1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor/monitor.h" 28 #include "block/block_int.h" 29 #include "block/blockjob.h" 30 #include "qemu/module.h" 31 #include "qapi/qmp/qjson.h" 32 #include "sysemu/sysemu.h" 33 #include "qemu/notify.h" 34 #include "block/coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu/timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* The device to use for VM snapshots */ 103 static BlockDriverState *bs_snapshots; 104 105 /* If non-zero, use only whitelisted block drivers */ 106 static int use_bdrv_whitelist; 107 108 #ifdef _WIN32 109 static int is_windows_drive_prefix(const char *filename) 110 { 111 return (((filename[0] >= 'a' && filename[0] <= 'z') || 112 (filename[0] >= 'A' && filename[0] <= 'Z')) && 113 filename[1] == ':'); 114 } 115 116 int is_windows_drive(const char *filename) 117 { 118 if (is_windows_drive_prefix(filename) && 119 filename[2] == '\0') 120 return 1; 121 if (strstart(filename, "\\\\.\\", NULL) || 122 strstart(filename, "//./", NULL)) 123 return 1; 124 return 0; 125 } 126 #endif 127 128 /* throttling disk I/O limits */ 129 void bdrv_io_limits_disable(BlockDriverState *bs) 130 { 131 bs->io_limits_enabled = false; 132 133 while (qemu_co_queue_next(&bs->throttled_reqs)); 134 135 if (bs->block_timer) { 136 qemu_del_timer(bs->block_timer); 137 qemu_free_timer(bs->block_timer); 138 bs->block_timer = NULL; 139 } 140 141 bs->slice_start = 0; 142 bs->slice_end = 0; 143 bs->slice_time = 0; 144 memset(&bs->io_base, 0, sizeof(bs->io_base)); 145 } 146 147 static void bdrv_block_timer(void *opaque) 148 { 149 BlockDriverState *bs = opaque; 150 151 qemu_co_queue_next(&bs->throttled_reqs); 152 } 153 154 void bdrv_io_limits_enable(BlockDriverState *bs) 155 { 156 qemu_co_queue_init(&bs->throttled_reqs); 157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 158 bs->io_limits_enabled = true; 159 } 160 161 bool bdrv_io_limits_enabled(BlockDriverState *bs) 162 { 163 BlockIOLimit *io_limits = &bs->io_limits; 164 return io_limits->bps[BLOCK_IO_LIMIT_READ] 165 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 166 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 167 || io_limits->iops[BLOCK_IO_LIMIT_READ] 168 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 169 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 170 } 171 172 static void bdrv_io_limits_intercept(BlockDriverState *bs, 173 bool is_write, int nb_sectors) 174 { 175 int64_t wait_time = -1; 176 177 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 178 qemu_co_queue_wait(&bs->throttled_reqs); 179 } 180 181 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 182 * throttled requests will not be dequeued until the current request is 183 * allowed to be serviced. So if the current request still exceeds the 184 * limits, it will be inserted to the head. All requests followed it will 185 * be still in throttled_reqs queue. 186 */ 187 188 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 189 qemu_mod_timer(bs->block_timer, 190 wait_time + qemu_get_clock_ns(vm_clock)); 191 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 192 } 193 194 qemu_co_queue_next(&bs->throttled_reqs); 195 } 196 197 /* check if the path starts with "<protocol>:" */ 198 static int path_has_protocol(const char *path) 199 { 200 const char *p; 201 202 #ifdef _WIN32 203 if (is_windows_drive(path) || 204 is_windows_drive_prefix(path)) { 205 return 0; 206 } 207 p = path + strcspn(path, ":/\\"); 208 #else 209 p = path + strcspn(path, ":/"); 210 #endif 211 212 return *p == ':'; 213 } 214 215 int path_is_absolute(const char *path) 216 { 217 #ifdef _WIN32 218 /* specific case for names like: "\\.\d:" */ 219 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 220 return 1; 221 } 222 return (*path == '/' || *path == '\\'); 223 #else 224 return (*path == '/'); 225 #endif 226 } 227 228 /* if filename is absolute, just copy it to dest. Otherwise, build a 229 path to it by considering it is relative to base_path. URL are 230 supported. */ 231 void path_combine(char *dest, int dest_size, 232 const char *base_path, 233 const char *filename) 234 { 235 const char *p, *p1; 236 int len; 237 238 if (dest_size <= 0) 239 return; 240 if (path_is_absolute(filename)) { 241 pstrcpy(dest, dest_size, filename); 242 } else { 243 p = strchr(base_path, ':'); 244 if (p) 245 p++; 246 else 247 p = base_path; 248 p1 = strrchr(base_path, '/'); 249 #ifdef _WIN32 250 { 251 const char *p2; 252 p2 = strrchr(base_path, '\\'); 253 if (!p1 || p2 > p1) 254 p1 = p2; 255 } 256 #endif 257 if (p1) 258 p1++; 259 else 260 p1 = base_path; 261 if (p1 > p) 262 p = p1; 263 len = p - base_path; 264 if (len > dest_size - 1) 265 len = dest_size - 1; 266 memcpy(dest, base_path, len); 267 dest[len] = '\0'; 268 pstrcat(dest, dest_size, filename); 269 } 270 } 271 272 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 273 { 274 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 275 pstrcpy(dest, sz, bs->backing_file); 276 } else { 277 path_combine(dest, sz, bs->filename, bs->backing_file); 278 } 279 } 280 281 void bdrv_register(BlockDriver *bdrv) 282 { 283 /* Block drivers without coroutine functions need emulation */ 284 if (!bdrv->bdrv_co_readv) { 285 bdrv->bdrv_co_readv = bdrv_co_readv_em; 286 bdrv->bdrv_co_writev = bdrv_co_writev_em; 287 288 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 289 * the block driver lacks aio we need to emulate that too. 290 */ 291 if (!bdrv->bdrv_aio_readv) { 292 /* add AIO emulation layer */ 293 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 294 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 295 } 296 } 297 298 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 299 } 300 301 /* create a new block device (by default it is empty) */ 302 BlockDriverState *bdrv_new(const char *device_name) 303 { 304 BlockDriverState *bs; 305 306 bs = g_malloc0(sizeof(BlockDriverState)); 307 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 308 if (device_name[0] != '\0') { 309 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 310 } 311 bdrv_iostatus_disable(bs); 312 notifier_list_init(&bs->close_notifiers); 313 314 return bs; 315 } 316 317 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 318 { 319 notifier_list_add(&bs->close_notifiers, notify); 320 } 321 322 BlockDriver *bdrv_find_format(const char *format_name) 323 { 324 BlockDriver *drv1; 325 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 326 if (!strcmp(drv1->format_name, format_name)) { 327 return drv1; 328 } 329 } 330 return NULL; 331 } 332 333 static int bdrv_is_whitelisted(BlockDriver *drv) 334 { 335 static const char *whitelist[] = { 336 CONFIG_BDRV_WHITELIST 337 }; 338 const char **p; 339 340 if (!whitelist[0]) 341 return 1; /* no whitelist, anything goes */ 342 343 for (p = whitelist; *p; p++) { 344 if (!strcmp(drv->format_name, *p)) { 345 return 1; 346 } 347 } 348 return 0; 349 } 350 351 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 352 { 353 BlockDriver *drv = bdrv_find_format(format_name); 354 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 355 } 356 357 typedef struct CreateCo { 358 BlockDriver *drv; 359 char *filename; 360 QEMUOptionParameter *options; 361 int ret; 362 } CreateCo; 363 364 static void coroutine_fn bdrv_create_co_entry(void *opaque) 365 { 366 CreateCo *cco = opaque; 367 assert(cco->drv); 368 369 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 370 } 371 372 int bdrv_create(BlockDriver *drv, const char* filename, 373 QEMUOptionParameter *options) 374 { 375 int ret; 376 377 Coroutine *co; 378 CreateCo cco = { 379 .drv = drv, 380 .filename = g_strdup(filename), 381 .options = options, 382 .ret = NOT_DONE, 383 }; 384 385 if (!drv->bdrv_create) { 386 ret = -ENOTSUP; 387 goto out; 388 } 389 390 if (qemu_in_coroutine()) { 391 /* Fast-path if already in coroutine context */ 392 bdrv_create_co_entry(&cco); 393 } else { 394 co = qemu_coroutine_create(bdrv_create_co_entry); 395 qemu_coroutine_enter(co, &cco); 396 while (cco.ret == NOT_DONE) { 397 qemu_aio_wait(); 398 } 399 } 400 401 ret = cco.ret; 402 403 out: 404 g_free(cco.filename); 405 return ret; 406 } 407 408 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 409 { 410 BlockDriver *drv; 411 412 drv = bdrv_find_protocol(filename); 413 if (drv == NULL) { 414 return -ENOENT; 415 } 416 417 return bdrv_create(drv, filename, options); 418 } 419 420 /* 421 * Create a uniquely-named empty temporary file. 422 * Return 0 upon success, otherwise a negative errno value. 423 */ 424 int get_tmp_filename(char *filename, int size) 425 { 426 #ifdef _WIN32 427 char temp_dir[MAX_PATH]; 428 /* GetTempFileName requires that its output buffer (4th param) 429 have length MAX_PATH or greater. */ 430 assert(size >= MAX_PATH); 431 return (GetTempPath(MAX_PATH, temp_dir) 432 && GetTempFileName(temp_dir, "qem", 0, filename) 433 ? 0 : -GetLastError()); 434 #else 435 int fd; 436 const char *tmpdir; 437 tmpdir = getenv("TMPDIR"); 438 if (!tmpdir) 439 tmpdir = "/tmp"; 440 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 441 return -EOVERFLOW; 442 } 443 fd = mkstemp(filename); 444 if (fd < 0) { 445 return -errno; 446 } 447 if (close(fd) != 0) { 448 unlink(filename); 449 return -errno; 450 } 451 return 0; 452 #endif 453 } 454 455 /* 456 * Detect host devices. By convention, /dev/cdrom[N] is always 457 * recognized as a host CDROM. 458 */ 459 static BlockDriver *find_hdev_driver(const char *filename) 460 { 461 int score_max = 0, score; 462 BlockDriver *drv = NULL, *d; 463 464 QLIST_FOREACH(d, &bdrv_drivers, list) { 465 if (d->bdrv_probe_device) { 466 score = d->bdrv_probe_device(filename); 467 if (score > score_max) { 468 score_max = score; 469 drv = d; 470 } 471 } 472 } 473 474 return drv; 475 } 476 477 BlockDriver *bdrv_find_protocol(const char *filename) 478 { 479 BlockDriver *drv1; 480 char protocol[128]; 481 int len; 482 const char *p; 483 484 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 485 486 /* 487 * XXX(hch): we really should not let host device detection 488 * override an explicit protocol specification, but moving this 489 * later breaks access to device names with colons in them. 490 * Thanks to the brain-dead persistent naming schemes on udev- 491 * based Linux systems those actually are quite common. 492 */ 493 drv1 = find_hdev_driver(filename); 494 if (drv1) { 495 return drv1; 496 } 497 498 if (!path_has_protocol(filename)) { 499 return bdrv_find_format("file"); 500 } 501 p = strchr(filename, ':'); 502 assert(p != NULL); 503 len = p - filename; 504 if (len > sizeof(protocol) - 1) 505 len = sizeof(protocol) - 1; 506 memcpy(protocol, filename, len); 507 protocol[len] = '\0'; 508 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 509 if (drv1->protocol_name && 510 !strcmp(drv1->protocol_name, protocol)) { 511 return drv1; 512 } 513 } 514 return NULL; 515 } 516 517 static int find_image_format(BlockDriverState *bs, const char *filename, 518 BlockDriver **pdrv) 519 { 520 int score, score_max; 521 BlockDriver *drv1, *drv; 522 uint8_t buf[2048]; 523 int ret = 0; 524 525 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 526 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) { 527 drv = bdrv_find_format("raw"); 528 if (!drv) { 529 ret = -ENOENT; 530 } 531 *pdrv = drv; 532 return ret; 533 } 534 535 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 536 if (ret < 0) { 537 *pdrv = NULL; 538 return ret; 539 } 540 541 score_max = 0; 542 drv = NULL; 543 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 544 if (drv1->bdrv_probe) { 545 score = drv1->bdrv_probe(buf, ret, filename); 546 if (score > score_max) { 547 score_max = score; 548 drv = drv1; 549 } 550 } 551 } 552 if (!drv) { 553 ret = -ENOENT; 554 } 555 *pdrv = drv; 556 return ret; 557 } 558 559 /** 560 * Set the current 'total_sectors' value 561 */ 562 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 563 { 564 BlockDriver *drv = bs->drv; 565 566 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 567 if (bs->sg) 568 return 0; 569 570 /* query actual device if possible, otherwise just trust the hint */ 571 if (drv->bdrv_getlength) { 572 int64_t length = drv->bdrv_getlength(bs); 573 if (length < 0) { 574 return length; 575 } 576 hint = length >> BDRV_SECTOR_BITS; 577 } 578 579 bs->total_sectors = hint; 580 return 0; 581 } 582 583 /** 584 * Set open flags for a given discard mode 585 * 586 * Return 0 on success, -1 if the discard mode was invalid. 587 */ 588 int bdrv_parse_discard_flags(const char *mode, int *flags) 589 { 590 *flags &= ~BDRV_O_UNMAP; 591 592 if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) { 593 /* do nothing */ 594 } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) { 595 *flags |= BDRV_O_UNMAP; 596 } else { 597 return -1; 598 } 599 600 return 0; 601 } 602 603 /** 604 * Set open flags for a given cache mode 605 * 606 * Return 0 on success, -1 if the cache mode was invalid. 607 */ 608 int bdrv_parse_cache_flags(const char *mode, int *flags) 609 { 610 *flags &= ~BDRV_O_CACHE_MASK; 611 612 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 613 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 614 } else if (!strcmp(mode, "directsync")) { 615 *flags |= BDRV_O_NOCACHE; 616 } else if (!strcmp(mode, "writeback")) { 617 *flags |= BDRV_O_CACHE_WB; 618 } else if (!strcmp(mode, "unsafe")) { 619 *flags |= BDRV_O_CACHE_WB; 620 *flags |= BDRV_O_NO_FLUSH; 621 } else if (!strcmp(mode, "writethrough")) { 622 /* this is the default */ 623 } else { 624 return -1; 625 } 626 627 return 0; 628 } 629 630 /** 631 * The copy-on-read flag is actually a reference count so multiple users may 632 * use the feature without worrying about clobbering its previous state. 633 * Copy-on-read stays enabled until all users have called to disable it. 634 */ 635 void bdrv_enable_copy_on_read(BlockDriverState *bs) 636 { 637 bs->copy_on_read++; 638 } 639 640 void bdrv_disable_copy_on_read(BlockDriverState *bs) 641 { 642 assert(bs->copy_on_read > 0); 643 bs->copy_on_read--; 644 } 645 646 static int bdrv_open_flags(BlockDriverState *bs, int flags) 647 { 648 int open_flags = flags | BDRV_O_CACHE_WB; 649 650 /* 651 * Clear flags that are internal to the block layer before opening the 652 * image. 653 */ 654 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 655 656 /* 657 * Snapshots should be writable. 658 */ 659 if (bs->is_temporary) { 660 open_flags |= BDRV_O_RDWR; 661 } 662 663 return open_flags; 664 } 665 666 /* 667 * Common part for opening disk images and files 668 * 669 * Removes all processed options from *options. 670 */ 671 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file, 672 const char *filename, QDict *options, 673 int flags, BlockDriver *drv) 674 { 675 int ret, open_flags; 676 677 assert(drv != NULL); 678 assert(bs->file == NULL); 679 assert(options != NULL && bs->options != options); 680 681 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 682 683 bs->open_flags = flags; 684 bs->buffer_alignment = 512; 685 686 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 687 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 688 bdrv_enable_copy_on_read(bs); 689 } 690 691 if (filename != NULL) { 692 pstrcpy(bs->filename, sizeof(bs->filename), filename); 693 } else { 694 bs->filename[0] = '\0'; 695 } 696 697 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 698 return -ENOTSUP; 699 } 700 701 bs->drv = drv; 702 bs->opaque = g_malloc0(drv->instance_size); 703 704 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 705 open_flags = bdrv_open_flags(bs, flags); 706 707 bs->read_only = !