1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor.h" 28 #include "block_int.h" 29 #include "module.h" 30 #include "qjson.h" 31 #include "qemu-coroutine.h" 32 #include "qmp-commands.h" 33 #include "qemu-timer.h" 34 35 #ifdef CONFIG_BSD 36 #include <sys/types.h> 37 #include <sys/stat.h> 38 #include <sys/ioctl.h> 39 #include <sys/queue.h> 40 #ifndef __DragonFly__ 41 #include <sys/disk.h> 42 #endif 43 #endif 44 45 #ifdef _WIN32 46 #include <windows.h> 47 #endif 48 49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 50 51 typedef enum { 52 BDRV_REQ_COPY_ON_READ = 0x1, 53 BDRV_REQ_ZERO_WRITE = 0x2, 54 } BdrvRequestFlags; 55 56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 59 BlockDriverCompletionFunc *cb, void *opaque); 60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 64 int64_t sector_num, int nb_sectors, 65 QEMUIOVector *iov); 66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 71 BdrvRequestFlags flags); 72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 76 int64_t sector_num, 77 QEMUIOVector *qiov, 78 int nb_sectors, 79 BlockDriverCompletionFunc *cb, 80 void *opaque, 81 bool is_write); 82 static void coroutine_fn bdrv_co_do_rw(void *opaque); 83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 84 int64_t sector_num, int nb_sectors); 85 86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 87 bool is_write, double elapsed_time, uint64_t *wait); 88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 89 double elapsed_time, uint64_t *wait); 90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 91 bool is_write, int64_t *wait); 92 93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 94 QTAILQ_HEAD_INITIALIZER(bdrv_states); 95 96 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 97 QLIST_HEAD_INITIALIZER(bdrv_drivers); 98 99 /* The device to use for VM snapshots */ 100 static BlockDriverState *bs_snapshots; 101 102 /* If non-zero, use only whitelisted block drivers */ 103 static int use_bdrv_whitelist; 104 105 #ifdef _WIN32 106 static int is_windows_drive_prefix(const char *filename) 107 { 108 return (((filename[0] >= 'a' && filename[0] <= 'z') || 109 (filename[0] >= 'A' && filename[0] <= 'Z')) && 110 filename[1] == ':'); 111 } 112 113 int is_windows_drive(const char *filename) 114 { 115 if (is_windows_drive_prefix(filename) && 116 filename[2] == '\0') 117 return 1; 118 if (strstart(filename, "\\\\.\\", NULL) || 119 strstart(filename, "//./", NULL)) 120 return 1; 121 return 0; 122 } 123 #endif 124 125 /* throttling disk I/O limits */ 126 void bdrv_io_limits_disable(BlockDriverState *bs) 127 { 128 bs->io_limits_enabled = false; 129 130 while (qemu_co_queue_next(&bs->throttled_reqs)); 131 132 if (bs->block_timer) { 133 qemu_del_timer(bs->block_timer); 134 qemu_free_timer(bs->block_timer); 135 bs->block_timer = NULL; 136 } 137 138 bs->slice_start = 0; 139 bs->slice_end = 0; 140 bs->slice_time = 0; 141 memset(&bs->io_base, 0, sizeof(bs->io_base)); 142 } 143 144 static void bdrv_block_timer(void *opaque) 145 { 146 BlockDriverState *bs = opaque; 147 148 qemu_co_queue_next(&bs->throttled_reqs); 149 } 150 151 void bdrv_io_limits_enable(BlockDriverState *bs) 152 { 153 qemu_co_queue_init(&bs->throttled_reqs); 154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 156 bs->slice_start = qemu_get_clock_ns(vm_clock); 157 bs->slice_end = bs->slice_start + bs->slice_time; 158 memset(&bs->io_base, 0, sizeof(bs->io_base)); 159 bs->io_limits_enabled = true; 160 } 161 162 bool bdrv_io_limits_enabled(BlockDriverState *bs) 163 { 164 BlockIOLimit *io_limits = &bs->io_limits; 165 return io_limits->bps[BLOCK_IO_LIMIT_READ] 166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 168 || io_limits->iops[BLOCK_IO_LIMIT_READ] 169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 171 } 172 173 static void bdrv_io_limits_intercept(BlockDriverState *bs, 174 bool is_write, int nb_sectors) 175 { 176 int64_t wait_time = -1; 177 178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 179 qemu_co_queue_wait(&bs->throttled_reqs); 180 } 181 182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 183 * throttled requests will not be dequeued until the current request is 184 * allowed to be serviced. So if the current request still exceeds the 185 * limits, it will be inserted to the head. All requests followed it will 186 * be still in throttled_reqs queue. 187 */ 188 189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 190 qemu_mod_timer(bs->block_timer, 191 wait_time + qemu_get_clock_ns(vm_clock)); 192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 193 } 194 195 qemu_co_queue_next(&bs->throttled_reqs); 196 } 197 198 /* check if the path starts with "<protocol>:" */ 199 static int path_has_protocol(const char *path) 200 { 201 const char *p; 202 203 #ifdef _WIN32 204 if (is_windows_drive(path) || 205 is_windows_drive_prefix(path)) { 206 return 0; 207 } 208 p = path + strcspn(path, ":/\\"); 209 #else 210 p = path + strcspn(path, ":/"); 211 #endif 212 213 return *p == ':'; 214 } 215 216 int path_is_absolute(const char *path) 217 { 218 #ifdef _WIN32 219 /* specific case for names like: "\\.\d:" */ 220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 221 return 1; 222 } 223 return (*path == '/' || *path == '\\'); 224 #else 225 return (*path == '/'); 226 #endif 227 } 228 229 /* if filename is absolute, just copy it to dest. Otherwise, build a 230 path to it by considering it is relative to base_path. URL are 231 supported. */ 232 void path_combine(char *dest, int dest_size, 233 const char *base_path, 234 const char *filename) 235 { 236 const char *p, *p1; 237 int len; 238 239 if (dest_size <= 0) 240 return; 241 if (path_is_absolute(filename)) { 242 pstrcpy(dest, dest_size, filename); 243 } else { 244 p = strchr(base_path, ':'); 245 if (p) 246 p++; 247 else 248 p = base_path; 249 p1 = strrchr(base_path, '/'); 250 #ifdef _WIN32 251 { 252 const char *p2; 253 p2 = strrchr(base_path, '\\'); 254 if (!p1 || p2 > p1) 255 p1 = p2; 256 } 257 #endif 258 if (p1) 259 p1++; 260 else 261 p1 = base_path; 262 if (p1 > p) 263 p = p1; 264 len = p - base_path; 265 if (len > dest_size - 1) 266 len = dest_size - 1; 267 memcpy(dest, base_path, len); 268 dest[len] = '\0'; 269 pstrcat(dest, dest_size, filename); 270 } 271 } 272 273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 274 { 275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 276 pstrcpy(dest, sz, bs->backing_file); 277 } else { 278 path_combine(dest, sz, bs->filename, bs->backing_file); 279 } 280 } 281 282 void bdrv_register(BlockDriver *bdrv) 283 { 284 /* Block drivers without coroutine functions need emulation */ 285 if (!bdrv->bdrv_co_readv) { 286 bdrv->bdrv_co_readv = bdrv_co_readv_em; 287 bdrv->bdrv_co_writev = bdrv_co_writev_em; 288 289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 290 * the block driver lacks aio we need to emulate that too. 291 */ 292 if (!bdrv->bdrv_aio_readv) { 293 /* add AIO emulation layer */ 294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 296 } 297 } 298 299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 300 } 301 302 /* create a new block device (by default it is empty) */ 303 BlockDriverState *bdrv_new(const char *device_name) 304 { 305 BlockDriverState *bs; 306 307 bs = g_malloc0(sizeof(BlockDriverState)); 308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 309 if (device_name[0] != '\0') { 310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 311 } 312 bdrv_iostatus_disable(bs); 313 return bs; 314 } 315 316 BlockDriver *bdrv_find_format(const char *format_name) 317 { 318 BlockDriver *drv1; 319 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 320 if (!strcmp(drv1->format_name, format_name)) { 321 return drv1; 322 } 323 } 324 return NULL; 325 } 326 327 static int bdrv_is_whitelisted(BlockDriver *drv) 328 { 329 static const char *whitelist[] = { 330 CONFIG_BDRV_WHITELIST 331 }; 332 const char **p; 333 334 if (!whitelist[0]) 335 return 1; /* no whitelist, anything goes */ 336 337 for (p = whitelist; *p; p++) { 338 if (!strcmp(drv->format_name, *p)) { 339 return 1; 340 } 341 } 342 return 0; 343 } 344 345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 346 { 347 BlockDriver *drv = bdrv_find_format(format_name); 348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 349 } 350 351 typedef struct CreateCo { 352 BlockDriver *drv; 353 char *filename; 354 QEMUOptionParameter *options; 355 int ret; 356 } CreateCo; 357 358 static void coroutine_fn bdrv_create_co_entry(void *opaque) 359 { 360 CreateCo *cco = opaque; 361 assert(cco->drv); 362 363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 364 } 365 366 int bdrv_create(BlockDriver *drv, const char* filename, 367 QEMUOptionParameter *options) 368 { 369 int ret; 370 371 Coroutine *co; 372 CreateCo cco = { 373 .drv = drv, 374 .filename = g_strdup(filename), 375 .options = options, 376 .ret = NOT_DONE, 377 }; 378 379 if (!drv->bdrv_create) { 380 return -ENOTSUP; 381 } 382 383 if (qemu_in_coroutine()) { 384 /* Fast-path if already in coroutine context */ 385 bdrv_create_co_entry(&cco); 386 } else { 387 co = qemu_coroutine_create(bdrv_create_co_entry); 388 qemu_coroutine_enter(co, &cco); 389 while (cco.ret == NOT_DONE) { 390 qemu_aio_wait(); 391 } 392 } 393 394 ret = cco.ret; 395 g_free(cco.filename); 396 397 return ret; 398 } 399 400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 401 { 402 BlockDriver *drv; 403 404 drv = bdrv_find_protocol(filename); 405 if (drv == NULL) { 406 return -ENOENT; 407 } 408 409 return bdrv_create(drv, filename, options); 410 } 411 412 /* 413 * Create a uniquely-named empty temporary file. 414 * Return 0 upon success, otherwise a negative errno value. 415 */ 416 int get_tmp_filename(char *filename, int size) 417 { 418 #ifdef _WIN32 419 char temp_dir[MAX_PATH]; 420 /* GetTempFileName requires that its output buffer (4th param) 421 have length MAX_PATH or greater. */ 422 assert(size >= MAX_PATH); 423 return (GetTempPath(MAX_PATH, temp_dir) 424 && GetTempFileName(temp_dir, "qem", 0, filename) 425 ? 0 : -GetLastError()); 426 #else 427 int fd; 428 const char *tmpdir; 429 tmpdir = getenv("TMPDIR"); 430 if (!tmpdir) 431 tmpdir = "/tmp"; 432 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 433 return -EOVERFLOW; 434 } 435 fd = mkstemp(filename); 436 if (fd < 0 || close(fd)) { 437 return -errno; 438 } 439 return 0; 440 #endif 441 } 442 443 /* 444 * Detect host devices. By convention, /dev/cdrom[N] is always 445 * recognized as a host CDROM. 446 */ 447 static BlockDriver *find_hdev_driver(const char *filename) 448 { 449 int score_max = 0, score; 450 BlockDriver *drv = NULL, *d; 451 452 QLIST_FOREACH(d, &bdrv_drivers, list) { 453 if (d->bdrv_probe_device) { 454 score = d->bdrv_probe_device(filename); 455 if (score > score_max) { 456 score_max = score; 457 drv = d; 458 } 459 } 460 } 461 462 return drv; 463 } 464 465 BlockDriver *bdrv_find_protocol(const char *filename) 466 { 467 BlockDriver *drv1; 468 char protocol[128]; 469 int len; 470 const char *p; 471 472 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 473 474 /* 475 * XXX(hch): we really should not let host device detection 476 * override an explicit protocol specification, but moving this 477 * later breaks access to device names with colons in them. 478 * Thanks to the brain-dead persistent naming schemes on udev- 479 * based Linux systems those actually are quite common. 480 */ 481 drv1 = find_hdev_driver(filename); 482 if (drv1) { 483 return drv1; 484 } 485 486 if (!path_has_protocol(filename)) { 487 return bdrv_find_format("file"); 488 } 489 p = strchr(filename, ':'); 490 assert(p != NULL); 491 len = p - filename; 492 if (len > sizeof(protocol) - 1) 493 len = sizeof(protocol) - 1; 494 memcpy(protocol, filename, len); 495 protocol[len] = '\0'; 496 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 497 if (drv1->protocol_name && 498 !strcmp(drv1->protocol_name, protocol)) { 499 return drv1; 500 } 501 } 502 return NULL; 503 } 504 505 static int find_image_format(const char *filename, BlockDriver **pdrv) 506 { 507 int ret, score, score_max; 508 BlockDriver *drv1, *drv; 509 uint8_t buf[2048]; 510 BlockDriverState *bs; 511 512 ret = bdrv_file_open(&bs, filename, 0); 513 if (ret < 0) { 514 *pdrv = NULL; 515 return ret; 516 } 517 518 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 519 if (bs->sg || !bdrv_is_inserted(bs)) { 520 bdrv_delete(bs); 521 drv = bdrv_find_format("raw"); 522 if (!drv) { 523 ret = -ENOENT; 524 } 525 *pdrv = drv; 526 return ret; 527 } 528 529 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 530 bdrv_delete(bs); 531 if (ret < 0) { 532 *pdrv = NULL; 533 return ret; 534 } 535 536 score_max = 0; 537 drv = NULL; 538 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 539 if (drv1->bdrv_probe) { 540 score = drv1->bdrv_probe(buf, ret, filename); 541 if (score > score_max) { 542 score_max = score; 543 drv = drv1; 544 } 545 } 546 } 547 if (!drv) { 548 ret = -ENOENT; 549 } 550 *pdrv = drv; 551 return ret; 552 } 553 554 /** 555 * Set the current 'total_sectors' value 556 */ 557 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 558 { 559 BlockDriver *drv = bs->drv; 560 561 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 562 if (bs->sg) 563 return 0; 564 565 /* query actual device if possible, otherwise just trust the hint */ 566 if (drv->bdrv_getlength) { 567 int64_t length = drv->bdrv_getlength(bs); 568 if (length < 0) { 569 return length; 570 } 571 hint = length >> BDRV_SECTOR_BITS; 572 } 573 574 bs->total_sectors = hint; 575 return 0; 576 } 577 578 /** 579 * Set open flags for a given cache mode 580 * 581 * Return 0 on success, -1 if the cache mode was invalid. 