */ 1499 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1500 bs_dest->iostatus = bs_src->iostatus; 1501 1502 /* dirty bitmap */ 1503 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1504 1505 /* job */ 1506 bs_dest->in_use = bs_src->in_use; 1507 bs_dest->job = bs_src->job; 1508 1509 /* keep the same entry in bdrv_states */ 1510 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1511 bs_src->device_name); 1512 bs_dest->list = bs_src->list; 1513 } 1514 1515 /* 1516 * Swap bs contents for two image chains while they are live, 1517 * while keeping required fields on the BlockDriverState that is 1518 * actually attached to a device. 1519 * 1520 * This will modify the BlockDriverState fields, and swap contents 1521 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1522 * 1523 * bs_new is required to be anonymous. 1524 * 1525 * This function does not create any image files. 1526 */ 1527 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1528 { 1529 BlockDriverState tmp; 1530 1531 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1532 assert(bs_new->device_name[0] == '\0'); 1533 assert(bs_new->dirty_bitmap == NULL); 1534 assert(bs_new->job == NULL); 1535 assert(bs_new->dev == NULL); 1536 assert(bs_new->in_use == 0); 1537 assert(bs_new->io_limits_enabled == false); 1538 assert(bs_new->block_timer == NULL); 1539 1540 tmp = *bs_new; 1541 *bs_new = *bs_old; 1542 *bs_old = tmp; 1543 1544 /* there are some fields that should not be swapped, move them back */ 1545 bdrv_move_feature_fields(&tmp, bs_old); 1546 bdrv_move_feature_fields(bs_old, bs_new); 1547 bdrv_move_feature_fields(bs_new, &tmp); 1548 1549 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1550 assert(bs_new->device_name[0] == '\0'); 1551 1552 /* Check a few fields that should remain attached to the device */ 1553 assert(bs_new->dev == NULL); 1554 assert(bs_new->job == NULL); 1555 assert(bs_new->in_use == 0); 1556 assert(bs_new->io_limits_enabled == false); 1557 assert(bs_new->block_timer == NULL); 1558 1559 bdrv_rebind(bs_new); 1560 bdrv_rebind(bs_old); 1561 } 1562 1563 /* 1564 * Add new bs contents at the top of an image chain while the chain is 1565 * live, while keeping required fields on the top layer. 1566 * 1567 * This will modify the BlockDriverState fields, and swap contents 1568 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1569 * 1570 * bs_new is required to be anonymous. 1571 * 1572 * This function does not create any image files. 1573 */ 1574 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1575 { 1576 bdrv_swap(bs_new, bs_top); 1577 1578 /* The contents of 'tmp' will become bs_top, as we are 1579 * swapping bs_new and bs_top contents. */ 1580 bs_top->backing_hd = bs_new; 1581 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1582 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1583 bs_new->filename); 1584 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1585 bs_new->drv ? bs_new->drv->format_name : ""); 1586 } 1587 1588 void bdrv_delete(BlockDriverState *bs) 1589 { 1590 assert(!bs->dev); 1591 assert(!bs->job); 1592 assert(!bs->in_use); 1593 1594 /* remove from list, if necessary */ 1595 bdrv_make_anon(bs); 1596 1597 bdrv_close(bs); 1598 1599 g_free(bs); 1600 } 1601 1602 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1603 /* TODO change to DeviceState *dev when all users are qdevified */ 1604 { 1605 if (bs->dev) { 1606 return -EBUSY; 1607 } 1608 bs->dev = dev; 1609 bdrv_iostatus_reset(bs); 1610 return 0; 1611 } 1612 1613 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1614 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1615 { 1616 if (bdrv_attach_dev(bs, dev) < 0) { 1617 abort(); 1618 } 1619 } 1620 1621 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1622 /* TODO change to DeviceState *dev when all users are qdevified */ 1623 { 1624 assert(bs->dev == dev); 1625 bs->dev = NULL; 1626 bs->dev_ops = NULL; 1627 bs->dev_opaque = NULL; 1628 bs->buffer_alignment = 512; 1629 } 1630 1631 /* TODO change to return DeviceState * when all users are qdevified */ 1632 void *bdrv_get_attached_dev(BlockDriverState *bs) 1633 { 1634 return bs->dev; 1635 } 1636 1637 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1638 void *opaque) 1639 { 1640 bs->dev_ops = ops; 1641 bs->dev_opaque = opaque; 1642 } 1643 1644 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1645 enum MonitorEvent ev, 1646 BlockErrorAction action, bool is_read) 1647 { 1648 QObject *data; 1649 const char *action_str; 1650 1651 switch (action) { 1652 case BDRV_ACTION_REPORT: 1653 action_str = "report"; 1654 break; 1655 case BDRV_ACTION_IGNORE: 1656 action_str = "ignore"; 1657 break; 1658 case BDRV_ACTION_STOP: 1659 action_str = "stop"; 1660 break; 1661 default: 1662 abort(); 1663 } 1664 1665 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1666 bdrv->device_name, 1667 action_str, 1668 is_read ? "read" : "write"); 1669 monitor_protocol_event(ev, data); 1670 1671 qobject_decref(data); 1672 } 1673 1674 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1675 { 1676 QObject *data; 1677 1678 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1679 bdrv_get_device_name(bs), ejected); 1680 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1681 1682 qobject_decref(data); 1683 } 1684 1685 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1686 { 1687 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1688 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1689 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1690 if (tray_was_closed) { 1691 /* tray open */ 1692 bdrv_emit_qmp_eject_event(bs, true); 1693 } 1694 if (load) { 1695 /* tray close */ 1696 bdrv_emit_qmp_eject_event(bs, false); 1697 } 1698 } 1699 } 1700 1701 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1702 { 1703 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1704 } 1705 1706 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1707 { 1708 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1709 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1710 } 1711 } 1712 1713 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1714 { 1715 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1716 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1717 } 1718 return false; 1719 } 1720 1721 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1722 { 1723 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1724 bs->dev_ops->resize_cb(bs->dev_opaque); 1725 } 1726 } 1727 1728 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1729 { 1730 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1731 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1732 } 1733 return false; 1734 } 1735 1736 /* 1737 * Run consistency checks on an image 1738 * 1739 * Returns 0 if the check could be completed (it doesn't mean that the image is 1740 * free of errors) or -errno when an internal error occurred. The results of the 1741 * check are stored in res. 1742 */ 1743 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1744 { 1745 if (bs->drv->bdrv_check == NULL) { 1746 return -ENOTSUP; 1747 } 1748 1749 memset(res, 0, sizeof(*res)); 1750 return bs->drv->bdrv_check(bs, res, fix); 1751 } 1752 1753 #define COMMIT_BUF_SECTORS 2048 1754 1755 /* commit COW file into the raw image */ 1756 int bdrv_commit(BlockDriverState *bs) 1757 { 1758 BlockDriver *drv = bs->drv; 1759 int64_t sector, total_sectors; 1760 int n, ro, open_flags; 1761 int ret = 0; 1762 uint8_t *buf; 1763 char filename[PATH_MAX]; 1764 1765 if (!drv) 1766 return -ENOMEDIUM; 1767 1768 if (!bs->backing_hd) { 1769 return -ENOTSUP; 1770 } 1771 1772 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1773 return -EBUSY; 1774 } 1775 1776 ro = bs->backing_hd->read_only; 1777 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1778 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1779 open_flags = bs->backing_hd->open_flags; 1780 1781 if (ro) { 1782 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1783 return -EACCES; 1784 } 1785 } 1786 1787 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1788 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1789 1790 for (sector = 0; sector < total_sectors; sector += n) { 1791 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1792 1793 if (bdrv_read(bs, sector, buf, n) != 0) { 1794 ret = -EIO; 1795 goto ro_cleanup; 1796 } 1797 1798 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1799 ret = -EIO; 1800 goto ro_cleanup; 1801 } 1802 } 1803 } 1804 1805 if (drv->bdrv_make_empty) { 1806 ret = drv->bdrv_make_empty(bs); 1807 bdrv_flush(bs); 1808 } 1809 1810 /* 1811 * Make sure all data we wrote to the backing device is actually 1812 * stable on disk. 1813 */ 1814 if (bs->backing_hd) 1815 bdrv_flush(bs->backing_hd); 1816 1817 ro_cleanup: 1818 g_free(buf); 1819 1820 if (ro) { 1821 /* ignoring error return here */ 1822 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1823 } 1824 1825 return ret; 1826 } 1827 1828 int bdrv_commit_all(void) 1829 { 1830 BlockDriverState *bs; 1831 1832 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1833 if (bs->drv && bs->backing_hd) { 1834 int ret = bdrv_commit(bs); 1835 if (ret < 0) { 1836 return ret; 1837 } 1838 } 1839 } 1840 return 0; 1841 } 1842 1843 struct BdrvTrackedRequest { 1844 BlockDriverState *bs; 1845 int64_t sector_num; 1846 int nb_sectors; 1847 bool is_write; 1848 QLIST_ENTRY(BdrvTrackedRequest) list; 1849 Coroutine *co; /* owner, used for deadlock detection */ 1850 CoQueue wait_queue; /* coroutines blocked on this request */ 1851 }; 1852 1853 /** 1854 * Remove an active request from the tracked requests list 1855 * 1856 * This function should be called when a tracked request is completing. 