(open_flags & BDRV_O_RDWR); 708 709 /* Open the image, either directly or using a protocol */ 710 if (drv->bdrv_file_open) { 711 if (file != NULL) { 712 bdrv_swap(file, bs); 713 ret = 0; 714 } else { 715 assert(drv->bdrv_parse_filename || filename != NULL); 716 ret = drv->bdrv_file_open(bs, filename, options, open_flags); 717 } 718 } else { 719 assert(file != NULL); 720 bs->file = file; 721 ret = drv->bdrv_open(bs, options, open_flags); 722 } 723 724 if (ret < 0) { 725 goto free_and_fail; 726 } 727 728 ret = refresh_total_sectors(bs, bs->total_sectors); 729 if (ret < 0) { 730 goto free_and_fail; 731 } 732 733 #ifndef _WIN32 734 if (bs->is_temporary) { 735 assert(filename != NULL); 736 unlink(filename); 737 } 738 #endif 739 return 0; 740 741 free_and_fail: 742 bs->file = NULL; 743 g_free(bs->opaque); 744 bs->opaque = NULL; 745 bs->drv = NULL; 746 return ret; 747 } 748 749 /* 750 * Opens a file using a protocol (file, host_device, nbd, ...) 751 * 752 * options is a QDict of options to pass to the block drivers, or NULL for an 753 * empty set of options. The reference to the QDict belongs to the block layer 754 * after the call (even on failure), so if the caller intends to reuse the 755 * dictionary, it needs to use QINCREF() before calling bdrv_file_open. 756 */ 757 int bdrv_file_open(BlockDriverState **pbs, const char *filename, 758 QDict *options, int flags) 759 { 760 BlockDriverState *bs; 761 BlockDriver *drv; 762 const char *drvname; 763 int ret; 764 765 /* NULL means an empty set of options */ 766 if (options == NULL) { 767 options = qdict_new(); 768 } 769 770 bs = bdrv_new(""); 771 bs->options = options; 772 options = qdict_clone_shallow(options); 773 774 /* Find the right block driver */ 775 drvname = qdict_get_try_str(options, "driver"); 776 if (drvname) { 777 drv = bdrv_find_whitelisted_format(drvname); 778 qdict_del(options, "driver"); 779 } else if (filename) { 780 drv = bdrv_find_protocol(filename); 781 } else { 782 qerror_report(ERROR_CLASS_GENERIC_ERROR, 783 "Must specify either driver or file"); 784 drv = NULL; 785 } 786 787 if (!drv) { 788 ret = -ENOENT; 789 goto fail; 790 } 791 792 /* Parse the filename and open it */ 793 if (drv->bdrv_parse_filename && filename) { 794 Error *local_err = NULL; 795 drv->bdrv_parse_filename(filename, options, &local_err); 796 if (error_is_set(&local_err)) { 797 qerror_report_err(local_err); 798 error_free(local_err); 799 ret = -EINVAL; 800 goto fail; 801 } 802 } else if (!drv->bdrv_parse_filename && !filename) { 803 qerror_report(ERROR_CLASS_GENERIC_ERROR, 804 "The '%s' block driver requires a file name", 805 drv->format_name); 806 ret = -EINVAL; 807 goto fail; 808 } 809 810 ret = bdrv_open_common(bs, NULL, filename, options, flags, drv); 811 if (ret < 0) { 812 goto fail; 813 } 814 815 /* Check if any unknown options were used */ 816 if (qdict_size(options) != 0) { 817 const QDictEntry *entry = qdict_first(options); 818 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block protocol '%s' doesn't " 819 "support the option '%s'", 820 drv->format_name, entry->key); 821 ret = -EINVAL; 822 goto fail; 823 } 824 QDECREF(options); 825 826 bs->growable = 1; 827 *pbs = bs; 828 return 0; 829 830 fail: 831 QDECREF(options); 832 if (!bs->drv) { 833 QDECREF(bs->options); 834 } 835 bdrv_delete(bs); 836 return ret; 837 } 838 839 int bdrv_open_backing_file(BlockDriverState *bs) 840 { 841 char backing_filename[PATH_MAX]; 842 int back_flags, ret; 843 BlockDriver *back_drv = NULL; 844 845 if (bs->backing_hd != NULL) { 846 return 0; 847 } 848 849 bs->open_flags &= ~BDRV_O_NO_BACKING; 850 if (bs->backing_file[0] == '\0') { 851 return 0; 852 } 853 854 bs->backing_hd = bdrv_new(""); 855 bdrv_get_full_backing_filename(bs, backing_filename, 856 sizeof(backing_filename)); 857 858 if (bs->backing_format[0] != '\0') { 859 back_drv = bdrv_find_format(bs->backing_format); 860 } 861 862 /* backing files always opened read-only */ 863 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 864 865 ret = bdrv_open(bs->backing_hd, backing_filename, NULL, 866 back_flags, back_drv); 867 if (ret < 0) { 868 bdrv_delete(bs->backing_hd); 869 bs->backing_hd = NULL; 870 bs->open_flags |= BDRV_O_NO_BACKING; 871 return ret; 872 } 873 return 0; 874 } 875 876 static void extract_subqdict(QDict *src, QDict **dst, const char *start) 877 { 878 const QDictEntry *entry, *next; 879 const char *p; 880 881 *dst = qdict_new(); 882 entry = qdict_first(src); 883 884 while (entry != NULL) { 885 next = qdict_next(src, entry); 886 if (strstart(entry->key, start, &p)) { 887 qobject_incref(entry->value); 888 qdict_put_obj(*dst, p, entry->value); 889 qdict_del(src, entry->key); 890 } 891 entry = next; 892 } 893 } 894 895 /* 896 * Opens a disk image (raw, qcow2, vmdk, ...) 897 * 898 * options is a QDict of options to pass to the block drivers, or NULL for an 899 * empty set of options. The reference to the QDict belongs to the block layer 900 * after the call (even on failure), so if the caller intends to reuse the 901 * dictionary, it needs to use QINCREF() before calling bdrv_open. 902 */ 903 int bdrv_open(BlockDriverState *bs, const char *filename, QDict *options, 904 int flags, BlockDriver *drv) 905 { 906 int ret; 907 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ 908 char tmp_filename[PATH_MAX + 1]; 909 BlockDriverState *file = NULL; 910 QDict *file_options = NULL; 911 912 /* NULL means an empty set of options */ 913 if (options == NULL) { 914 options = qdict_new(); 915 } 916 917 bs->options = options; 918 options = qdict_clone_shallow(options); 919 920 /* For snapshot=on, create a temporary qcow2 overlay */ 921 if (flags & BDRV_O_SNAPSHOT) { 922 BlockDriverState *bs1; 923 int64_t total_size; 924 BlockDriver *bdrv_qcow2; 925 QEMUOptionParameter *create_options; 926 char backing_filename[PATH_MAX]; 927 928 if (qdict_size(options) != 0) { 929 error_report("Can't use snapshot=on with driver-specific options"); 930 ret = -EINVAL; 931 goto fail; 932 } 933 assert(filename != NULL); 934 935 /* if snapshot, we create a temporary backing file and open it 936 instead of opening 'filename' directly */ 937 938 /* if there is a backing file, use it */ 939 bs1 = bdrv_new(""); 940 ret = bdrv_open(bs1, filename, NULL, 0, drv); 941 if (ret < 0) { 942 bdrv_delete(bs1); 943 goto fail; 944 } 945 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 946 947 bdrv_delete(bs1); 948 949 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 950 if (ret < 0) { 951 goto fail; 952 } 953 954 /* Real path is meaningless for protocols */ 955 if (path_has_protocol(filename)) { 956 snprintf(backing_filename, sizeof(backing_filename), 957 "%s", filename); 958 } else if (!realpath(filename, backing_filename)) { 959 ret = -errno; 960 goto fail; 961 } 962 963 bdrv_qcow2 = bdrv_find_format("qcow2"); 964 create_options = parse_option_parameters("", bdrv_qcow2->create_options, 965 NULL); 966 967 set_option_parameter_int(create_options, BLOCK_OPT_SIZE, total_size); 968 set_option_parameter(create_options, BLOCK_OPT_BACKING_FILE, 969 backing_filename); 970 if (drv) { 971 set_option_parameter(create_options, BLOCK_OPT_BACKING_FMT, 972 drv->format_name); 973 } 974 975 ret = bdrv_create(bdrv_qcow2, tmp_filename, create_options); 976 free_option_parameters(create_options); 977 if (ret < 0) { 978 goto fail; 979 } 980 981 filename = tmp_filename; 982 drv = bdrv_qcow2; 983 bs->is_temporary = 1; 984 } 985 986 /* Open image file without format layer */ 987 if (flags & BDRV_O_RDWR) { 988 flags |= BDRV_O_ALLOW_RDWR; 989 } 990 991 extract_subqdict(options, &file_options, "file."); 992 993 ret = bdrv_file_open(&file, filename, file_options, 994 bdrv_open_flags(bs, flags)); 995 if (ret < 0) { 996 goto fail; 997 } 998 999 /* Find the right image format driver */ 1000 if (!drv) { 1001 ret = find_image_format(file, filename, &drv); 1002 } 1003 1004 if (!drv) { 1005 goto unlink_and_fail; 1006 } 1007 1008 /* Open the image */ 1009 ret = bdrv_open_common(bs, file, filename, options, flags, drv); 1010 if (ret < 0) { 1011 goto unlink_and_fail; 1012 } 1013 1014 if (bs->file != file) { 1015 bdrv_delete(file); 1016 file = NULL; 1017 } 1018 1019 /* If there is a backing file, use it */ 1020 if ((flags & BDRV_O_NO_BACKING) == 0) { 1021 ret = bdrv_open_backing_file(bs); 1022 if (ret < 0) { 1023 goto close_and_fail; 1024 } 1025 } 1026 1027 /* Check if any unknown options were used */ 1028 if (qdict_size(options) != 0) { 1029 const QDictEntry *entry = qdict_first(options); 1030 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block format '%s' used by " 1031 "device '%s' doesn't support the option '%s'", 1032 drv->format_name, bs->device_name, entry->key); 1033 1034 ret = -EINVAL; 1035 goto close_and_fail; 1036 } 1037 QDECREF(options); 1038 1039 if (!bdrv_key_required(bs)) { 1040 bdrv_dev_change_media_cb(bs, true); 1041 } 1042 1043 /* throttling disk I/O limits */ 1044 if (bs->io_limits_enabled) { 1045 bdrv_io_limits_enable(bs); 1046 } 1047 1048 return 0; 1049 1050 unlink_and_fail: 1051 if (file != NULL) { 1052 bdrv_delete(file); 1053 } 1054 if (bs->is_temporary) { 1055 unlink(filename); 1056 } 1057 fail: 1058 QDECREF(bs->options); 1059 QDECREF(options); 1060 bs->options = NULL; 1061 return ret; 1062 1063 close_and_fail: 1064 bdrv_close(bs); 1065 QDECREF(options); 1066 return ret; 1067 } 1068 1069 typedef struct BlockReopenQueueEntry { 1070 bool prepared; 1071 BDRVReopenState state; 1072 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 1073 } BlockReopenQueueEntry; 1074 1075 /* 1076 * Adds a BlockDriverState to a simple queue for an atomic, transactional 1077 * reopen of multiple devices. 1078 * 1079 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 1080 * already performed, or alternatively may be NULL a new BlockReopenQueue will 1081 * be created and initialized. This newly created BlockReopenQueue should be 1082 * passed back in for subsequent calls that are intended to be of the same 1083 * atomic 'set'. 1084 * 1085 * bs is the BlockDriverState to add to the reopen queue. 1086 * 1087 * flags contains the open flags for the associated bs 1088 * 1089 * returns a pointer to bs_queue, which is either the newly allocated 1090 * bs_queue, or the existing bs_queue being used. 1091 * 1092 */ 1093 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 1094 BlockDriverState *bs, int flags) 1095 { 1096 assert(bs != NULL); 1097 1098 BlockReopenQueueEntry *bs_entry; 1099 if (bs_queue == NULL) { 1100 bs_queue = g_new0(BlockReopenQueue, 1); 1101 QSIMPLEQ_INIT(bs_queue); 1102 } 1103 1104 if (bs->file) { 1105 bdrv_reopen_queue(bs_queue, bs->file, flags); 1106 } 1107 1108 bs_entry = g_new0(BlockReopenQueueEntry, 1); 1109 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 1110 1111 bs_entry->state.bs = bs; 1112 bs_entry->state.flags = flags; 1113 1114 return bs_queue; 1115 } 1116 1117 /* 1118 * Reopen multiple BlockDriverStates atomically & transactionally. 1119 * 1120 * The queue passed in (bs_queue) must have been built up previous 1121 * via bdrv_reopen_queue(). 1122 * 1123 * Reopens all BDS specified in the queue, with the appropriate 1124 * flags. All devices are prepared for reopen, and failure of any 1125 * device will cause all device changes to be abandonded, and intermediate 1126 * data cleaned up. 1127 * 1128 * If all devices prepare successfully, then the changes are committed 1129 * to all devices. 1130 * 1131 */ 1132 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 1133 { 1134 int ret = -1; 1135 BlockReopenQueueEntry *bs_entry, *next; 1136 Error *local_err = NULL; 1137 1138 assert(bs_queue != NULL); 1139 1140 bdrv_drain_all(); 1141 1142 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1143 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 1144 error_propagate(errp, local_err); 1145 goto cleanup; 1146 } 1147 bs_entry->prepared = true; 1148 } 1149 1150 /* If we reach this point, we have success and just need to apply the 1151 * changes 1152 */ 1153 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1154 bdrv_reopen_commit(&bs_entry->state); 1155 } 1156 1157 ret = 0; 1158 1159 cleanup: 1160 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 1161 if (ret && bs_entry->prepared) { 1162 bdrv_reopen_abort(&bs_entry->state); 1163 } 1164 g_free(bs_entry); 1165 } 1166 g_free(bs_queue); 1167 return ret; 1168 } 1169 1170 1171 /* Reopen a single BlockDriverState with the specified flags. */ 1172 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1173 { 1174 int ret = -1; 1175 Error *local_err = NULL; 1176 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1177 1178 ret = bdrv_reopen_multiple(queue, &local_err); 1179 if (local_err != NULL) { 1180 error_propagate(errp, local_err); 1181 } 1182 return ret; 1183 } 1184 1185 1186 /* 1187 * Prepares a BlockDriverState for reopen. All changes are staged in the 1188 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1189 * the block driver layer .bdrv_reopen_prepare() 1190 * 1191 * bs is the BlockDriverState to reopen 1192 * flags are the new open flags 1193 * queue is the reopen queue 1194 * 1195 * Returns 0 on success, non-zero on error. On error errp will be set 1196 * as well. 1197 * 1198 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1199 * It is the responsibility of the caller to then call the abort() or 1200 * commit() for any other BDS that have been left in a prepare() state 1201 * 1202 */ 1203 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1204 Error **errp) 1205 { 1206 int ret = -1; 1207 Error *local_err = NULL; 1208 BlockDriver *drv; 1209 1210 assert(reopen_state != NULL); 1211 assert(reopen_state->bs->drv != NULL); 1212 drv = reopen_state->bs->drv; 1213 1214 /* if we are to stay read-only, do not allow permission change 1215 * to r/w */ 1216 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1217 reopen_state->flags & BDRV_O_RDWR) { 1218 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1219 reopen_state->bs->device_name); 1220 goto error; 1221 } 1222 1223 1224 ret = bdrv_flush(reopen_state->bs); 1225 if (ret) { 1226 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1227 strerror(-ret)); 1228 goto error; 1229 } 1230 1231 if (drv->bdrv_reopen_prepare) { 1232 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1233 if (ret) { 1234 if (local_err != NULL) { 1235 error_propagate(errp, local_err); 1236 } else { 1237 error_set(errp, QERR_OPEN_FILE_FAILED, 1238 reopen_state->bs->filename); 1239 } 1240 goto error; 1241 } 1242 } else { 1243 /* It is currently mandatory to have a bdrv_reopen_prepare() 1244 * handler for each supported drv. */ 1245 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1246 drv->format_name, reopen_state->bs->device_name, 1247 "reopening of file"); 1248 ret = -1; 1249 goto error; 1250 } 1251 1252 ret = 0; 1253 1254 error: 1255 return ret; 1256 } 1257 1258 /* 1259 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1260 * makes them final by swapping the staging BlockDriverState contents into 1261 * the active BlockDriverState contents. 