582 */ 583 int bdrv_parse_cache_flags(const char *mode, int *flags) 584 { 585 *flags &= ~BDRV_O_CACHE_MASK; 586 587 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 588 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 589 } else if (!strcmp(mode, "directsync")) { 590 *flags |= BDRV_O_NOCACHE; 591 } else if (!strcmp(mode, "writeback")) { 592 *flags |= BDRV_O_CACHE_WB; 593 } else if (!strcmp(mode, "unsafe")) { 594 *flags |= BDRV_O_CACHE_WB; 595 *flags |= BDRV_O_NO_FLUSH; 596 } else if (!strcmp(mode, "writethrough")) { 597 /* this is the default */ 598 } else { 599 return -1; 600 } 601 602 return 0; 603 } 604 605 /** 606 * The copy-on-read flag is actually a reference count so multiple users may 607 * use the feature without worrying about clobbering its previous state. 608 * Copy-on-read stays enabled until all users have called to disable it. 609 */ 610 void bdrv_enable_copy_on_read(BlockDriverState *bs) 611 { 612 bs->copy_on_read++; 613 } 614 615 void bdrv_disable_copy_on_read(BlockDriverState *bs) 616 { 617 assert(bs->copy_on_read > 0); 618 bs->copy_on_read--; 619 } 620 621 /* 622 * Common part for opening disk images and files 623 */ 624 static int bdrv_open_common(BlockDriverState *bs, const char *filename, 625 int flags, BlockDriver *drv) 626 { 627 int ret, open_flags; 628 629 assert(drv != NULL); 630 assert(bs->file == NULL); 631 632 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 633 634 bs->open_flags = flags; 635 bs->buffer_alignment = 512; 636 637 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 638 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 639 bdrv_enable_copy_on_read(bs); 640 } 641 642 pstrcpy(bs->filename, sizeof(bs->filename), filename); 643 644 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 645 return -ENOTSUP; 646 } 647 648 bs->drv = drv; 649 bs->opaque = g_malloc0(drv->instance_size); 650 651 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 652 open_flags = flags | BDRV_O_CACHE_WB; 653 654 /* 655 * Clear flags that are internal to the block layer before opening the 656 * image. 657 */ 658 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 659 660 /* 661 * Snapshots should be writable. 662 */ 663 if (bs->is_temporary) { 664 open_flags |= BDRV_O_RDWR; 665 } 666 667 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR); 668 669 /* Open the image, either directly or using a protocol */ 670 if (drv->bdrv_file_open) { 671 ret = drv->bdrv_file_open(bs, filename, open_flags); 672 } else { 673 ret = bdrv_file_open(&bs->file, filename, open_flags); 674 if (ret >= 0) { 675 ret = drv->bdrv_open(bs, open_flags); 676 } 677 } 678 679 if (ret < 0) { 680 goto free_and_fail; 681 } 682 683 ret = refresh_total_sectors(bs, bs->total_sectors); 684 if (ret < 0) { 685 goto free_and_fail; 686 } 687 688 #ifndef _WIN32 689 if (bs->is_temporary) { 690 unlink(filename); 691 } 692 #endif 693 return 0; 694 695 free_and_fail: 696 if (bs->file) { 697 bdrv_delete(bs->file); 698 bs->file = NULL; 699 } 700 g_free(bs->opaque); 701 bs->opaque = NULL; 702 bs->drv = NULL; 703 return ret; 704 } 705 706 /* 707 * Opens a file using a protocol (file, host_device, nbd, ...) 708 */ 709 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 710 { 711 BlockDriverState *bs; 712 BlockDriver *drv; 713 int ret; 714 715 drv = bdrv_find_protocol(filename); 716 if (!drv) { 717 return -ENOENT; 718 } 719 720 bs = bdrv_new(""); 721 ret = bdrv_open_common(bs, filename, flags, drv); 722 if (ret < 0) { 723 bdrv_delete(bs); 724 return ret; 725 } 726 bs->growable = 1; 727 *pbs = bs; 728 return 0; 729 } 730 731 /* 732 * Opens a disk image (raw, qcow2, vmdk, ...) 733 */ 734 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 735 BlockDriver *drv) 736 { 737 int ret; 738 char tmp_filename[PATH_MAX]; 739 740 if (flags & BDRV_O_SNAPSHOT) { 741 BlockDriverState *bs1; 742 int64_t total_size; 743 int is_protocol = 0; 744 BlockDriver *bdrv_qcow2; 745 QEMUOptionParameter *options; 746 char backing_filename[PATH_MAX]; 747 748 /* if snapshot, we create a temporary backing file and open it 749 instead of opening 'filename' directly */ 750 751 /* if there is a backing file, use it */ 752 bs1 = bdrv_new(""); 753 ret = bdrv_open(bs1, filename, 0, drv); 754 if (ret < 0) { 755 bdrv_delete(bs1); 756 return ret; 757 } 758 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 759 760 if (bs1->drv && bs1->drv->protocol_name) 761 is_protocol = 1; 762 763 bdrv_delete(bs1); 764 765 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 766 if (ret < 0) { 767 return ret; 768 } 769 770 /* Real path is meaningless for protocols */ 771 if (is_protocol) 772 snprintf(backing_filename, sizeof(backing_filename), 773 "%s", filename); 774 else if (!realpath(filename, backing_filename)) 775 return -errno; 776 777 bdrv_qcow2 = bdrv_find_format("qcow2"); 778 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 779 780 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 781 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 782 if (drv) { 783 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 784 drv->format_name); 785 } 786 787 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 788 free_option_parameters(options); 789 if (ret < 0) { 790 return ret; 791 } 792 793 filename = tmp_filename; 794 drv = bdrv_qcow2; 795 bs->is_temporary = 1; 796 } 797 798 /* Find the right image format driver */ 799 if (!drv) { 800 ret = find_image_format(filename, &drv); 801 } 802 803 if (!drv) { 804 goto unlink_and_fail; 805 } 806 807 /* Open the image */ 808 ret = bdrv_open_common(bs, filename, flags, drv); 809 if (ret < 0) { 810 goto unlink_and_fail; 811 } 812 813 /* If there is a backing file, use it */ 814 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') { 815 char backing_filename[PATH_MAX]; 816 int back_flags; 817 BlockDriver *back_drv = NULL; 818 819 bs->backing_hd = bdrv_new(""); 820 bdrv_get_full_backing_filename(bs, backing_filename, 821 sizeof(backing_filename)); 822 823 if (bs->backing_format[0] != '\0') { 824 back_drv = bdrv_find_format(bs->backing_format); 825 } 826 827 /* backing files always opened read-only */ 828 back_flags = 829 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 830 831 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 832 if (ret < 0) { 833 bdrv_close(bs); 834 return ret; 835 } 836 if (bs->is_temporary) { 837 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR); 838 } else { 839 /* base image inherits from "parent" */ 840 bs->backing_hd->keep_read_only = bs->keep_read_only; 841 } 842 } 843 844 if (!bdrv_key_required(bs)) { 845 bdrv_dev_change_media_cb(bs, true); 846 } 847 848 /* throttling disk I/O limits */ 849 if (bs->io_limits_enabled) { 850 bdrv_io_limits_enable(bs); 851 } 852 853 return 0; 854 855 unlink_and_fail: 856 if (bs->is_temporary) { 857 unlink(filename); 858 } 859 return ret; 860 } 861 862 void bdrv_close(BlockDriverState *bs) 863 { 864 bdrv_flush(bs); 865 if (bs->drv) { 866 if (bs->job) { 867 block_job_cancel_sync(bs->job); 868 } 869 bdrv_drain_all(); 870 871 if (bs == bs_snapshots) { 872 bs_snapshots = NULL; 873 } 874 if (bs->backing_hd) { 875 bdrv_delete(bs->backing_hd); 876 bs->backing_hd = NULL; 877 } 878 bs->drv->bdrv_close(bs); 879 g_free(bs->opaque); 880 #ifdef _WIN32 881 if (bs->is_temporary) { 882 unlink(bs->filename); 883 } 884 #endif 885 bs->opaque = NULL; 886 bs->drv = NULL; 887 bs->copy_on_read = 0; 888 bs->backing_file[0] = '\0'; 889 bs->backing_format[0] = '\0'; 890 bs->total_sectors = 0; 891 bs->encrypted = 0; 892 bs->valid_key = 0; 893 bs->sg = 0; 894 bs->growable = 0; 895 896 if (bs->file != NULL) { 897 bdrv_delete(bs->file); 898 bs->file = NULL; 899 } 900 901 bdrv_dev_change_media_cb(bs, false); 902 } 903 904 /*throttling disk I/O limits*/ 905 if (bs->io_limits_enabled) { 906 bdrv_io_limits_disable(bs); 907 } 908 } 909 910 void bdrv_close_all(void) 911 { 912 BlockDriverState *bs; 913 914 QTAILQ_FOREACH(bs, &bdrv_states, list) { 915 bdrv_close(bs); 916 } 917 } 918 919 /* 920 * Wait for pending requests to complete across all BlockDriverStates 921 * 922 * This function does not flush data to disk, use bdrv_flush_all() for that 923 * after calling this function. 924 * 925 * Note that completion of an asynchronous I/O operation can trigger any 926 * number of other I/O operations on other devices---for example a coroutine 927 * can be arbitrarily complex and a constant flow of I/O can come until the 928 * coroutine is complete. Because of this, it is not possible to have a 929 * function to drain a single device's I/O queue. 930 */ 931 void bdrv_drain_all(void) 932 { 933 BlockDriverState *bs; 934 bool busy; 935 936 do { 937 busy = qemu_aio_wait(); 938 939 /* FIXME: We do not have timer support here, so this is effectively 940 * a busy wait. 941 */ 942 QTAILQ_FOREACH(bs, &bdrv_states, list) { 943 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 944 qemu_co_queue_restart_all(&bs->throttled_reqs); 945 busy = true; 946 } 947 } 948 } while (busy); 949 950 /* If requests are still pending there is a bug somewhere */ 951 QTAILQ_FOREACH(bs, &bdrv_states, list) { 952 assert(QLIST_EMPTY(&bs->tracked_requests)); 953 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 954 } 955 } 956 957 /* make a BlockDriverState anonymous by removing from bdrv_state list. 958 Also, NULL terminate the device_name to prevent double remove */ 959 void bdrv_make_anon(BlockDriverState *bs) 960 { 961 if (bs->device_name[0] != '\0') { 962 QTAILQ_REMOVE(&bdrv_states, bs, list); 963 } 964 bs->device_name[0] = '\0'; 965 } 966 967 static void bdrv_rebind(BlockDriverState *bs) 968 { 969 if (bs->drv && bs->drv->bdrv_rebind) { 970 bs->drv->bdrv_rebind(bs); 971 } 972 } 973 974 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 975 BlockDriverState *bs_src) 976 { 977 /* move some fields that need to stay attached to the device */ 978 bs_dest->open_flags = bs_src->open_flags; 979 980 /* dev info */ 981 bs_dest->dev_ops = bs_src->dev_ops; 982 bs_dest->dev_opaque = bs_src->dev_opaque; 983 bs_dest->dev = bs_src->dev; 984 bs_dest->buffer_alignment = bs_src->buffer_alignment; 985 bs_dest->copy_on_read = bs_src->copy_on_read; 986 987 bs_dest->enable_write_cache = bs_src->enable_write_cache; 988 989 /* i/o timing parameters */ 990 bs_dest->slice_time = bs_src->slice_time; 991 bs_dest->slice_start = bs_src->slice_start; 992 bs_dest->slice_end = bs_src->slice_end; 993 bs_dest->io_limits = bs_src->io_limits; 994 bs_dest->io_base = bs_src->io_base; 995 bs_dest->throttled_reqs = bs_src->throttled_reqs; 996 bs_dest->block_timer = bs_src->block_timer; 997 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 998 999 /* r/w error */ 1000 bs_dest->on_read_error = bs_src->on_read_error; 1001 bs_dest->on_write_error = bs_src->on_write_error; 1002 1003 /* i/o status */ 1004 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1005 bs_dest->iostatus = bs_src->iostatus; 1006 1007 /* dirty bitmap */ 1008 bs_dest->dirty_count = bs_src->dirty_count; 1009 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1010 1011 /* job */ 1012 bs_dest->in_use = bs_src->in_use; 1013 bs_dest->job = bs_src->job; 1014 1015 /* keep the same entry in bdrv_states */ 1016 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1017 bs_src->device_name); 1018 bs_dest->list = bs_src->list; 1019 } 1020 1021 /* 1022 * Swap bs contents for two image chains while they are live, 1023 * while keeping required fields on the BlockDriverState that is 1024 * actually attached to a device. 1025 * 1026 * This will modify the BlockDriverState fields, and swap contents 1027 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1028 * 1029 * bs_new is required to be anonymous. 1030 * 1031 * This function does not create any image files. 1032 */ 1033 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1034 { 1035 BlockDriverState tmp; 1036 1037 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1038 assert(bs_new->device_name[0] == '\0'); 1039 assert(bs_new->dirty_bitmap == NULL); 1040 assert(bs_new->job == NULL); 1041 assert(bs_new->dev == NULL); 1042 assert(bs_new->in_use == 0); 1043 assert(bs_new->io_limits_enabled == false); 1044 assert(bs_new->block_timer == NULL); 1045 1046 tmp = *bs_new; 1047 *bs_new = *bs_old; 1048 *bs_old = tmp; 1049 1050 /* there are some fields that should not be swapped, move them back */ 1051 bdrv_move_feature_fields(&tmp, bs_old); 1052 bdrv_move_feature_fields(bs_old, bs_new); 1053 bdrv_move_feature_fields(bs_new, &tmp); 1054 1055 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1056 assert(bs_new->device_name[0] == '\0'); 1057 1058 /* Check a few fields that should remain attached to the device */ 1059 assert(bs_new->dev == NULL); 1060 assert(bs_new->job == NULL); 1061 assert(bs_new->in_use == 0); 1062 assert(bs_new->io_limits_enabled == false); 1063 assert(bs_new->block_timer == NULL); 1064 1065 bdrv_rebind(bs_new); 1066 bdrv_rebind(bs_old); 1067 } 1068 1069 /* 1070 * Add new bs contents at the top of an image chain while the chain is 1071 * live, while keeping required fields on the top layer. 1072 * 1073 * This will modify the BlockDriverState fields, and swap contents 1074 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1075 * 1076 * bs_new is required to be anonymous. 1077 * 1078 * This function does not create any image files. 