1857 */ 1858 static void tracked_request_end(BdrvTrackedRequest *req) 1859 { 1860 QLIST_REMOVE(req, list); 1861 qemu_co_queue_restart_all(&req->wait_queue); 1862 } 1863 1864 /** 1865 * Add an active request to the tracked requests list 1866 */ 1867 static void tracked_request_begin(BdrvTrackedRequest *req, 1868 BlockDriverState *bs, 1869 int64_t sector_num, 1870 int nb_sectors, bool is_write) 1871 { 1872 *req = (BdrvTrackedRequest){ 1873 .bs = bs, 1874 .sector_num = sector_num, 1875 .nb_sectors = nb_sectors, 1876 .is_write = is_write, 1877 .co = qemu_coroutine_self(), 1878 }; 1879 1880 qemu_co_queue_init(&req->wait_queue); 1881 1882 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1883 } 1884 1885 /** 1886 * Round a region to cluster boundaries 1887 */ 1888 void bdrv_round_to_clusters(BlockDriverState *bs, 1889 int64_t sector_num, int nb_sectors, 1890 int64_t *cluster_sector_num, 1891 int *cluster_nb_sectors) 1892 { 1893 BlockDriverInfo bdi; 1894 1895 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1896 *cluster_sector_num = sector_num; 1897 *cluster_nb_sectors = nb_sectors; 1898 } else { 1899 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1900 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1901 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1902 nb_sectors, c); 1903 } 1904 } 1905 1906 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1907 int64_t sector_num, int nb_sectors) { 1908 /* aaaa bbbb */ 1909 if (sector_num >= req->sector_num + req->nb_sectors) { 1910 return false; 1911 } 1912 /* bbbb aaaa */ 1913 if (req->sector_num >= sector_num + nb_sectors) { 1914 return false; 1915 } 1916 return true; 1917 } 1918 1919 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1920 int64_t sector_num, int nb_sectors) 1921 { 1922 BdrvTrackedRequest *req; 1923 int64_t cluster_sector_num; 1924 int cluster_nb_sectors; 1925 bool retry; 1926 1927 /* If we touch the same cluster it counts as an overlap. This guarantees 1928 * that allocating writes will be serialized and not race with each other 1929 * for the same cluster. For example, in copy-on-read it ensures that the 1930 * CoR read and write operations are atomic and guest writes cannot 1931 * interleave between them. 1932 */ 1933 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 1934 &cluster_sector_num, &cluster_nb_sectors); 1935 1936 do { 1937 retry = false; 1938 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1939 if (tracked_request_overlaps(req, cluster_sector_num, 1940 cluster_nb_sectors)) { 1941 /* Hitting this means there was a reentrant request, for 1942 * example, a block driver issuing nested requests. This must 1943 * never happen since it means deadlock. 1944 */ 1945 assert(qemu_coroutine_self() != req->co); 1946 1947 qemu_co_queue_wait(&req->wait_queue); 1948 retry = true; 1949 break; 1950 } 1951 } 1952 } while (retry); 1953 } 1954 1955 /* 1956 * Return values: 1957 * 0 - success 1958 * -EINVAL - backing format specified, but no file 1959 * -ENOSPC - can't update the backing file because no space is left in the 1960 * image file header 1961 * -ENOTSUP - format driver doesn't support changing the backing file 1962 */ 1963 int bdrv_change_backing_file(BlockDriverState *bs, 1964 const char *backing_file, const char *backing_fmt) 1965 { 1966 BlockDriver *drv = bs->drv; 1967 int ret; 1968 1969 /* Backing file format doesn't make sense without a backing file */ 1970 if (backing_fmt && !backing_file) { 1971 return -EINVAL; 1972 } 1973 1974 if (drv->bdrv_change_backing_file != NULL) { 1975 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1976 } else { 1977 ret = -ENOTSUP; 1978 } 1979 1980 if (ret == 0) { 1981 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1982 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1983 } 1984 return ret; 1985 } 1986 1987 /* 1988 * Finds the image layer in the chain that has 'bs' as its backing file. 1989 * 1990 * active is the current topmost image. 1991 * 1992 * Returns NULL if bs is not found in active's image chain, 1993 * or if active == bs. 1994 */ 1995 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1996 BlockDriverState *bs) 1997 { 1998 BlockDriverState *overlay = NULL; 1999 BlockDriverState *intermediate; 2000 2001 assert(active != NULL); 2002 assert(bs != NULL); 2003 2004 /* if bs is the same as active, then by definition it has no overlay 2005 */ 2006 if (active == bs) { 2007 return NULL; 2008 } 2009 2010 intermediate = active; 2011 while (intermediate->backing_hd) { 2012 if (intermediate->backing_hd == bs) { 2013 overlay = intermediate; 2014 break; 2015 } 2016 intermediate = intermediate->backing_hd; 2017 } 2018 2019 return overlay; 2020 } 2021 2022 typedef struct BlkIntermediateStates { 2023 BlockDriverState *bs; 2024 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 2025 } BlkIntermediateStates; 2026 2027 2028 /* 2029 * Drops images above 'base' up to and including 'top', and sets the image 2030 * above 'top' to have base as its backing file. 2031 * 2032 * Requires that the overlay to 'top' is opened r/w, so that the backing file 2033 * information in 'bs' can be properly updated. 2034 * 2035 * E.g., this will convert the following chain: 2036 * bottom <- base <- intermediate <- top <- active 2037 * 2038 * to 2039 * 2040 * bottom <- base <- active 2041 * 2042 * It is allowed for bottom==base, in which case it converts: 2043 * 2044 * base <- intermediate <- top <- active 2045 * 2046 * to 2047 * 2048 * base <- active 2049 * 2050 * Error conditions: 2051 * if active == top, that is considered an error 2052 * 2053 */ 2054 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 2055 BlockDriverState *base) 2056 { 2057 BlockDriverState *intermediate; 2058 BlockDriverState *base_bs = NULL; 2059 BlockDriverState *new_top_bs = NULL; 2060 BlkIntermediateStates *intermediate_state, *next; 2061 int ret = -EIO; 2062 2063 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 2064 QSIMPLEQ_INIT(&states_to_delete); 2065 2066 if (!top->drv || !base->drv) { 2067 goto exit; 2068 } 2069 2070 new_top_bs = bdrv_find_overlay(active, top); 2071 2072 if (new_top_bs == NULL) { 2073 /* we could not find the image above 'top', this is an error */ 2074 goto exit; 2075 } 2076 2077 /* special case of new_top_bs->backing_hd already pointing to base - nothing 2078 * to do, no intermediate images */ 2079 if (new_top_bs->backing_hd == base) { 2080 ret = 0; 2081 goto exit; 2082 } 2083 2084 intermediate = top; 2085 2086 /* now we will go down through the list, and add each BDS we find 2087 * into our deletion queue, until we hit the 'base' 2088 */ 2089 while (intermediate) { 2090 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 2091 intermediate_state->bs = intermediate; 2092 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 2093 2094 if (intermediate->backing_hd == base) { 2095 base_bs = intermediate->backing_hd; 2096 break; 2097 } 2098 intermediate = intermediate->backing_hd; 2099 } 2100 if (base_bs == NULL) { 2101 /* something went wrong, we did not end at the base. safely 2102 * unravel everything, and exit with error */ 2103 goto exit; 2104 } 2105 2106 /* success - we can delete the intermediate states, and link top->base */ 2107 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 2108 base_bs->drv ? base_bs->drv->format_name : ""); 2109 if (ret) { 2110 goto exit; 2111 } 2112 new_top_bs->backing_hd = base_bs; 2113 2114 2115 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 2116 /* so that bdrv_close() does not recursively close the chain */ 2117 intermediate_state->bs->backing_hd = NULL; 2118 bdrv_delete(intermediate_state->bs); 2119 } 2120 ret = 0; 2121 2122 exit: 2123 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 2124 g_free(intermediate_state); 2125 } 2126 return ret; 2127 } 2128 2129 2130 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 2131 size_t size) 2132 { 2133 int64_t len; 2134 2135 if (!bdrv_is_inserted(bs)) 2136 return -ENOMEDIUM; 2137 2138 if (bs->growable) 2139 return 0; 2140 2141 len = bdrv_getlength(bs); 2142 2143 if (offset < 0) 2144 return -EIO; 2145 2146 if ((offset > len) || (len - offset < size)) 2147 return -EIO; 2148 2149 return 0; 2150 } 2151 2152 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 2153 int nb_sectors) 2154 { 2155 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 2156 nb_sectors * BDRV_SECTOR_SIZE); 2157 } 2158 2159 typedef struct RwCo { 2160 BlockDriverState *bs; 2161 int64_t sector_num; 2162 int nb_sectors; 2163 QEMUIOVector *qiov; 2164 bool is_write; 2165 int ret; 2166 } RwCo; 2167 2168 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 2169 { 2170 RwCo *rwco = opaque; 2171 2172 if (!rwco->is_write) { 2173 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 2174 rwco->nb_sectors, rwco->qiov, 0); 2175 } else { 2176 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 2177 rwco->nb_sectors, rwco->qiov, 0); 2178 } 2179 } 2180 2181 /* 2182 * Process a vectored synchronous request using coroutines 2183 */ 2184 static int bdrv_rwv_co(BlockDriverState *bs, int64_t sector_num, 2185 QEMUIOVector *qiov, bool is_write) 2186 { 2187 Coroutine *co; 2188 RwCo rwco = { 2189 .bs = bs, 2190 .sector_num = sector_num, 2191 .nb_sectors = qiov->size >> BDRV_SECTOR_BITS, 2192 .qiov = qiov, 2193 .is_write = is_write, 2194 .ret = NOT_DONE, 2195 }; 2196 assert((qiov->size & (BDRV_SECTOR_SIZE - 1)) == 0); 2197 2198 /** 2199 * In sync call context, when the vcpu is blocked, this throttling timer 2200 * will not fire; so the I/O throttling function has to be disabled here 2201 * if it has been enabled. 2202 */ 2203 if (bs->io_limits_enabled) { 2204 fprintf(stderr, "Disabling I/O throttling on '%s' due " 2205 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 2206 bdrv_io_limits_disable(bs); 2207 } 2208 2209 if (qemu_in_coroutine()) { 2210 /* Fast-path if already in coroutine context */ 2211 bdrv_rw_co_entry(&rwco); 2212 } else { 2213 co = qemu_coroutine_create(bdrv_rw_co_entry); 2214 qemu_coroutine_enter(co, &rwco); 2215 while (rwco.ret == NOT_DONE) { 2216 qemu_aio_wait(); 2217 } 2218 } 2219 return rwco.ret; 2220 } 2221 2222 /* 2223 * Process a synchronous request using coroutines 2224 */ 2225 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 2226 int nb_sectors, bool is_write) 2227 { 2228 QEMUIOVector qiov; 2229 struct iovec iov = { 2230 .iov_base = (void *)buf, 2231 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 2232 }; 2233 2234 qemu_iovec_init_external(&qiov, &iov, 1); 2235 return bdrv_rwv_co(bs, sector_num, &qiov, is_write); 2236 } 2237 2238 /* return < 0 if error. See bdrv_write() for the return codes */ 2239 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2240 uint8_t *buf, int nb_sectors) 2241 { 2242 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 2243 } 2244 2245 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2246 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2247 uint8_t *buf, int nb_sectors) 2248 { 2249 bool enabled; 2250 int ret; 2251 2252 enabled = bs->io_limits_enabled; 2253 bs->io_limits_enabled = false; 2254 ret = bdrv_read(bs, 0, buf, 1); 2255 bs->io_limits_enabled = enabled; 2256 return ret; 2257 } 2258 2259 /* Return < 0 if error. Important errors are: 2260 -EIO generic I/O error (may happen for all errors) 2261 -ENOMEDIUM No media inserted. 