1262 */ 1263 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1264 { 1265 BlockDriver *drv; 1266 1267 assert(reopen_state != NULL); 1268 drv = reopen_state->bs->drv; 1269 assert(drv != NULL); 1270 1271 /* If there are any driver level actions to take */ 1272 if (drv->bdrv_reopen_commit) { 1273 drv->bdrv_reopen_commit(reopen_state); 1274 } 1275 1276 /* set BDS specific flags now */ 1277 reopen_state->bs->open_flags = reopen_state->flags; 1278 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1279 BDRV_O_CACHE_WB); 1280 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1281 } 1282 1283 /* 1284 * Abort the reopen, and delete and free the staged changes in 1285 * reopen_state 1286 */ 1287 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1288 { 1289 BlockDriver *drv; 1290 1291 assert(reopen_state != NULL); 1292 drv = reopen_state->bs->drv; 1293 assert(drv != NULL); 1294 1295 if (drv->bdrv_reopen_abort) { 1296 drv->bdrv_reopen_abort(reopen_state); 1297 } 1298 } 1299 1300 1301 void bdrv_close(BlockDriverState *bs) 1302 { 1303 bdrv_flush(bs); 1304 if (bs->job) { 1305 block_job_cancel_sync(bs->job); 1306 } 1307 bdrv_drain_all(); 1308 notifier_list_notify(&bs->close_notifiers, bs); 1309 1310 if (bs->drv) { 1311 if (bs == bs_snapshots) { 1312 bs_snapshots = NULL; 1313 } 1314 if (bs->backing_hd) { 1315 bdrv_delete(bs->backing_hd); 1316 bs->backing_hd = NULL; 1317 } 1318 bs->drv->bdrv_close(bs); 1319 g_free(bs->opaque); 1320 #ifdef _WIN32 1321 if (bs->is_temporary) { 1322 unlink(bs->filename); 1323 } 1324 #endif 1325 bs->opaque = NULL; 1326 bs->drv = NULL; 1327 bs->copy_on_read = 0; 1328 bs->backing_file[0] = '\0'; 1329 bs->backing_format[0] = '\0'; 1330 bs->total_sectors = 0; 1331 bs->encrypted = 0; 1332 bs->valid_key = 0; 1333 bs->sg = 0; 1334 bs->growable = 0; 1335 QDECREF(bs->options); 1336 bs->options = NULL; 1337 1338 if (bs->file != NULL) { 1339 bdrv_delete(bs->file); 1340 bs->file = NULL; 1341 } 1342 } 1343 1344 bdrv_dev_change_media_cb(bs, false); 1345 1346 /*throttling disk I/O limits*/ 1347 if (bs->io_limits_enabled) { 1348 bdrv_io_limits_disable(bs); 1349 } 1350 } 1351 1352 void bdrv_close_all(void) 1353 { 1354 BlockDriverState *bs; 1355 1356 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1357 bdrv_close(bs); 1358 } 1359 } 1360 1361 /* 1362 * Wait for pending requests to complete across all BlockDriverStates 1363 * 1364 * This function does not flush data to disk, use bdrv_flush_all() for that 1365 * after calling this function. 1366 * 1367 * Note that completion of an asynchronous I/O operation can trigger any 1368 * number of other I/O operations on other devices---for example a coroutine 1369 * can be arbitrarily complex and a constant flow of I/O can come until the 1370 * coroutine is complete. Because of this, it is not possible to have a 1371 * function to drain a single device's I/O queue. 1372 */ 1373 void bdrv_drain_all(void) 1374 { 1375 BlockDriverState *bs; 1376 bool busy; 1377 1378 do { 1379 busy = qemu_aio_wait(); 1380 1381 /* FIXME: We do not have timer support here, so this is effectively 1382 * a busy wait. 1383 */ 1384 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1385 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1386 qemu_co_queue_restart_all(&bs->throttled_reqs); 1387 busy = true; 1388 } 1389 } 1390 } while (busy); 1391 1392 /* If requests are still pending there is a bug somewhere */ 1393 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1394 assert(QLIST_EMPTY(&bs->tracked_requests)); 1395 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1396 } 1397 } 1398 1399 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1400 Also, NULL terminate the device_name to prevent double remove */ 1401 void bdrv_make_anon(BlockDriverState *bs) 1402 { 1403 if (bs->device_name[0] != '\0') { 1404 QTAILQ_REMOVE(&bdrv_states, bs, list); 1405 } 1406 bs->device_name[0] = '\0'; 1407 } 1408 1409 static void bdrv_rebind(BlockDriverState *bs) 1410 { 1411 if (bs->drv && bs->drv->bdrv_rebind) { 1412 bs->drv->bdrv_rebind(bs); 1413 } 1414 } 1415 1416 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1417 BlockDriverState *bs_src) 1418 { 1419 /* move some fields that need to stay attached to the device */ 1420 bs_dest->open_flags = bs_src->open_flags; 1421 1422 /* dev info */ 1423 bs_dest->dev_ops = bs_src->dev_ops; 1424 bs_dest->dev_opaque = bs_src->dev_opaque; 1425 bs_dest->dev = bs_src->dev; 1426 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1427 bs_dest->copy_on_read = bs_src->copy_on_read; 1428 1429 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1430 1431 /* i/o timing parameters */ 1432 bs_dest->slice_time = bs_src->slice_time; 1433 bs_dest->slice_start = bs_src->slice_start; 1434 bs_dest->slice_end = bs_src->slice_end; 1435 bs_dest->io_limits = bs_src->io_limits; 1436 bs_dest->io_base = bs_src->io_base; 1437 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1438 bs_dest->block_timer = bs_src->block_timer; 1439 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1440 1441 /* r/w error */ 1442 bs_dest->on_read_error = bs_src->on_read_error; 1443 bs_dest->on_write_error = bs_src->on_write_error; 1444 1445 /* i/o status */ 1446 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1447 bs_dest->iostatus = bs_src->iostatus; 1448 1449 /* dirty bitmap */ 1450 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1451 1452 /* job */ 1453 bs_dest->in_use = bs_src->in_use; 1454 bs_dest->job = bs_src->job; 1455 1456 /* keep the same entry in bdrv_states */ 1457 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1458 bs_src->device_name); 1459 bs_dest->list = bs_src->list; 1460 } 1461 1462 /* 1463 * Swap bs contents for two image chains while they are live, 1464 * while keeping required fields on the BlockDriverState that is 1465 * actually attached to a device. 1466 * 1467 * This will modify the BlockDriverState fields, and swap contents 1468 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1469 * 1470 * bs_new is required to be anonymous. 1471 * 1472 * This function does not create any image files. 1473 */ 1474 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1475 { 1476 BlockDriverState tmp; 1477 1478 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1479 assert(bs_new->device_name[0] == '\0'); 1480 assert(bs_new->dirty_bitmap == NULL); 1481 assert(bs_new->job == NULL); 1482 assert(bs_new->dev == NULL); 1483 assert(bs_new->in_use == 0); 1484 assert(bs_new->io_limits_enabled == false); 1485 assert(bs_new->block_timer == NULL); 1486 1487 tmp = *bs_new; 1488 *bs_new = *bs_old; 1489 *bs_old = tmp; 1490 1491 /* there are some fields that should not be swapped, move them back */ 1492 bdrv_move_feature_fields(&tmp, bs_old); 1493 bdrv_move_feature_fields(bs_old, bs_new); 1494 bdrv_move_feature_fields(bs_new, &tmp); 1495 1496 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1497 assert(bs_new->device_name[0] == '\0'); 1498 1499 /* Check a few fields that should remain attached to the device */ 1500 assert(bs_new->dev == NULL); 1501 assert(bs_new->job == NULL); 1502 assert(bs_new->in_use == 0); 1503 assert(bs_new->io_limits_enabled == false); 1504 assert(bs_new->block_timer == NULL); 1505 1506 bdrv_rebind(bs_new); 1507 bdrv_rebind(bs_old); 1508 } 1509 1510 /* 1511 * Add new bs contents at the top of an image chain while the chain is 1512 * live, while keeping required fields on the top layer. 1513 * 1514 * This will modify the BlockDriverState fields, and swap contents 1515 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1516 * 1517 * bs_new is required to be anonymous. 1518 * 1519 * This function does not create any image files. 1520 */ 1521 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1522 { 1523 bdrv_swap(bs_new, bs_top); 1524 1525 /* The contents of 'tmp' will become bs_top, as we are 1526 * swapping bs_new and bs_top contents. */ 1527 bs_top->backing_hd = bs_new; 1528 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1529 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1530 bs_new->filename); 1531 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1532 bs_new->drv ? bs_new->drv->format_name : ""); 1533 } 1534 1535 void bdrv_delete(BlockDriverState *bs) 1536 { 1537 assert(!bs->dev); 1538 assert(!bs->job); 1539 assert(!bs->in_use); 1540 1541 /* remove from list, if necessary */ 1542 bdrv_make_anon(bs); 1543 1544 bdrv_close(bs); 1545 1546 assert(bs != bs_snapshots); 1547 g_free(bs); 1548 } 1549 1550 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1551 /* TODO change to DeviceState *dev when all users are qdevified */ 1552 { 1553 if (bs->dev) { 1554 return -EBUSY; 1555 } 1556 bs->dev = dev; 1557 bdrv_iostatus_reset(bs); 1558 return 0; 1559 } 1560 1561 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1562 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1563 { 1564 if (bdrv_attach_dev(bs, dev) < 0) { 1565 abort(); 1566 } 1567 } 1568 1569 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1570 /* TODO change to DeviceState *dev when all users are qdevified */ 1571 { 1572 assert(bs->dev == dev); 1573 bs->dev = NULL; 1574 bs->dev_ops = NULL; 1575 bs->dev_opaque = NULL; 1576 bs->buffer_alignment = 512; 1577 } 1578 1579 /* TODO change to return DeviceState * when all users are qdevified */ 1580 void *bdrv_get_attached_dev(BlockDriverState *bs) 1581 { 1582 return bs->dev; 1583 } 1584 1585 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1586 void *opaque) 1587 { 1588 bs->dev_ops = ops; 1589 bs->dev_opaque = opaque; 1590 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1591 bs_snapshots = NULL; 1592 } 1593 } 1594 1595 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1596 enum MonitorEvent ev, 1597 BlockErrorAction action, bool is_read) 1598 { 1599 QObject *data; 1600 const char *action_str; 1601 1602 switch (action) { 1603 case BDRV_ACTION_REPORT: 1604 action_str = "report"; 1605 break; 1606 case BDRV_ACTION_IGNORE: 1607 action_str = "ignore"; 1608 break; 1609 case BDRV_ACTION_STOP: 1610 action_str = "stop"; 1611 break; 1612 default: 1613 abort(); 1614 } 1615 1616 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1617 bdrv->device_name, 1618 action_str, 1619 is_read ? "read" : "write"); 1620 monitor_protocol_event(ev, data); 1621 1622 qobject_decref(data); 1623 } 1624 1625 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1626 { 1627 QObject *data; 1628 1629 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1630 bdrv_get_device_name(bs), ejected); 1631 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1632 1633 qobject_decref(data); 1634 } 1635 1636 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1637 { 1638 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1639 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1640 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1641 if (tray_was_closed) { 1642 /* tray open */ 1643 bdrv_emit_qmp_eject_event(bs, true); 1644 } 1645 if (load) { 1646 /* tray close */ 1647 bdrv_emit_qmp_eject_event(bs, false); 1648 } 1649 } 1650 } 1651 1652 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1653 { 1654 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1655 } 1656 1657 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1658 { 1659 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1660 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1661 } 1662 } 1663 1664 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1665 { 1666 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1667 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1668 } 1669 return false; 1670 } 1671 1672 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1673 { 1674 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1675 bs->dev_ops->resize_cb(bs->dev_opaque); 1676 } 1677 } 1678 1679 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1680 { 1681 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1682 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1683 } 1684 return false; 1685 } 1686 1687 /* 1688 * Run consistency checks on an image 1689 * 1690 * Returns 0 if the check could be completed (it doesn't mean that the image is 1691 * free of errors) or -errno when an internal error occurred. The results of the 1692 * check are stored in res. 1693 */ 1694 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1695 { 1696 if (bs->drv->bdrv_check == NULL) { 1697 return -ENOTSUP; 1698 } 1699 1700 memset(res, 0, sizeof(*res)); 1701 return bs->drv->bdrv_check(bs, res, fix); 1702 } 1703 1704 #define COMMIT_BUF_SECTORS 2048 1705 1706 /* commit COW file into the raw image */ 1707 int bdrv_commit(BlockDriverState *bs) 1708 { 1709 BlockDriver *drv = bs->drv; 1710 int64_t sector, total_sectors; 1711 int n, ro, open_flags; 1712 int ret = 0; 1713 uint8_t *buf; 1714 char filename[PATH_MAX]; 1715 1716 if (!drv) 1717 return -ENOMEDIUM; 1718 1719 if (!bs->backing_hd) { 1720 return -ENOTSUP; 1721 } 1722 1723 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1724 return -EBUSY; 1725 } 1726 1727 ro = bs->backing_hd->read_only; 1728 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1729 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1730 open_flags = bs->backing_hd->open_flags; 1731 1732 if (ro) { 1733 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1734 return -EACCES; 1735 } 1736 } 1737 1738 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1739 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1740 1741 for (sector = 0; sector < total_sectors; sector += n) { 1742 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1743 1744 if (bdrv_read(bs, sector, buf, n) != 0) { 1745 ret = -EIO; 1746 goto ro_cleanup; 1747 } 1748 1749 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1750 ret = -EIO; 1751 goto ro_cleanup; 1752 } 1753 } 1754 } 1755 1756 if (drv->bdrv_make_empty) { 1757 ret = drv->bdrv_make_empty(bs); 1758 bdrv_flush(bs); 1759 } 1760 1761 /* 1762 * Make sure all data we wrote to the backing device is actually 1763 * stable on disk. 1764 */ 1765 if (bs->backing_hd) 1766 bdrv_flush(bs->backing_hd); 1767 1768 ro_cleanup: 1769 g_free(buf); 1770 1771 if (ro) { 1772 /* ignoring error return here */ 1773 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1774 } 1775 1776 return ret; 1777 } 1778 1779 int bdrv_commit_all(void) 1780 { 1781 BlockDriverState *bs; 1782 1783 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1784 if (bs->drv && bs->backing_hd) { 1785 int ret = bdrv_commit(bs); 1786 if (ret < 0) { 1787 return ret; 1788 } 1789 } 1790 } 1791 return 0; 1792 } 1793 1794 struct BdrvTrackedRequest { 1795 BlockDriverState *bs; 1796 int64_t sector_num; 1797 int nb_sectors; 1798 bool is_write; 1799 QLIST_ENTRY(BdrvTrackedRequest) list; 1800 Coroutine *co; /* owner, used for deadlock detection */ 1801 CoQueue wait_queue; /* coroutines blocked on this request */ 1802 }; 1803 1804 /** 1805 * Remove an active request from the tracked requests list 1806 * 1807 * This function should be called when a tracked request is completing. 1808 */ 1809 static void tracked_request_end(BdrvTrackedRequest *req) 1810 { 1811 QLIST_REMOVE(req, list); 1812 qemu_co_queue_restart_all(&req->wait_queue); 1813 } 1814 1815 /** 1816 * Add an active request to the tracked requests list 1817 */ 1818 static void tracked_request_begin(BdrvTrackedRequest *req, 1819 BlockDriverState *bs, 1820 int64_t sector_num, 1821 int nb_sectors, bool is_write) 1822 { 1823 *req = (BdrvTrackedRequest){ 1824 .bs = bs, 1825 .sector_num = sector_num, 1826 .nb_sectors = nb_sectors, 1827 .is_write = is_write, 1828 .co = qemu_coroutine_self(), 1829 }; 1830 1831 qemu_co_queue_init(&req->wait_queue); 1832 1833 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1834 } 1835 1836 /** 1837 * Round a region to cluster boundaries 1838 */ 1839 void bdrv_round_to_clusters(BlockDriverState *bs, 1840 int64_t sector_num, int nb_sectors, 1841 int64_t *cluster_sector_num, 1842 int *cluster_nb_sectors) 1843 { 1844 BlockDriverInfo bdi; 1845 1846 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1847 *cluster_sector_num = sector_num; 1848 *cluster_nb_sectors = nb_sectors; 1849 } else { 1850 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1851 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1852 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1853 nb_sectors, c); 1854 } 1855 } 1856 1857 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1858 int64_t sector_num, int nb_sectors) { 1859 /* aaaa bbbb */ 1860 if (sector_num >= req->sector_num + req->nb_sectors) { 1861 return false; 1862 } 1863 /* bbbb aaaa */ 1864 if (req->sector_num >= sector_num + nb_sectors) { 1865 return false; 1866 } 1867 return true; 1868 } 1869 1870 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1871 int64_t sector_num, int nb_sectors) 1872 { 1873 BdrvTrackedRequest *req; 1874 int64_t cluster_sector_num; 1875 int cluster_nb_sectors; 1876 bool retry; 1877 1878 /* If we touch the same cluster it counts as an overlap. This guarantees 1879 * that allocating writes will be serialized and not race with each other 1880 * for the same cluster. For example, in copy-on-read it ensures that the 1881 * CoR read and write operations are atomic and guest writes cannot 1882 * interleave between them. 1883 */ 1884 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 1885 &cluster_sector_num, &cluster_nb_sectors); 1886 1887 do { 1888 retry = false; 1889 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1890 if (tracked_request_overlaps(req, cluster_sector_num, 1891 cluster_nb_sectors)) { 1892 /* Hitting this means there was a reentrant request, for 1893 * example, a block driver issuing nested requests. This must 1894 * never happen since it means deadlock. 