1079 */ 1080 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1081 { 1082 bdrv_swap(bs_new, bs_top); 1083 1084 /* The contents of 'tmp' will become bs_top, as we are 1085 * swapping bs_new and bs_top contents. */ 1086 bs_top->backing_hd = bs_new; 1087 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1088 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1089 bs_new->filename); 1090 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1091 bs_new->drv ? bs_new->drv->format_name : ""); 1092 } 1093 1094 void bdrv_delete(BlockDriverState *bs) 1095 { 1096 assert(!bs->dev); 1097 assert(!bs->job); 1098 assert(!bs->in_use); 1099 1100 /* remove from list, if necessary */ 1101 bdrv_make_anon(bs); 1102 1103 bdrv_close(bs); 1104 1105 assert(bs != bs_snapshots); 1106 g_free(bs); 1107 } 1108 1109 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1110 /* TODO change to DeviceState *dev when all users are qdevified */ 1111 { 1112 if (bs->dev) { 1113 return -EBUSY; 1114 } 1115 bs->dev = dev; 1116 bdrv_iostatus_reset(bs); 1117 return 0; 1118 } 1119 1120 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1121 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1122 { 1123 if (bdrv_attach_dev(bs, dev) < 0) { 1124 abort(); 1125 } 1126 } 1127 1128 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1129 /* TODO change to DeviceState *dev when all users are qdevified */ 1130 { 1131 assert(bs->dev == dev); 1132 bs->dev = NULL; 1133 bs->dev_ops = NULL; 1134 bs->dev_opaque = NULL; 1135 bs->buffer_alignment = 512; 1136 } 1137 1138 /* TODO change to return DeviceState * when all users are qdevified */ 1139 void *bdrv_get_attached_dev(BlockDriverState *bs) 1140 { 1141 return bs->dev; 1142 } 1143 1144 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1145 void *opaque) 1146 { 1147 bs->dev_ops = ops; 1148 bs->dev_opaque = opaque; 1149 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1150 bs_snapshots = NULL; 1151 } 1152 } 1153 1154 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1155 BlockQMPEventAction action, int is_read) 1156 { 1157 QObject *data; 1158 const char *action_str; 1159 1160 switch (action) { 1161 case BDRV_ACTION_REPORT: 1162 action_str = "report"; 1163 break; 1164 case BDRV_ACTION_IGNORE: 1165 action_str = "ignore"; 1166 break; 1167 case BDRV_ACTION_STOP: 1168 action_str = "stop"; 1169 break; 1170 default: 1171 abort(); 1172 } 1173 1174 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1175 bdrv->device_name, 1176 action_str, 1177 is_read ? "read" : "write"); 1178 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data); 1179 1180 qobject_decref(data); 1181 } 1182 1183 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1184 { 1185 QObject *data; 1186 1187 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1188 bdrv_get_device_name(bs), ejected); 1189 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1190 1191 qobject_decref(data); 1192 } 1193 1194 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1195 { 1196 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1197 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1198 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1199 if (tray_was_closed) { 1200 /* tray open */ 1201 bdrv_emit_qmp_eject_event(bs, true); 1202 } 1203 if (load) { 1204 /* tray close */ 1205 bdrv_emit_qmp_eject_event(bs, false); 1206 } 1207 } 1208 } 1209 1210 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1211 { 1212 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1213 } 1214 1215 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1216 { 1217 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1218 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1219 } 1220 } 1221 1222 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1223 { 1224 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1225 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1226 } 1227 return false; 1228 } 1229 1230 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1231 { 1232 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1233 bs->dev_ops->resize_cb(bs->dev_opaque); 1234 } 1235 } 1236 1237 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1238 { 1239 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1240 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1241 } 1242 return false; 1243 } 1244 1245 /* 1246 * Run consistency checks on an image 1247 * 1248 * Returns 0 if the check could be completed (it doesn't mean that the image is 1249 * free of errors) or -errno when an internal error occurred. The results of the 1250 * check are stored in res. 1251 */ 1252 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1253 { 1254 if (bs->drv->bdrv_check == NULL) { 1255 return -ENOTSUP; 1256 } 1257 1258 memset(res, 0, sizeof(*res)); 1259 return bs->drv->bdrv_check(bs, res, fix); 1260 } 1261 1262 #define COMMIT_BUF_SECTORS 2048 1263 1264 /* commit COW file into the raw image */ 1265 int bdrv_commit(BlockDriverState *bs) 1266 { 1267 BlockDriver *drv = bs->drv; 1268 BlockDriver *backing_drv; 1269 int64_t sector, total_sectors; 1270 int n, ro, open_flags; 1271 int ret = 0, rw_ret = 0; 1272 uint8_t *buf; 1273 char filename[1024]; 1274 BlockDriverState *bs_rw, *bs_ro; 1275 1276 if (!drv) 1277 return -ENOMEDIUM; 1278 1279 if (!bs->backing_hd) { 1280 return -ENOTSUP; 1281 } 1282 1283 if (bs->backing_hd->keep_read_only) { 1284 return -EACCES; 1285 } 1286 1287 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1288 return -EBUSY; 1289 } 1290 1291 backing_drv = bs->backing_hd->drv; 1292 ro = bs->backing_hd->read_only; 1293 strncpy(filename, bs->backing_hd->filename, sizeof(filename)); 1294 open_flags = bs->backing_hd->open_flags; 1295 1296 if (ro) { 1297 /* re-open as RW */ 1298 bdrv_delete(bs->backing_hd); 1299 bs->backing_hd = NULL; 1300 bs_rw = bdrv_new(""); 1301 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR, 1302 backing_drv); 1303 if (rw_ret < 0) { 1304 bdrv_delete(bs_rw); 1305 /* try to re-open read-only */ 1306 bs_ro = bdrv_new(""); 1307 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR, 1308 backing_drv); 1309 if (ret < 0) { 1310 bdrv_delete(bs_ro); 1311 /* drive not functional anymore */ 1312 bs->drv = NULL; 1313 return ret; 1314 } 1315 bs->backing_hd = bs_ro; 1316 return rw_ret; 1317 } 1318 bs->backing_hd = bs_rw; 1319 } 1320 1321 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1322 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1323 1324 for (sector = 0; sector < total_sectors; sector += n) { 1325 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1326 1327 if (bdrv_read(bs, sector, buf, n) != 0) { 1328 ret = -EIO; 1329 goto ro_cleanup; 1330 } 1331 1332 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1333 ret = -EIO; 1334 goto ro_cleanup; 1335 } 1336 } 1337 } 1338 1339 if (drv->bdrv_make_empty) { 1340 ret = drv->bdrv_make_empty(bs); 1341 bdrv_flush(bs); 1342 } 1343 1344 /* 1345 * Make sure all data we wrote to the backing device is actually 1346 * stable on disk. 1347 */ 1348 if (bs->backing_hd) 1349 bdrv_flush(bs->backing_hd); 1350 1351 ro_cleanup: 1352 g_free(buf); 1353 1354 if (ro) { 1355 /* re-open as RO */ 1356 bdrv_delete(bs->backing_hd); 1357 bs->backing_hd = NULL; 1358 bs_ro = bdrv_new(""); 1359 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR, 1360 backing_drv); 1361 if (ret < 0) { 1362 bdrv_delete(bs_ro); 1363 /* drive not functional anymore */ 1364 bs->drv = NULL; 1365 return ret; 1366 } 1367 bs->backing_hd = bs_ro; 1368 bs->backing_hd->keep_read_only = 0; 1369 } 1370 1371 return ret; 1372 } 1373 1374 int bdrv_commit_all(void) 1375 { 1376 BlockDriverState *bs; 1377 1378 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1379 int ret = bdrv_commit(bs); 1380 if (ret < 0) { 1381 return ret; 1382 } 1383 } 1384 return 0; 1385 } 1386 1387 struct BdrvTrackedRequest { 1388 BlockDriverState *bs; 1389 int64_t sector_num; 1390 int nb_sectors; 1391 bool is_write; 1392 QLIST_ENTRY(BdrvTrackedRequest) list; 1393 Coroutine *co; /* owner, used for deadlock detection */ 1394 CoQueue wait_queue; /* coroutines blocked on this request */ 1395 }; 1396 1397 /** 1398 * Remove an active request from the tracked requests list 1399 * 1400 * This function should be called when a tracked request is completing. 1401 */ 1402 static void tracked_request_end(BdrvTrackedRequest *req) 1403 { 1404 QLIST_REMOVE(req, list); 1405 qemu_co_queue_restart_all(&req->wait_queue); 1406 } 1407 1408 /** 1409 * Add an active request to the tracked requests list 1410 */ 1411 static void tracked_request_begin(BdrvTrackedRequest *req, 1412 BlockDriverState *bs, 1413 int64_t sector_num, 1414 int nb_sectors, bool is_write) 1415 { 1416 *req = (BdrvTrackedRequest){ 1417 .bs = bs, 1418 .sector_num = sector_num, 1419 .nb_sectors = nb_sectors, 1420 .is_write = is_write, 1421 .co = qemu_coroutine_self(), 1422 }; 1423 1424 qemu_co_queue_init(&req->wait_queue); 1425 1426 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1427 } 1428 1429 /** 1430 * Round a region to cluster boundaries 1431 */ 1432 static void round_to_clusters(BlockDriverState *bs, 1433 int64_t sector_num, int nb_sectors, 1434 int64_t *cluster_sector_num, 1435 int *cluster_nb_sectors) 1436 { 1437 BlockDriverInfo bdi; 1438 1439 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1440 *cluster_sector_num = sector_num; 1441 *cluster_nb_sectors = nb_sectors; 1442 } else { 1443 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1444 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1445 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1446 nb_sectors, c); 1447 } 1448 } 1449 1450 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1451 int64_t sector_num, int nb_sectors) { 1452 /* aaaa bbbb */ 1453 if (sector_num >= req->sector_num + req->nb_sectors) { 1454 return false; 1455 } 1456 /* bbbb aaaa */ 1457 if (req->sector_num >= sector_num + nb_sectors) { 1458 return false; 1459 } 1460 return true; 1461 } 1462 1463 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1464 int64_t sector_num, int nb_sectors) 1465 { 1466 BdrvTrackedRequest *req; 1467 int64_t cluster_sector_num; 1468 int cluster_nb_sectors; 1469 bool retry; 1470 1471 /* If we touch the same cluster it counts as an overlap. This guarantees 1472 * that allocating writes will be serialized and not race with each other 1473 * for the same cluster. For example, in copy-on-read it ensures that the 1474 * CoR read and write operations are atomic and guest writes cannot 1475 * interleave between them. 1476 */ 1477 round_to_clusters(bs, sector_num, nb_sectors, 1478 &cluster_sector_num, &cluster_nb_sectors); 1479 1480 do { 1481 retry = false; 1482 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1483 if (tracked_request_overlaps(req, cluster_sector_num, 1484 cluster_nb_sectors)) { 1485 /* Hitting this means there was a reentrant request, for 1486 * example, a block driver issuing nested requests. This must 1487 * never happen since it means deadlock. 1488 */ 1489 assert(qemu_coroutine_self() != req->co); 1490 1491 qemu_co_queue_wait(&req->wait_queue); 1492 retry = true; 1493 break; 1494 } 1495 } 1496 } while (retry); 1497 } 1498 1499 /* 1500 * Return values: 1501 * 0 - success 1502 * -EINVAL - backing format specified, but no file 1503 * -ENOSPC - can't update the backing file because no space is left in the 1504 * image file header 1505 * -ENOTSUP - format driver doesn't support changing the backing file 1506 */ 1507 int bdrv_change_backing_file(BlockDriverState *bs, 1508 const char *backing_file, const char *backing_fmt) 1509 { 1510 BlockDriver *drv = bs->drv; 1511 int ret; 1512 1513 /* Backing file format doesn't make sense without a backing file */ 1514 if (backing_fmt && !backing_file) { 1515 return -EINVAL; 1516 } 1517 1518 if (drv->bdrv_change_backing_file != NULL) { 1519 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1520 } else { 1521 ret = -ENOTSUP; 1522 } 1523 1524 if (ret == 0) { 1525 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1526 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1527 } 1528 return ret; 1529 } 1530 1531 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1532 size_t size) 1533 { 1534 int64_t len; 1535 1536 if (!bdrv_is_inserted(bs)) 1537 return -ENOMEDIUM; 1538 1539 if (bs->growable) 1540 return 0; 1541 1542 len = bdrv_getlength(bs); 1543 1544 if (offset < 0) 1545 return -EIO; 1546 1547 if ((offset > len) || (len - offset < size)) 1548 return -EIO; 1549 1550 return 0; 1551 } 1552 1553 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1554 int nb_sectors) 1555 { 1556 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1557 nb_sectors * BDRV_SECTOR_SIZE); 1558 } 1559 1560 typedef struct RwCo { 1561 BlockDriverState *bs; 1562 int64_t sector_num; 1563 int nb_sectors; 1564 QEMUIOVector *qiov; 1565 bool is_write; 1566 int ret; 1567 } RwCo; 1568 1569 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1570 { 1571 RwCo *rwco = opaque; 1572 1573 if (!rwco->is_write) { 1574 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1575 rwco->nb_sectors, rwco->qiov, 0); 1576 } else { 1577 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1578 rwco->nb_sectors, rwco->qiov, 0); 1579 } 1580 } 1581 1582 /* 1583 * Process a synchronous request using coroutines 1584 */ 1585 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1586 int nb_sectors, bool is_write) 1587 { 1588 QEMUIOVector qiov; 1589 struct iovec iov = { 1590 .iov_base = (void *)buf, 1591 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1592 }; 1593 Coroutine *co; 1594 RwCo rwco = { 1595 .bs = bs, 1596 .sector_num = sector_num, 1597 .nb_sectors = nb_sectors, 1598 .qiov = &qiov, 1599 .is_write = is_write, 1600 .ret = NOT_DONE, 1601 }; 1602 1603 qemu_iovec_init_external(&qiov, &iov, 1); 1604 1605 /** 1606 * In sync call context, when the vcpu is blocked, this throttling timer 1607 * will not fire; so the I/O throttling function has to be disabled here 1608 * if it has been enabled. 