1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor/monitor.h" 28 #include "block/block_int.h" 29 #include "block/blockjob.h" 30 #include "qemu/module.h" 31 #include "qapi/qmp/qjson.h" 32 #include "sysemu/sysemu.h" 33 #include "qemu/notify.h" 34 #include "block/coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu/timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* The device to use for VM snapshots */ 103 static BlockDriverState *bs_snapshots; 104 105 /* If non-zero, use only whitelisted block drivers */ 106 static int use_bdrv_whitelist; 107 108 #ifdef _WIN32 109 static int is_windows_drive_prefix(const char *filename) 110 { 111 return (((filename[0] >= 'a' && filename[0] <= 'z') || 112 (filename[0] >= 'A' && filename[0] <= 'Z')) && 113 filename[1] == ':'); 114 } 115 116 int is_windows_drive(const char *filename) 117 { 118 if (is_windows_drive_prefix(filename) && 119 filename[2] == '\0') 120 return 1; 121 if (strstart(filename, "\\\\.\\", NULL) || 122 strstart(filename, "//./", NULL)) 123 return 1; 124 return 0; 125 } 126 #endif 127 128 /* throttling disk I/O limits */ 129 void bdrv_io_limits_disable(BlockDriverState *bs) 130 { 131 bs->io_limits_enabled = false; 132 133 while (qemu_co_queue_next(&bs->throttled_reqs)); 134 135 if (bs->block_timer) { 136 qemu_del_timer(bs->block_timer); 137 qemu_free_timer(bs->block_timer); 138 bs->block_timer = NULL; 139 } 140 141 bs->slice_start = 0; 142 bs->slice_end = 0; 143 } 144 145 static void bdrv_block_timer(void *opaque) 146 { 147 BlockDriverState *bs = opaque; 148 149 qemu_co_queue_next(&bs->throttled_reqs); 150 } 151 152 void bdrv_io_limits_enable(BlockDriverState *bs) 153 { 154 qemu_co_queue_init(&bs->throttled_reqs); 155 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 156 bs->io_limits_enabled = true; 157 } 158 159 bool bdrv_io_limits_enabled(BlockDriverState *bs) 160 { 161 BlockIOLimit *io_limits = &bs->io_limits; 162 return io_limits->bps[BLOCK_IO_LIMIT_READ] 163 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 164 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 165 || io_limits->iops[BLOCK_IO_LIMIT_READ] 166 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 167 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 168 } 169 170 static void bdrv_io_limits_intercept(BlockDriverState *bs, 171 bool is_write, int nb_sectors) 172 { 173 int64_t wait_time = -1; 174 175 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 176 qemu_co_queue_wait(&bs->throttled_reqs); 177 } 178 179 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 180 * throttled requests will not be dequeued until the current request is 181 * allowed to be serviced. So if the current request still exceeds the 182 * limits, it will be inserted to the head. All requests followed it will 183 * be still in throttled_reqs queue. 184 */ 185 186 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 187 qemu_mod_timer(bs->block_timer, 188 wait_time + qemu_get_clock_ns(vm_clock)); 189 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 190 } 191 192 qemu_co_queue_next(&bs->throttled_reqs); 193 } 194 195 /* check if the path starts with "<protocol>:" */ 196 static int path_has_protocol(const char *path) 197 { 198 const char *p; 199 200 #ifdef _WIN32 201 if (is_windows_drive(path) || 202 is_windows_drive_prefix(path)) { 203 return 0; 204 } 205 p = path + strcspn(path, ":/\\"); 206 #else 207 p = path + strcspn(path, ":/"); 208 #endif 209 210 return *p == ':'; 211 } 212 213 int path_is_absolute(const char *path) 214 { 215 #ifdef _WIN32 216 /* specific case for names like: "\\.