1895 */ 1896 assert(qemu_coroutine_self() != req->co); 1897 1898 qemu_co_queue_wait(&req->wait_queue); 1899 retry = true; 1900 break; 1901 } 1902 } 1903 } while (retry); 1904 } 1905 1906 /* 1907 * Return values: 1908 * 0 - success 1909 * -EINVAL - backing format specified, but no file 1910 * -ENOSPC - can't update the backing file because no space is left in the 1911 * image file header 1912 * -ENOTSUP - format driver doesn't support changing the backing file 1913 */ 1914 int bdrv_change_backing_file(BlockDriverState *bs, 1915 const char *backing_file, const char *backing_fmt) 1916 { 1917 BlockDriver *drv = bs->drv; 1918 int ret; 1919 1920 /* Backing file format doesn't make sense without a backing file */ 1921 if (backing_fmt && !backing_file) { 1922 return -EINVAL; 1923 } 1924 1925 if (drv->bdrv_change_backing_file != NULL) { 1926 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1927 } else { 1928 ret = -ENOTSUP; 1929 } 1930 1931 if (ret == 0) { 1932 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1933 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1934 } 1935 return ret; 1936 } 1937 1938 /* 1939 * Finds the image layer in the chain that has 'bs' as its backing file. 1940 * 1941 * active is the current topmost image. 1942 * 1943 * Returns NULL if bs is not found in active's image chain, 1944 * or if active == bs. 1945 */ 1946 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1947 BlockDriverState *bs) 1948 { 1949 BlockDriverState *overlay = NULL; 1950 BlockDriverState *intermediate; 1951 1952 assert(active != NULL); 1953 assert(bs != NULL); 1954 1955 /* if bs is the same as active, then by definition it has no overlay 1956 */ 1957 if (active == bs) { 1958 return NULL; 1959 } 1960 1961 intermediate = active; 1962 while (intermediate->backing_hd) { 1963 if (intermediate->backing_hd == bs) { 1964 overlay = intermediate; 1965 break; 1966 } 1967 intermediate = intermediate->backing_hd; 1968 } 1969 1970 return overlay; 1971 } 1972 1973 typedef struct BlkIntermediateStates { 1974 BlockDriverState *bs; 1975 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 1976 } BlkIntermediateStates; 1977 1978 1979 /* 1980 * Drops images above 'base' up to and including 'top', and sets the image 1981 * above 'top' to have base as its backing file. 1982 * 1983 * Requires that the overlay to 'top' is opened r/w, so that the backing file 1984 * information in 'bs' can be properly updated. 1985 * 1986 * E.g., this will convert the following chain: 1987 * bottom <- base <- intermediate <- top <- active 1988 * 1989 * to 1990 * 1991 * bottom <- base <- active 1992 * 1993 * It is allowed for bottom==base, in which case it converts: 1994 * 1995 * base <- intermediate <- top <- active 1996 * 1997 * to 1998 * 1999 * base <- active 2000 * 2001 * Error conditions: 2002 * if active == top, that is considered an error 2003 * 2004 */ 2005 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 2006 BlockDriverState *base) 2007 { 2008 BlockDriverState *intermediate; 2009 BlockDriverState *base_bs = NULL; 2010 BlockDriverState *new_top_bs = NULL; 2011 BlkIntermediateStates *intermediate_state, *next; 2012 int ret = -EIO; 2013 2014 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 2015 QSIMPLEQ_INIT(&states_to_delete); 2016 2017 if (!top->drv || !base->drv) { 2018 goto exit; 2019 } 2020 2021 new_top_bs = bdrv_find_overlay(active, top); 2022 2023 if (new_top_bs == NULL) { 2024 /* we could not find the image above 'top', this is an error */ 2025 goto exit; 2026 } 2027 2028 /* special case of new_top_bs->backing_hd already pointing to base - nothing 2029 * to do, no intermediate images */ 2030 if (new_top_bs->backing_hd == base) { 2031 ret = 0; 2032 goto exit; 2033 } 2034 2035 intermediate = top; 2036 2037 /* now we will go down through the list, and add each BDS we find 2038 * into our deletion queue, until we hit the 'base' 2039 */ 2040 while (intermediate) { 2041 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 2042 intermediate_state->bs = intermediate; 2043 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 2044 2045 if (intermediate->backing_hd == base) { 2046 base_bs = intermediate->backing_hd; 2047 break; 2048 } 2049 intermediate = intermediate->backing_hd; 2050 } 2051 if (base_bs == NULL) { 2052 /* something went wrong, we did not end at the base. safely 2053 * unravel everything, and exit with error */ 2054 goto exit; 2055 } 2056 2057 /* success - we can delete the intermediate states, and link top->base */ 2058 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 2059 base_bs->drv ? base_bs->drv->format_name : ""); 2060 if (ret) { 2061 goto exit; 2062 } 2063 new_top_bs->backing_hd = base_bs; 2064 2065 2066 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 2067 /* so that bdrv_close() does not recursively close the chain */ 2068 intermediate_state->bs->backing_hd = NULL; 2069 bdrv_delete(intermediate_state->bs); 2070 } 2071 ret = 0; 2072 2073 exit: 2074 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 2075 g_free(intermediate_state); 2076 } 2077 return ret; 2078 } 2079 2080 2081 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 2082 size_t size) 2083 { 2084 int64_t len; 2085 2086 if (!bdrv_is_inserted(bs)) 2087 return -ENOMEDIUM; 2088 2089 if (bs->growable) 2090 return 0; 2091 2092 len = bdrv_getlength(bs); 2093 2094 if (offset < 0) 2095 return -EIO; 2096 2097 if ((offset > len) || (len - offset < size)) 2098 return -EIO; 2099 2100 return 0; 2101 } 2102 2103 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 2104 int nb_sectors) 2105 { 2106 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 2107 nb_sectors * BDRV_SECTOR_SIZE); 2108 } 2109 2110 typedef struct RwCo { 2111 BlockDriverState *bs; 2112 int64_t sector_num; 2113 int nb_sectors; 2114 QEMUIOVector *qiov; 2115 bool is_write; 2116 int ret; 2117 } RwCo; 2118 2119 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 2120 { 2121 RwCo *rwco = opaque; 2122 2123 if (!rwco->is_write) { 2124 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 2125 rwco->nb_sectors, rwco->qiov, 0); 2126 } else { 2127 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 2128 rwco->nb_sectors, rwco->qiov, 0); 2129 } 2130 } 2131 2132 /* 2133 * Process a synchronous request using coroutines 2134 */ 2135 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 2136 int nb_sectors, bool is_write) 2137 { 2138 QEMUIOVector qiov; 2139 struct iovec iov = { 2140 .iov_base = (void *)buf, 2141 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 2142 }; 2143 Coroutine *co; 2144 RwCo rwco = { 2145 .bs = bs, 2146 .sector_num = sector_num, 2147 .nb_sectors = nb_sectors, 2148 .qiov = &qiov, 2149 .is_write = is_write, 2150 .ret = NOT_DONE, 2151 }; 2152 2153 qemu_iovec_init_external(&qiov, &iov, 1); 2154 2155 /** 2156 * In sync call context, when the vcpu is blocked, this throttling timer 2157 * will not fire; so the I/O throttling function has to be disabled here 2158 * if it has been enabled. 2159 */ 2160 if (bs->io_limits_enabled) { 2161 fprintf(stderr, "Disabling I/O throttling on '%s' due " 2162 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 2163 bdrv_io_limits_disable(bs); 2164 } 2165 2166 if (qemu_in_coroutine()) { 2167 /* Fast-path if already in coroutine context */ 2168 bdrv_rw_co_entry(&rwco); 2169 } else { 2170 co = qemu_coroutine_create(bdrv_rw_co_entry); 2171 qemu_coroutine_enter(co, &rwco); 2172 while (rwco.ret == NOT_DONE) { 2173 qemu_aio_wait(); 2174 } 2175 } 2176 return rwco.ret; 2177 } 2178 2179 /* return < 0 if error. See bdrv_write() for the return codes */ 2180 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2181 uint8_t *buf, int nb_sectors) 2182 { 2183 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 2184 } 2185 2186 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2187 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2188 uint8_t *buf, int nb_sectors) 2189 { 2190 bool enabled; 2191 int ret; 2192 2193 enabled = bs->io_limits_enabled; 2194 bs->io_limits_enabled = false; 2195 ret = bdrv_read(bs, 0, buf, 1); 2196 bs->io_limits_enabled = enabled; 2197 return ret; 2198 } 2199 2200 /* Return < 0 if error. Important errors are: 2201 -EIO generic I/O error (may happen for all errors) 2202 -ENOMEDIUM No media inserted. 2203 -EINVAL Invalid sector number or nb_sectors 2204 -EACCES Trying to write a read-only device 2205 */ 2206 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2207 const uint8_t *buf, int nb_sectors) 2208 { 2209 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2210 } 2211 2212 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2213 void *buf, int count1) 2214 { 2215 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2216 int len, nb_sectors, count; 2217 int64_t sector_num; 2218 int ret; 2219 2220 count = count1; 2221 /* first read to align to sector start */ 2222 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2223 if (len > count) 2224 len = count; 2225 sector_num = offset >> BDRV_SECTOR_BITS; 2226 if (len > 0) { 2227 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2228 return ret; 2229 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2230 count -= len; 2231 if (count == 0) 2232 return count1; 2233 sector_num++; 2234 buf += len; 2235 } 2236 2237 /* read the sectors "in place" */ 2238 nb_sectors = count >> BDRV_SECTOR_BITS; 2239 if (nb_sectors > 0) { 2240 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2241 return ret; 2242 sector_num += nb_sectors; 2243 len = nb_sectors << BDRV_SECTOR_BITS; 2244 buf += len; 2245 count -= len; 2246 } 2247 2248 /* add data from the last sector */ 2249 if (count > 0) { 2250 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2251 return ret; 2252 memcpy(buf, tmp_buf, count); 2253 } 2254 return count1; 2255 } 2256 2257 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2258 const void *buf, int count1) 2259 { 2260 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2261 int len, nb_sectors, count; 2262 int64_t sector_num; 2263 int ret; 2264 2265 count = count1; 2266 /* first write to align to sector start */ 2267 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2268 if (len > count) 2269 len = count; 2270 sector_num = offset >> BDRV_SECTOR_BITS; 2271 if (len > 0) { 2272 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2273 return ret; 2274 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 2275 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2276 return ret; 2277 count -= len; 2278 if (count == 0) 2279 return count1; 2280 sector_num++; 2281 buf += len; 2282 } 2283 2284 /* write the sectors "in place" */ 2285 nb_sectors = count >> BDRV_SECTOR_BITS; 2286 if (nb_sectors > 0) { 2287 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 2288 return ret; 2289 sector_num += nb_sectors; 2290 len = nb_sectors << BDRV_SECTOR_BITS; 2291 buf += len; 2292 count -= len; 2293 } 2294 2295 /* add data from the last sector */ 2296 if (count > 0) { 2297 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2298 return ret; 2299 memcpy(tmp_buf, buf, count); 2300 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2301 return ret; 2302 } 2303 return count1; 2304 } 2305 2306 /* 2307 * Writes to the file and ensures that no writes are reordered across this 2308 * request (acts as a barrier) 2309 * 2310 * Returns 0 on success, -errno in error cases. 2311 */ 2312 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2313 const void *buf, int count) 2314 { 2315 int ret; 2316 2317 ret = bdrv_pwrite(bs, offset, buf, count); 2318 if (ret < 0) { 2319 return ret; 2320 } 2321 2322 /* No flush needed for cache modes that already do it */ 2323 if (bs->enable_write_cache) { 2324 bdrv_flush(bs); 2325 } 2326 2327 return 0; 2328 } 2329 2330 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2331 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2332 { 2333 /* Perform I/O through a temporary buffer so that users who scribble over 2334 * their read buffer while the operation is in progress do not end up 2335 * modifying the image file. This is critical for zero-copy guest I/O 2336 * where anything might happen inside guest memory. 2337 */ 2338 void *bounce_buffer; 2339 2340 BlockDriver *drv = bs->drv; 2341 struct iovec iov; 2342 QEMUIOVector bounce_qiov; 2343 int64_t cluster_sector_num; 2344 int cluster_nb_sectors; 2345 size_t skip_bytes; 2346 int ret; 2347 2348 /* Cover entire cluster so no additional backing file I/O is required when 2349 * allocating cluster in the image file. 2350 */ 2351 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 2352 &cluster_sector_num, &cluster_nb_sectors); 2353 2354 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2355 cluster_sector_num, cluster_nb_sectors); 2356 2357 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2358 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2359 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2360 2361 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2362 &bounce_qiov); 2363 if (ret < 0) { 2364 goto err; 2365 } 2366 2367 if (drv->bdrv_co_write_zeroes && 2368 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2369 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2370 cluster_nb_sectors); 2371 } else { 2372 /* This does not change the data on the disk, it is not necessary 2373 * to flush even in cache=writethrough mode. 2374 */ 2375 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2376 &bounce_qiov); 2377 } 2378 2379 if (ret < 0) { 2380 /* It might be okay to ignore write errors for guest requests. If this 2381 * is a deliberate copy-on-read then we don't want to ignore the error. 2382 * Simply report it in all cases. 