1609 */ 1610 if (bs->io_limits_enabled) { 1611 fprintf(stderr, "Disabling I/O throttling on '%s' due " 1612 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 1613 bdrv_io_limits_disable(bs); 1614 } 1615 1616 if (qemu_in_coroutine()) { 1617 /* Fast-path if already in coroutine context */ 1618 bdrv_rw_co_entry(&rwco); 1619 } else { 1620 co = qemu_coroutine_create(bdrv_rw_co_entry); 1621 qemu_coroutine_enter(co, &rwco); 1622 while (rwco.ret == NOT_DONE) { 1623 qemu_aio_wait(); 1624 } 1625 } 1626 return rwco.ret; 1627 } 1628 1629 /* return < 0 if error. See bdrv_write() for the return codes */ 1630 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 1631 uint8_t *buf, int nb_sectors) 1632 { 1633 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 1634 } 1635 1636 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 1637 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 1638 uint8_t *buf, int nb_sectors) 1639 { 1640 bool enabled; 1641 int ret; 1642 1643 enabled = bs->io_limits_enabled; 1644 bs->io_limits_enabled = false; 1645 ret = bdrv_read(bs, 0, buf, 1); 1646 bs->io_limits_enabled = enabled; 1647 return ret; 1648 } 1649 1650 #define BITS_PER_LONG (sizeof(unsigned long) * 8) 1651 1652 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num, 1653 int nb_sectors, int dirty) 1654 { 1655 int64_t start, end; 1656 unsigned long val, idx, bit; 1657 1658 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK; 1659 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK; 1660 1661 for (; start <= end; start++) { 1662 idx = start / BITS_PER_LONG; 1663 bit = start % BITS_PER_LONG; 1664 val = bs->dirty_bitmap[idx]; 1665 if (dirty) { 1666 if (!(val & (1UL << bit))) { 1667 bs->dirty_count++; 1668 val |= 1UL << bit; 1669 } 1670 } else { 1671 if (val & (1UL << bit)) { 1672 bs->dirty_count--; 1673 val &= ~(1UL << bit); 1674 } 1675 } 1676 bs->dirty_bitmap[idx] = val; 1677 } 1678 } 1679 1680 /* Return < 0 if error. Important errors are: 1681 -EIO generic I/O error (may happen for all errors) 1682 -ENOMEDIUM No media inserted. 1683 -EINVAL Invalid sector number or nb_sectors 1684 -EACCES Trying to write a read-only device 1685 */ 1686 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 1687 const uint8_t *buf, int nb_sectors) 1688 { 1689 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 1690 } 1691 1692 int bdrv_pread(BlockDriverState *bs, int64_t offset, 1693 void *buf, int count1) 1694 { 1695 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 1696 int len, nb_sectors, count; 1697 int64_t sector_num; 1698 int ret; 1699 1700 count = count1; 1701 /* first read to align to sector start */ 1702 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 1703 if (len > count) 1704 len = count; 1705 sector_num = offset >> BDRV_SECTOR_BITS; 1706 if (len > 0) { 1707 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1708 return ret; 1709 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 1710 count -= len; 1711 if (count == 0) 1712 return count1; 1713 sector_num++; 1714 buf += len; 1715 } 1716 1717 /* read the sectors "in place" */ 1718 nb_sectors = count >> BDRV_SECTOR_BITS; 1719 if (nb_sectors > 0) { 1720 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 1721 return ret; 1722 sector_num += nb_sectors; 1723 len = nb_sectors << BDRV_SECTOR_BITS; 1724 buf += len; 1725 count -= len; 1726 } 1727 1728 /* add data from the last sector */ 1729 if (count > 0) { 1730 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1731 return ret; 1732 memcpy(buf, tmp_buf, count); 1733 } 1734 return count1; 1735 } 1736 1737 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 1738 const void *buf, int count1) 1739 { 1740 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 1741 int len, nb_sectors, count; 1742 int64_t sector_num; 1743 int ret; 1744 1745 count = count1; 1746 /* first write to align to sector start */ 1747 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 1748 if (len > count) 1749 len = count; 1750 sector_num = offset >> BDRV_SECTOR_BITS; 1751 if (len > 0) { 1752 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1753 return ret; 1754 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 1755 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 1756 return ret; 1757 count -= len; 1758 if (count == 0) 1759 return count1; 1760 sector_num++; 1761 buf += len; 1762 } 1763 1764 /* write the sectors "in place" */ 1765 nb_sectors = count >> BDRV_SECTOR_BITS; 1766 if (nb_sectors > 0) { 1767 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 1768 return ret; 1769 sector_num += nb_sectors; 1770 len = nb_sectors << BDRV_SECTOR_BITS; 1771 buf += len; 1772 count -= len; 1773 } 1774 1775 /* add data from the last sector */ 1776 if (count > 0) { 1777 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1778 return ret; 1779 memcpy(tmp_buf, buf, count); 1780 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 1781 return ret; 1782 } 1783 return count1; 1784 } 1785 1786 /* 1787 * Writes to the file and ensures that no writes are reordered across this 1788 * request (acts as a barrier) 1789 * 1790 * Returns 0 on success, -errno in error cases. 1791 */ 1792 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 1793 const void *buf, int count) 1794 { 1795 int ret; 1796 1797 ret = bdrv_pwrite(bs, offset, buf, count); 1798 if (ret < 0) { 1799 return ret; 1800 } 1801 1802 /* No flush needed for cache modes that already do it */ 1803 if (bs->enable_write_cache) { 1804 bdrv_flush(bs); 1805 } 1806 1807 return 0; 1808 } 1809 1810 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 1811 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1812 { 1813 /* Perform I/O through a temporary buffer so that users who scribble over 1814 * their read buffer while the operation is in progress do not end up 1815 * modifying the image file. This is critical for zero-copy guest I/O 1816 * where anything might happen inside guest memory. 1817 */ 1818 void *bounce_buffer; 1819 1820 BlockDriver *drv = bs->drv; 1821 struct iovec iov; 1822 QEMUIOVector bounce_qiov; 1823 int64_t cluster_sector_num; 1824 int cluster_nb_sectors; 1825 size_t skip_bytes; 1826 int ret; 1827 1828 /* Cover entire cluster so no additional backing file I/O is required when 1829 * allocating cluster in the image file. 1830 */ 1831 round_to_clusters(bs, sector_num, nb_sectors, 1832 &cluster_sector_num, &cluster_nb_sectors); 1833 1834 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 1835 cluster_sector_num, cluster_nb_sectors); 1836 1837 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 1838 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 1839 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 1840 1841 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 1842 &bounce_qiov); 1843 if (ret < 0) { 1844 goto err; 1845 } 1846 1847 if (drv->bdrv_co_write_zeroes && 1848 buffer_is_zero(bounce_buffer, iov.iov_len)) { 1849 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 1850 cluster_nb_sectors); 1851 } else { 1852 /* This does not change the data on the disk, it is not necessary 1853 * to flush even in cache=writethrough mode. 1854 */ 1855 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 1856 &bounce_qiov); 1857 } 1858 1859 if (ret < 0) { 1860 /* It might be okay to ignore write errors for guest requests. If this 1861 * is a deliberate copy-on-read then we don't want to ignore the error. 1862 * Simply report it in all cases. 1863 */ 1864 goto err; 1865 } 1866 1867 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 1868 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 1869 nb_sectors * BDRV_SECTOR_SIZE); 1870 1871 err: 1872 qemu_vfree(bounce_buffer); 1873 return ret; 1874 } 1875 1876 /* 1877 * Handle a read request in coroutine context 1878 */ 1879 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 1880 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1881 BdrvRequestFlags flags) 1882 { 1883 BlockDriver *drv = bs->drv; 1884 BdrvTrackedRequest req; 1885 int ret; 1886 1887 if (!drv) { 1888 return -ENOMEDIUM; 1889 } 1890 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 1891 return -EIO; 1892 } 1893 1894 /* throttling disk read I/O */ 1895 if (bs->io_limits_enabled) { 1896 bdrv_io_limits_intercept(bs, false, nb_sectors); 1897 } 1898 1899 if (bs->copy_on_read) { 1900 flags |= BDRV_REQ_COPY_ON_READ; 1901 } 1902 if (flags & BDRV_REQ_COPY_ON_READ) { 1903 bs->copy_on_read_in_flight++; 1904 } 1905 1906 if (bs->copy_on_read_in_flight) { 1907 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 1908 } 1909 1910 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 1911 1912 if (flags & BDRV_REQ_COPY_ON_READ) { 1913 int pnum; 1914 1915 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 1916 if (ret < 0) { 1917 goto out; 1918 } 1919 1920 if (!ret || pnum != nb_sectors) { 1921 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 1922 goto out; 1923 } 1924 } 1925 1926 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1927 1928 out: 1929 tracked_request_end(&req); 1930 1931 if (flags & BDRV_REQ_COPY_ON_READ) { 1932 bs->copy_on_read_in_flight--; 1933 } 1934 1935 return ret; 1936 } 1937 1938 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 1939 int nb_sectors, QEMUIOVector *qiov) 1940 { 1941 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 1942 1943 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 1944 } 1945 1946 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 1947 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1948 { 1949 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 1950 1951 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 1952 BDRV_REQ_COPY_ON_READ); 1953 } 1954 1955 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 1956 int64_t sector_num, int nb_sectors) 1957 { 1958 BlockDriver *drv = bs->drv; 1959 QEMUIOVector qiov; 1960 struct iovec iov; 1961 int ret; 1962 1963 /* TODO Emulate only part of misaligned requests instead of letting block 1964 * drivers return -ENOTSUP and emulate everything */ 1965 1966 /* First try the efficient write zeroes operation */ 1967 if (drv->bdrv_co_write_zeroes) { 1968 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 1969 if (ret != -ENOTSUP) { 1970 return ret; 1971 } 1972 } 1973 1974 /* Fall back to bounce buffer if write zeroes is unsupported */ 1975 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 1976 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 1977 memset(iov.iov_base, 0, iov.iov_len); 1978 qemu_iovec_init_external(&qiov, &iov, 1); 1979 1980 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 1981 1982 qemu_vfree(iov.iov_base); 1983 return ret; 1984 } 1985 1986 /* 1987 * Handle a write request in coroutine context 1988 */ 1989 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 1990 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1991 BdrvRequestFlags flags) 1992 { 1993 BlockDriver *drv = bs->drv; 1994 BdrvTrackedRequest req; 1995 int ret; 1996 1997 if (!bs->drv) { 1998 return -ENOMEDIUM; 1999 } 2000 if (bs->read_only) { 2001 return -EACCES; 2002 } 2003 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2004 return -EIO; 2005 } 2006 2007 /* throttling disk write I/O */ 2008 if (bs->io_limits_enabled) { 2009 bdrv_io_limits_intercept(bs, true, nb_sectors); 2010 } 2011 2012 if (bs->copy_on_read_in_flight) { 2013 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2014 } 2015 2016 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2017 2018 if (flags & BDRV_REQ_ZERO_WRITE) { 2019 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2020 } else { 2021 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2022 } 2023 2024 if (ret == 0 && !bs->enable_write_cache) { 2025 ret = bdrv_co_flush(bs); 2026 } 2027 2028 if (bs->dirty_bitmap) { 2029 set_dirty_bitmap(bs, sector_num, nb_sectors, 1); 2030 } 2031 2032 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2033 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2034 } 2035 2036 tracked_request_end(&req); 2037 2038 return ret; 2039 } 2040 2041 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2042 int nb_sectors, QEMUIOVector *qiov) 2043 { 2044 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2045 2046 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2047 } 2048 2049 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2050 int64_t sector_num, int nb_sectors) 2051 { 2052 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2053 2054 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2055 BDRV_REQ_ZERO_WRITE); 2056 } 2057 2058 /** 2059 * Truncate file to 'offset' bytes (needed only for file protocols) 2060 */ 2061 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2062 { 2063 BlockDriver *drv = bs->drv; 2064 int ret; 2065 if (!drv) 2066 return -ENOMEDIUM; 2067 if (!drv->bdrv_truncate) 2068 return -ENOTSUP; 2069 if (bs->read_only) 2070 return -EACCES; 2071 if (bdrv_in_use(bs)) 2072 return -EBUSY; 2073 ret = drv->bdrv_truncate(bs, offset); 2074 if (ret == 0) { 2075 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2076 bdrv_dev_resize_cb(bs); 2077 } 2078 return ret; 2079 } 2080 2081 /** 2082 * Length of a allocated file in bytes. Sparse files are counted by actual 2083 * allocated space. Return < 0 if error or unknown. 2084 */ 2085 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2086 { 2087 BlockDriver *drv = bs->drv; 2088 if (!drv) { 2089 return -ENOMEDIUM; 2090 } 2091 if (drv->bdrv_get_allocated_file_size) { 2092 return drv->bdrv_get_allocated_file_size(bs); 2093 } 2094 if (bs->file) { 2095 return bdrv_get_allocated_file_size(bs->file); 2096 } 2097 return -ENOTSUP; 2098 } 2099 2100 /** 2101 * Length of a file in bytes. Return < 0 if error or unknown. 