\d:" */ 217 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 218 return 1; 219 } 220 return (*path == '/' || *path == '\\'); 221 #else 222 return (*path == '/'); 223 #endif 224 } 225 226 /* if filename is absolute, just copy it to dest. Otherwise, build a 227 path to it by considering it is relative to base_path. URL are 228 supported. */ 229 void path_combine(char *dest, int dest_size, 230 const char *base_path, 231 const char *filename) 232 { 233 const char *p, *p1; 234 int len; 235 236 if (dest_size <= 0) 237 return; 238 if (path_is_absolute(filename)) { 239 pstrcpy(dest, dest_size, filename); 240 } else { 241 p = strchr(base_path, ':'); 242 if (p) 243 p++; 244 else 245 p = base_path; 246 p1 = strrchr(base_path, '/'); 247 #ifdef _WIN32 248 { 249 const char *p2; 250 p2 = strrchr(base_path, '\\'); 251 if (!p1 || p2 > p1) 252 p1 = p2; 253 } 254 #endif 255 if (p1) 256 p1++; 257 else 258 p1 = base_path; 259 if (p1 > p) 260 p = p1; 261 len = p - base_path; 262 if (len > dest_size - 1) 263 len = dest_size - 1; 264 memcpy(dest, base_path, len); 265 dest[len] = '\0'; 266 pstrcat(dest, dest_size, filename); 267 } 268 } 269 270 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 271 { 272 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 273 pstrcpy(dest, sz, bs->backing_file); 274 } else { 275 path_combine(dest, sz, bs->filename, bs->backing_file); 276 } 277 } 278 279 void bdrv_register(BlockDriver *bdrv) 280 { 281 /* Block drivers without coroutine functions need emulation */ 282 if (!bdrv->bdrv_co_readv) { 283 bdrv->bdrv_co_readv = bdrv_co_readv_em; 284 bdrv->bdrv_co_writev = bdrv_co_writev_em; 285 286 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 287 * the block driver lacks aio we need to emulate that too. 288 */ 289 if (!bdrv->bdrv_aio_readv) { 290 /* add AIO emulation layer */ 291 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 292 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 293 } 294 } 295 296 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 297 } 298 299 /* create a new block device (by default it is empty) */ 300 BlockDriverState *bdrv_new(const char *device_name) 301 { 302 BlockDriverState *bs; 303 304 bs = g_malloc0(sizeof(BlockDriverState)); 305 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 306 if (device_name[0] != '\0') { 307 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 308 } 309 bdrv_iostatus_disable(bs); 310 notifier_list_init(&bs->close_notifiers); 311 312 return bs; 313 } 314 315 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 316 { 317 notifier_list_add(&bs->close_notifiers, notify); 318 } 319 320 BlockDriver *bdrv_find_format(const char *format_name) 321 { 322 BlockDriver *drv1; 323 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 324 if (!strcmp(drv1->format_name, format_name)) { 325 return drv1; 326 } 327 } 328 return NULL; 329 } 330 331 static int bdrv_is_whitelisted(BlockDriver *drv) 332 { 333 static const char *whitelist[] = { 334 CONFIG_BDRV_WHITELIST 335 }; 336 const char **p; 337 338 if (!whitelist[0]) 339 return 1; /* no whitelist, anything goes */ 340 341 for (p = whitelist; *p; p++) { 342 if (!strcmp(drv->format_name, *p)) { 343 return 1; 344 } 345 } 346 return 0; 347 } 348 349 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 350 { 351 BlockDriver *drv = bdrv_find_format(format_name); 352 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 353 } 354 355 typedef struct CreateCo { 356 BlockDriver *drv; 357 char *filename; 358 QEMUOptionParameter *options; 359 int ret; 360 } CreateCo; 361 362 static void coroutine_fn bdrv_create_co_entry(void *opaque) 363 { 364 CreateCo *cco = opaque; 365 assert(cco->drv); 366 367 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 368 } 369 370 int bdrv_create(BlockDriver *drv, const char* filename, 371 QEMUOptionParameter *options) 372 { 373 int ret; 374 375 