2383 */ 2384 goto err; 2385 } 2386 2387 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2388 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2389 nb_sectors * BDRV_SECTOR_SIZE); 2390 2391 err: 2392 qemu_vfree(bounce_buffer); 2393 return ret; 2394 } 2395 2396 /* 2397 * Handle a read request in coroutine context 2398 */ 2399 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2400 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2401 BdrvRequestFlags flags) 2402 { 2403 BlockDriver *drv = bs->drv; 2404 BdrvTrackedRequest req; 2405 int ret; 2406 2407 if (!drv) { 2408 return -ENOMEDIUM; 2409 } 2410 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2411 return -EIO; 2412 } 2413 2414 /* throttling disk read I/O */ 2415 if (bs->io_limits_enabled) { 2416 bdrv_io_limits_intercept(bs, false, nb_sectors); 2417 } 2418 2419 if (bs->copy_on_read) { 2420 flags |= BDRV_REQ_COPY_ON_READ; 2421 } 2422 if (flags & BDRV_REQ_COPY_ON_READ) { 2423 bs->copy_on_read_in_flight++; 2424 } 2425 2426 if (bs->copy_on_read_in_flight) { 2427 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2428 } 2429 2430 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2431 2432 if (flags & BDRV_REQ_COPY_ON_READ) { 2433 int pnum; 2434 2435 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2436 if (ret < 0) { 2437 goto out; 2438 } 2439 2440 if (!ret || pnum != nb_sectors) { 2441 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2442 goto out; 2443 } 2444 } 2445 2446 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2447 2448 out: 2449 tracked_request_end(&req); 2450 2451 if (flags & BDRV_REQ_COPY_ON_READ) { 2452 bs->copy_on_read_in_flight--; 2453 } 2454 2455 return ret; 2456 } 2457 2458 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2459 int nb_sectors, QEMUIOVector *qiov) 2460 { 2461 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2462 2463 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2464 } 2465 2466 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2467 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2468 { 2469 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2470 2471 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2472 BDRV_REQ_COPY_ON_READ); 2473 } 2474 2475 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2476 int64_t sector_num, int nb_sectors) 2477 { 2478 BlockDriver *drv = bs->drv; 2479 QEMUIOVector qiov; 2480 struct iovec iov; 2481 int ret; 2482 2483 /* TODO Emulate only part of misaligned requests instead of letting block 2484 * drivers return -ENOTSUP and emulate everything */ 2485 2486 /* First try the efficient write zeroes operation */ 2487 if (drv->bdrv_co_write_zeroes) { 2488 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2489 if (ret != -ENOTSUP) { 2490 return ret; 2491 } 2492 } 2493 2494 /* Fall back to bounce buffer if write zeroes is unsupported */ 2495 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2496 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2497 memset(iov.iov_base, 0, iov.iov_len); 2498 qemu_iovec_init_external(&qiov, &iov, 1); 2499 2500 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2501 2502 qemu_vfree(iov.iov_base); 2503 return ret; 2504 } 2505 2506 /* 2507 * Handle a write request in coroutine context 2508 */ 2509 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2510 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2511 BdrvRequestFlags flags) 2512 { 2513 BlockDriver *drv = bs->drv; 2514 BdrvTrackedRequest req; 2515 int ret; 2516 2517 if (!bs->drv) { 2518 return -ENOMEDIUM; 2519 } 2520 if (bs->read_only) { 2521 return -EACCES; 2522 } 2523 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2524 return -EIO; 2525 } 2526 2527 /* throttling disk write I/O */ 2528 if (bs->io_limits_enabled) { 2529 bdrv_io_limits_intercept(bs, true, nb_sectors); 2530 } 2531 2532 if (bs->copy_on_read_in_flight) { 2533 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2534 } 2535 2536 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2537 2538 if (flags & BDRV_REQ_ZERO_WRITE) { 2539 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2540 } else { 2541 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2542 } 2543 2544 if (ret == 0 && !bs->enable_write_cache) { 2545 ret = bdrv_co_flush(bs); 2546 } 2547 2548 if (bs->dirty_bitmap) { 2549 bdrv_set_dirty(bs, sector_num, nb_sectors); 2550 } 2551 2552 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2553 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2554 } 2555 2556 tracked_request_end(&req); 2557 2558 return ret; 2559 } 2560 2561 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2562 int nb_sectors, QEMUIOVector *qiov) 2563 { 2564 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2565 2566 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2567 } 2568 2569 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2570 int64_t sector_num, int nb_sectors) 2571 { 2572 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2573 2574 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2575 BDRV_REQ_ZERO_WRITE); 2576 } 2577 2578 /** 2579 * Truncate file to 'offset' bytes (needed only for file protocols) 2580 */ 2581 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2582 { 2583 BlockDriver *drv = bs->drv; 2584 int ret; 2585 if (!drv) 2586 return -ENOMEDIUM; 2587 if (!drv->bdrv_truncate) 2588 return -ENOTSUP; 2589 if (bs->read_only) 2590 return -EACCES; 2591 if (bdrv_in_use(bs)) 2592 return -EBUSY; 2593 ret = drv->bdrv_truncate(bs, offset); 2594 if (ret == 0) { 2595 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2596 bdrv_dev_resize_cb(bs); 2597 } 2598 return ret; 2599 } 2600 2601 /** 2602 * Length of a allocated file in bytes. Sparse files are counted by actual 2603 * allocated space. Return < 0 if error or unknown. 2604 */ 2605 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2606 { 2607 BlockDriver *drv = bs->drv; 2608 if (!drv) { 2609 return -ENOMEDIUM; 2610 } 2611 if (drv->bdrv_get_allocated_file_size) { 2612 return drv->bdrv_get_allocated_file_size(bs); 2613 } 2614 if (bs->file) { 2615 return bdrv_get_allocated_file_size(bs->file); 2616 } 2617 return -ENOTSUP; 2618 } 2619 2620 /** 2621 * Length of a file in bytes. Return < 0 if error or unknown. 2622 */ 2623 int64_t bdrv_getlength(BlockDriverState *bs) 2624 { 2625 BlockDriver *drv = bs->drv; 2626 if (!drv) 2627 return -ENOMEDIUM; 2628 2629 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2630 if (drv->bdrv_getlength) { 2631 return drv->bdrv_getlength(bs); 2632 } 2633 } 2634 return bs->total_sectors * BDRV_SECTOR_SIZE; 2635 } 2636 2637 /* return 0 as number of sectors if no device present or error */ 2638 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2639 { 2640 int64_t length; 2641 length = bdrv_getlength(bs); 2642 if (length < 0) 2643 length = 0; 2644 else 2645 length = length >> BDRV_SECTOR_BITS; 2646 *nb_sectors_ptr = length; 2647 } 2648 2649 /* throttling disk io limits */ 2650 void bdrv_set_io_limits(BlockDriverState *bs, 2651 BlockIOLimit *io_limits) 2652 { 2653 bs->io_limits = *io_limits; 2654 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2655 } 2656 2657 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2658 BlockdevOnError on_write_error) 2659 { 2660 bs->on_read_error = on_read_error; 2661 bs->on_write_error = on_write_error; 2662 } 2663 2664 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2665 { 2666 return is_read ? bs->on_read_error : bs->on_write_error; 2667 } 2668 2669 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2670 { 2671 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2672 2673 switch (on_err) { 2674 case BLOCKDEV_ON_ERROR_ENOSPC: 2675 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2676 case BLOCKDEV_ON_ERROR_STOP: 2677 return BDRV_ACTION_STOP; 2678 case BLOCKDEV_ON_ERROR_REPORT: 2679 return BDRV_ACTION_REPORT; 2680 case BLOCKDEV_ON_ERROR_IGNORE: 2681 return BDRV_ACTION_IGNORE; 2682 default: 2683 abort(); 2684 } 2685 } 2686 2687 /* This is done by device models because, while the block layer knows 2688 * about the error, it does not know whether an operation comes from 2689 * the device or the block layer (from a job, for example). 2690 */ 2691 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2692 bool is_read, int error) 2693 { 2694 assert(error >= 0); 2695 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2696 if (action == BDRV_ACTION_STOP) { 2697 vm_stop(RUN_STATE_IO_ERROR); 2698 bdrv_iostatus_set_err(bs, error); 2699 } 2700 } 2701 2702 int bdrv_is_read_only(BlockDriverState *bs) 2703 { 2704 return bs->read_only; 2705 } 2706 2707 int bdrv_is_sg(BlockDriverState *bs) 2708 { 2709 return bs->sg; 2710 } 2711 2712 int bdrv_enable_write_cache(BlockDriverState *bs) 2713 { 2714 return bs->enable_write_cache; 2715 } 2716 2717 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2718 { 2719 bs->enable_write_cache = wce; 2720 2721 /* so a reopen() will preserve wce */ 2722 if (wce) { 2723 bs->open_flags |= BDRV_O_CACHE_WB; 2724 } else { 2725 bs->open_flags &= ~BDRV_O_CACHE_WB; 2726 } 2727 } 2728 2729 int bdrv_is_encrypted(BlockDriverState *bs) 2730 { 2731 if (bs->backing_hd && bs->backing_hd->encrypted) 2732 return 1; 2733 return bs->encrypted; 2734 } 2735 2736 int bdrv_key_required(BlockDriverState *bs) 2737 { 2738 BlockDriverState *backing_hd = bs->backing_hd; 2739 2740 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2741 return 1; 2742 return (bs->encrypted && !bs->valid_key); 2743 } 2744 2745 int bdrv_set_key(BlockDriverState *bs, const char *key) 2746 { 2747 int ret; 2748 if (bs->backing_hd && bs->backing_hd->encrypted) { 2749 ret = bdrv_set_key(bs->backing_hd, key); 2750 if (ret < 0) 2751 return ret; 2752 if (!bs->encrypted) 2753 return 0; 2754 } 2755 if (!bs->encrypted) { 2756 return -EINVAL; 2757 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2758 return -ENOMEDIUM; 2759 } 2760 ret = bs->drv->bdrv_set_key(bs, key); 2761 if (ret < 0) { 2762 bs->valid_key = 0; 2763 } else if (!bs->valid_key) { 2764 bs->valid_key = 1; 2765 /* call the change callback now, we skipped it on open */ 2766 bdrv_dev_change_media_cb(bs, true); 2767 } 2768 return ret; 2769 } 2770 2771 const char *bdrv_get_format_name(BlockDriverState *bs) 2772 { 2773 return bs->drv ? bs->drv->format_name : NULL; 2774 } 2775 2776 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2777 void *opaque) 2778 { 2779 BlockDriver *drv; 2780 2781 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2782 it(opaque, drv->format_name); 2783 } 2784 } 2785 2786 BlockDriverState *bdrv_find(const char *name) 2787 { 2788 BlockDriverState *bs; 2789 2790 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2791 if (!strcmp(name, bs->device_name)) { 2792 return bs; 2793 } 2794 } 2795 return NULL; 2796 } 2797 2798 BlockDriverState *bdrv_next(BlockDriverState *bs) 2799 { 2800 if (!bs) { 2801 return QTAILQ_FIRST(&bdrv_states); 2802 } 2803 return QTAILQ_NEXT(bs, list); 2804 } 2805 2806 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2807 { 2808 BlockDriverState *bs; 2809 2810 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2811 it(opaque, bs); 2812 } 2813 } 2814 2815 const char *bdrv_get_device_name(BlockDriverState *bs) 2816 { 2817 return bs->device_name; 2818 } 2819 2820 int bdrv_get_flags(BlockDriverState *bs) 2821 { 2822 return bs->open_flags; 2823 } 2824 2825 void bdrv_flush_all(void) 2826 { 2827 BlockDriverState *bs; 2828 2829 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2830 bdrv_flush(bs); 2831 } 2832 } 2833 2834 int bdrv_has_zero_init(BlockDriverState *bs) 2835 { 2836 assert(bs->drv); 2837 2838 if (bs->drv->bdrv_has_zero_init) { 2839 return bs->drv->bdrv_has_zero_init(bs); 2840 } 2841 2842 return 1; 2843 } 2844 2845 typedef struct BdrvCoIsAllocatedData { 2846 BlockDriverState *bs; 2847 BlockDriverState *base; 2848 int64_t sector_num; 2849 int nb_sectors; 2850 int *pnum; 2851 int ret; 2852 bool done; 2853 } BdrvCoIsAllocatedData; 2854 2855 /* 2856 * Returns true iff the specified sector is present in the disk image. Drivers 2857 * not implementing the functionality are assumed to not support backing files, 2858 * hence all their sectors are reported as allocated. 2859 * 2860 * If 'sector_num' is beyond the end of the disk image the return value is 0 2861 * and 'pnum' is set to 0. 2862 * 2863 * 'pnum' is set to the number of sectors (including and immediately following 2864 * the specified sector) that are known to be in the same 2865 * allocated/unallocated state. 2866 * 2867 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2868 * beyond the end of the disk image it will be clamped. 2869 */ 2870 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2871 int nb_sectors, int *pnum) 2872 { 2873 int64_t n; 2874 2875 if (sector_num >= bs->total_sectors) { 2876 *pnum = 0; 2877 return 0; 2878 } 2879 2880 n = bs->total_sectors - sector_num; 2881 if (n < nb_sectors) { 2882 nb_sectors = n; 2883 } 2884 2885 if (!bs->drv->bdrv_co_is_allocated) { 2886 *pnum = nb_sectors; 2887 return 1; 2888 } 2889 2890 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2891 } 2892 2893 /* Coroutine wrapper for bdrv_is_allocated() */ 2894 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2895 { 2896 BdrvCoIsAllocatedData *data = opaque; 2897 BlockDriverState *bs = data->bs; 2898 2899 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2900 data->pnum); 2901 data->done = true; 2902 } 2903 2904 /* 2905 * Synchronous wrapper around bdrv_co_is_allocated(). 2906 * 2907 * See bdrv_co_is_allocated() for details. 2908 */ 2909 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2910 int *pnum) 2911 { 2912 Coroutine *co; 2913 BdrvCoIsAllocatedData data = { 2914 .bs = bs, 2915 .sector_num = sector_num, 2916 .nb_sectors = nb_sectors, 2917 .pnum = pnum, 2918 .done = false, 2919 }; 2920 2921 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2922 qemu_coroutine_enter(co, &data); 2923 while (!data.done) { 2924 qemu_aio_wait(); 2925 } 2926 return data.ret; 2927 } 2928 2929 /* 2930 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2931 * 2932 * Return true if the given sector is allocated in any image between 2933 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2934 * sector is allocated in any image of the chain. Return false otherwise. 2935 * 2936 * 'pnum' is set to the number of sectors (including and immediately following 2937 * the specified sector) that are known to be in the same 2938 * allocated/unallocated state. 2939 * 2940 */ 2941 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2942 BlockDriverState *base, 2943 int64_t sector_num, 2944 int nb_sectors, int *pnum) 2945 { 2946 BlockDriverState *intermediate; 2947 int ret, n = nb_sectors; 2948 2949 intermediate = top; 2950 while (intermediate && intermediate != base) { 2951 int pnum_inter; 2952 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2953 &pnum_inter); 2954 if (ret < 0) { 2955 return ret; 2956 } else if (ret) { 2957 *pnum = pnum_inter; 2958 return 1; 2959 } 2960 2961 /* 2962 * [sector_num, nb_sectors] is unallocated on top but intermediate 2963 * might have 2964 * 2965 * [sector_num+x, nr_sectors] allocated. 2966 */ 2967 if (n > pnum_inter && 2968 (intermediate == top || 2969 sector_num + pnum_inter < intermediate->total_sectors)) { 2970 n = pnum_inter; 2971 } 2972 2973 intermediate = intermediate->backing_hd; 2974 } 2975 2976 *pnum = n; 2977 return 0; 2978 } 2979 2980 /* Coroutine wrapper for bdrv_is_allocated_above() */ 2981 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque) 2982 { 2983 BdrvCoIsAllocatedData *data = opaque; 2984 BlockDriverState *top = data->bs; 2985 BlockDriverState *base = data->base; 2986 2987 data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num, 2988 data->nb_sectors, data->pnum); 2989 data->done = true; 2990 } 2991 2992 /* 2993 * Synchronous wrapper around bdrv_co_is_allocated_above(). 2994 * 2995 * See bdrv_co_is_allocated_above() for details. 