2102 */ 2103 int64_t bdrv_getlength(BlockDriverState *bs) 2104 { 2105 BlockDriver *drv = bs->drv; 2106 if (!drv) 2107 return -ENOMEDIUM; 2108 2109 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2110 if (drv->bdrv_getlength) { 2111 return drv->bdrv_getlength(bs); 2112 } 2113 } 2114 return bs->total_sectors * BDRV_SECTOR_SIZE; 2115 } 2116 2117 /* return 0 as number of sectors if no device present or error */ 2118 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2119 { 2120 int64_t length; 2121 length = bdrv_getlength(bs); 2122 if (length < 0) 2123 length = 0; 2124 else 2125 length = length >> BDRV_SECTOR_BITS; 2126 *nb_sectors_ptr = length; 2127 } 2128 2129 /* throttling disk io limits */ 2130 void bdrv_set_io_limits(BlockDriverState *bs, 2131 BlockIOLimit *io_limits) 2132 { 2133 bs->io_limits = *io_limits; 2134 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2135 } 2136 2137 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error, 2138 BlockErrorAction on_write_error) 2139 { 2140 bs->on_read_error = on_read_error; 2141 bs->on_write_error = on_write_error; 2142 } 2143 2144 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read) 2145 { 2146 return is_read ? bs->on_read_error : bs->on_write_error; 2147 } 2148 2149 int bdrv_is_read_only(BlockDriverState *bs) 2150 { 2151 return bs->read_only; 2152 } 2153 2154 int bdrv_is_sg(BlockDriverState *bs) 2155 { 2156 return bs->sg; 2157 } 2158 2159 int bdrv_enable_write_cache(BlockDriverState *bs) 2160 { 2161 return bs->enable_write_cache; 2162 } 2163 2164 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2165 { 2166 bs->enable_write_cache = wce; 2167 } 2168 2169 int bdrv_is_encrypted(BlockDriverState *bs) 2170 { 2171 if (bs->backing_hd && bs->backing_hd->encrypted) 2172 return 1; 2173 return bs->encrypted; 2174 } 2175 2176 int bdrv_key_required(BlockDriverState *bs) 2177 { 2178 BlockDriverState *backing_hd = bs->backing_hd; 2179 2180 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2181 return 1; 2182 return (bs->encrypted && !bs->valid_key); 2183 } 2184 2185 int bdrv_set_key(BlockDriverState *bs, const char *key) 2186 { 2187 int ret; 2188 if (bs->backing_hd && bs->backing_hd->encrypted) { 2189 ret = bdrv_set_key(bs->backing_hd, key); 2190 if (ret < 0) 2191 return ret; 2192 if (!bs->encrypted) 2193 return 0; 2194 } 2195 if (!bs->encrypted) { 2196 return -EINVAL; 2197 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2198 return -ENOMEDIUM; 2199 } 2200 ret = bs->drv->bdrv_set_key(bs, key); 2201 if (ret < 0) { 2202 bs->valid_key = 0; 2203 } else if (!bs->valid_key) { 2204 bs->valid_key = 1; 2205 /* call the change callback now, we skipped it on open */ 2206 bdrv_dev_change_media_cb(bs, true); 2207 } 2208 return ret; 2209 } 2210 2211 const char *bdrv_get_format_name(BlockDriverState *bs) 2212 { 2213 return bs->drv ? bs->drv->format_name : NULL; 2214 } 2215 2216 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2217 void *opaque) 2218 { 2219 BlockDriver *drv; 2220 2221 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2222 it(opaque, drv->format_name); 2223 } 2224 } 2225 2226 BlockDriverState *bdrv_find(const char *name) 2227 { 2228 BlockDriverState *bs; 2229 2230 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2231 if (!strcmp(name, bs->device_name)) { 2232 return bs; 2233 } 2234 } 2235 return NULL; 2236 } 2237 2238 BlockDriverState *bdrv_next(BlockDriverState *bs) 2239 { 2240 if (!bs) { 2241 return QTAILQ_FIRST(&bdrv_states); 2242 } 2243 return QTAILQ_NEXT(bs, list); 2244 } 2245 2246 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2247 { 2248 BlockDriverState *bs; 2249 2250 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2251 it(opaque, bs); 2252 } 2253 } 2254 2255 const char *bdrv_get_device_name(BlockDriverState *bs) 2256 { 2257 return bs->device_name; 2258 } 2259 2260 int bdrv_get_flags(BlockDriverState *bs) 2261 { 2262 return bs->open_flags; 2263 } 2264 2265 void bdrv_flush_all(void) 2266 { 2267 BlockDriverState *bs; 2268 2269 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2270 bdrv_flush(bs); 2271 } 2272 } 2273 2274 int bdrv_has_zero_init(BlockDriverState *bs) 2275 { 2276 assert(bs->drv); 2277 2278 if (bs->drv->bdrv_has_zero_init) { 2279 return bs->drv->bdrv_has_zero_init(bs); 2280 } 2281 2282 return 1; 2283 } 2284 2285 typedef struct BdrvCoIsAllocatedData { 2286 BlockDriverState *bs; 2287 int64_t sector_num; 2288 int nb_sectors; 2289 int *pnum; 2290 int ret; 2291 bool done; 2292 } BdrvCoIsAllocatedData; 2293 2294 /* 2295 * Returns true iff the specified sector is present in the disk image. Drivers 2296 * not implementing the functionality are assumed to not support backing files, 2297 * hence all their sectors are reported as allocated. 2298 * 2299 * If 'sector_num' is beyond the end of the disk image the return value is 0 2300 * and 'pnum' is set to 0. 2301 * 2302 * 'pnum' is set to the number of sectors (including and immediately following 2303 * the specified sector) that are known to be in the same 2304 * allocated/unallocated state. 2305 * 2306 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2307 * beyond the end of the disk image it will be clamped. 2308 */ 2309 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2310 int nb_sectors, int *pnum) 2311 { 2312 int64_t n; 2313 2314 if (sector_num >= bs->total_sectors) { 2315 *pnum = 0; 2316 return 0; 2317 } 2318 2319 n = bs->total_sectors - sector_num; 2320 if (n < nb_sectors) { 2321 nb_sectors = n; 2322 } 2323 2324 if (!bs->drv->bdrv_co_is_allocated) { 2325 *pnum = nb_sectors; 2326 return 1; 2327 } 2328 2329 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2330 } 2331 2332 /* Coroutine wrapper for bdrv_is_allocated() */ 2333 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2334 { 2335 BdrvCoIsAllocatedData *data = opaque; 2336 BlockDriverState *bs = data->bs; 2337 2338 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2339 data->pnum); 2340 data->done = true; 2341 } 2342 2343 /* 2344 * Synchronous wrapper around bdrv_co_is_allocated(). 2345 * 2346 * See bdrv_co_is_allocated() for details. 2347 */ 2348 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2349 int *pnum) 2350 { 2351 Coroutine *co; 2352 BdrvCoIsAllocatedData data = { 2353 .bs = bs, 2354 .sector_num = sector_num, 2355 .nb_sectors = nb_sectors, 2356 .pnum = pnum, 2357 .done = false, 2358 }; 2359 2360 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2361 qemu_coroutine_enter(co, &data); 2362 while (!data.done) { 2363 qemu_aio_wait(); 2364 } 2365 return data.ret; 2366 } 2367 2368 /* 2369 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2370 * 2371 * Return true if the given sector is allocated in any image between 2372 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2373 * sector is allocated in any image of the chain. Return false otherwise. 2374 * 2375 * 'pnum' is set to the number of sectors (including and immediately following 2376 * the specified sector) that are known to be in the same 2377 * allocated/unallocated state. 2378 * 2379 */ 2380 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2381 BlockDriverState *base, 2382 int64_t sector_num, 2383 int nb_sectors, int *pnum) 2384 { 2385 BlockDriverState *intermediate; 2386 int ret, n = nb_sectors; 2387 2388 intermediate = top; 2389 while (intermediate && intermediate != base) { 2390 int pnum_inter; 2391 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2392 &pnum_inter); 2393 if (ret < 0) { 2394 return ret; 2395 } else if (ret) { 2396 *pnum = pnum_inter; 2397 return 1; 2398 } 2399 2400 /* 2401 * [sector_num, nb_sectors] is unallocated on top but intermediate 2402 * might have 2403 * 2404 * [sector_num+x, nr_sectors] allocated. 2405 */ 2406 if (n > pnum_inter) { 2407 n = pnum_inter; 2408 } 2409 2410 intermediate = intermediate->backing_hd; 2411 } 2412 2413 *pnum = n; 2414 return 0; 2415 } 2416 2417 BlockInfoList *qmp_query_block(Error **errp) 2418 { 2419 BlockInfoList *head = NULL, *cur_item = NULL; 2420 BlockDriverState *bs; 2421 2422 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2423 BlockInfoList *info = g_malloc0(sizeof(*info)); 2424 2425 info->value = g_malloc0(sizeof(*info->value)); 2426 info->value->device = g_strdup(bs->device_name); 2427 info->value->type = g_strdup("unknown"); 2428 info->value->locked = bdrv_dev_is_medium_locked(bs); 2429 info->value->removable = bdrv_dev_has_removable_media(bs); 2430 2431 if (bdrv_dev_has_removable_media(bs)) { 2432 info->value->has_tray_open = true; 2433 info->value->tray_open = bdrv_dev_is_tray_open(bs); 2434 } 2435 2436 if (bdrv_iostatus_is_enabled(bs)) { 2437 info->value->has_io_status = true; 2438 info->value->io_status = bs->iostatus; 2439 } 2440 2441 if (bs->drv) { 2442 info->value->has_inserted = true; 2443 info->value->inserted = g_malloc0(sizeof(*info->value->inserted)); 2444 info->value->inserted->file = g_strdup(bs->filename); 2445 info->value->inserted->ro = bs->read_only; 2446 info->value->inserted->drv = g_strdup(bs->drv->format_name); 2447 info->value->inserted->encrypted = bs->encrypted; 2448 info->value->inserted->encryption_key_missing = bdrv_key_required(bs); 2449 if (bs->backing_file[0]) { 2450 info->value->inserted->has_backing_file = true; 2451 info->value->inserted->backing_file = g_strdup(bs->backing_file); 2452 } 2453 2454 info->value->inserted->backing_file_depth = 2455 bdrv_get_backing_file_depth(bs); 2456 2457 if (bs->io_limits_enabled) { 2458 info->value->inserted->bps = 2459 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2460 info->value->inserted->bps_rd = 2461 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2462 info->value->inserted->bps_wr = 2463 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2464 info->value->inserted->iops = 2465 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2466 info->value->inserted->iops_rd = 2467 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2468 info->value->inserted->iops_wr = 2469 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2470 } 2471 } 2472 2473 /* XXX: waiting for the qapi to support GSList */ 2474 if (!cur_item) { 2475 head = cur_item = info; 2476 } else { 2477 cur_item->next = info; 2478 cur_item = info; 2479 } 2480 } 2481 2482 return head; 2483 } 2484 2485 /* Consider exposing this as a full fledged QMP command */ 2486 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp) 2487 { 2488 BlockStats *s; 2489 2490 s = g_malloc0(sizeof(*s)); 2491 2492 if (bs->device_name[0]) { 2493 s->has_device = true; 2494 s->device = g_strdup(bs->device_name); 2495 } 2496 2497 s->stats = g_malloc0(sizeof(*s->stats)); 2498 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2499 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2500 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2501 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2502 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2503 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2504 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2505 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2506 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2507 2508 if (bs->file) { 2509 s->has_parent = true; 2510 s->parent = qmp_query_blockstat(bs->file, NULL); 2511 } 2512 2513 return s; 2514 } 2515 2516 BlockStatsList *qmp_query_blockstats(Error **errp) 2517 { 2518 BlockStatsList *head = NULL, *cur_item = NULL; 2519 BlockDriverState *bs; 2520 2521 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2522 BlockStatsList *info = g_malloc0(sizeof(*info)); 2523 info->value = qmp_query_blockstat(bs, NULL); 2524 2525 /* XXX: waiting for the qapi to support GSList */ 2526 if (!cur_item) { 2527 head = cur_item = info; 2528 } else { 2529 cur_item->next = info; 2530 cur_item = info; 2531 } 2532 } 2533 2534 return head; 2535 } 2536 2537 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 2538 { 2539 if (bs->backing_hd && bs->backing_hd->encrypted) 2540 return bs->backing_file; 2541 else if (bs->encrypted) 2542 return bs->filename; 2543 else 2544 return NULL; 2545 } 2546 2547 void bdrv_get_backing_filename(BlockDriverState *bs, 2548 char *filename, int filename_size) 2549 { 2550 pstrcpy(filename, filename_size, bs->backing_file); 2551 } 2552 2553 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 2554 const uint8_t *buf, int nb_sectors) 2555 { 2556 BlockDriver *drv = bs->drv; 2557 if (!drv) 2558 return -ENOMEDIUM; 2559 if (!drv->bdrv_write_compressed) 2560 return -ENOTSUP; 2561 if (bdrv_check_request(bs, sector_num, nb_sectors)) 2562 return -EIO; 2563 2564 if (bs->dirty_bitmap) { 2565 set_dirty_bitmap(bs, sector_num, nb_sectors, 1); 2566 } 2567 2568 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 2569 } 2570 2571 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 2572 { 2573 BlockDriver *drv = bs->drv; 2574 if (!drv) 2575 return -ENOMEDIUM; 2576 if (!drv->bdrv_get_info) 2577 return -ENOTSUP; 2578 memset(bdi, 0, sizeof(*bdi)); 2579 return drv->bdrv_get_info(bs, bdi); 2580 } 2581 2582 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2583 int64_t pos, int size) 2584 { 2585 BlockDriver *drv = bs->drv; 2586 if (!drv) 2587 return -ENOMEDIUM; 2588 if (drv->bdrv_save_vmstate) 2589 return drv->bdrv_save_vmstate(bs, buf, pos, size); 2590 if (bs->file) 2591 return bdrv_save_vmstate(bs->file, buf, pos, size); 2592 return -ENOTSUP; 2593 } 2594 2595 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2596 int64_t pos, int size) 2597 { 2598 BlockDriver *drv = bs->drv; 2599 if (!drv) 2600 return -ENOMEDIUM; 2601 if (drv->bdrv_load_vmstate) 2602 return drv->bdrv_load_vmstate(bs, buf, pos, size); 2603 if (bs->file) 2604 return bdrv_load_vmstate(bs->file, buf, pos, size); 2605 return -ENOTSUP; 2606 } 2607 2608 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 2609 { 2610 BlockDriver *drv = bs->drv; 2611 2612 if (!drv || !drv->bdrv_debug_event) { 2613 return; 2614 } 2615 2616 drv->bdrv_debug_event(bs, event); 2617 2618 } 2619 2620 /**************************************************************/ 2621 /* handling of snapshots */ 2622 2623 int bdrv_can_snapshot(BlockDriverState *bs) 2624 { 2625 BlockDriver *drv = bs->drv; 2626 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 2627 return 0; 2628 } 2629 2630 if (!drv->bdrv_snapshot_create) { 2631 if (bs->file != NULL) { 2632 return bdrv_can_snapshot(bs->file); 2633 } 2634 return 0; 2635 } 2636 2637 return 1; 2638 } 2639 2640 int bdrv_is_snapshot(BlockDriverState *bs) 2641 { 2642 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 2643 } 2644 2645 BlockDriverState *bdrv_snapshots(void) 2646 { 2647 BlockDriverState *bs; 2648 2649 if (bs_snapshots) { 2650 return bs_snapshots; 2651 } 2652 2653 bs = NULL; 2654 while ((bs = bdrv_next(bs))) { 2655 if (bdrv_can_snapshot(bs)) { 2656 bs_snapshots = bs; 2657 return bs; 2658 } 2659 } 2660 return NULL; 2661 } 2662 2663 int bdrv_snapshot_create(BlockDriverState *bs, 2664 QEMUSnapshotInfo *sn_info) 2665 { 2666 BlockDriver *drv = bs->drv; 2667 if (!drv) 2668 return -ENOMEDIUM; 2669 if (drv->bdrv_snapshot_create) 2670 return drv->bdrv_snapshot_create(bs, sn_info); 2671 if (bs->file) 2672 return bdrv_snapshot_create(bs->file, sn_info); 2673 return -ENOTSUP; 2674 } 2675 2676 int bdrv_snapshot_goto(BlockDriverState *bs, 2677 const char *snapshot_id) 2678 { 2679 BlockDriver *drv = bs->drv; 2680 int ret, open_ret; 2681 2682 if (!drv) 2683 return -ENOMEDIUM; 2684 if (drv->bdrv_snapshot_goto) 2685 return drv->bdrv_snapshot_goto(bs, snapshot_id); 2686 2687 if (bs->file) { 2688 drv->bdrv_close(bs); 2689 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 2690 open_ret = drv->bdrv_open(bs, bs->open_flags); 2691 if (open_ret < 0) { 2692 bdrv_delete(bs->file); 2693 bs->drv = NULL; 2694 return open_ret; 2695 } 2696 return ret; 2697 } 2698 2699 return -ENOTSUP; 2700 } 2701 2702 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 2703 { 2704 BlockDriver *drv = bs->drv; 2705 if (!drv) 2706 return -ENOMEDIUM; 2707 if (drv->bdrv_snapshot_delete) 2708 return drv->bdrv_snapshot_delete(bs, snapshot_id); 2709 if (bs->file) 2710 return bdrv_snapshot_delete(bs->file, snapshot_id); 2711 return -ENOTSUP; 2712 } 2713 2714 int bdrv_snapshot_list(BlockDriverState *bs, 2715 QEMUSnapshotInfo **psn_info) 2716 { 2717 BlockDriver *drv = bs->drv; 2718 if (!drv) 2719 return -ENOMEDIUM; 2720 if (drv->bdrv_snapshot_list) 2721 return drv->bdrv_snapshot_list(bs, psn_info); 2722 if (bs->file) 2723 return bdrv_snapshot_list(bs->file, psn_info); 2724 return -ENOTSUP; 2725 } 2726 2727 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 2728 const char *snapshot_name) 2729 { 2730 BlockDriver *drv = bs->drv; 2731 if (!drv) { 2732 return -ENOMEDIUM; 2733 } 2734 if (!bs->read_only) { 2735 return -EINVAL; 2736 } 2737 if (drv->bdrv_snapshot_load_tmp) { 2738 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 2739 } 2740 return -ENOTSUP; 2741 } 2742 2743 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 2744 const char *backing_file) 2745 { 2746 if (!bs->drv) { 2747 return NULL; 2748 } 2749 2750 if (bs->backing_hd) { 2751 if (strcmp(bs->backing_file, backing_file) == 0) { 2752 return bs->backing_hd; 2753 } else { 2754 return bdrv_find_backing_image(bs->backing_hd, backing_file); 2755 } 2756 } 2757 2758 return NULL; 2759 } 2760 2761 int bdrv_get_backing_file_depth(BlockDriverState *bs) 2762 { 2763 if (!bs->drv) { 2764 return 0; 2765 } 2766 2767 if (!bs->backing_hd) { 2768 return 0; 2769 } 2770 2771 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 2772 } 2773 2774 #define NB_SUFFIXES 4 2775 2776 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 2777 { 2778 static const char suffixes[NB_SUFFIXES] = "KMGT"; 2779 int64_t base; 2780 int i; 2781 2782 if (size <= 999) { 2783 snprintf(buf, buf_size, "%" PRId64, size); 2784 } else { 2785 base = 1024; 2786 for(i = 0; i < NB_SUFFIXES; i++) { 2787 if (size < (10 * base)) { 2788 snprintf(buf, buf_size, "%0.1f%c", 2789 (double)size / base, 2790 suffixes[i]); 2791 break; 2792 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 2793 snprintf(buf, buf_size, "%" PRId64 "%c", 2794 ((size + (base >> 1)) / base), 2795 suffixes[i]); 2796 break; 2797 } 2798 base = base * 1024; 2799 } 2800 } 2801 return buf; 2802 } 2803 2804 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 2805 { 2806 char buf1[128], date_buf[128], clock_buf[128]; 2807 #ifdef _WIN32 2808 struct tm *ptm; 2809 #else 2810 struct tm tm; 2811 #endif 2812 time_t ti; 2813 int64_t secs; 2814 2815 if (!sn) { 2816 snprintf(buf, buf_size, 2817 "%-10s%-20s%7s%20s%15s", 2818 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 2819 } else { 2820 ti = sn->date_sec; 2821 #ifdef _WIN32 2822 ptm = localtime(&ti); 2823 strftime(date_buf, sizeof(date_buf), 2824 "%Y-%m-%d %H:%M:%S", ptm); 2825 #else 2826 localtime_r(&ti, &tm); 2827 strftime(date_buf, sizeof(date_buf), 2828 "%Y-%m-%d %H:%M:%S", &tm); 2829 #endif 2830 secs = sn->vm_clock_nsec / 1000000000; 2831 snprintf(clock_buf, sizeof(clock_buf), 2832 "%02d:%02d:%02d.%03d", 2833 (int)(secs / 3600), 2834 (int)((secs / 60) % 60), 2835 (int)(secs % 60), 2836 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 2837 snprintf(buf, buf_size, 2838 "%-10s%-20s%7s%20s%15s", 2839 sn->id_str, sn->name, 2840 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 2841 date_buf, 2842 clock_buf); 2843 } 2844 return buf; 2845 } 2846 2847 /**************************************************************/ 2848 /* async I/Os */ 2849 2850 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 2851 QEMUIOVector *qiov, int nb_sectors, 2852 BlockDriverCompletionFunc *cb, void *opaque) 2853 { 2854 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 2855 2856 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 2857 cb, opaque, false); 2858 } 2859 2860 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 2861 QEMUIOVector *qiov, int nb_sectors, 2862 BlockDriverCompletionFunc *cb, void *opaque) 2863 { 2864 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 2865 2866 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 2867 cb, opaque, true); 2868 } 2869 2870 2871 typedef struct MultiwriteCB { 2872 int error; 2873 int num_requests; 2874 int num_callbacks; 2875 struct { 2876 BlockDriverCompletionFunc *cb; 2877 void *opaque; 2878 QEMUIOVector *free_qiov; 2879 } callbacks[]; 2880 } MultiwriteCB; 2881 2882 static void multiwrite_user_cb(MultiwriteCB *mcb) 2883 { 2884 int i; 2885 2886 for (i = 0; i < mcb->num_callbacks; i++) { 2887 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 2888 if (mcb->callbacks[i].free_qiov) { 2889 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 2890 } 2891 g_free(mcb->callbacks[i].free_qiov); 2892 } 2893 } 2894 2895 static void multiwrite_cb(void *opaque, int ret) 2896 { 2897 MultiwriteCB *mcb = opaque; 2898 2899 trace_multiwrite_cb(mcb, ret); 2900 2901 if (ret < 0 && !mcb->error) { 2902 mcb->error = ret; 2903 } 2904 2905 mcb->num_requests--; 2906 if (mcb->num_requests == 0) { 2907 multiwrite_user_cb(mcb); 2908 g_free(mcb); 2909 } 2910 } 2911 2912 static int multiwrite_req_compare(const void *a, const void *b) 2913 { 2914 const BlockRequest *req1 = a, *req2 = b; 2915 2916 /* 2917 * Note that we can't simply subtract req2->sector from req1->sector 2918 * here as that could overflow the return value. 2919 */ 2920 if (req1->sector > req2->sector) { 2921 return 1; 2922 } else if (req1->sector < req2->sector) { 2923 return -1; 2924 } else { 2925 return 0; 2926 } 2927 } 2928 2929 /* 2930 * Takes a bunch of requests and tries to merge them. Returns the number of 2931 * requests that remain after merging. 2932 */ 2933 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 2934 int num_reqs, MultiwriteCB *mcb) 2935 { 2936 int i, outidx; 2937 2938 // Sort requests by start sector 2939 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 2940 2941 // Check if adjacent requests touch the same clusters. If so, combine them, 2942 // filling up gaps with zero sectors. 2943 outidx = 0; 2944 for (i = 1; i < num_reqs; i++) { 2945 int merge = 0; 2946 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 2947 2948 // Handle exactly sequential writes and overlapping writes. 2949 if (reqs[i].sector <= oldreq_last) { 2950 merge = 1; 2951 } 2952 2953 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 2954 merge = 0; 2955 } 2956 2957 if (merge) { 2958 size_t size; 2959 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 2960 qemu_iovec_init(qiov, 2961 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 2962 2963 // Add the first request to the merged one. If the requests are 2964 // overlapping, drop the last sectors of the first request. 2965 size = (reqs[i].sector - reqs[outidx].sector) << 9; 2966 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 2967 2968 // We should need to add any zeros between the two requests 2969 assert (reqs[i].sector <= oldreq_last); 2970 2971 // Add the second request 2972 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 2973 2974 reqs[outidx].nb_sectors = qiov->size >> 9; 2975 reqs[outidx].qiov = qiov; 2976 2977 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 2978 } else { 2979 outidx++; 2980 reqs[outidx].sector = reqs[i].sector; 2981 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 2982 reqs[outidx].qiov = reqs[i].qiov; 2983 } 2984 } 2985 2986 return outidx + 1; 2987 } 2988 2989 /* 2990 * Submit multiple AIO write requests at once. 2991 * 2992 * On success, the function returns 0 and all requests in the reqs array have 2993 * been submitted. In error case this function returns -1, and any of the 2994 * requests may or may not be submitted yet. In particular, this means that the 2995 * callback will be called for some of the requests, for others it won't. The 2996 * caller must check the error field of the BlockRequest to wait for the right 2997 * callbacks (if error != 0, no callback will be called). 2998 * 2999 * The implementation may modify the contents of the reqs array, e.g. to merge 3000 * requests. However, the fields opaque and error are left unmodified as they 3001 * are used to signal failure for a single request to the caller. 3002 */ 3003 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3004 { 3005 MultiwriteCB *mcb; 3006 int i; 3007 3008 /* don't submit writes if we don't have a medium */ 3009 if (bs->drv == NULL) { 3010 for (i = 0; i < num_reqs; i++) { 3011 reqs[i].error = -ENOMEDIUM; 3012 } 3013 return -1; 3014 } 3015 3016 if (num_reqs == 0) { 3017 return 0; 3018 } 3019 3020 // Create MultiwriteCB structure 3021 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3022 mcb->num_requests = 0; 3023 mcb->num_callbacks = num_reqs; 3024 3025 for (i = 0; i < num_reqs; i++) { 3026 mcb->callbacks[i].cb = reqs[i].cb; 3027 mcb->callbacks[i].opaque = reqs[i].opaque; 3028 } 3029 3030 // Check for mergable requests 3031 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3032 3033 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3034 3035 /* Run the aio requests. */ 3036 mcb->num_requests = num_reqs; 3037 for (i = 0; i < num_reqs; i++) { 3038 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3039 reqs[i].nb_sectors, multiwrite_cb, mcb); 3040 } 3041 3042 return 0; 3043 } 3044 3045 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3046 { 3047 acb->pool->cancel(acb); 3048 } 3049 3050 /* block I/O throttling */ 3051 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3052 bool is_write, double elapsed_time, uint64_t *wait) 3053 { 3054 uint64_t bps_limit = 0; 3055 double bytes_limit, bytes_base, bytes_res; 3056 double slice_time, wait_time; 3057 3058 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3059 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3060 } else if (bs->io_limits.bps[is_write]) { 3061 bps_limit = bs->io_limits.bps[is_write]; 3062 } else { 3063 if (wait) { 3064 *wait = 0; 3065 } 3066 3067 return false; 3068 } 3069 3070 slice_time = bs->slice_end - bs->slice_start; 3071 slice_time /= (NANOSECONDS_PER_SECOND); 3072 bytes_limit = bps_limit * slice_time; 3073 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3074 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3075 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3076 } 3077 3078 /* bytes_base: the bytes of data which have been read/written; and 3079 * it is obtained from the history statistic info. 3080 * bytes_res: the remaining bytes of data which need to be read/written. 3081 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3082 * the total time for completing reading/writting all data. 3083 */ 3084 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3085 3086 if (bytes_base + bytes_res <= bytes_limit) { 3087 if (wait) { 3088 *wait = 0; 3089 } 3090 3091 return false; 3092 } 3093 3094 /* Calc approx time to dispatch */ 3095 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3096 3097 /* When the I/O rate at runtime exceeds the limits, 3098 * bs->slice_end need to be extended in order that the current statistic 3099 * info can be kept until the timer fire, so it is increased and tuned 3100 * based on the result of experiment. 