Coroutine *co; 376 CreateCo cco = { 377 .drv = drv, 378 .filename = g_strdup(filename), 379 .options = options, 380 .ret = NOT_DONE, 381 }; 382 383 if (!drv->bdrv_create) { 384 ret = -ENOTSUP; 385 goto out; 386 } 387 388 if (qemu_in_coroutine()) { 389 /* Fast-path if already in coroutine context */ 390 bdrv_create_co_entry(&cco); 391 } else { 392 co = qemu_coroutine_create(bdrv_create_co_entry); 393 qemu_coroutine_enter(co, &cco); 394 while (cco.ret == NOT_DONE) { 395 qemu_aio_wait(); 396 } 397 } 398 399 ret = cco.ret; 400 401 out: 402 g_free(cco.filename); 403 return ret; 404 } 405 406 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 407 { 408 BlockDriver *drv; 409 410 drv = bdrv_find_protocol(filename); 411 if (drv == NULL) { 412 return -ENOENT; 413 } 414 415 return bdrv_create(drv, filename, options); 416 } 417 418 /* 419 * Create a uniquely-named empty temporary file. 420 * Return 0 upon success, otherwise a negative errno value. 421 */ 422 int get_tmp_filename(char *filename, int size) 423 { 424 #ifdef _WIN32 425 char temp_dir[MAX_PATH]; 426 /* GetTempFileName requires that its output buffer (4th param) 427 have length MAX_PATH or greater. */ 428 assert(size >= MAX_PATH); 429 return (GetTempPath(MAX_PATH, temp_dir) 430 && GetTempFileName(temp_dir, "qem", 0, filename) 431 ? 0 : -GetLastError()); 432 #else 433 int fd; 434 const char *tmpdir; 435 tmpdir = getenv("TMPDIR"); 436 if (!tmpdir) 437 tmpdir = "/tmp"; 438 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 439 return -EOVERFLOW; 440 } 441 fd = mkstemp(filename); 442 if (fd < 0) { 443 return -errno; 444 } 445 if (close(fd) != 0) { 446 unlink(filename); 447 return -errno; 448 } 449 return 0; 450 #endif 451 } 452 453 /* 454 * Detect host devices. By convention, /dev/cdrom[N] is always 455 * recognized as a host CDROM. 456 */ 457 static BlockDriver *find_hdev_driver(const char *filename) 458 { 459 int score_max = 0, score; 460 BlockDriver *drv = NULL, *d; 461 462 QLIST_FOREACH(d, &bdrv_drivers, list) { 463 if (d->bdrv_probe_device) { 464 score = d->bdrv_probe_device(filename); 465 if (score > score_max) { 466 score_max = score; 467 drv = d; 468 } 469 } 470 } 471 472 return drv; 473 } 474 475 BlockDriver *bdrv_find_protocol(const char *filename) 476 { 477 BlockDriver *drv1; 478 char protocol[128]; 479 int len; 480 const char *p; 481 482 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 483 484 /* 485 * XXX(hch): we really should not let host device detection 486 * override an explicit protocol specification, but moving this 487 * later breaks access to device names with colons in them. 488 * Thanks to the brain-dead persistent naming schemes on udev- 489 * based Linux systems those actually are quite common. 490 */ 491 drv1 = find_hdev_driver(filename); 492 if (drv1) { 493 return drv1; 494 } 495 496 if (!path_has_protocol(filename)) { 497 return bdrv_find_format("file"); 498 } 499 p = strchr(filename, ':'); 500 assert(p != NULL); 501 len = p - filename; 502 if (len > sizeof(protocol) - 1) 503 len = sizeof(protocol) - 1; 504 memcpy(protocol, filename, len); 505 protocol[len] = '\0'; 506 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 507 if (drv1->protocol_name && 508 !strcmp(drv1->protocol_name, protocol)) { 509 return drv1; 510 } 511 } 512 return NULL; 513 } 514 515 static int find_image_format(BlockDriverState *bs, const char *filename, 516 BlockDriver **pdrv) 517 { 518 int score, score_max; 519 BlockDriver *drv1, *drv; 520 uint8_t buf[2048]; 521 int ret = 0; 522 523 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 524 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) { 525 drv = bdrv_find_format("raw"); 526 if (!drv) { 527 ret = -ENOENT; 528 } 529 *pdrv = drv; 530 return