2262 -EINVAL Invalid sector number or nb_sectors 2263 -EACCES Trying to write a read-only device 2264 */ 2265 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2266 const uint8_t *buf, int nb_sectors) 2267 { 2268 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2269 } 2270 2271 int bdrv_writev(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov) 2272 { 2273 return bdrv_rwv_co(bs, sector_num, qiov, true); 2274 } 2275 2276 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2277 void *buf, int count1) 2278 { 2279 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2280 int len, nb_sectors, count; 2281 int64_t sector_num; 2282 int ret; 2283 2284 count = count1; 2285 /* first read to align to sector start */ 2286 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2287 if (len > count) 2288 len = count; 2289 sector_num = offset >> BDRV_SECTOR_BITS; 2290 if (len > 0) { 2291 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2292 return ret; 2293 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2294 count -= len; 2295 if (count == 0) 2296 return count1; 2297 sector_num++; 2298 buf += len; 2299 } 2300 2301 /* read the sectors "in place" */ 2302 nb_sectors = count >> BDRV_SECTOR_BITS; 2303 if (nb_sectors > 0) { 2304 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2305 return ret; 2306 sector_num += nb_sectors; 2307 len = nb_sectors << BDRV_SECTOR_BITS; 2308 buf += len; 2309 count -= len; 2310 } 2311 2312 /* add data from the last sector */ 2313 if (count > 0) { 2314 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2315 return ret; 2316 memcpy(buf, tmp_buf, count); 2317 } 2318 return count1; 2319 } 2320 2321 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov) 2322 { 2323 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2324 int len, nb_sectors, count; 2325 int64_t sector_num; 2326 int ret; 2327 2328 count = qiov->size; 2329 2330 /* first write to align to sector start */ 2331 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2332 if (len > count) 2333 len = count; 2334 sector_num = offset >> BDRV_SECTOR_BITS; 2335 if (len > 0) { 2336 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2337 return ret; 2338 qemu_iovec_to_buf(qiov, 0, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), 2339 len); 2340 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2341 return ret; 2342 count -= len; 2343 if (count == 0) 2344 return qiov->size; 2345 sector_num++; 2346 } 2347 2348 /* write the sectors "in place" */ 2349 nb_sectors = count >> BDRV_SECTOR_BITS; 2350 if (nb_sectors > 0) { 2351 QEMUIOVector qiov_inplace; 2352 2353 qemu_iovec_init(&qiov_inplace, qiov->niov); 2354 qemu_iovec_concat(&qiov_inplace, qiov, len, 2355 nb_sectors << BDRV_SECTOR_BITS); 2356 ret = bdrv_writev(bs, sector_num, &qiov_inplace); 2357 qemu_iovec_destroy(&qiov_inplace); 2358 if (ret < 0) { 2359 return ret; 2360 } 2361 2362 sector_num += nb_sectors; 2363 len = nb_sectors << BDRV_SECTOR_BITS; 2364 count -= len; 2365 } 2366 2367 /* add data from the last sector */ 2368 if (count > 0) { 2369 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2370 return ret; 2371 qemu_iovec_to_buf(qiov, qiov->size - count, tmp_buf, count); 2372 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2373 return ret; 2374 } 2375 return qiov->size; 2376 } 2377 2378 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2379 const void *buf, int count1) 2380 { 2381 QEMUIOVector qiov; 2382 struct iovec iov = { 2383 .iov_base = (void *) buf, 2384 .iov_len = count1, 2385 }; 2386 2387 qemu_iovec_init_external(&qiov, &iov, 1); 2388 return bdrv_pwritev(bs, offset, &qiov); 2389 } 2390 2391 /* 2392 * Writes to the file and ensures that no writes are reordered across this 2393 * request (acts as a barrier) 2394 * 2395 * Returns 0 on success, -errno in error cases. 2396 */ 2397 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2398 const void *buf, int count) 2399 { 2400 int ret; 2401 2402 ret = bdrv_pwrite(bs, offset, buf, count); 2403 if (ret < 0) { 2404 return ret; 2405 } 2406 2407 /* No flush needed for cache modes that already do it */ 2408 if (bs->enable_write_cache) { 2409 bdrv_flush(bs); 2410 } 2411 2412 return 0; 2413 } 2414 2415 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2416 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2417 { 2418 /* Perform I/O through a temporary buffer so that users who scribble over 2419 * their read buffer while the operation is in progress do not end up 2420 * modifying the image file. This is critical for zero-copy guest I/O 2421 * where anything might happen inside guest memory. 2422 */ 2423 void *bounce_buffer; 2424 2425 BlockDriver *drv = bs->drv; 2426 struct iovec iov; 2427 QEMUIOVector bounce_qiov; 2428 int64_t cluster_sector_num; 2429 int cluster_nb_sectors; 2430 size_t skip_bytes; 2431 int ret; 2432 2433 /* Cover entire cluster so no additional backing file I/O is required when 2434 * allocating cluster in the image file. 2435 */ 2436 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 2437 &cluster_sector_num, &cluster_nb_sectors); 2438 2439 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2440 cluster_sector_num, cluster_nb_sectors); 2441 2442 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2443 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2444 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2445 2446 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2447 &bounce_qiov); 2448 if (ret < 0) { 2449 goto err; 2450 } 2451 2452 if (drv->bdrv_co_write_zeroes && 2453 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2454 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2455 cluster_nb_sectors); 2456 } else { 2457 /* This does not change the data on the disk, it is not necessary 2458 * to flush even in cache=writethrough mode. 2459 */ 2460 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2461 &bounce_qiov); 2462 } 2463 2464 if (ret < 0) { 2465 /* It might be okay to ignore write errors for guest requests. If this 2466 * is a deliberate copy-on-read then we don't want to ignore the error. 2467 * Simply report it in all cases. 2468 */ 2469 goto err; 2470 } 2471 2472 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2473 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2474 nb_sectors * BDRV_SECTOR_SIZE); 2475 2476 err: 2477 qemu_vfree(bounce_buffer); 2478 return ret; 2479 } 2480 2481 /* 2482 * Handle a read request in coroutine context 2483 */ 2484 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2485 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2486 BdrvRequestFlags flags) 2487 { 2488 BlockDriver *drv = bs->drv; 2489 BdrvTrackedRequest req; 2490 int ret; 2491 2492 if (!drv) { 2493 return -ENOMEDIUM; 2494 } 2495 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2496 return -EIO; 2497 } 2498 2499 /* throttling disk read I/O */ 2500 if (bs->io_limits_enabled) { 2501 bdrv_io_limits_intercept(bs, false, nb_sectors); 2502 } 2503 2504 if (bs->copy_on_read) { 2505 flags |= BDRV_REQ_COPY_ON_READ; 2506 } 2507 if (flags & BDRV_REQ_COPY_ON_READ) { 2508 bs->copy_on_read_in_flight++; 2509 } 2510 2511 if (bs->copy_on_read_in_flight) { 2512 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2513 } 2514 2515 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2516 2517 if (flags & BDRV_REQ_COPY_ON_READ) { 2518 int pnum; 2519 2520 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2521 if (ret < 0) { 2522 goto out; 2523 } 2524 2525 if (!ret || pnum != nb_sectors) { 2526 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2527 goto out; 2528 } 2529 } 2530 2531 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2532 2533 out: 2534 tracked_request_end(&req); 2535 2536 if (flags & BDRV_REQ_COPY_ON_READ) { 2537 bs->copy_on_read_in_flight--; 2538 } 2539 2540 return ret; 2541 } 2542 2543 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2544 int nb_sectors, QEMUIOVector *qiov) 2545 { 2546 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2547 2548 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2549 } 2550 2551 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2552 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2553 { 2554 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2555 2556 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2557 BDRV_REQ_COPY_ON_READ); 2558 } 2559 2560 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2561 int64_t sector_num, int nb_sectors) 2562 { 2563 BlockDriver *drv = bs->drv; 2564 QEMUIOVector qiov; 2565 struct iovec iov; 2566 int ret; 2567 2568 /* TODO Emulate only part of misaligned requests instead of letting block 2569 * drivers return -ENOTSUP and emulate everything */ 2570 2571 /* First try the efficient write zeroes operation */ 2572 if (drv->bdrv_co_write_zeroes) { 2573 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2574 if (ret != -ENOTSUP) { 2575 return ret; 2576 } 2577 } 2578 2579 /* Fall back to bounce buffer if write zeroes is unsupported */ 2580 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2581 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2582 memset(iov.iov_base, 0, iov.iov_len); 2583 qemu_iovec_init_external(&qiov, &iov, 1); 2584 2585 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2586 2587 qemu_vfree(iov.iov_base); 2588 return ret; 2589 } 2590 2591 /* 2592 * Handle a write request in coroutine context 2593 */ 2594 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2595 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2596 BdrvRequestFlags flags) 2597 { 2598 BlockDriver *drv = bs->drv; 2599 BdrvTrackedRequest req; 2600 int ret; 2601 2602 if (!bs->drv) { 2603 return -ENOMEDIUM; 2604 } 2605 if (bs->read_only) { 2606 return -EACCES; 2607 } 2608 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2609 return -EIO; 2610 } 2611 2612 /* throttling disk write I/O */ 2613 if (bs->io_limits_enabled) { 2614 bdrv_io_limits_intercept(bs, true, nb_sectors); 2615 } 2616 2617 if (bs->copy_on_read_in_flight) { 2618 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2619 } 2620 2621 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2622 2623 if (flags & BDRV_REQ_ZERO_WRITE) { 2624 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2625 } else { 2626 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2627 } 2628 2629 if (ret == 0 && !bs->enable_write_cache) { 2630 ret = bdrv_co_flush(bs); 2631 } 2632 2633 if (bs->dirty_bitmap) { 2634 bdrv_set_dirty(bs, sector_num, nb_sectors); 2635 } 2636 2637 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2638 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2639 } 2640 2641 tracked_request_end(&req); 2642 2643 return ret; 2644 } 2645 2646 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2647 int nb_sectors, QEMUIOVector *qiov) 2648 { 2649 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2650 2651 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2652 } 2653 2654 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2655 int64_t sector_num, int nb_sectors) 2656 { 2657 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2658 2659 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2660 BDRV_REQ_ZERO_WRITE); 2661 } 2662 2663 /** 2664 * Truncate file to 'offset' bytes (needed only for file protocols) 2665 */ 2666 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2667 { 2668 BlockDriver *drv = bs->drv; 2669 int ret; 2670 if (!drv) 2671 return -ENOMEDIUM; 2672 if (!drv->bdrv_truncate) 2673 return -ENOTSUP; 2674 if (bs->read_only) 2675 return -EACCES; 2676 if (bdrv_in_use(bs)) 2677 return -EBUSY; 2678 ret = drv->bdrv_truncate(bs, offset); 2679 if (ret == 0) { 2680 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2681 bdrv_dev_resize_cb(bs); 2682 } 2683 return ret; 2684 } 2685 2686 /** 2687 * Length of a allocated file in bytes. Sparse files are counted by actual 2688 * allocated space. Return < 0 if error or unknown. 