3101 */ 3102 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3103 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3104 if (wait) { 3105 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3106 } 3107 3108 return true; 3109 } 3110 3111 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3112 double elapsed_time, uint64_t *wait) 3113 { 3114 uint64_t iops_limit = 0; 3115 double ios_limit, ios_base; 3116 double slice_time, wait_time; 3117 3118 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3119 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3120 } else if (bs->io_limits.iops[is_write]) { 3121 iops_limit = bs->io_limits.iops[is_write]; 3122 } else { 3123 if (wait) { 3124 *wait = 0; 3125 } 3126 3127 return false; 3128 } 3129 3130 slice_time = bs->slice_end - bs->slice_start; 3131 slice_time /= (NANOSECONDS_PER_SECOND); 3132 ios_limit = iops_limit * slice_time; 3133 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3134 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3135 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3136 } 3137 3138 if (ios_base + 1 <= ios_limit) { 3139 if (wait) { 3140 *wait = 0; 3141 } 3142 3143 return false; 3144 } 3145 3146 /* Calc approx time to dispatch */ 3147 wait_time = (ios_base + 1) / iops_limit; 3148 if (wait_time > elapsed_time) { 3149 wait_time = wait_time - elapsed_time; 3150 } else { 3151 wait_time = 0; 3152 } 3153 3154 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3155 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3156 if (wait) { 3157 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3158 } 3159 3160 return true; 3161 } 3162 3163 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3164 bool is_write, int64_t *wait) 3165 { 3166 int64_t now, max_wait; 3167 uint64_t bps_wait = 0, iops_wait = 0; 3168 double elapsed_time; 3169 int bps_ret, iops_ret; 3170 3171 now = qemu_get_clock_ns(vm_clock); 3172 if ((bs->slice_start < now) 3173 && (bs->slice_end > now)) { 3174 bs->slice_end = now + bs->slice_time; 3175 } else { 3176 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3177 bs->slice_start = now; 3178 bs->slice_end = now + bs->slice_time; 3179 3180 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3181 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3182 3183 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3184 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3185 } 3186 3187 elapsed_time = now - bs->slice_start; 3188 elapsed_time /= (NANOSECONDS_PER_SECOND); 3189 3190 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3191 is_write, elapsed_time, &bps_wait); 3192 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3193 elapsed_time, &iops_wait); 3194 if (bps_ret || iops_ret) { 3195 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3196 if (wait) { 3197 *wait = max_wait; 3198 } 3199 3200 now = qemu_get_clock_ns(vm_clock); 3201 if (bs->slice_end < now + max_wait) { 3202 bs->slice_end = now + max_wait; 3203 } 3204 3205 return true; 3206 } 3207 3208 if (wait) { 3209 *wait = 0; 3210 } 3211 3212 return false; 3213 } 3214 3215 /**************************************************************/ 3216 /* async block device emulation */ 3217 3218 typedef struct BlockDriverAIOCBSync { 3219 BlockDriverAIOCB common; 3220 QEMUBH *bh; 3221 int ret; 3222 /* vector translation state */ 3223 QEMUIOVector *qiov; 3224 uint8_t *bounce; 3225 int is_write; 3226 } BlockDriverAIOCBSync; 3227 3228 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3229 { 3230 BlockDriverAIOCBSync *acb = 3231 container_of(blockacb, BlockDriverAIOCBSync, common); 3232 qemu_bh_delete(acb->bh); 3233 acb->bh = NULL; 3234 qemu_aio_release(acb); 3235 } 3236 3237 static AIOPool bdrv_em_aio_pool = { 3238 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3239 .cancel = bdrv_aio_cancel_em, 3240 }; 3241 3242 static void bdrv_aio_bh_cb(void *opaque) 3243 { 3244 BlockDriverAIOCBSync *acb = opaque; 3245 3246 if (!acb->is_write) 3247 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3248 qemu_vfree(acb->bounce); 3249 acb->common.cb(acb->common.opaque, acb->ret); 3250 qemu_bh_delete(acb->bh); 3251 acb->bh = NULL; 3252 qemu_aio_release(acb); 3253 } 3254 3255 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3256 int64_t sector_num, 3257 QEMUIOVector *qiov, 3258 int nb_sectors, 3259 BlockDriverCompletionFunc *cb, 3260 void *opaque, 3261 int is_write) 3262 3263 { 3264 BlockDriverAIOCBSync *acb; 3265 3266 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque); 3267 acb->is_write = is_write; 3268 acb->qiov = qiov; 3269 acb->bounce = qemu_blockalign(bs, qiov->size); 3270 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3271 3272 if (is_write) { 3273 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3274 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3275 } else { 3276 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3277 } 3278 3279 qemu_bh_schedule(acb->bh); 3280 3281 return &acb->common; 3282 } 3283 3284 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3285 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3286 BlockDriverCompletionFunc *cb, void *opaque) 3287 { 3288 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3289 } 3290 3291 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3292 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3293 BlockDriverCompletionFunc *cb, void *opaque) 3294 { 3295 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3296 } 3297 3298 3299 typedef struct BlockDriverAIOCBCoroutine { 3300 BlockDriverAIOCB common; 3301 BlockRequest req; 3302 bool is_write; 3303 QEMUBH* bh; 3304 } BlockDriverAIOCBCoroutine; 3305 3306 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3307 { 3308 qemu_aio_flush(); 3309 } 3310 3311 static AIOPool bdrv_em_co_aio_pool = { 3312 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3313 .cancel = bdrv_aio_co_cancel_em, 3314 }; 3315 3316 static void bdrv_co_em_bh(void *opaque) 3317 { 3318 BlockDriverAIOCBCoroutine *acb = opaque; 3319 3320 acb->common.cb(acb->common.opaque, acb->req.error); 3321 qemu_bh_delete(acb->bh); 3322 qemu_aio_release(acb); 3323 } 3324 3325 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3326 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3327 { 3328 BlockDriverAIOCBCoroutine *acb = opaque; 3329 BlockDriverState *bs = acb->common.bs; 3330 3331 if (!acb->is_write) { 3332 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3333 acb->req.nb_sectors, acb->req.qiov, 0); 3334 } else { 3335 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3336 acb->req.nb_sectors, acb->req.qiov, 0); 3337 } 3338 3339 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3340 qemu_bh_schedule(acb->bh); 3341 } 3342 3343 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3344 int64_t sector_num, 3345 QEMUIOVector *qiov, 3346 int nb_sectors, 3347 BlockDriverCompletionFunc *cb, 3348 void *opaque, 3349 bool is_write) 3350 { 3351 Coroutine *co; 3352 BlockDriverAIOCBCoroutine *acb; 3353 3354 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3355 acb->req.sector = sector_num; 3356 acb->req.nb_sectors = nb_sectors; 3357 acb->req.qiov = qiov; 3358 acb->is_write = is_write; 3359 3360 co = qemu_coroutine_create(bdrv_co_do_rw); 3361 qemu_coroutine_enter(co, acb); 3362 3363 return &acb->common; 3364 } 3365 3366 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3367 { 3368 BlockDriverAIOCBCoroutine *acb = opaque; 3369 BlockDriverState *bs = acb->common.bs; 3370 3371 acb->req.error = bdrv_co_flush(bs); 3372 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3373 qemu_bh_schedule(acb->bh); 3374 } 3375 3376 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3377 BlockDriverCompletionFunc *cb, void *opaque) 3378 { 3379 trace_bdrv_aio_flush(bs, opaque); 3380 3381 Coroutine *co; 3382 BlockDriverAIOCBCoroutine *acb; 3383 3384 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3385 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3386 qemu_coroutine_enter(co, acb); 3387 3388 return &acb->common; 3389 } 3390 3391 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3392 { 3393 BlockDriverAIOCBCoroutine *acb = opaque; 3394 BlockDriverState *bs = acb->common.bs; 3395 3396 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3397 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3398 qemu_bh_schedule(acb->bh); 3399 } 3400 3401 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3402 int64_t sector_num, int nb_sectors, 3403 BlockDriverCompletionFunc *cb, void *opaque) 3404 { 3405 Coroutine *co; 3406 BlockDriverAIOCBCoroutine *acb; 3407 3408 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3409 3410 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3411 acb->req.sector = sector_num; 3412 acb->req.nb_sectors = nb_sectors; 3413 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3414 qemu_coroutine_enter(co, acb); 3415 3416 return &acb->common; 3417 } 3418 3419 void bdrv_init(void) 3420 { 3421 module_call_init(MODULE_INIT_BLOCK); 3422 } 3423 3424 void bdrv_init_with_whitelist(void) 3425 { 3426 use_bdrv_whitelist = 1; 3427 bdrv_init(); 3428 } 3429 3430 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs, 3431 BlockDriverCompletionFunc *cb, void *opaque) 3432 { 3433 BlockDriverAIOCB *acb; 3434 3435 if (pool->free_aiocb) { 3436 acb = pool->free_aiocb; 3437 pool->free_aiocb = acb->next; 3438 } else { 3439 acb = g_malloc0(pool->aiocb_size); 3440 acb->pool = pool; 3441 } 3442 acb->bs = bs; 3443 acb->cb = cb; 3444 acb->opaque = opaque; 3445 return acb; 3446 } 3447 3448 void qemu_aio_release(void *p) 3449 { 3450 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p; 3451 AIOPool *pool = acb->pool; 3452 acb->next = pool->free_aiocb; 3453 pool->free_aiocb = acb; 3454 } 3455 3456 /**************************************************************/ 3457 /* Coroutine block device emulation */ 3458 3459 typedef struct CoroutineIOCompletion { 3460 Coroutine *coroutine; 3461 int ret; 3462 } CoroutineIOCompletion; 3463 3464 static void bdrv_co_io_em_complete(void *opaque, int ret) 3465 { 3466 CoroutineIOCompletion *co = opaque; 3467 3468 co->ret = ret; 3469 qemu_coroutine_enter(co->coroutine, NULL); 3470 } 3471 3472 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 3473 int nb_sectors, QEMUIOVector *iov, 3474 bool is_write) 3475 { 3476 CoroutineIOCompletion co = { 3477 .coroutine = qemu_coroutine_self(), 3478 }; 3479 BlockDriverAIOCB *acb; 3480 3481 if (is_write) { 3482 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 3483 bdrv_co_io_em_complete, &co); 3484 } else { 3485 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 3486 bdrv_co_io_em_complete, &co); 3487 } 3488 3489 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 3490 if (!acb) { 3491 return -EIO; 3492 } 3493 qemu_coroutine_yield(); 3494 3495 return co.ret; 3496 } 3497 3498 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 3499 int64_t sector_num, int nb_sectors, 3500 QEMUIOVector *iov) 3501 { 3502 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 3503 } 3504 3505 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 3506 int64_t sector_num, int nb_sectors, 3507 QEMUIOVector *iov) 3508 { 3509 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 3510 } 3511 3512 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 3513 { 3514 RwCo *rwco = opaque; 3515 3516 rwco->ret = bdrv_co_flush(rwco->bs); 3517 } 3518 3519 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 3520 { 3521 int ret; 3522 3523 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3524 return 0; 3525 } 3526 3527 /* Write back cached data to the OS even with cache=unsafe */ 3528 if (bs->drv->bdrv_co_flush_to_os) { 3529 ret = bs->drv->bdrv_co_flush_to_os(bs); 3530 if (ret < 0) { 3531 return ret; 3532 } 3533 } 3534 3535 /* But don't actually force it to the disk with cache=unsafe */ 3536 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3537 return 0; 3538 } 3539 3540 if (bs->drv->bdrv_co_flush_to_disk) { 3541 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3542 } else if (bs->drv->bdrv_aio_flush) { 3543 BlockDriverAIOCB *acb; 3544 CoroutineIOCompletion co = { 3545 .coroutine = qemu_coroutine_self(), 3546 }; 3547 3548 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3549 if (acb == NULL) { 3550 ret = -EIO; 3551 } else { 3552 qemu_coroutine_yield(); 3553 ret = co.ret; 3554 } 3555 } else { 3556 /* 3557 * Some block drivers always operate in either writethrough or unsafe 3558 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3559 * know how the server works (because the behaviour is hardcoded or 3560 * depends on server-side configuration), so we can't ensure that 3561 * everything is safe on disk. Returning an error doesn't work because 3562 * that would break guests even if the server operates in writethrough 3563 * mode. 3564 * 3565 * Let's hope the user knows what he's doing. 3566 */ 3567 ret = 0; 3568 } 3569 if (ret < 0) { 3570 return ret; 3571 } 3572 3573 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3574 * in the case of cache=unsafe, so there are no useless flushes. 