2996 */ 2997 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base, 2998 int64_t sector_num, int nb_sectors, int *pnum) 2999 { 3000 Coroutine *co; 3001 BdrvCoIsAllocatedData data = { 3002 .bs = top, 3003 .base = base, 3004 .sector_num = sector_num, 3005 .nb_sectors = nb_sectors, 3006 .pnum = pnum, 3007 .done = false, 3008 }; 3009 3010 co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry); 3011 qemu_coroutine_enter(co, &data); 3012 while (!data.done) { 3013 qemu_aio_wait(); 3014 } 3015 return data.ret; 3016 } 3017 3018 BlockInfo *bdrv_query_info(BlockDriverState *bs) 3019 { 3020 BlockInfo *info = g_malloc0(sizeof(*info)); 3021 info->device = g_strdup(bs->device_name); 3022 info->type = g_strdup("unknown"); 3023 info->locked = bdrv_dev_is_medium_locked(bs); 3024 info->removable = bdrv_dev_has_removable_media(bs); 3025 3026 if (bdrv_dev_has_removable_media(bs)) { 3027 info->has_tray_open = true; 3028 info->tray_open = bdrv_dev_is_tray_open(bs); 3029 } 3030 3031 if (bdrv_iostatus_is_enabled(bs)) { 3032 info->has_io_status = true; 3033 info->io_status = bs->iostatus; 3034 } 3035 3036 if (bs->dirty_bitmap) { 3037 info->has_dirty = true; 3038 info->dirty = g_malloc0(sizeof(*info->dirty)); 3039 info->dirty->count = bdrv_get_dirty_count(bs) * BDRV_SECTOR_SIZE; 3040 info->dirty->granularity = 3041 ((int64_t) BDRV_SECTOR_SIZE << hbitmap_granularity(bs->dirty_bitmap)); 3042 } 3043 3044 if (bs->drv) { 3045 info->has_inserted = true; 3046 info->inserted = g_malloc0(sizeof(*info->inserted)); 3047 info->inserted->file = g_strdup(bs->filename); 3048 info->inserted->ro = bs->read_only; 3049 info->inserted->drv = g_strdup(bs->drv->format_name); 3050 info->inserted->encrypted = bs->encrypted; 3051 info->inserted->encryption_key_missing = bdrv_key_required(bs); 3052 3053 if (bs->backing_file[0]) { 3054 info->inserted->has_backing_file = true; 3055 info->inserted->backing_file = g_strdup(bs->backing_file); 3056 } 3057 3058 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs); 3059 3060 if (bs->io_limits_enabled) { 3061 info->inserted->bps = 3062 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3063 info->inserted->bps_rd = 3064 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 3065 info->inserted->bps_wr = 3066 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 3067 info->inserted->iops = 3068 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3069 info->inserted->iops_rd = 3070 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 3071 info->inserted->iops_wr = 3072 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 3073 } 3074 } 3075 return info; 3076 } 3077 3078 BlockInfoList *qmp_query_block(Error **errp) 3079 { 3080 BlockInfoList *head = NULL, **p_next = &head; 3081 BlockDriverState *bs; 3082 3083 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3084 BlockInfoList *info = g_malloc0(sizeof(*info)); 3085 info->value = bdrv_query_info(bs); 3086 3087 *p_next = info; 3088 p_next = &info->next; 3089 } 3090 3091 return head; 3092 } 3093 3094 BlockStats *bdrv_query_stats(const BlockDriverState *bs) 3095 { 3096 BlockStats *s; 3097 3098 s = g_malloc0(sizeof(*s)); 3099 3100 if (bs->device_name[0]) { 3101 s->has_device = true; 3102 s->device = g_strdup(bs->device_name); 3103 } 3104 3105 s->stats = g_malloc0(sizeof(*s->stats)); 3106 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 3107 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 3108 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 3109 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 3110 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 3111 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 3112 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 3113 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 3114 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 3115 3116 if (bs->file) { 3117 s->has_parent = true; 3118 s->parent = bdrv_query_stats(bs->file); 3119 } 3120 3121 return s; 3122 } 3123 3124 BlockStatsList *qmp_query_blockstats(Error **errp) 3125 { 3126 BlockStatsList *head = NULL, **p_next = &head; 3127 BlockDriverState *bs; 3128 3129 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3130 BlockStatsList *info = g_malloc0(sizeof(*info)); 3131 info->value = bdrv_query_stats(bs); 3132 3133 *p_next = info; 3134 p_next = &info->next; 3135 } 3136 3137 return head; 3138 } 3139 3140 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 3141 { 3142 if (bs->backing_hd && bs->backing_hd->encrypted) 3143 return bs->backing_file; 3144 else if (bs->encrypted) 3145 return bs->filename; 3146 else 3147 return NULL; 3148 } 3149 3150 void bdrv_get_backing_filename(BlockDriverState *bs, 3151 char *filename, int filename_size) 3152 { 3153 pstrcpy(filename, filename_size, bs->backing_file); 3154 } 3155 3156 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 3157 const uint8_t *buf, int nb_sectors) 3158 { 3159 BlockDriver *drv = bs->drv; 3160 if (!drv) 3161 return -ENOMEDIUM; 3162 if (!drv->bdrv_write_compressed) 3163 return -ENOTSUP; 3164 if (bdrv_check_request(bs, sector_num, nb_sectors)) 3165 return -EIO; 3166 3167 assert(!bs->dirty_bitmap); 3168 3169 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 3170 } 3171 3172 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 3173 { 3174 BlockDriver *drv = bs->drv; 3175 if (!drv) 3176 return -ENOMEDIUM; 3177 if (!drv->bdrv_get_info) 3178 return -ENOTSUP; 3179 memset(bdi, 0, sizeof(*bdi)); 3180 return drv->bdrv_get_info(bs, bdi); 3181 } 3182 3183 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 3184 int64_t pos, int size) 3185 { 3186 BlockDriver *drv = bs->drv; 3187 if (!drv) 3188 return -ENOMEDIUM; 3189 if (drv->bdrv_save_vmstate) 3190 return drv->bdrv_save_vmstate(bs, buf, pos, size); 3191 if (bs->file) 3192 return bdrv_save_vmstate(bs->file, buf, pos, size); 3193 return -ENOTSUP; 3194 } 3195 3196 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3197 int64_t pos, int size) 3198 { 3199 BlockDriver *drv = bs->drv; 3200 if (!drv) 3201 return -ENOMEDIUM; 3202 if (drv->bdrv_load_vmstate) 3203 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3204 if (bs->file) 3205 return bdrv_load_vmstate(bs->file, buf, pos, size); 3206 return -ENOTSUP; 3207 } 3208 3209 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3210 { 3211 BlockDriver *drv = bs->drv; 3212 3213 if (!drv || !drv->bdrv_debug_event) { 3214 return; 3215 } 3216 3217 drv->bdrv_debug_event(bs, event); 3218 } 3219 3220 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event, 3221 const char *tag) 3222 { 3223 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) { 3224 bs = bs->file; 3225 } 3226 3227 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) { 3228 return bs->drv->bdrv_debug_breakpoint(bs, event, tag); 3229 } 3230 3231 return -ENOTSUP; 3232 } 3233 3234 int bdrv_debug_resume(BlockDriverState *bs, const char *tag) 3235 { 3236 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) { 3237 bs = bs->file; 3238 } 3239 3240 if (bs && bs->drv && bs->drv->bdrv_debug_resume) { 3241 return bs->drv->bdrv_debug_resume(bs, tag); 3242 } 3243 3244 return -ENOTSUP; 3245 } 3246 3247 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag) 3248 { 3249 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) { 3250 bs = bs->file; 3251 } 3252 3253 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) { 3254 return bs->drv->bdrv_debug_is_suspended(bs, tag); 3255 } 3256 3257 return false; 3258 } 3259 3260 /**************************************************************/ 3261 /* handling of snapshots */ 3262 3263 int bdrv_can_snapshot(BlockDriverState *bs) 3264 { 3265 BlockDriver *drv = bs->drv; 3266 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3267 return 0; 3268 } 3269 3270 if (!drv->bdrv_snapshot_create) { 3271 if (bs->file != NULL) { 3272 return bdrv_can_snapshot(bs->file); 3273 } 3274 return 0; 3275 } 3276 3277 return 1; 3278 } 3279 3280 int bdrv_is_snapshot(BlockDriverState *bs) 3281 { 3282 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3283 } 3284 3285 BlockDriverState *bdrv_snapshots(void) 3286 { 3287 BlockDriverState *bs; 3288 3289 if (bs_snapshots) { 3290 return bs_snapshots; 3291 } 3292 3293 bs = NULL; 3294 while ((bs = bdrv_next(bs))) { 3295 if (bdrv_can_snapshot(bs)) { 3296 bs_snapshots = bs; 3297 return bs; 3298 } 3299 } 3300 return NULL; 3301 } 3302 3303 int bdrv_snapshot_create(BlockDriverState *bs, 3304 QEMUSnapshotInfo *sn_info) 3305 { 3306 BlockDriver *drv = bs->drv; 3307 if (!drv) 3308 return -ENOMEDIUM; 3309 if (drv->bdrv_snapshot_create) 3310 return drv->bdrv_snapshot_create(bs, sn_info); 3311 if (bs->file) 3312 return bdrv_snapshot_create(bs->file, sn_info); 3313 return -ENOTSUP; 3314 } 3315 3316 int bdrv_snapshot_goto(BlockDriverState *bs, 3317 const char *snapshot_id) 3318 { 3319 BlockDriver *drv = bs->drv; 3320 int ret, open_ret; 3321 3322 if (!drv) 3323 return -ENOMEDIUM; 3324 if (drv->bdrv_snapshot_goto) 3325 return drv->bdrv_snapshot_goto(bs, snapshot_id); 3326 3327 if (bs->file) { 3328 drv->bdrv_close(bs); 3329 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 3330 open_ret = drv->bdrv_open(bs, NULL, bs->open_flags); 3331 if (open_ret < 0) { 3332 bdrv_delete(bs->file); 3333 bs->drv = NULL; 3334 return open_ret; 3335 } 3336 return ret; 3337 } 3338 3339 return -ENOTSUP; 3340 } 3341 3342 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 3343 { 3344 BlockDriver *drv = bs->drv; 3345 if (!drv) 3346 return -ENOMEDIUM; 3347 if (drv->bdrv_snapshot_delete) 3348 return drv->bdrv_snapshot_delete(bs, snapshot_id); 3349 if (bs->file) 3350 return bdrv_snapshot_delete(bs->file, snapshot_id); 3351 return -ENOTSUP; 3352 } 3353 3354 int bdrv_snapshot_list(BlockDriverState *bs, 3355 QEMUSnapshotInfo **psn_info) 3356 { 3357 BlockDriver *drv = bs->drv; 3358 if (!drv) 3359 return -ENOMEDIUM; 3360 if (drv->bdrv_snapshot_list) 3361 return drv->bdrv_snapshot_list(bs, psn_info); 3362 if (bs->file) 3363 return bdrv_snapshot_list(bs->file, psn_info); 3364 return -ENOTSUP; 3365 } 3366 3367 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 3368 const char *snapshot_name) 3369 { 3370 BlockDriver *drv = bs->drv; 3371 if (!drv) { 3372 return -ENOMEDIUM; 3373 } 3374 if (!bs->read_only) { 3375 return -EINVAL; 3376 } 3377 if (drv->bdrv_snapshot_load_tmp) { 3378 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 3379 } 3380 return -ENOTSUP; 3381 } 3382 3383 /* backing_file can either be relative, or absolute, or a protocol. If it is 3384 * relative, it must be relative to the chain. So, passing in bs->filename 3385 * from a BDS as backing_file should not be done, as that may be relative to 3386 * the CWD rather than the chain. */ 3387 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3388 const char *backing_file) 3389 { 3390 char *filename_full = NULL; 3391 char *backing_file_full = NULL; 3392 char *filename_tmp = NULL; 3393 int is_protocol = 0; 3394 BlockDriverState *curr_bs = NULL; 3395 BlockDriverState *retval = NULL; 3396 3397 if (!bs || !bs->drv || !backing_file) { 3398 return NULL; 3399 } 3400 3401 filename_full = g_malloc(PATH_MAX); 3402 backing_file_full = g_malloc(PATH_MAX); 3403 filename_tmp = g_malloc(PATH_MAX); 3404 3405 is_protocol = path_has_protocol(backing_file); 3406 3407 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3408 3409 /* If either of the filename paths is actually a protocol, then 3410 * compare unmodified paths; otherwise make paths relative */ 3411 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3412 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3413 retval = curr_bs->backing_hd; 3414 break; 3415 } 3416 } else { 3417 /* If not an absolute filename path, make it relative to the current 3418 * image's filename path */ 3419 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3420 backing_file); 3421 3422 /* We are going to compare absolute pathnames */ 3423 if (!realpath(filename_tmp, filename_full)) { 3424 continue; 3425 } 3426 3427 /* We need to make sure the backing filename we are comparing against 3428 * is relative to the current image filename (or absolute) */ 3429 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3430 curr_bs->backing_file); 3431 3432 if (!realpath(filename_tmp, backing_file_full)) { 3433 continue; 3434 } 3435 3436 if (strcmp(backing_file_full, filename_full) == 0) { 3437 retval = curr_bs->backing_hd; 3438 break; 3439 } 3440 } 3441 } 3442 3443 g_free(filename_full); 3444 g_free(backing_file_full); 3445 g_free(filename_tmp); 3446 return retval; 3447 } 3448 3449 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3450 { 3451 if (!bs->drv) { 3452 return 0; 3453 } 3454 3455 if (!bs->backing_hd) { 3456 return 0; 3457 } 3458 3459 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3460 } 3461 3462 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3463 { 3464 BlockDriverState *curr_bs = NULL; 3465 3466 if (!bs) { 3467 return NULL; 3468 } 3469 3470 curr_bs = bs; 3471 3472 while (curr_bs->backing_hd) { 3473 curr_bs = curr_bs->backing_hd; 3474 } 3475 return curr_bs; 3476 } 3477 3478 #define NB_SUFFIXES 4 3479 3480 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 3481 { 3482 static const char suffixes[NB_SUFFIXES] = "KMGT"; 3483 int64_t base; 3484 int i; 3485 3486 if (size <= 999) { 3487 snprintf(buf, buf_size, "%" PRId64, size); 3488 } else { 3489 base = 1024; 3490 for(i = 0; i < NB_SUFFIXES; i++) { 3491 if (size < (10 * base)) { 3492 snprintf(buf, buf_size, "%0.1f%c", 3493 (double)size / base, 3494 suffixes[i]); 3495 break; 3496 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3497 snprintf(buf, buf_size, "%" PRId64 "%c", 3498 ((size + (base >> 1)) / base), 3499 suffixes[i]); 3500 break; 3501 } 3502 base = base * 1024; 3503 } 3504 } 3505 return buf; 3506 } 3507 3508 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3509 { 3510 char buf1[128], date_buf[128], clock_buf[128]; 3511 struct tm tm; 3512 time_t ti; 3513 int64_t secs; 3514 3515 if (!sn) { 3516 snprintf(buf, buf_size, 3517 "%-10s%-20s%7s%20s%15s", 3518 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3519 } else { 3520 ti = sn->date_sec; 3521 localtime_r(&ti, &tm); 3522 strftime(date_buf, sizeof(date_buf), 3523 "%Y-%m-%d %H:%M:%S", &tm); 3524 secs = sn->vm_clock_nsec / 1000000000; 3525 snprintf(clock_buf, sizeof(clock_buf), 3526 "%02d:%02d:%02d.%03d", 3527 (int)(secs / 3600), 3528 (int)((secs / 60) % 60), 3529 (int)(secs % 60), 3530 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3531 snprintf(buf, buf_size, 3532 "%-10s%-20s%7s%20s%15s", 3533 sn->id_str, sn->name, 3534 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3535 date_buf, 3536 clock_buf); 3537 } 3538 return buf; 3539 } 3540 3541 /**************************************************************/ 3542 /* async I/Os */ 3543 3544 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3545 QEMUIOVector *qiov, int nb_sectors, 3546 BlockDriverCompletionFunc *cb, void *opaque) 3547 { 3548 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3549 3550 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3551 cb, opaque, false); 3552 } 3553 3554 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3555 QEMUIOVector *qiov, int nb_sectors, 3556 BlockDriverCompletionFunc *cb, void *opaque) 3557 { 3558 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3559 3560 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3561 cb, opaque, true); 3562 } 3563 3564 3565 typedef struct MultiwriteCB { 3566 int error; 3567 int num_requests; 3568 int num_callbacks; 3569 struct { 3570 BlockDriverCompletionFunc *cb; 3571 void *opaque; 3572 QEMUIOVector *free_qiov; 3573 } callbacks[]; 3574 } MultiwriteCB; 3575 3576 static void multiwrite_user_cb(MultiwriteCB *mcb) 3577 { 3578 int i; 3579 3580 for (i = 0; i < mcb->num_callbacks; i++) { 3581 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3582 if (mcb->callbacks[i].free_qiov) { 3583 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3584 } 3585 g_free(mcb->callbacks[i].free_qiov); 3586 } 3587 } 3588 3589 static void multiwrite_cb(void *opaque, int ret) 3590 { 3591 MultiwriteCB *mcb = opaque; 3592 3593 trace_multiwrite_cb(mcb, ret); 3594 3595 if (ret < 0 && !mcb->error) { 3596 mcb->error = ret; 3597 } 3598 3599 mcb->num_requests--; 3600 if (mcb->num_requests == 0) { 3601 multiwrite_user_cb(mcb); 3602 g_free(mcb); 3603 } 3604 } 3605 3606 static int multiwrite_req_compare(const void *a, const void *b) 3607 { 3608 const BlockRequest *req1 = a, *req2 = b; 3609 3610 /* 3611 * Note that we can't simply subtract req2->sector from req1->sector 3612 * here as that could overflow the return value. 3613 */ 3614 if (req1->sector > req2->sector) { 3615 return 1; 3616 } else if (req1->sector < req2->sector) { 3617 return -1; 3618 } else { 3619 return 0; 3620 } 3621 } 3622 3623 /* 3624 * Takes a bunch of requests and tries to merge them. Returns the number of 3625 * requests that remain after merging. 3626 */ 3627 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3628 int num_reqs, MultiwriteCB *mcb) 3629 { 3630 int i, outidx; 3631 3632 // Sort requests by start sector 3633 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3634 3635 // Check if adjacent requests touch the same clusters. If so, combine them, 3636 // filling up gaps with zero sectors. 