2689 */ 2690 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2691 { 2692 BlockDriver *drv = bs->drv; 2693 if (!drv) { 2694 return -ENOMEDIUM; 2695 } 2696 if (drv->bdrv_get_allocated_file_size) { 2697 return drv->bdrv_get_allocated_file_size(bs); 2698 } 2699 if (bs->file) { 2700 return bdrv_get_allocated_file_size(bs->file); 2701 } 2702 return -ENOTSUP; 2703 } 2704 2705 /** 2706 * Length of a file in bytes. Return < 0 if error or unknown. 2707 */ 2708 int64_t bdrv_getlength(BlockDriverState *bs) 2709 { 2710 BlockDriver *drv = bs->drv; 2711 if (!drv) 2712 return -ENOMEDIUM; 2713 2714 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2715 if (drv->bdrv_getlength) { 2716 return drv->bdrv_getlength(bs); 2717 } 2718 } 2719 return bs->total_sectors * BDRV_SECTOR_SIZE; 2720 } 2721 2722 /* return 0 as number of sectors if no device present or error */ 2723 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2724 { 2725 int64_t length; 2726 length = bdrv_getlength(bs); 2727 if (length < 0) 2728 length = 0; 2729 else 2730 length = length >> BDRV_SECTOR_BITS; 2731 *nb_sectors_ptr = length; 2732 } 2733 2734 /* throttling disk io limits */ 2735 void bdrv_set_io_limits(BlockDriverState *bs, 2736 BlockIOLimit *io_limits) 2737 { 2738 bs->io_limits = *io_limits; 2739 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2740 } 2741 2742 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2743 BlockdevOnError on_write_error) 2744 { 2745 bs->on_read_error = on_read_error; 2746 bs->on_write_error = on_write_error; 2747 } 2748 2749 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2750 { 2751 return is_read ? bs->on_read_error : bs->on_write_error; 2752 } 2753 2754 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2755 { 2756 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2757 2758 switch (on_err) { 2759 case BLOCKDEV_ON_ERROR_ENOSPC: 2760 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2761 case BLOCKDEV_ON_ERROR_STOP: 2762 return BDRV_ACTION_STOP; 2763 case BLOCKDEV_ON_ERROR_REPORT: 2764 return BDRV_ACTION_REPORT; 2765 case BLOCKDEV_ON_ERROR_IGNORE: 2766 return BDRV_ACTION_IGNORE; 2767 default: 2768 abort(); 2769 } 2770 } 2771 2772 /* This is done by device models because, while the block layer knows 2773 * about the error, it does not know whether an operation comes from 2774 * the device or the block layer (from a job, for example). 2775 */ 2776 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2777 bool is_read, int error) 2778 { 2779 assert(error >= 0); 2780 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2781 if (action == BDRV_ACTION_STOP) { 2782 vm_stop(RUN_STATE_IO_ERROR); 2783 bdrv_iostatus_set_err(bs, error); 2784 } 2785 } 2786 2787 int bdrv_is_read_only(BlockDriverState *bs) 2788 { 2789 return bs->read_only; 2790 } 2791 2792 int bdrv_is_sg(BlockDriverState *bs) 2793 { 2794 return bs->sg; 2795 } 2796 2797 int bdrv_enable_write_cache(BlockDriverState *bs) 2798 { 2799 return bs->enable_write_cache; 2800 } 2801 2802 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2803 { 2804 bs->enable_write_cache = wce; 2805 2806 /* so a reopen() will preserve wce */ 2807 if (wce) { 2808 bs->open_flags |= BDRV_O_CACHE_WB; 2809 } else { 2810 bs->open_flags &= ~BDRV_O_CACHE_WB; 2811 } 2812 } 2813 2814 int bdrv_is_encrypted(BlockDriverState *bs) 2815 { 2816 if (bs->backing_hd && bs->backing_hd->encrypted) 2817 return 1; 2818 return bs->encrypted; 2819 } 2820 2821 int bdrv_key_required(BlockDriverState *bs) 2822 { 2823 BlockDriverState *backing_hd = bs->backing_hd; 2824 2825 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2826 return 1; 2827 return (bs->encrypted && !bs->valid_key); 2828 } 2829 2830 int bdrv_set_key(BlockDriverState *bs, const char *key) 2831 { 2832 int ret; 2833 if (bs->backing_hd && bs->backing_hd->encrypted) { 2834 ret = bdrv_set_key(bs->backing_hd, key); 2835 if (ret < 0) 2836 return ret; 2837 if (!bs->encrypted) 2838 return 0; 2839 } 2840 if (!bs->encrypted) { 2841 return -EINVAL; 2842 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2843 return -ENOMEDIUM; 2844 } 2845 ret = bs->drv->bdrv_set_key(bs, key); 2846 if (ret < 0) { 2847 bs->valid_key = 0; 2848 } else if (!bs->valid_key) { 2849 bs->valid_key = 1; 2850 /* call the change callback now, we skipped it on open */ 2851 bdrv_dev_change_media_cb(bs, true); 2852 } 2853 return ret; 2854 } 2855 2856 const char *bdrv_get_format_name(BlockDriverState *bs) 2857 { 2858 return bs->drv ? bs->drv->format_name : NULL; 2859 } 2860 2861 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2862 void *opaque) 2863 { 2864 BlockDriver *drv; 2865 2866 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2867 it(opaque, drv->format_name); 2868 } 2869 } 2870 2871 BlockDriverState *bdrv_find(const char *name) 2872 { 2873 BlockDriverState *bs; 2874 2875 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2876 if (!strcmp(name, bs->device_name)) { 2877 return bs; 2878 } 2879 } 2880 return NULL; 2881 } 2882 2883 BlockDriverState *bdrv_next(BlockDriverState *bs) 2884 { 2885 if (!bs) { 2886 return QTAILQ_FIRST(&bdrv_states); 2887 } 2888 return QTAILQ_NEXT(bs, list); 2889 } 2890 2891 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2892 { 2893 BlockDriverState *bs; 2894 2895 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2896 it(opaque, bs); 2897 } 2898 } 2899 2900 const char *bdrv_get_device_name(BlockDriverState *bs) 2901 { 2902 return bs->device_name; 2903 } 2904 2905 int bdrv_get_flags(BlockDriverState *bs) 2906 { 2907 return bs->open_flags; 2908 } 2909 2910 void bdrv_flush_all(void) 2911 { 2912 BlockDriverState *bs; 2913 2914 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2915 bdrv_flush(bs); 2916 } 2917 } 2918 2919 int bdrv_has_zero_init(BlockDriverState *bs) 2920 { 2921 assert(bs->drv); 2922 2923 if (bs->drv->bdrv_has_zero_init) { 2924 return bs->drv->bdrv_has_zero_init(bs); 2925 } 2926 2927 return 1; 2928 } 2929 2930 typedef struct BdrvCoIsAllocatedData { 2931 BlockDriverState *bs; 2932 BlockDriverState *base; 2933 int64_t sector_num; 2934 int nb_sectors; 2935 int *pnum; 2936 int ret; 2937 bool done; 2938 } BdrvCoIsAllocatedData; 2939 2940 /* 2941 * Returns true iff the specified sector is present in the disk image. Drivers 2942 * not implementing the functionality are assumed to not support backing files, 2943 * hence all their sectors are reported as allocated. 2944 * 2945 * If 'sector_num' is beyond the end of the disk image the return value is 0 2946 * and 'pnum' is set to 0. 2947 * 2948 * 'pnum' is set to the number of sectors (including and immediately following 2949 * the specified sector) that are known to be in the same 2950 * allocated/unallocated state. 2951 * 2952 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2953 * beyond the end of the disk image it will be clamped. 2954 */ 2955 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2956 int nb_sectors, int *pnum) 2957 { 2958 int64_t n; 2959 2960 if (sector_num >= bs->total_sectors) { 2961 *pnum = 0; 2962 return 0; 2963 } 2964 2965 n = bs->total_sectors - sector_num; 2966 if (n < nb_sectors) { 2967 nb_sectors = n; 2968 } 2969 2970 if (!bs->drv->bdrv_co_is_allocated) { 2971 *pnum = nb_sectors; 2972 return 1; 2973 } 2974 2975 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2976 } 2977 2978 /* Coroutine wrapper for bdrv_is_allocated() */ 2979 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2980 { 2981 BdrvCoIsAllocatedData *data = opaque; 2982 BlockDriverState *bs = data->bs; 2983 2984 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2985 data->pnum); 2986 data->done = true; 2987 } 2988 2989 /* 2990 * Synchronous wrapper around bdrv_co_is_allocated(). 2991 * 2992 * See bdrv_co_is_allocated() for details. 2993 */ 2994 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2995 int *pnum) 2996 { 2997 Coroutine *co; 2998 BdrvCoIsAllocatedData data = { 2999 .bs = bs, 3000 .sector_num = sector_num, 3001 .nb_sectors = nb_sectors, 3002 .pnum = pnum, 3003 .done = false, 3004 }; 3005 3006 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 3007 qemu_coroutine_enter(co, &data); 3008 while (!data.done) { 3009 qemu_aio_wait(); 3010 } 3011 return data.ret; 3012 } 3013 3014 /* 3015 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 3016 * 3017 * Return true if the given sector is allocated in any image between 3018 * BASE and TOP (inclusive). BASE can be NULL to check if the given 3019 * sector is allocated in any image of the chain. Return false otherwise. 3020 * 3021 * 'pnum' is set to the number of sectors (including and immediately following 3022 * the specified sector) that are known to be in the same 3023 * allocated/unallocated state. 3024 * 3025 */ 3026 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 3027 BlockDriverState *base, 3028 int64_t sector_num, 3029 int nb_sectors, int *pnum) 3030 { 3031 BlockDriverState *intermediate; 3032 int ret, n = nb_sectors; 3033 3034 intermediate = top; 3035 while (intermediate && intermediate != base) { 3036 int pnum_inter; 3037 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 3038 &pnum_inter); 3039 if (ret < 0) { 3040 return ret; 3041 } else if (ret) { 3042 *pnum = pnum_inter; 3043 return 1; 3044 } 3045 3046 /* 3047 * [sector_num, nb_sectors] is unallocated on top but intermediate 3048 * might have 3049 * 3050 * [sector_num+x, nr_sectors] allocated. 