3575 */ 3576 return bdrv_co_flush(bs->file); 3577 } 3578 3579 void bdrv_invalidate_cache(BlockDriverState *bs) 3580 { 3581 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 3582 bs->drv->bdrv_invalidate_cache(bs); 3583 } 3584 } 3585 3586 void bdrv_invalidate_cache_all(void) 3587 { 3588 BlockDriverState *bs; 3589 3590 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3591 bdrv_invalidate_cache(bs); 3592 } 3593 } 3594 3595 void bdrv_clear_incoming_migration_all(void) 3596 { 3597 BlockDriverState *bs; 3598 3599 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3600 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 3601 } 3602 } 3603 3604 int bdrv_flush(BlockDriverState *bs) 3605 { 3606 Coroutine *co; 3607 RwCo rwco = { 3608 .bs = bs, 3609 .ret = NOT_DONE, 3610 }; 3611 3612 if (qemu_in_coroutine()) { 3613 /* Fast-path if already in coroutine context */ 3614 bdrv_flush_co_entry(&rwco); 3615 } else { 3616 co = qemu_coroutine_create(bdrv_flush_co_entry); 3617 qemu_coroutine_enter(co, &rwco); 3618 while (rwco.ret == NOT_DONE) { 3619 qemu_aio_wait(); 3620 } 3621 } 3622 3623 return rwco.ret; 3624 } 3625 3626 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 3627 { 3628 RwCo *rwco = opaque; 3629 3630 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 3631 } 3632 3633 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 3634 int nb_sectors) 3635 { 3636 if (!bs->drv) { 3637 return -ENOMEDIUM; 3638 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 3639 return -EIO; 3640 } else if (bs->read_only) { 3641 return -EROFS; 3642 } else if (bs->drv->bdrv_co_discard) { 3643 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 3644 } else if (bs->drv->bdrv_aio_discard) { 3645 BlockDriverAIOCB *acb; 3646 CoroutineIOCompletion co = { 3647 .coroutine = qemu_coroutine_self(), 3648 }; 3649 3650 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 3651 bdrv_co_io_em_complete, &co); 3652 if (acb == NULL) { 3653 return -EIO; 3654 } else { 3655 qemu_coroutine_yield(); 3656 return co.ret; 3657 } 3658 } else { 3659 return 0; 3660 } 3661 } 3662 3663 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 3664 { 3665 Coroutine *co; 3666 RwCo rwco = { 3667 .bs = bs, 3668 .sector_num = sector_num, 3669 .nb_sectors = nb_sectors, 3670 .ret = NOT_DONE, 3671 }; 3672 3673 if (qemu_in_coroutine()) { 3674 /* Fast-path if already in coroutine context */ 3675 bdrv_discard_co_entry(&rwco); 3676 } else { 3677 co = qemu_coroutine_create(bdrv_discard_co_entry); 3678 qemu_coroutine_enter(co, &rwco); 3679 while (rwco.ret == NOT_DONE) { 3680 qemu_aio_wait(); 3681 } 3682 } 3683 3684 return rwco.ret; 3685 } 3686 3687 /**************************************************************/ 3688 /* removable device support */ 3689 3690 /** 3691 * Return TRUE if the media is present 3692 */ 3693 int bdrv_is_inserted(BlockDriverState *bs) 3694 { 3695 BlockDriver *drv = bs->drv; 3696 3697 if (!drv) 3698 return 0; 3699 if (!drv->bdrv_is_inserted) 3700 return 1; 3701 return drv->bdrv_is_inserted(bs); 3702 } 3703 3704 /** 3705 * Return whether the media changed since the last call to this 3706 * function, or -ENOTSUP if we don't know. Most drivers don't know. 3707 */ 3708 int bdrv_media_changed(BlockDriverState *bs) 3709 { 3710 BlockDriver *drv = bs->drv; 3711 3712 if (drv && drv->bdrv_media_changed) { 3713 return drv->bdrv_media_changed(bs); 3714 } 3715 return -ENOTSUP; 3716 } 3717 3718 /** 3719 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 3720 */ 3721 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 3722 { 3723 BlockDriver *drv = bs->drv; 3724 3725 if (drv && drv->bdrv_eject) { 3726 drv->bdrv_eject(bs, eject_flag); 3727 } 3728 3729 if (bs->device_name[0] != '\0') { 3730 bdrv_emit_qmp_eject_event(bs, eject_flag); 3731 } 3732 } 3733 3734 /** 3735 * Lock or unlock the media (if it is locked, the user won't be able 3736 * to eject it manually). 3737 */ 3738 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 3739 { 3740 BlockDriver *drv = bs->drv; 3741 3742 trace_bdrv_lock_medium(bs, locked); 3743 3744 if (drv && drv->bdrv_lock_medium) { 3745 drv->bdrv_lock_medium(bs, locked); 3746 } 3747 } 3748 3749 /* needed for generic scsi interface */ 3750 3751 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 3752 { 3753 BlockDriver *drv = bs->drv; 3754 3755 if (drv && drv->bdrv_ioctl) 3756 return drv->bdrv_ioctl(bs, req, buf); 3757 return -ENOTSUP; 3758 } 3759 3760 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 3761 unsigned long int req, void *buf, 3762 BlockDriverCompletionFunc *cb, void *opaque) 3763 { 3764 BlockDriver *drv = bs->drv; 3765 3766 if (drv && drv->bdrv_aio_ioctl) 3767 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 3768 return NULL; 3769 } 3770 3771 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 3772 { 3773 bs->buffer_alignment = align; 3774 } 3775 3776 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3777 { 3778 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 3779 } 3780 3781 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable) 3782 { 3783 int64_t bitmap_size; 3784 3785 bs->dirty_count = 0; 3786 if (enable) { 3787 if (!bs->dirty_bitmap) { 3788 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) + 3789 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1; 3790 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 3791 3792 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size); 3793 } 3794 } else { 3795 if (bs->dirty_bitmap) { 3796 g_free(bs->dirty_bitmap); 3797 bs->dirty_bitmap = NULL; 3798 } 3799 } 3800 } 3801 3802 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 3803 { 3804 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 3805 3806 if (bs->dirty_bitmap && 3807 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) { 3808 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] & 3809 (1UL << (chunk % (sizeof(unsigned long) * 8)))); 3810 } else { 3811 return 0; 3812 } 3813 } 3814 3815 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 3816 int nr_sectors) 3817 { 3818 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0); 3819 } 3820 3821 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 3822 { 3823 return bs->dirty_count; 3824 } 3825 3826 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 3827 { 3828 assert(bs->in_use != in_use); 3829 bs->in_use = in_use; 3830 } 3831 3832 int bdrv_in_use(BlockDriverState *bs) 3833 { 3834 return bs->in_use; 3835 } 3836 3837 void bdrv_iostatus_enable(BlockDriverState *bs) 3838 { 3839 bs->iostatus_enabled = true; 3840 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 3841 } 3842 3843 /* The I/O status is only enabled if the drive explicitly 3844 * enables it _and_ the VM is configured to stop on errors */ 3845 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 3846 { 3847 return (bs->iostatus_enabled && 3848 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC || 3849 bs->on_write_error == BLOCK_ERR_STOP_ANY || 3850 bs->on_read_error == BLOCK_ERR_STOP_ANY)); 3851 } 3852 3853 void bdrv_iostatus_disable(BlockDriverState *bs) 3854 { 3855 bs->iostatus_enabled = false; 3856 } 3857 3858 void bdrv_iostatus_reset(BlockDriverState *bs) 3859 { 3860 if (bdrv_iostatus_is_enabled(bs)) { 3861 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 3862 } 3863 } 3864 3865 /* XXX: Today this is set by device models because it makes the implementation 3866 quite simple. However, the block layer knows about the error, so it's 3867 possible to implement this without device models being involved */ 3868 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 3869 { 3870 if (bdrv_iostatus_is_enabled(bs) && 3871 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 3872 assert(error >= 0); 3873 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 3874 BLOCK_DEVICE_IO_STATUS_FAILED; 3875 } 3876 } 3877 3878 void 3879 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 3880 enum BlockAcctType type) 3881 { 3882 assert(type < BDRV_MAX_IOTYPE); 3883 3884 cookie->bytes = bytes; 3885 cookie->start_time_ns = get_clock(); 3886 cookie->type = type; 3887 } 3888 3889 void 3890 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 3891 { 3892 assert(cookie->type < BDRV_MAX_IOTYPE); 3893 3894 bs->nr_bytes[cookie->type] += cookie->bytes; 3895 bs->nr_ops[cookie->type]++; 3896 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 3897 } 3898 3899 int bdrv_img_create(const char *filename, const char *fmt, 3900 const char *base_filename, const char *base_fmt, 3901 char *options, uint64_t img_size, int flags) 3902 { 3903 QEMUOptionParameter *param = NULL, *create_options = NULL; 3904 QEMUOptionParameter *backing_fmt, *backing_file, *size; 3905 BlockDriverState *bs = NULL; 3906 BlockDriver *drv, *proto_drv; 3907 BlockDriver *backing_drv = NULL; 3908 int ret = 0; 3909 3910 /* Find driver and parse its options */ 3911 drv = bdrv_find_format(fmt); 3912 if (!drv) { 3913 error_report("Unknown file format '%s'", fmt); 3914 ret = -EINVAL; 3915 goto out; 3916 } 3917 3918 proto_drv = bdrv_find_protocol(filename); 3919 if (!proto_drv) { 3920 error_report("Unknown protocol '%s'", filename); 3921 ret = -EINVAL; 3922 goto out; 3923 } 3924 3925 create_options = append_option_parameters(create_options, 3926 drv->create_options); 3927 create_options = append_option_parameters(create_options, 3928 proto_drv->create_options); 3929 3930 /* Create parameter list with default values */ 3931 param = parse_option_parameters("", create_options, param); 3932 3933 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 3934 3935 /* Parse -o options */ 3936 if (options) { 3937 param = parse_option_parameters(options, create_options, param); 3938 if (param == NULL) { 3939 error_report("Invalid options for file format '%s'.", fmt); 3940 ret = -EINVAL; 3941 goto out; 3942 } 3943 } 3944 3945 if (base_filename) { 3946 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 3947 base_filename)) { 3948 error_report("Backing file not supported for file format '%s'", 3949 fmt); 3950 ret = -EINVAL; 3951 goto out; 3952 } 3953 } 3954 3955 if (base_fmt) { 3956 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 3957 error_report("Backing file format not supported for file " 3958 "format '%s'", fmt); 3959 ret = -EINVAL; 3960 goto out; 3961 } 3962 } 3963 3964 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 3965 if (backing_file && backing_file->value.s) { 3966 if (!strcmp(filename, backing_file->value.s)) { 3967 error_report("Error: Trying to create an image with the " 3968 "same filename as the backing file"); 3969 ret = -EINVAL; 3970 goto out; 3971 } 3972 } 3973 3974 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 3975 if (backing_fmt && backing_fmt->value.s) { 3976 backing_drv = bdrv_find_format(backing_fmt->value.s); 3977 if (!backing_drv) { 3978 error_report("Unknown backing file format '%s'", 3979 backing_fmt->value.s); 3980 ret = -EINVAL; 3981 goto out; 3982 } 3983 } 3984 3985 // The size for the image must always be specified, with one exception: 3986 // If we are using a backing file, we can obtain the size from there 3987 size = get_option_parameter(param, BLOCK_OPT_SIZE); 3988 if (size && size->value.n == -1) { 3989 if (backing_file && backing_file->value.s) { 3990 uint64_t size; 3991 char buf[32]; 3992 int back_flags; 3993 3994 /* backing files always opened read-only */ 3995 back_flags = 3996 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 3997 3998 bs = bdrv_new(""); 3999 4000 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4001 if (ret < 0) { 4002 error_report("Could not open '%s'", backing_file->value.s); 4003 goto out; 4004 } 4005 bdrv_get_geometry(bs, &size); 4006 size *= 512; 4007 4008 snprintf(buf, sizeof(buf), "%" PRId64, size); 4009 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4010 } else { 4011 error_report("Image creation needs a size parameter"); 4012 ret = -EINVAL; 4013 goto out; 4014 } 4015 } 4016 4017 printf("Formatting '%s', fmt=%s ", filename, fmt); 4018 print_option_parameters(param); 4019 puts(""); 4020 4021 ret = bdrv_create(drv, filename, param); 4022 4023 if (ret < 0) { 4024 if (ret == -ENOTSUP) { 4025 error_report("Formatting or formatting option not supported for " 4026 "file format '%s'", fmt); 4027 } else if (ret == -EFBIG) { 4028 error_report("The image size is too large for file format '%s'", 4029 fmt); 4030 } else { 4031 error_report("%s: error while creating %s: %s", filename, fmt, 4032 strerror(-ret)); 4033 } 4034 } 4035 4036 out: 4037 free_option_parameters(create_options); 4038 free_option_parameters(param); 4039 4040 if (bs) { 4041 bdrv_delete(bs); 4042 } 4043 4044 return ret; 4045 } 4046 4047 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs, 4048 int64_t speed, BlockDriverCompletionFunc *cb, 4049 void *opaque, Error **errp) 4050 { 4051 BlockJob *job; 4052 4053 if (bs->job || bdrv_in_use(bs)) { 4054 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs)); 4055 return NULL; 4056 } 4057 bdrv_set_in_use(bs, 1); 4058 4059 job = g_malloc0(job_type->instance_size); 4060 job->job_type = job_type; 4061 job->bs = bs; 4062 job->cb = cb; 4063 job->opaque = opaque; 4064 job->busy = true; 4065 bs->job = job; 4066 4067 /* Only set speed when necessary to avoid NotSupported error */ 4068 if (speed != 0) { 4069 Error *local_err = NULL; 4070 4071 block_job_set_speed(job, speed, &local_err); 4072 if (error_is_set(&local_err)) { 4073 bs->job = NULL; 4074 g_free(job); 4075 bdrv_set_in_use(bs, 0); 4076 error_propagate(errp, local_err); 4077 return NULL; 4078 } 4079 } 4080 return job; 4081 } 4082 4083 void block_job_complete(BlockJob *job, int ret) 4084 { 4085 BlockDriverState *bs = job->bs; 4086 4087 assert(bs->job == job); 4088 job->cb(job->opaque, ret); 4089 bs->job = NULL; 4090 g_free(job); 4091 bdrv_set_in_use(bs, 0); 4092 } 4093 4094 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp) 4095 { 4096 Error *local_err = NULL; 4097 4098 if (!job->job_type->set_speed) { 4099 error_set(errp, QERR_NOT_SUPPORTED); 4100 return; 4101 } 4102 job->job_type->set_speed(job, speed, &local_err); 4103 if (error_is_set(&local_err)) { 4104 error_propagate(errp, local_err); 4105 return; 4106 } 4107 4108 job->speed = speed; 4109 } 4110 4111 void block_job_cancel(BlockJob *job) 4112 { 4113 job->cancelled = true; 4114 if (job->co && !job->busy) { 4115 qemu_coroutine_enter(job->co, NULL); 4116 } 4117 } 4118 4119 bool block_job_is_cancelled(BlockJob *job) 4120 { 4121 return job->cancelled; 4122 } 4123 4124 struct BlockCancelData { 4125 BlockJob *job; 4126 BlockDriverCompletionFunc *cb; 4127 void *opaque; 4128 bool cancelled; 4129 int ret; 4130 }; 4131 4132 static void block_job_cancel_cb(void *opaque, int ret) 4133 { 4134 struct BlockCancelData *data = opaque; 4135 4136 data->cancelled = block_job_is_cancelled(data->job); 4137 data->ret = ret; 4138 data->cb(data->opaque, ret); 4139 } 4140 4141 int block_job_cancel_sync(BlockJob *job) 4142 { 4143 struct BlockCancelData data; 4144 BlockDriverState *bs = job->bs; 4145 4146 assert(bs->job == job); 4147 4148 /* Set up our own callback to store the result and chain to 4149 * the original callback. 4150 */ 4151 data.job = job; 4152 data.cb = job->cb; 4153 data.opaque = job->opaque; 4154 data.ret = -EINPROGRESS; 4155 job->cb = block_job_cancel_cb; 4156 job->opaque = &data; 4157 block_job_cancel(job); 4158 while (data.ret == -EINPROGRESS) { 4159 qemu_aio_wait(); 4160 } 4161 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret; 4162 } 4163 4164 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns) 4165 { 4166 /* Check cancellation *before* setting busy = false, too! */ 4167 if (!block_job_is_cancelled(job)) { 4168 job->busy = false; 4169 co_sleep_ns(clock, ns); 4170 job->busy = true; 4171 } 4172 } 4173