3637 outidx = 0; 3638 for (i = 1; i < num_reqs; i++) { 3639 int merge = 0; 3640 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3641 3642 // Handle exactly sequential writes and overlapping writes. 3643 if (reqs[i].sector <= oldreq_last) { 3644 merge = 1; 3645 } 3646 3647 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3648 merge = 0; 3649 } 3650 3651 if (merge) { 3652 size_t size; 3653 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3654 qemu_iovec_init(qiov, 3655 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3656 3657 // Add the first request to the merged one. If the requests are 3658 // overlapping, drop the last sectors of the first request. 3659 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3660 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3661 3662 // We should need to add any zeros between the two requests 3663 assert (reqs[i].sector <= oldreq_last); 3664 3665 // Add the second request 3666 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3667 3668 reqs[outidx].nb_sectors = qiov->size >> 9; 3669 reqs[outidx].qiov = qiov; 3670 3671 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3672 } else { 3673 outidx++; 3674 reqs[outidx].sector = reqs[i].sector; 3675 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3676 reqs[outidx].qiov = reqs[i].qiov; 3677 } 3678 } 3679 3680 return outidx + 1; 3681 } 3682 3683 /* 3684 * Submit multiple AIO write requests at once. 3685 * 3686 * On success, the function returns 0 and all requests in the reqs array have 3687 * been submitted. In error case this function returns -1, and any of the 3688 * requests may or may not be submitted yet. In particular, this means that the 3689 * callback will be called for some of the requests, for others it won't. The 3690 * caller must check the error field of the BlockRequest to wait for the right 3691 * callbacks (if error != 0, no callback will be called). 3692 * 3693 * The implementation may modify the contents of the reqs array, e.g. to merge 3694 * requests. However, the fields opaque and error are left unmodified as they 3695 * are used to signal failure for a single request to the caller. 3696 */ 3697 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3698 { 3699 MultiwriteCB *mcb; 3700 int i; 3701 3702 /* don't submit writes if we don't have a medium */ 3703 if (bs->drv == NULL) { 3704 for (i = 0; i < num_reqs; i++) { 3705 reqs[i].error = -ENOMEDIUM; 3706 } 3707 return -1; 3708 } 3709 3710 if (num_reqs == 0) { 3711 return 0; 3712 } 3713 3714 // Create MultiwriteCB structure 3715 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3716 mcb->num_requests = 0; 3717 mcb->num_callbacks = num_reqs; 3718 3719 for (i = 0; i < num_reqs; i++) { 3720 mcb->callbacks[i].cb = reqs[i].cb; 3721 mcb->callbacks[i].opaque = reqs[i].opaque; 3722 } 3723 3724 // Check for mergable requests 3725 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3726 3727 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3728 3729 /* Run the aio requests. */ 3730 mcb->num_requests = num_reqs; 3731 for (i = 0; i < num_reqs; i++) { 3732 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3733 reqs[i].nb_sectors, multiwrite_cb, mcb); 3734 } 3735 3736 return 0; 3737 } 3738 3739 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3740 { 3741 acb->aiocb_info->cancel(acb); 3742 } 3743 3744 /* block I/O throttling */ 3745 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3746 bool is_write, double elapsed_time, uint64_t *wait) 3747 { 3748 uint64_t bps_limit = 0; 3749 double bytes_limit, bytes_base, bytes_res; 3750 double slice_time, wait_time; 3751 3752 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3753 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3754 } else if (bs->io_limits.bps[is_write]) { 3755 bps_limit = bs->io_limits.bps[is_write]; 3756 } else { 3757 if (wait) { 3758 *wait = 0; 3759 } 3760 3761 return false; 3762 } 3763 3764 slice_time = bs->slice_end - bs->slice_start; 3765 slice_time /= (NANOSECONDS_PER_SECOND); 3766 bytes_limit = bps_limit * slice_time; 3767 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3768 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3769 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3770 } 3771 3772 /* bytes_base: the bytes of data which have been read/written; and 3773 * it is obtained from the history statistic info. 3774 * bytes_res: the remaining bytes of data which need to be read/written. 3775 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3776 * the total time for completing reading/writting all data. 3777 */ 3778 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3779 3780 if (bytes_base + bytes_res <= bytes_limit) { 3781 if (wait) { 3782 *wait = 0; 3783 } 3784 3785 return false; 3786 } 3787 3788 /* Calc approx time to dispatch */ 3789 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3790 3791 /* When the I/O rate at runtime exceeds the limits, 3792 * bs->slice_end need to be extended in order that the current statistic 3793 * info can be kept until the timer fire, so it is increased and tuned 3794 * based on the result of experiment. 3795 */ 3796 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3797 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3798 if (wait) { 3799 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3800 } 3801 3802 return true; 3803 } 3804 3805 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3806 double elapsed_time, uint64_t *wait) 3807 { 3808 uint64_t iops_limit = 0; 3809 double ios_limit, ios_base; 3810 double slice_time, wait_time; 3811 3812 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3813 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3814 } else if (bs->io_limits.iops[is_write]) { 3815 iops_limit = bs->io_limits.iops[is_write]; 3816 } else { 3817 if (wait) { 3818 *wait = 0; 3819 } 3820 3821 return false; 3822 } 3823 3824 slice_time = bs->slice_end - bs->slice_start; 3825 slice_time /= (NANOSECONDS_PER_SECOND); 3826 ios_limit = iops_limit * slice_time; 3827 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3828 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3829 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3830 } 3831 3832 if (ios_base + 1 <= ios_limit) { 3833 if (wait) { 3834 *wait = 0; 3835 } 3836 3837 return false; 3838 } 3839 3840 /* Calc approx time to dispatch */ 3841 wait_time = (ios_base + 1) / iops_limit; 3842 if (wait_time > elapsed_time) { 3843 wait_time = wait_time - elapsed_time; 3844 } else { 3845 wait_time = 0; 3846 } 3847 3848 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3849 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3850 if (wait) { 3851 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3852 } 3853 3854 return true; 3855 } 3856 3857 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3858 bool is_write, int64_t *wait) 3859 { 3860 int64_t now, max_wait; 3861 uint64_t bps_wait = 0, iops_wait = 0; 3862 double elapsed_time; 3863 int bps_ret, iops_ret; 3864 3865 now = qemu_get_clock_ns(vm_clock); 3866 if ((bs->slice_start < now) 3867 && (bs->slice_end > now)) { 3868 bs->slice_end = now + bs->slice_time; 3869 } else { 3870 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3871 bs->slice_start = now; 3872 bs->slice_end = now + bs->slice_time; 3873 3874 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3875 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3876 3877 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3878 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3879 } 3880 3881 elapsed_time = now - bs->slice_start; 3882 elapsed_time /= (NANOSECONDS_PER_SECOND); 3883 3884 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3885 is_write, elapsed_time, &bps_wait); 3886 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3887 elapsed_time, &iops_wait); 3888 if (bps_ret || iops_ret) { 3889 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3890 if (wait) { 3891 *wait = max_wait; 3892 } 3893 3894 now = qemu_get_clock_ns(vm_clock); 3895 if (bs->slice_end < now + max_wait) { 3896 bs->slice_end = now + max_wait; 3897 } 3898 3899 return true; 3900 } 3901 3902 if (wait) { 3903 *wait = 0; 3904 } 3905 3906 return false; 3907 } 3908 3909 /**************************************************************/ 3910 /* async block device emulation */ 3911 3912 typedef struct BlockDriverAIOCBSync { 3913 BlockDriverAIOCB common; 3914 QEMUBH *bh; 3915 int ret; 3916 /* vector translation state */ 3917 QEMUIOVector *qiov; 3918 uint8_t *bounce; 3919 int is_write; 3920 } BlockDriverAIOCBSync; 3921 3922 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3923 { 3924 BlockDriverAIOCBSync *acb = 3925 container_of(blockacb, BlockDriverAIOCBSync, common); 3926 qemu_bh_delete(acb->bh); 3927 acb->bh = NULL; 3928 qemu_aio_release(acb); 3929 } 3930 3931 static const AIOCBInfo bdrv_em_aiocb_info = { 3932 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3933 .cancel = bdrv_aio_cancel_em, 3934 }; 3935 3936 static void bdrv_aio_bh_cb(void *opaque) 3937 { 3938 BlockDriverAIOCBSync *acb = opaque; 3939 3940 if (!acb->is_write) 3941 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3942 qemu_vfree(acb->bounce); 3943 acb->common.cb(acb->common.opaque, acb->ret); 3944 qemu_bh_delete(acb->bh); 3945 acb->bh = NULL; 3946 qemu_aio_release(acb); 3947 } 3948 3949 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3950 int64_t sector_num, 3951 QEMUIOVector *qiov, 3952 int nb_sectors, 3953 BlockDriverCompletionFunc *cb, 3954 void *opaque, 3955 int is_write) 3956 3957 { 3958 BlockDriverAIOCBSync *acb; 3959 3960 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 3961 acb->is_write = is_write; 3962 acb->qiov = qiov; 3963 acb->bounce = qemu_blockalign(bs, qiov->size); 3964 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3965 3966 if (is_write) { 3967 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3968 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3969 } else { 3970 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3971 } 3972 3973 qemu_bh_schedule(acb->bh); 3974 3975 return &acb->common; 3976 } 3977 3978 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3979 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3980 BlockDriverCompletionFunc *cb, void *opaque) 3981 { 3982 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3983 } 3984 3985 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3986 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3987 BlockDriverCompletionFunc *cb, void *opaque) 3988 { 3989 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3990 } 3991 3992 3993 typedef struct BlockDriverAIOCBCoroutine { 3994 BlockDriverAIOCB common; 3995 BlockRequest req; 3996 bool is_write; 3997 bool *done; 3998 QEMUBH* bh; 3999 } BlockDriverAIOCBCoroutine; 4000 4001 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 4002 { 4003 BlockDriverAIOCBCoroutine *acb = 4004 container_of(blockacb, BlockDriverAIOCBCoroutine, common); 4005 bool done = false; 4006 4007 acb->done = &done; 4008 while (!done) { 4009 qemu_aio_wait(); 4010 } 4011 } 4012 4013 static const AIOCBInfo bdrv_em_co_aiocb_info = { 4014 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 4015 .cancel = bdrv_aio_co_cancel_em, 4016 }; 4017 4018 static void bdrv_co_em_bh(void *opaque) 4019 { 4020 BlockDriverAIOCBCoroutine *acb = opaque; 4021 4022 acb->common.cb(acb->common.opaque, acb->req.error); 4023 4024 if (acb->done) { 4025 *acb->done = true; 4026 } 4027 4028 qemu_bh_delete(acb->bh); 4029 qemu_aio_release(acb); 4030 } 4031 4032 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 4033 static void coroutine_fn bdrv_co_do_rw(void *opaque) 4034 { 4035 BlockDriverAIOCBCoroutine *acb = opaque; 4036 BlockDriverState *bs = acb->common.bs; 4037 4038 if (!acb->is_write) { 4039 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 4040 acb->req.nb_sectors, acb->req.qiov, 0); 4041 } else { 4042 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 4043 acb->req.nb_sectors, acb->req.qiov, 0); 4044 } 4045 4046 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 4047 qemu_bh_schedule(acb->bh); 4048 } 4049 4050 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 4051 int64_t sector_num, 4052 QEMUIOVector *qiov, 4053 int nb_sectors, 4054 BlockDriverCompletionFunc *cb, 4055 void *opaque, 4056 bool is_write) 4057 { 4058 Coroutine *co; 4059 BlockDriverAIOCBCoroutine *acb; 4060 4061 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 4062 acb->req.sector = sector_num; 4063 acb->req.nb_sectors = nb_sectors; 4064 acb->req.qiov = qiov; 4065 acb->is_write = is_write; 4066 acb->done = NULL; 4067 4068 co = qemu_coroutine_create(bdrv_co_do_rw); 4069 qemu_coroutine_enter(co, acb); 4070 4071 return &acb->common; 4072 } 4073 4074 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 4075 { 4076 BlockDriverAIOCBCoroutine *acb = opaque; 4077 BlockDriverState *bs = acb->common.bs; 4078 4079 acb->req.error = bdrv_co_flush(bs); 4080 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 4081 qemu_bh_schedule(acb->bh); 4082 } 4083 4084 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 4085 BlockDriverCompletionFunc *cb, void *opaque) 4086 { 4087 trace_bdrv_aio_flush(bs, opaque); 4088 4089 Coroutine *co; 4090 BlockDriverAIOCBCoroutine *acb; 4091 4092 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 4093 acb->done = NULL; 4094 4095 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 4096 qemu_coroutine_enter(co, acb); 4097 4098 return &acb->common; 4099 } 4100 4101 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 4102 { 4103 BlockDriverAIOCBCoroutine *acb = opaque; 4104 BlockDriverState *bs = acb->common.bs; 4105 4106 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 4107 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 4108 qemu_bh_schedule(acb->bh); 4109 } 4110 4111 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 4112 int64_t sector_num, int nb_sectors, 4113 BlockDriverCompletionFunc *cb, void *opaque) 4114 { 4115 Coroutine *co; 4116 BlockDriverAIOCBCoroutine *acb; 4117 4118 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 4119 4120 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 4121 acb->req.sector = sector_num; 4122 acb->req.nb_sectors = nb_sectors; 4123 acb->done = NULL; 4124 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 4125 qemu_coroutine_enter(co, acb); 4126 4127 return &acb->common; 4128 } 4129 4130 void bdrv_init(void) 4131 { 4132 module_call_init(MODULE_INIT_BLOCK); 4133 } 4134 4135 void bdrv_init_with_whitelist(void) 4136 { 4137 use_bdrv_whitelist = 1; 4138 bdrv_init(); 4139 } 4140 4141 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 4142 BlockDriverCompletionFunc *cb, void *opaque) 4143 { 4144 BlockDriverAIOCB *acb; 4145 4146 acb = g_slice_alloc(aiocb_info->aiocb_size); 4147 acb->aiocb_info = aiocb_info; 4148 acb->bs = bs; 4149 acb->cb = cb; 4150 acb->opaque = opaque; 4151 return acb; 4152 } 4153 4154 void qemu_aio_release(void *p) 4155 { 4156 BlockDriverAIOCB *acb = p; 4157 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 4158 } 4159 4160 /**************************************************************/ 4161 /* Coroutine block device emulation */ 4162 4163 typedef struct CoroutineIOCompletion { 4164 Coroutine *coroutine; 4165 int ret; 4166 } CoroutineIOCompletion; 4167 4168 static void bdrv_co_io_em_complete(void *opaque, int ret) 4169 { 4170 CoroutineIOCompletion *co = opaque; 4171 4172 co->ret = ret; 4173 qemu_coroutine_enter(co->coroutine, NULL); 4174 } 4175 4176 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 4177 int nb_sectors, QEMUIOVector *iov, 4178 bool is_write) 4179 { 4180 CoroutineIOCompletion co = { 4181 .coroutine = qemu_coroutine_self(), 4182 }; 4183 BlockDriverAIOCB *acb; 4184 4185 if (is_write) { 4186 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 