3051 */ 3052 if (n > pnum_inter && 3053 (intermediate == top || 3054 sector_num + pnum_inter < intermediate->total_sectors)) { 3055 n = pnum_inter; 3056 } 3057 3058 intermediate = intermediate->backing_hd; 3059 } 3060 3061 *pnum = n; 3062 return 0; 3063 } 3064 3065 /* Coroutine wrapper for bdrv_is_allocated_above() */ 3066 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque) 3067 { 3068 BdrvCoIsAllocatedData *data = opaque; 3069 BlockDriverState *top = data->bs; 3070 BlockDriverState *base = data->base; 3071 3072 data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num, 3073 data->nb_sectors, data->pnum); 3074 data->done = true; 3075 } 3076 3077 /* 3078 * Synchronous wrapper around bdrv_co_is_allocated_above(). 3079 * 3080 * See bdrv_co_is_allocated_above() for details. 3081 */ 3082 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base, 3083 int64_t sector_num, int nb_sectors, int *pnum) 3084 { 3085 Coroutine *co; 3086 BdrvCoIsAllocatedData data = { 3087 .bs = top, 3088 .base = base, 3089 .sector_num = sector_num, 3090 .nb_sectors = nb_sectors, 3091 .pnum = pnum, 3092 .done = false, 3093 }; 3094 3095 co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry); 3096 qemu_coroutine_enter(co, &data); 3097 while (!data.done) { 3098 qemu_aio_wait(); 3099 } 3100 return data.ret; 3101 } 3102 3103 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 3104 { 3105 if (bs->backing_hd && bs->backing_hd->encrypted) 3106 return bs->backing_file; 3107 else if (bs->encrypted) 3108 return bs->filename; 3109 else 3110 return NULL; 3111 } 3112 3113 void bdrv_get_backing_filename(BlockDriverState *bs, 3114 char *filename, int filename_size) 3115 { 3116 pstrcpy(filename, filename_size, bs->backing_file); 3117 } 3118 3119 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 3120 const uint8_t *buf, int nb_sectors) 3121 { 3122 BlockDriver *drv = bs->drv; 3123 if (!drv) 3124 return -ENOMEDIUM; 3125 if (!drv->bdrv_write_compressed) 3126 return -ENOTSUP; 3127 if (bdrv_check_request(bs, sector_num, nb_sectors)) 3128 return -EIO; 3129 3130 assert(!bs->dirty_bitmap); 3131 3132 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 3133 } 3134 3135 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 3136 { 3137 BlockDriver *drv = bs->drv; 3138 if (!drv) 3139 return -ENOMEDIUM; 3140 if (!drv->bdrv_get_info) 3141 return -ENOTSUP; 3142 memset(bdi, 0, sizeof(*bdi)); 3143 return drv->bdrv_get_info(bs, bdi); 3144 } 3145 3146 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 3147 int64_t pos, int size) 3148 { 3149 QEMUIOVector qiov; 3150 struct iovec iov = { 3151 .iov_base = (void *) buf, 3152 .iov_len = size, 3153 }; 3154 3155 qemu_iovec_init_external(&qiov, &iov, 1); 3156 return bdrv_writev_vmstate(bs, &qiov, pos); 3157 } 3158 3159 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 3160 { 3161 BlockDriver *drv = bs->drv; 3162 3163 if (!drv) { 3164 return -ENOMEDIUM; 3165 } else if (drv->bdrv_save_vmstate) { 3166 return drv->bdrv_save_vmstate(bs, qiov, pos); 3167 } else if (bs->file) { 3168 return bdrv_writev_vmstate(bs->file, qiov, pos); 3169 } 3170 3171 return -ENOTSUP; 3172 } 3173 3174 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3175 int64_t pos, int size) 3176 { 3177 BlockDriver *drv = bs->drv; 3178 if (!drv) 3179 return -ENOMEDIUM; 3180 if (drv->bdrv_load_vmstate) 3181 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3182 if (bs->file) 3183 return bdrv_load_vmstate(bs->file, buf, pos, size); 3184 return -ENOTSUP; 3185 } 3186 3187 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3188 { 3189 if (!bs || !bs->drv || !bs->drv->bdrv_debug_event) { 3190 return; 3191 } 3192 3193 bs->drv->bdrv_debug_event(bs, event); 3194 } 3195 3196 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event, 3197 const char *tag) 3198 { 3199 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) { 3200 bs = bs->file; 3201 } 3202 3203 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) { 3204 return bs->drv->bdrv_debug_breakpoint(bs, event, tag); 3205 } 3206 3207 return -ENOTSUP; 3208 } 3209 3210 int bdrv_debug_resume(BlockDriverState *bs, const char *tag) 3211 { 3212 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) { 3213 bs = bs->file; 3214 } 3215 3216 if (bs && bs->drv && bs->drv->bdrv_debug_resume) { 3217 return bs->drv->bdrv_debug_resume(bs, tag); 3218 } 3219 3220 return -ENOTSUP; 3221 } 3222 3223 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag) 3224 { 3225 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) { 3226 bs = bs->file; 3227 } 3228 3229 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) { 3230 return bs->drv->bdrv_debug_is_suspended(bs, tag); 3231 } 3232 3233 return false; 3234 } 3235 3236 int bdrv_is_snapshot(BlockDriverState *bs) 3237 { 3238 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3239 } 3240 3241 /* backing_file can either be relative, or absolute, or a protocol. If it is 3242 * relative, it must be relative to the chain. So, passing in bs->filename 3243 * from a BDS as backing_file should not be done, as that may be relative to 3244 * the CWD rather than the chain. */ 3245 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3246 const char *backing_file) 3247 { 3248 char *filename_full = NULL; 3249 char *backing_file_full = NULL; 3250 char *filename_tmp = NULL; 3251 int is_protocol = 0; 3252 BlockDriverState *curr_bs = NULL; 3253 BlockDriverState *retval = NULL; 3254 3255 if (!bs || !bs->drv || !backing_file) { 3256 return NULL; 3257 } 3258 3259 filename_full = g_malloc(PATH_MAX); 3260 backing_file_full = g_malloc(PATH_MAX); 3261 filename_tmp = g_malloc(PATH_MAX); 3262 3263 is_protocol = path_has_protocol(backing_file); 3264 3265 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3266 3267 /* If either of the filename paths is actually a protocol, then 3268 * compare unmodified paths; otherwise make paths relative */ 3269 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3270 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3271 retval = curr_bs->backing_hd; 3272 break; 3273 } 3274 } else { 3275 /* If not an absolute filename path, make it relative to the current 3276 * image's filename path */ 3277 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3278 backing_file); 3279 3280 /* We are going to compare absolute pathnames */ 3281 if (!realpath(filename_tmp, filename_full)) { 3282 continue; 3283 } 3284 3285 /* We need to make sure the backing filename we are comparing against 3286 * is relative to the current image filename (or absolute) */ 3287 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3288 curr_bs->backing_file); 3289 3290 if (!realpath(filename_tmp, backing_file_full)) { 3291 continue; 3292 } 3293 3294 if (strcmp(backing_file_full, filename_full) == 0) { 3295 retval = curr_bs->backing_hd; 3296 break; 3297 } 3298 } 3299 } 3300 3301 g_free(filename_full); 3302 g_free(backing_file_full); 3303 g_free(filename_tmp); 3304 return retval; 3305 } 3306 3307 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3308 { 3309 if (!bs->drv) { 3310 return 0; 3311 } 3312 3313 if (!bs->backing_hd) { 3314 return 0; 3315 } 3316 3317 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3318 } 3319 3320 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3321 { 3322 BlockDriverState *curr_bs = NULL; 3323 3324 if (!bs) { 3325 return NULL; 3326 } 3327 3328 curr_bs = bs; 3329 3330 while (curr_bs->backing_hd) { 3331 curr_bs = curr_bs->backing_hd; 3332 } 3333 return curr_bs; 3334 } 3335 3336 /**************************************************************/ 3337 /* async I/Os */ 3338 3339 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3340 QEMUIOVector *qiov, int nb_sectors, 3341 BlockDriverCompletionFunc *cb, void *opaque) 3342 { 3343 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3344 3345 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3346 cb, opaque, false); 3347 } 3348 3349 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3350 QEMUIOVector *qiov, int nb_sectors, 3351 BlockDriverCompletionFunc *cb, void *opaque) 3352 { 3353 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3354 3355 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3356 cb, opaque, true); 3357 } 3358 3359 3360 typedef struct MultiwriteCB { 3361 int error; 3362 int num_requests; 3363 int num_callbacks; 3364 struct { 3365 BlockDriverCompletionFunc *cb; 3366 void *opaque; 3367 QEMUIOVector *free_qiov; 3368 } callbacks[]; 3369 } MultiwriteCB; 3370 3371 static void multiwrite_user_cb(MultiwriteCB *mcb) 3372 { 3373 int i; 3374 3375 for (i = 0; i < mcb->num_callbacks; i++) { 3376 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3377 if (mcb->callbacks[i].free_qiov) { 3378 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3379 } 3380 g_free(mcb->callbacks[i].free_qiov); 3381 } 3382 } 3383 3384 static void multiwrite_cb(void *opaque, int ret) 3385 { 3386 MultiwriteCB *mcb = opaque; 3387 3388 trace_multiwrite_cb(mcb, ret); 3389 3390 if (ret < 0 && !mcb->error) { 3391 mcb->error = ret; 3392 } 3393 3394 mcb->num_requests--; 3395 if (mcb->num_requests == 0) { 3396 multiwrite_user_cb(mcb); 3397 g_free(mcb); 3398 } 3399 } 3400 3401 static int multiwrite_req_compare(const void *a, const void *b) 3402 { 3403 const BlockRequest *req1 = a, *req2 = b; 3404 3405 /* 3406 * Note that we can't simply subtract req2->sector from req1->sector 3407 * here as that could overflow the return value. 3408 */ 3409 if (req1->sector > req2->sector) { 3410 return 1; 3411 } else if (req1->sector < req2->sector) { 3412 return -1; 3413 } else { 3414 return 0; 3415 } 3416 } 3417 3418 /* 3419 * Takes a bunch of requests and tries to merge them. Returns the number of 3420 * requests that remain after merging. 3421 */ 3422 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3423 int num_reqs, MultiwriteCB *mcb) 3424 { 3425 int i, outidx; 3426 3427 // Sort requests by start sector 3428 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3429 3430 // Check if adjacent requests touch the same clusters. If so, combine them, 3431 // filling up gaps with zero sectors. 3432 outidx = 0; 3433 for (i = 1; i < num_reqs; i++) { 3434 int merge = 0; 3435 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3436 3437 // Handle exactly sequential writes and overlapping writes. 3438 if (reqs[i].sector <= oldreq_last) { 3439 merge = 1; 3440 } 3441 3442 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3443 merge = 0; 3444 } 3445 3446 if (merge) { 3447 size_t size; 3448 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3449 qemu_iovec_init(qiov, 3450 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3451 3452 // Add the first request to the merged one. If the requests are 3453 // overlapping, drop the last sectors of the first request. 3454 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3455 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3456 3457 // We should need to add any zeros between the two requests 3458 assert (reqs[i].sector <= oldreq_last); 3459 3460 // Add the second request 3461 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3462 3463 reqs[outidx].nb_sectors = qiov->size >> 9; 3464 reqs[outidx].qiov = qiov; 3465 3466 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3467 } else { 3468 outidx++; 3469 reqs[outidx].sector = reqs[i].sector; 3470 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3471 reqs[outidx].qiov = reqs[i].qiov; 3472 } 3473 } 3474 3475 return outidx + 1; 3476 } 3477 3478 /* 3479 * Submit multiple AIO write requests at once. 3480 * 3481 * On success, the function returns 0 and all requests in the reqs array have 3482 * been submitted. In error case this function returns -1, and any of the 3483 * requests may or may not be submitted yet. In particular, this means that the 3484 * callback will be called for some of the requests, for others it won't. The 3485 * caller must check the error field of the BlockRequest to wait for the right 3486 * callbacks (if error != 0, no callback will be called). 3487 * 3488 * The implementation may modify the contents of the reqs array, e.g. to merge 3489 * requests. However, the fields opaque and error are left unmodified as they 3490 * are used to signal failure for a single request to the caller. 3491 */ 3492 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3493 { 3494 MultiwriteCB *mcb; 3495 int i; 3496 3497 /* don't submit writes if we don't have a medium */ 3498 if (bs->drv == NULL) { 3499 for (i = 0; i < num_reqs; i++) { 3500 reqs[i].error = -ENOMEDIUM; 3501 } 3502 return -1; 3503 } 3504 3505 if (num_reqs == 0) { 3506 return 0; 3507 } 3508 3509 // Create MultiwriteCB structure 3510 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3511 mcb->num_requests = 0; 3512 mcb->num_callbacks = num_reqs; 3513 3514 for (i = 0; i < num_reqs; i++) { 3515 mcb->callbacks[i].cb = reqs[i].cb; 3516 mcb->callbacks[i].opaque = reqs[i].opaque; 3517 } 3518 3519 // Check for mergable requests 3520 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3521 3522 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3523 3524 /* Run the aio requests. */ 3525 mcb->num_requests = num_reqs; 3526 for (i = 0; i < num_reqs; i++) { 3527 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3528 reqs[i].nb_sectors, multiwrite_cb, mcb); 3529 } 3530 3531 return 0; 3532 } 3533 3534 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3535 { 3536 acb->aiocb_info->cancel(acb); 3537 } 3538 3539 /* block I/O throttling */ 3540 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3541 bool is_write, double elapsed_time, uint64_t *wait) 3542 { 3543 uint64_t bps_limit = 0; 3544 uint64_t extension; 3545 double bytes_limit, bytes_base, bytes_res; 3546 double slice_time, wait_time; 3547 3548 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3549 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3550 } else if (bs->io_limits.bps[is_write]) { 3551 bps_limit = bs->io_limits.bps[is_write]; 3552 } else { 3553 if (wait) { 3554 *wait = 0; 3555 } 3556 3557 return false; 3558 } 3559 3560 slice_time = bs->slice_end - bs->slice_start; 3561 slice_time /= (NANOSECONDS_PER_SECOND); 3562 bytes_limit = bps_limit * slice_time; 3563 bytes_base = bs->slice_submitted.bytes[is_write]; 3564 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3565 bytes_base += bs->slice_submitted.bytes[!is_write]; 3566 } 3567 3568 /* bytes_base: the bytes of data which have been read/written; and 3569 * it is obtained from the history statistic info. 3570 * bytes_res: the remaining bytes of data which need to be read/written. 3571 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3572 * the total time for completing reading/writting all data. 3573 */ 3574 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3575 3576 if (bytes_base + bytes_res <= bytes_limit) { 3577 if (wait) { 3578 *wait = 0; 3579 } 3580 3581 return false; 3582 } 3583 3584 /* Calc approx time to dispatch */ 3585 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3586 3587 /* When the I/O rate at runtime exceeds the limits, 3588 * bs->slice_end need to be extended in order that the current statistic 3589 * info can be kept until the timer fire, so it is increased and tuned 3590 * based on the result of experiment. 3591 */ 3592 extension = wait_time * NANOSECONDS_PER_SECOND; 3593 extension = DIV_ROUND_UP(extension, BLOCK_IO_SLICE_TIME) * 3594 BLOCK_IO_SLICE_TIME; 3595 bs->slice_end += extension; 3596 if (wait) { 3597 *wait = wait_time * NANOSECONDS_PER_SECOND; 3598 } 3599 3600 return true; 3601 } 3602 3603 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3604 double elapsed_time, uint64_t *wait) 3605 { 3606 uint64_t iops_limit = 0; 3607 double ios_limit, ios_base; 3608 double slice_time, wait_time; 3609 3610 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3611 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3612 } else if (bs->io_limits.iops[is_write]) { 3613 iops_limit = bs->io_limits.iops[is_write]; 3614 } else { 3615 if (wait) { 3616 *wait = 0; 3617 } 3618 3619 return false; 3620 } 3621 3622 slice_time = bs->slice_end - bs->slice_start; 3623 slice_time /= (NANOSECONDS_PER_SECOND); 3624 ios_limit = iops_limit * slice_time; 3625 ios_base = bs->slice_submitted.ios[is_write]; 3626 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3627 ios_base += bs->slice_submitted.ios[!is_write]; 3628 } 3629 3630 if (ios_base + 1 <= ios_limit) { 3631 if (wait) { 3632 *wait = 0; 3633 } 3634 3635 return false; 3636 } 3637 3638 /* Calc approx time to dispatch, in seconds */ 3639 wait_time = (ios_base + 1) / iops_limit; 3640 if (wait_time > elapsed_time) { 3641 wait_time = wait_time - elapsed_time; 3642 } else { 3643 wait_time = 0; 3644 } 3645 3646 /* Exceeded current slice, extend it by another slice time */ 3647 bs->slice_end += BLOCK_IO_SLICE_TIME; 3648 if (wait) { 3649 *wait = wait_time * NANOSECONDS_PER_SECOND; 3650 } 3651 3652 return true; 3653 } 3654 3655 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3656 bool is_write, int64_t *wait) 3657 { 3658 int64_t now, max_wait; 3659 uint64_t bps_wait = 0, iops_wait = 0; 3660 double elapsed_time; 3661 int bps_ret, iops_ret; 3662 3663 now = qemu_get_clock_ns(vm_clock); 3664 if (now > bs->slice_end) { 3665 bs->slice_start = now; 3666 bs->slice_end = now + BLOCK_IO_SLICE_TIME; 3667 memset(&bs->slice_submitted, 0, sizeof(bs->slice_submitted)); 3668 } 3669 3670 elapsed_time = now - bs->slice_start; 3671 elapsed_time /= (NANOSECONDS_PER_SECOND); 3672 3673 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3674 is_write, elapsed_time, &bps_wait); 3675 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3676 elapsed_time, &iops_wait); 3677 if (bps_ret || iops_ret) { 3678 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3679 if (wait) { 3680 *wait = max_wait; 3681 } 3682 3683 now = qemu_get_clock_ns(vm_clock); 3684 if (bs->slice_end < now + max_wait) { 3685 bs->slice_end = now + max_wait; 3686 } 3687 3688 return true; 3689 } 3690 3691 if (wait) { 3692 *wait = 0; 3693 } 3694 3695 bs->slice_submitted.bytes[is_write] += (int64_t)nb_sectors * 3696 BDRV_SECTOR_SIZE; 3697 bs->slice_submitted.ios[is_write]++; 3698 3699 return false; 3700 } 3701 3702 /**************************************************************/ 3703 /* async block device emulation */ 3704 3705 typedef struct BlockDriverAIOCBSync { 3706 BlockDriverAIOCB common; 3707 QEMUBH *bh; 3708 int ret; 3709 /* vector translation state */ 3710 QEMUIOVector *qiov; 3711 uint8_t *bounce; 3712 int is_write; 3713 } BlockDriverAIOCBSync; 3714 3715 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3716 { 3717 BlockDriverAIOCBSync *acb = 3718 container_of(blockacb, BlockDriverAIOCBSync, common); 3719 qemu_bh_delete(acb->bh); 3720 acb->bh = NULL; 3721 qemu_aio_release(acb); 3722 } 3723 3724 static const AIOCBInfo bdrv_em_aiocb_info = { 3725 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3726 .cancel = bdrv_aio_cancel_em, 3727 }; 3728 3729 static void bdrv_aio_bh_cb(void *opaque) 3730 { 3731 BlockDriverAIOCBSync *acb = opaque; 3732 3733 if (!acb->is_write) 3734 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3735 qemu_vfree(acb->bounce); 3736 acb->common.cb(acb->common.opaque, acb->ret); 3737 qemu_bh_delete(acb->bh); 3738 acb->bh = NULL; 3739 qemu_aio_release(acb); 3740 } 3741 3742 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3743 int64_t sector_num, 3744 QEMUIOVector *qiov, 3745 int nb_sectors, 3746 BlockDriverCompletionFunc *cb, 3747 void *opaque, 3748 int is_write) 3749 3750 { 3751 BlockDriverAIOCBSync *acb; 3752 3753 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 3754 acb->is_write = is_write; 3755 acb->qiov = qiov; 3756 acb->bounce = qemu_blockalign(bs, qiov->size); 3757 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3758 3759 if (is_write) { 3760 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3761 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3762 } else { 3763 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3764 } 3765 3766 qemu_bh_schedule(acb->bh); 3767 3768 return &acb->common; 3769 } 3770 3771 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3772 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3773 BlockDriverCompletionFunc *cb, void *opaque) 3774 { 3775 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3776 } 3777 3778 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3779 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3780 BlockDriverCompletionFunc *cb, void *opaque) 3781 { 3782 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3783 } 3784 3785 3786 typedef struct BlockDriverAIOCBCoroutine { 3787 BlockDriverAIOCB common; 3788 BlockRequest req; 3789 bool is_write; 3790 bool *done; 3791 QEMUBH* bh; 3792 } BlockDriverAIOCBCoroutine; 3793 3794 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3795 { 3796 BlockDriverAIOCBCoroutine *acb = 3797 