4187 bdrv_co_io_em_complete, &co); 4188 } else { 4189 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 4190 bdrv_co_io_em_complete, &co); 4191 } 4192 4193 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 4194 if (!acb) { 4195 return -EIO; 4196 } 4197 qemu_coroutine_yield(); 4198 4199 return co.ret; 4200 } 4201 4202 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 4203 int64_t sector_num, int nb_sectors, 4204 QEMUIOVector *iov) 4205 { 4206 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 4207 } 4208 4209 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 4210 int64_t sector_num, int nb_sectors, 4211 QEMUIOVector *iov) 4212 { 4213 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 4214 } 4215 4216 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 4217 { 4218 RwCo *rwco = opaque; 4219 4220 rwco->ret = bdrv_co_flush(rwco->bs); 4221 } 4222 4223 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 4224 { 4225 int ret; 4226 4227 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 4228 return 0; 4229 } 4230 4231 /* Write back cached data to the OS even with cache=unsafe */ 4232 if (bs->drv->bdrv_co_flush_to_os) { 4233 ret = bs->drv->bdrv_co_flush_to_os(bs); 4234 if (ret < 0) { 4235 return ret; 4236 } 4237 } 4238 4239 /* But don't actually force it to the disk with cache=unsafe */ 4240 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4241 goto flush_parent; 4242 } 4243 4244 if (bs->drv->bdrv_co_flush_to_disk) { 4245 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4246 } else if (bs->drv->bdrv_aio_flush) { 4247 BlockDriverAIOCB *acb; 4248 CoroutineIOCompletion co = { 4249 .coroutine = qemu_coroutine_self(), 4250 }; 4251 4252 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4253 if (acb == NULL) { 4254 ret = -EIO; 4255 } else { 4256 qemu_coroutine_yield(); 4257 ret = co.ret; 4258 } 4259 } else { 4260 /* 4261 * Some block drivers always operate in either writethrough or unsafe 4262 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4263 * know how the server works (because the behaviour is hardcoded or 4264 * depends on server-side configuration), so we can't ensure that 4265 * everything is safe on disk. Returning an error doesn't work because 4266 * that would break guests even if the server operates in writethrough 4267 * mode. 4268 * 4269 * Let's hope the user knows what he's doing. 4270 */ 4271 ret = 0; 4272 } 4273 if (ret < 0) { 4274 return ret; 4275 } 4276 4277 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4278 * in the case of cache=unsafe, so there are no useless flushes. 4279 */ 4280 flush_parent: 4281 return bdrv_co_flush(bs->file); 4282 } 4283 4284 void bdrv_invalidate_cache(BlockDriverState *bs) 4285 { 4286 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4287 bs->drv->bdrv_invalidate_cache(bs); 4288 } 4289 } 4290 4291 void bdrv_invalidate_cache_all(void) 4292 { 4293 BlockDriverState *bs; 4294 4295 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4296 bdrv_invalidate_cache(bs); 4297 } 4298 } 4299 4300 void bdrv_clear_incoming_migration_all(void) 4301 { 4302 BlockDriverState *bs; 4303 4304 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4305 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4306 } 4307 } 4308 4309 int bdrv_flush(BlockDriverState *bs) 4310 { 4311 Coroutine *co; 4312 RwCo rwco = { 4313 .bs = bs, 4314 .ret = NOT_DONE, 4315 }; 4316 4317 if (qemu_in_coroutine()) { 4318 /* Fast-path if already in coroutine context */ 4319 bdrv_flush_co_entry(&rwco); 4320 } else { 4321 co = qemu_coroutine_create(bdrv_flush_co_entry); 4322 qemu_coroutine_enter(co, &rwco); 4323 while (rwco.ret == NOT_DONE) { 4324 qemu_aio_wait(); 4325 } 4326 } 4327 4328 return rwco.ret; 4329 } 4330 4331 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4332 { 4333 RwCo *rwco = opaque; 4334 4335 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4336 } 4337 4338 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4339 int nb_sectors) 4340 { 4341 if (!bs->drv) { 4342 return -ENOMEDIUM; 4343 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4344 return -EIO; 4345 } else if (bs->read_only) { 4346 return -EROFS; 4347 } 4348 4349 if (bs->dirty_bitmap) { 4350 bdrv_reset_dirty(bs, sector_num, nb_sectors); 4351 } 4352 4353 /* Do nothing if disabled. */ 4354 if (!(bs->open_flags & BDRV_O_UNMAP)) { 4355 return 0; 4356 } 4357 4358 if (bs->drv->bdrv_co_discard) { 4359 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4360 } else if (bs->drv->bdrv_aio_discard) { 4361 BlockDriverAIOCB *acb; 4362 CoroutineIOCompletion co = { 4363 .coroutine = qemu_coroutine_self(), 4364 }; 4365 4366 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4367 bdrv_co_io_em_complete, &co); 4368 if (acb == NULL) { 4369 return -EIO; 4370 } else { 4371 qemu_coroutine_yield(); 4372 return co.ret; 4373 } 4374 } else { 4375 return 0; 4376 } 4377 } 4378 4379 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4380 { 4381 Coroutine *co; 4382 RwCo rwco = { 4383 .bs = bs, 4384 .sector_num = sector_num, 4385 .nb_sectors = nb_sectors, 4386 .ret = NOT_DONE, 4387 }; 4388 4389 if (qemu_in_coroutine()) { 4390 /* Fast-path if already in coroutine context */ 4391 bdrv_discard_co_entry(&rwco); 4392 } else { 4393 co = qemu_coroutine_create(bdrv_discard_co_entry); 4394 qemu_coroutine_enter(co, &rwco); 4395 while (rwco.ret == NOT_DONE) { 4396 qemu_aio_wait(); 4397 } 4398 } 4399 4400 return rwco.ret; 4401 } 4402 4403 /**************************************************************/ 4404 /* removable device support */ 4405 4406 /** 4407 * Return TRUE if the media is present 4408 */ 4409 int bdrv_is_inserted(BlockDriverState *bs) 4410 { 4411 BlockDriver *drv = bs->drv; 4412 4413 if (!drv) 4414 return 0; 4415 if (!drv->bdrv_is_inserted) 4416 return 1; 4417 return drv->bdrv_is_inserted(bs); 4418 } 4419 4420 /** 4421 * Return whether the media changed since the last call to this 4422 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4423 */ 4424 int bdrv_media_changed(BlockDriverState *bs) 4425 { 4426 BlockDriver *drv = bs->drv; 4427 4428 if (drv && drv->bdrv_media_changed) { 4429 return drv->bdrv_media_changed(bs); 4430 } 4431 return -ENOTSUP; 4432 } 4433 4434 /** 4435 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4436 */ 4437 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4438 { 4439 BlockDriver *drv = bs->drv; 4440 4441 if (drv && drv->bdrv_eject) { 4442 drv->bdrv_eject(bs, eject_flag); 4443 } 4444 4445 if (bs->device_name[0] != '\0') { 4446 bdrv_emit_qmp_eject_event(bs, eject_flag); 4447 } 4448 } 4449 4450 /** 4451 * Lock or unlock the media (if it is locked, the user won't be able 4452 * to eject it manually). 4453 */ 4454 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4455 { 4456 BlockDriver *drv = bs->drv; 4457 4458 trace_bdrv_lock_medium(bs, locked); 4459 4460 if (drv && drv->bdrv_lock_medium) { 4461 drv->bdrv_lock_medium(bs, locked); 4462 } 4463 } 4464 4465 /* needed for generic scsi interface */ 4466 4467 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4468 { 4469 BlockDriver *drv = bs->drv; 4470 4471 if (drv && drv->bdrv_ioctl) 4472 return drv->bdrv_ioctl(bs, req, buf); 4473 return -ENOTSUP; 4474 } 4475 4476 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4477 unsigned long int req, void *buf, 4478 BlockDriverCompletionFunc *cb, void *opaque) 4479 { 4480 BlockDriver *drv = bs->drv; 4481 4482 if (drv && drv->bdrv_aio_ioctl) 4483 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4484 return NULL; 4485 } 4486 4487 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4488 { 4489 bs->buffer_alignment = align; 4490 } 4491 4492 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4493 { 4494 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4495 } 4496 4497 /* 4498 * Check if all memory in this vector is sector aligned. 4499 */ 4500 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 4501 { 4502 int i; 4503 4504 for (i = 0; i < qiov->niov; i++) { 4505 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) { 4506 return false; 4507 } 4508 } 4509 4510 return true; 4511 } 4512 4513 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity) 4514 { 4515 int64_t bitmap_size; 4516 4517 assert((granularity & (granularity - 1)) == 0); 4518 4519 if (granularity) { 4520 granularity >>= BDRV_SECTOR_BITS; 4521 assert(!bs->dirty_bitmap); 4522 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS); 4523 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1); 4524 } else { 4525 if (bs->dirty_bitmap) { 4526 hbitmap_free(bs->dirty_bitmap); 4527 bs->dirty_bitmap = NULL; 4528 } 4529 } 4530 } 4531 4532 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4533 { 4534 if (bs->dirty_bitmap) { 4535 return hbitmap_get(bs->dirty_bitmap, sector); 4536 } else { 4537 return 0; 4538 } 4539 } 4540 4541 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi) 4542 { 4543 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0); 4544 } 4545 4546 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4547 int nr_sectors) 4548 { 4549 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors); 4550 } 4551 4552 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4553 int nr_sectors) 4554 { 4555 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors); 4556 } 4557 4558 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4559 { 4560 if (bs->dirty_bitmap) { 4561 return hbitmap_count(bs->dirty_bitmap); 4562 } else { 4563 return 0; 4564 } 4565 } 4566 4567 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4568 { 4569 assert(bs->in_use != in_use); 4570 bs->in_use = in_use; 4571 } 4572 4573 int bdrv_in_use(BlockDriverState *bs) 4574 { 4575 return bs->in_use; 4576 } 4577 4578 void bdrv_iostatus_enable(BlockDriverState *bs) 4579 { 4580 bs->iostatus_enabled = true; 4581 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4582 } 4583 4584 /* The I/O status is only enabled if the drive explicitly 4585 * enables it _and_ the VM is configured to stop on errors */ 4586 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4587 { 4588 return (bs->iostatus_enabled && 4589 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4590 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4591 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4592 } 4593 4594 void bdrv_iostatus_disable(BlockDriverState *bs) 4595 { 4596 bs->iostatus_enabled = false; 4597 } 4598 4599 void bdrv_iostatus_reset(BlockDriverState *bs) 4600 { 4601 if (bdrv_iostatus_is_enabled(bs)) { 4602 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4603 if (bs->job) { 4604 block_job_iostatus_reset(bs->job); 4605 } 4606 } 4607 } 4608 4609 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4610 { 4611 assert(bdrv_iostatus_is_enabled(bs)); 4612 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4613 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4614 BLOCK_DEVICE_IO_STATUS_FAILED; 4615 } 4616 } 4617 4618 void 4619 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4620 enum BlockAcctType type) 4621 { 4622 assert(type < BDRV_MAX_IOTYPE); 4623 4624 cookie->bytes = bytes; 4625 cookie->start_time_ns = get_clock(); 4626 cookie->type = type; 4627 } 4628 4629 void 4630 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4631 { 4632 assert(cookie->type < BDRV_MAX_IOTYPE); 4633 4634 bs->nr_bytes[cookie->type] += cookie->bytes; 4635 bs->nr_ops[cookie->type]++; 4636 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4637 } 4638 4639 void bdrv_img_create(const char *filename, const char *fmt, 4640 const char *base_filename, const char *base_fmt, 4641 char *options, uint64_t img_size, int flags, 4642 Error **errp, bool quiet) 4643 { 4644 QEMUOptionParameter *param = NULL, *create_options = NULL; 4645 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4646 BlockDriverState *bs = NULL; 4647 BlockDriver *drv, *proto_drv; 4648 BlockDriver *backing_drv = NULL; 4649 int ret = 0; 4650 4651 /* Find driver and parse its options */ 4652 drv = bdrv_find_format(fmt); 4653 if (!drv) { 4654 error_setg(errp, "Unknown file format '%s'", fmt); 4655 return; 4656 } 4657 4658 proto_drv = bdrv_find_protocol(filename); 4659 if (!proto_drv) { 4660 error_setg(errp, "Unknown protocol '%s'", filename); 4661 return; 4662 } 4663 4664 create_options = append_option_parameters(create_options, 4665 drv->create_options); 4666 create_options = append_option_parameters(create_options, 4667 proto_drv->create_options); 4668 4669 /* Create parameter list with default values */ 4670 param = parse_option_parameters("", create_options, param); 4671 4672 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4673 4674 /* Parse -o options */ 4675 if (options) { 4676 param = parse_option_parameters(options, create_options, param); 4677 if (param == NULL) { 4678 error_setg(errp, "Invalid options for file format '%s'.", fmt); 4679 goto out; 4680 } 4681 } 4682 4683 if (base_filename) { 4684 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4685 base_filename)) { 4686 error_setg(errp, "Backing file not supported for file format '%s'", 4687 fmt); 4688 goto out; 4689 } 4690 } 4691 4692 if (base_fmt) { 4693 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4694 error_setg(errp, "Backing file format not supported for file " 4695 "format '%s'", fmt); 4696 goto out; 4697 } 4698 } 4699 4700 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4701 if (backing_file && backing_file->value.s) { 4702 if (!strcmp(filename, backing_file->value.s)) { 4703 error_setg(errp, "Error: Trying to create an image with the " 4704 "same filename as the backing file"); 4705 goto out; 4706 } 4707 } 4708 4709 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4710 if (backing_fmt && backing_fmt->value.s) { 4711 backing_drv = bdrv_find_format(backing_fmt->value.s); 4712 if (!backing_drv) { 4713 error_setg(errp, "Unknown backing file format '%s'", 4714 backing_fmt->value.s); 4715 goto out; 4716 } 4717 } 4718 4719 // The size for the image must always be specified, with one exception: 4720 // If we are using a backing file, we can obtain the size from there 4721 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4722 if (size && size->value.n == -1) { 4723 if (backing_file && backing_file->value.s) { 4724 uint64_t size; 4725 char buf[32]; 4726 int back_flags; 4727 4728 /* backing files always opened read-only */ 4729 back_flags = 4730 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4731 4732 bs = bdrv_new(""); 4733 4734 ret = bdrv_open(bs, backing_file->value.s, NULL, back_flags, 4735 backing_drv); 4736 if (ret < 0) { 4737 error_setg_errno(errp, -ret, "Could not open '%s'", 4738 backing_file->value.s); 4739 goto out; 4740 } 4741 bdrv_get_geometry(bs, &size); 4742 size *= 512; 4743 4744 snprintf(buf, sizeof(buf), "%" PRId64, size); 4745 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4746 } else { 4747 error_setg(errp, "Image creation needs a size parameter"); 4748 goto out; 4749 } 4750 } 4751 4752 if (!quiet) { 4753 printf("Formatting '%s', fmt=%s ", filename, fmt); 4754 print_option_parameters(param); 4755 puts(""); 4756 } 4757 ret = bdrv_create(drv, filename, param); 4758 if (ret < 0) { 4759 if (ret == -ENOTSUP) { 4760 error_setg(errp,"Formatting or formatting option not supported for " 4761 "file format '%s'", fmt); 4762 } else if (ret == -EFBIG) { 4763 error_setg(errp, "The image size is too large for file format '%s'", 4764 fmt); 4765 } else { 4766 error_setg(errp, "%s: error while creating %s: %s", filename, fmt, 4767 strerror(-ret)); 4768 } 4769 } 4770 4771 out: 4772 free_option_parameters(create_options); 4773 free_option_parameters(param); 4774 4775 if (bs) { 4776 bdrv_delete(bs); 4777 } 4778 } 4779 4780 AioContext *bdrv_get_aio_context(BlockDriverState *bs) 4781 { 4782 /* Currently BlockDriverState always uses the main loop AioContext */ 4783 return qemu_get_aio_context(); 4784 } 4785