container_of(blockacb, BlockDriverAIOCBCoroutine, common); 3798 bool done = false; 3799 3800 acb->done = &done; 3801 while (!done) { 3802 qemu_aio_wait(); 3803 } 3804 } 3805 3806 static const AIOCBInfo bdrv_em_co_aiocb_info = { 3807 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3808 .cancel = bdrv_aio_co_cancel_em, 3809 }; 3810 3811 static void bdrv_co_em_bh(void *opaque) 3812 { 3813 BlockDriverAIOCBCoroutine *acb = opaque; 3814 3815 acb->common.cb(acb->common.opaque, acb->req.error); 3816 3817 if (acb->done) { 3818 *acb->done = true; 3819 } 3820 3821 qemu_bh_delete(acb->bh); 3822 qemu_aio_release(acb); 3823 } 3824 3825 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3826 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3827 { 3828 BlockDriverAIOCBCoroutine *acb = opaque; 3829 BlockDriverState *bs = acb->common.bs; 3830 3831 if (!acb->is_write) { 3832 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3833 acb->req.nb_sectors, acb->req.qiov, 0); 3834 } else { 3835 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3836 acb->req.nb_sectors, acb->req.qiov, 0); 3837 } 3838 3839 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3840 qemu_bh_schedule(acb->bh); 3841 } 3842 3843 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3844 int64_t sector_num, 3845 QEMUIOVector *qiov, 3846 int nb_sectors, 3847 BlockDriverCompletionFunc *cb, 3848 void *opaque, 3849 bool is_write) 3850 { 3851 Coroutine *co; 3852 BlockDriverAIOCBCoroutine *acb; 3853 3854 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3855 acb->req.sector = sector_num; 3856 acb->req.nb_sectors = nb_sectors; 3857 acb->req.qiov = qiov; 3858 acb->is_write = is_write; 3859 acb->done = NULL; 3860 3861 co = qemu_coroutine_create(bdrv_co_do_rw); 3862 qemu_coroutine_enter(co, acb); 3863 3864 return &acb->common; 3865 } 3866 3867 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3868 { 3869 BlockDriverAIOCBCoroutine *acb = opaque; 3870 BlockDriverState *bs = acb->common.bs; 3871 3872 acb->req.error = bdrv_co_flush(bs); 3873 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3874 qemu_bh_schedule(acb->bh); 3875 } 3876 3877 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3878 BlockDriverCompletionFunc *cb, void *opaque) 3879 { 3880 trace_bdrv_aio_flush(bs, opaque); 3881 3882 Coroutine *co; 3883 BlockDriverAIOCBCoroutine *acb; 3884 3885 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3886 acb->done = NULL; 3887 3888 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3889 qemu_coroutine_enter(co, acb); 3890 3891 return &acb->common; 3892 } 3893 3894 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3895 { 3896 BlockDriverAIOCBCoroutine *acb = opaque; 3897 BlockDriverState *bs = acb->common.bs; 3898 3899 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3900 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3901 qemu_bh_schedule(acb->bh); 3902 } 3903 3904 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3905 int64_t sector_num, int nb_sectors, 3906 BlockDriverCompletionFunc *cb, void *opaque) 3907 { 3908 Coroutine *co; 3909 BlockDriverAIOCBCoroutine *acb; 3910 3911 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3912 3913 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3914 acb->req.sector = sector_num; 3915 acb->req.nb_sectors = nb_sectors; 3916 acb->done = NULL; 3917 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3918 qemu_coroutine_enter(co, acb); 3919 3920 return &acb->common; 3921 } 3922 3923 void bdrv_init(void) 3924 { 3925 module_call_init(MODULE_INIT_BLOCK); 3926 } 3927 3928 void bdrv_init_with_whitelist(void) 3929 { 3930 use_bdrv_whitelist = 1; 3931 bdrv_init(); 3932 } 3933 3934 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 3935 BlockDriverCompletionFunc *cb, void *opaque) 3936 { 3937 BlockDriverAIOCB *acb; 3938 3939 acb = g_slice_alloc(aiocb_info->aiocb_size); 3940 acb->aiocb_info = aiocb_info; 3941 acb->bs = bs; 3942 acb->cb = cb; 3943 acb->opaque = opaque; 3944 return acb; 3945 } 3946 3947 void qemu_aio_release(void *p) 3948 { 3949 BlockDriverAIOCB *acb = p; 3950 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 3951 } 3952 3953 /**************************************************************/ 3954 /* Coroutine block device emulation */ 3955 3956 typedef struct CoroutineIOCompletion { 3957 Coroutine *coroutine; 3958 int ret; 3959 } CoroutineIOCompletion; 3960 3961 static void bdrv_co_io_em_complete(void *opaque, int ret) 3962 { 3963 CoroutineIOCompletion *co = opaque; 3964 3965 co->ret = ret; 3966 qemu_coroutine_enter(co->coroutine, NULL); 3967 } 3968 3969 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 3970 int nb_sectors, QEMUIOVector *iov, 3971 bool is_write) 3972 { 3973 CoroutineIOCompletion co = { 3974 .coroutine = qemu_coroutine_self(), 3975 }; 3976 BlockDriverAIOCB *acb; 3977 3978 if (is_write) { 3979 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 3980 bdrv_co_io_em_complete, &co); 3981 } else { 3982 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 3983 bdrv_co_io_em_complete, &co); 3984 } 3985 3986 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 3987 if (!acb) { 3988 return -EIO; 3989 } 3990 qemu_coroutine_yield(); 3991 3992 return co.ret; 3993 } 3994 3995 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 3996 int64_t sector_num, int nb_sectors, 3997 QEMUIOVector *iov) 3998 { 3999 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 4000 } 4001 4002 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 4003 int64_t sector_num, int nb_sectors, 4004 QEMUIOVector *iov) 4005 { 4006 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 4007 } 4008 4009 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 4010 { 4011 RwCo *rwco = opaque; 4012 4013 rwco->ret = bdrv_co_flush(rwco->bs); 4014 } 4015 4016 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 4017 { 4018 int ret; 4019 4020 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 4021 return 0; 4022 } 4023 4024 /* Write back cached data to the OS even with cache=unsafe */ 4025 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 4026 if (bs->drv->bdrv_co_flush_to_os) { 4027 ret = bs->drv->bdrv_co_flush_to_os(bs); 4028 if (ret < 0) { 4029 return ret; 4030 } 4031 } 4032 4033 /* But don't actually force it to the disk with cache=unsafe */ 4034 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4035 goto flush_parent; 4036 } 4037 4038 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 4039 if (bs->drv->bdrv_co_flush_to_disk) { 4040 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4041 } else if (bs->drv->bdrv_aio_flush) { 4042 BlockDriverAIOCB *acb; 4043 CoroutineIOCompletion co = { 4044 .coroutine = qemu_coroutine_self(), 4045 }; 4046 4047 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4048 if (acb == NULL) { 4049 ret = -EIO; 4050 } else { 4051 qemu_coroutine_yield(); 4052 ret = co.ret; 4053 } 4054 } else { 4055 /* 4056 * Some block drivers always operate in either writethrough or unsafe 4057 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4058 * know how the server works (because the behaviour is hardcoded or 4059 * depends on server-side configuration), so we can't ensure that 4060 * everything is safe on disk. Returning an error doesn't work because 4061 * that would break guests even if the server operates in writethrough 4062 * mode. 4063 * 4064 * Let's hope the user knows what he's doing. 4065 */ 4066 ret = 0; 4067 } 4068 if (ret < 0) { 4069 return ret; 4070 } 4071 4072 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4073 * in the case of cache=unsafe, so there are no useless flushes. 4074 */ 4075 flush_parent: 4076 return bdrv_co_flush(bs->file); 4077 } 4078 4079 void bdrv_invalidate_cache(BlockDriverState *bs) 4080 { 4081 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4082 bs->drv->bdrv_invalidate_cache(bs); 4083 } 4084 } 4085 4086 void bdrv_invalidate_cache_all(void) 4087 { 4088 BlockDriverState *bs; 4089 4090 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4091 bdrv_invalidate_cache(bs); 4092 } 4093 } 4094 4095 void bdrv_clear_incoming_migration_all(void) 4096 { 4097 BlockDriverState *bs; 4098 4099 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4100 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4101 } 4102 } 4103 4104 int bdrv_flush(BlockDriverState *bs) 4105 { 4106 Coroutine *co; 4107 RwCo rwco = { 4108 .bs = bs, 4109 .ret = NOT_DONE, 4110 }; 4111 4112 if (qemu_in_coroutine()) { 4113 /* Fast-path if already in coroutine context */ 4114 bdrv_flush_co_entry(&rwco); 4115 } else { 4116 co = qemu_coroutine_create(bdrv_flush_co_entry); 4117 qemu_coroutine_enter(co, &rwco); 4118 while (rwco.ret == NOT_DONE) { 4119 qemu_aio_wait(); 4120 } 4121 } 4122 4123 return rwco.ret; 4124 } 4125 4126 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4127 { 4128 RwCo *rwco = opaque; 4129 4130 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4131 } 4132 4133 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4134 int nb_sectors) 4135 { 4136 if (!bs->drv) { 4137 return -ENOMEDIUM; 4138 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4139 return -EIO; 4140 } else if (bs->read_only) { 4141 return -EROFS; 4142 } 4143 4144 if (bs->dirty_bitmap) { 4145 bdrv_reset_dirty(bs, sector_num, nb_sectors); 4146 } 4147 4148 /* Do nothing if disabled. */ 4149 if (!(bs->open_flags & BDRV_O_UNMAP)) { 4150 return 0; 4151 } 4152 4153 if (bs->drv->bdrv_co_discard) { 4154 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4155 } else if (bs->drv->bdrv_aio_discard) { 4156 BlockDriverAIOCB *acb; 4157 CoroutineIOCompletion co = { 4158 .coroutine = qemu_coroutine_self(), 4159 }; 4160 4161 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4162 bdrv_co_io_em_complete, &co); 4163 if (acb == NULL) { 4164 return -EIO; 4165 } else { 4166 qemu_coroutine_yield(); 4167 return co.ret; 4168 } 4169 } else { 4170 return 0; 4171 } 4172 } 4173 4174 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4175 { 4176 Coroutine *co; 4177 RwCo rwco = { 4178 .bs = bs, 4179 .sector_num = sector_num, 4180 .nb_sectors = nb_sectors, 4181 .ret = NOT_DONE, 4182 }; 4183 4184 if (qemu_in_coroutine()) { 4185 /* Fast-path if already in coroutine context */ 4186 bdrv_discard_co_entry(&rwco); 4187 } else { 4188 co = qemu_coroutine_create(bdrv_discard_co_entry); 4189 qemu_coroutine_enter(co, &rwco); 4190 while (rwco.ret == NOT_DONE) { 4191 qemu_aio_wait(); 4192 } 4193 } 4194 4195 return rwco.ret; 4196 } 4197 4198 /**************************************************************/ 4199 /* removable device support */ 4200 4201 /** 4202 * Return TRUE if the media is present 4203 */ 4204 int bdrv_is_inserted(BlockDriverState *bs) 4205 { 4206 BlockDriver *drv = bs->drv; 4207 4208 if (!drv) 4209 return 0; 4210 if (!drv->bdrv_is_inserted) 4211 return 1; 4212 return drv->bdrv_is_inserted(bs); 4213 } 4214 4215 /** 4216 * Return whether the media changed since the last call to this 4217 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4218 */ 4219 int bdrv_media_changed(BlockDriverState *bs) 4220 { 4221 BlockDriver *drv = bs->drv; 4222 4223 if (drv && drv->bdrv_media_changed) { 4224 return drv->bdrv_media_changed(bs); 4225 } 4226 return -ENOTSUP; 4227 } 4228 4229 /** 4230 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4231 */ 4232 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4233 { 4234 BlockDriver *drv = bs->drv; 4235 4236 if (drv && drv->bdrv_eject) { 4237 drv->bdrv_eject(bs, eject_flag); 4238 } 4239 4240 if (bs->device_name[0] != '\0') { 4241 bdrv_emit_qmp_eject_event(bs, eject_flag); 4242 } 4243 } 4244 4245 /** 4246 * Lock or unlock the media (if it is locked, the user won't be able 4247 * to eject it manually). 4248 */ 4249 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4250 { 4251 BlockDriver *drv = bs->drv; 4252 4253 trace_bdrv_lock_medium(bs, locked); 4254 4255 if (drv && drv->bdrv_lock_medium) { 4256 drv->bdrv_lock_medium(bs, locked); 4257 } 4258 } 4259 4260 /* needed for generic scsi interface */ 4261 4262 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4263 { 4264 BlockDriver *drv = bs->drv; 4265 4266 if (drv && drv->bdrv_ioctl) 4267 return drv->bdrv_ioctl(bs, req, buf); 4268 return -ENOTSUP; 4269 } 4270 4271 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4272 unsigned long int req, void *buf, 4273 BlockDriverCompletionFunc *cb, void *opaque) 4274 { 4275 BlockDriver *drv = bs->drv; 4276 4277 if (drv && drv->bdrv_aio_ioctl) 4278 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4279 return NULL; 4280 } 4281 4282 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4283 { 4284 bs->buffer_alignment = align; 4285 } 4286 4287 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4288 { 4289 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4290 } 4291 4292 /* 4293 * Check if all memory in this vector is sector aligned. 4294 */ 4295 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 4296 { 4297 int i; 4298 4299 for (i = 0; i < qiov->niov; i++) { 4300 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) { 4301 return false; 4302 } 4303 } 4304 4305 return true; 4306 } 4307 4308 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity) 4309 { 4310 int64_t bitmap_size; 4311 4312 assert((granularity & (granularity - 1)) == 0); 4313 4314 if (granularity) { 4315 granularity >>= BDRV_SECTOR_BITS; 4316 assert(!bs->dirty_bitmap); 4317 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS); 4318 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1); 4319 } else { 4320 if (bs->dirty_bitmap) { 4321 hbitmap_free(bs->dirty_bitmap); 4322 bs->dirty_bitmap = NULL; 4323 } 4324 } 4325 } 4326 4327 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4328 { 4329 if (bs->dirty_bitmap) { 4330 return hbitmap_get(bs->dirty_bitmap, sector); 4331 } else { 4332 return 0; 4333 } 4334 } 4335 4336 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi) 4337 { 4338 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0); 4339 } 4340 4341 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4342 int nr_sectors) 4343 { 4344 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors); 4345 } 4346 4347 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4348 int nr_sectors) 4349 { 4350 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors); 4351 } 4352 4353 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4354 { 4355 if (bs->dirty_bitmap) { 4356 return hbitmap_count(bs->dirty_bitmap); 4357 } else { 4358 return 0; 4359 } 4360 } 4361 4362 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4363 { 4364 assert(bs->in_use != in_use); 4365 bs->in_use = in_use; 4366 } 4367 4368 int bdrv_in_use(BlockDriverState *bs) 4369 { 4370 return bs->in_use; 4371 } 4372 4373 void bdrv_iostatus_enable(BlockDriverState *bs) 4374 { 4375 bs->iostatus_enabled = true; 4376 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4377 } 4378 4379 /* The I/O status is only enabled if the drive explicitly 4380 * enables it _and_ the VM is configured to stop on errors */ 4381 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4382 { 4383 return (bs->iostatus_enabled && 4384 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4385 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4386 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4387 } 4388 4389 void bdrv_iostatus_disable(BlockDriverState *bs) 4390 { 4391 bs->iostatus_enabled = false; 4392 } 4393 4394 void bdrv_iostatus_reset(BlockDriverState *bs) 4395 { 4396 if (bdrv_iostatus_is_enabled(bs)) { 4397 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4398 if (bs->job) { 4399 block_job_iostatus_reset(bs->job); 4400 } 4401 } 4402 } 4403 4404 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4405 { 4406 assert(bdrv_iostatus_is_enabled(bs)); 4407 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4408 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4409 BLOCK_DEVICE_IO_STATUS_FAILED; 4410 } 4411 } 4412 4413 void 4414 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4415 enum BlockAcctType type) 4416 { 4417 assert(type < BDRV_MAX_IOTYPE); 4418 4419 cookie->bytes = bytes; 4420 cookie->start_time_ns = get_clock(); 4421 cookie->type = type; 4422 } 4423 4424 void 4425 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4426 { 4427 assert(cookie->type < BDRV_MAX_IOTYPE); 4428 4429 bs->nr_bytes[cookie->type] += cookie->bytes; 4430 bs->nr_ops[cookie->type]++; 4431 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4432 } 4433 4434 void bdrv_img_create(const char *filename, const char *fmt, 4435 const char *base_filename, const char *base_fmt, 4436 char *options, uint64_t img_size, int flags, 4437 Error **errp, bool quiet) 4438 { 4439 QEMUOptionParameter *param = NULL, *create_options = NULL; 4440 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4441 BlockDriverState *bs = NULL; 4442 BlockDriver *drv, *proto_drv; 4443 BlockDriver *backing_drv = NULL; 4444 int ret = 0; 4445 4446 /* Find driver and parse its options */ 4447 drv = bdrv_find_format(fmt); 4448 if (!drv) { 4449 error_setg(errp, "Unknown file format '%s'", fmt); 4450 return; 4451 } 4452 4453 proto_drv = bdrv_find_protocol(filename); 4454 if (!proto_drv) { 4455 error_setg(errp, "Unknown protocol '%s'", filename); 4456 return; 4457 } 4458 4459 create_options = append_option_parameters(create_options, 4460 drv->create_options); 4461 create_options = append_option_parameters(create_options, 4462 proto_drv->create_options); 4463 4464 /* Create parameter list with default values */ 4465 param = parse_option_parameters("", create_options, param); 4466 4467 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4468 4469 /* Parse -o options */ 4470 if (options) { 4471 param = parse_option_parameters(options, create_options, param); 4472 if (param == NULL) { 4473 error_setg(errp, "Invalid options for file format '%s'.", fmt); 4474 goto out; 4475 } 4476 } 4477 4478 if (base_filename) { 4479 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4480 base_filename)) { 4481 error_setg(errp, "Backing file not supported for file format '%s'", 4482 fmt); 4483 goto out; 4484 } 4485 } 4486 4487 if (base_fmt) { 4488 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4489 error_setg(errp, "Backing file format not supported for file " 4490 "format '%s'", fmt); 4491 goto out; 4492 } 4493 } 4494 4495 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4496 if (backing_file && backing_file->value.s) { 4497 if (!strcmp(filename, backing_file->value.s)) { 4498 error_setg(errp, "Error: Trying to create an image with the " 4499 "same filename as the backing file"); 4500 goto out; 4501 } 4502 } 4503 4504 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4505 if (backing_fmt && backing_fmt->value.s) { 4506 backing_drv = bdrv_find_format(backing_fmt->value.s); 4507 if (!backing_drv) { 4508 error_setg(errp, "Unknown backing file format '%s'", 4509 backing_fmt->value.s); 4510 goto out; 4511 } 4512 } 4513 4514 // The size for the image must always be specified, with one exception: 4515 // If we are using a backing file, we can obtain the size from there 4516 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4517 if (size && size->value.n == -1) { 4518 if (backing_file && backing_file->value.s) { 4519 uint64_t size; 4520 char buf[32]; 4521 int back_flags; 4522 4523 /* backing files always opened read-only */ 4524 back_flags = 4525 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4526 4527 bs = bdrv_new(""); 4528 4529 ret = bdrv_open(bs, backing_file->value.s, NULL, back_flags, 4530 backing_drv); 4531 if (ret < 0) { 4532 error_setg_errno(errp, -ret, "Could not open '%s'", 4533 backing_file->value.s); 4534 goto out; 4535 } 4536 bdrv_get_geometry(bs, &size); 4537 size *= 512; 4538 4539 snprintf(buf, sizeof(buf), "%" PRId64, size); 4540 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4541 } else { 4542 error_setg(errp, "Image creation needs a size parameter"); 4543 goto out; 4544 } 4545 } 4546 4547 if (!quiet) { 4548 printf("Formatting '%s', fmt=%s ", filename, fmt); 4549 print_option_parameters(param); 4550 puts(""); 4551 } 4552 ret = bdrv_create(drv, filename, param); 4553 if (ret < 0) { 4554 if (ret == -ENOTSUP) { 4555 error_setg(errp,"Formatting or formatting option not supported for " 4556 "file format '%s'", fmt); 4557 } else if (ret == -EFBIG) { 4558 const char *cluster_size_hint = ""; 4559 if (get_option_parameter(create_options, BLOCK_OPT_CLUSTER_SIZE)) { 4560 cluster_size_hint = " (try using a larger cluster size)"; 4561 } 4562 error_setg(errp, "The image size is too large for file format '%s'%s", 4563 fmt, cluster_size_hint); 4564 } else { 4565 error_setg(errp, "%s: error while creating %s: %s", filename, fmt, 4566 strerror(-ret)); 4567 } 4568 } 4569 4570 out: 4571 free_option_parameters(create_options); 4572 free_option_parameters(param); 4573 4574 if (bs) { 4575 bdrv_delete(bs); 4576 } 4577 } 4578 4579 AioContext *bdrv_get_aio_context(BlockDriverState *bs) 4580 { 4581 /* Currently BlockDriverState always uses the main loop AioContext */ 4582 return qemu_get_aio_context(); 4583 } 4584