ret; 531 } 532 533 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 534 if (ret < 0) { 535 *pdrv = NULL; 536 return ret; 537 } 538 539 score_max = 0; 540 drv = NULL; 541 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 542 if (drv1->bdrv_probe) { 543 score = drv1->bdrv_probe(buf, ret, filename); 544 if (score > score_max) { 545 score_max = score; 546 drv = drv1; 547 } 548 } 549 } 550 if (!drv) { 551 ret = -ENOENT; 552 } 553 *pdrv = drv; 554 return ret; 555 } 556 557 /** 558 * Set the current 'total_sectors' value 559 */ 560 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 561 { 562 BlockDriver *drv = bs->drv; 563 564 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 565 if (bs->sg) 566 return 0; 567 568 /* query actual device if possible, otherwise just trust the hint */ 569 if (drv->bdrv_getlength) { 570 int64_t length = drv->bdrv_getlength(bs); 571 if (length < 0) { 572 return length; 573 } 574 hint = length >> BDRV_SECTOR_BITS; 575 } 576 577 bs->total_sectors = hint; 578 return 0; 579 } 580 581 /** 582 * Set open flags for a given discard mode 583 * 584 * Return 0 on success, -1 if the discard mode was invalid. 585 */ 586 int bdrv_parse_discard_flags(const char *mode, int *flags) 587 { 588 *flags &= ~BDRV_O_UNMAP; 589 590 if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) { 591 /* do nothing */ 592 } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) { 593 *flags |= BDRV_O_UNMAP; 594 } else { 595 return -1; 596 } 597 598 return 0; 599 } 600 601 /** 602 * Set open flags for a given cache mode 603 * 604 * Return 0 on success, -1 if the cache mode was invalid. 605 */ 606 int bdrv_parse_cache_flags(const char *mode, int *flags) 607 { 608 *flags &= ~BDRV_O_CACHE_MASK; 609 610 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 611 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 612 } else if (!strcmp(mode, "directsync")) { 613 *flags |= BDRV_O_NOCACHE; 614 } else if (!strcmp(mode, "writeback")) { 615 *flags |= BDRV_O_CACHE_WB; 616 } else if (!strcmp(mode, "unsafe")) { 617 *flags |= BDRV_O_CACHE_WB; 618 *flags |= BDRV_O_NO_FLUSH; 619 } else if (!strcmp(mode, "writethrough")) { 620 /* this is the default */ 621 } else { 622 return -1; 623 } 624 625 return 0; 626 } 627 628 /** 629 * The copy-on-read flag is actually a reference count so multiple users may 630 * use the feature without worrying about clobbering its previous state. 631 * Copy-on-read stays enabled until all users have called to disable it. 632 */ 633 void bdrv_enable_copy_on_read(BlockDriverState *bs) 634 { 635 bs->copy_on_read++; 636 } 637 638 void bdrv_disable_copy_on_read(BlockDriverState *bs) 639 { 640 assert(bs->copy_on_read > 0); 641 bs->copy_on_read--; 642 } 643 644 static int bdrv_open_flags(BlockDriverState *bs, int flags) 645 { 646 int open_flags = flags | BDRV_O_CACHE_WB; 647 648 /* 649 * Clear flags that are internal to the block layer before opening the 650 * image. 651 */ 652 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 653 654 /* 655 * Snapshots should be writable. 656 */ 657 if (bs->is_temporary) { 658 open_flags |= BDRV_O_RDWR; 659 } 660 661 return open_flags; 662 } 663 664 /* 665 * Common part for opening disk images and files 666 * 667 * Removes all processed options from *options. 668 */ 669 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file, 670 QDict *options, int flags, BlockDriver *drv) 671 { 672 int ret, open_flags; 673 const char *filename; 674 675 assert(drv != NULL); 676 assert(bs->file == NULL); 677 assert(options != NULL && bs->options != options); 678 679 if (file != NULL) { 680 filename = file->filename; 681 } else { 682 filename = qdict_get_try_str(options, "filename"); 683 } 684 685 trace_bdrv_open_common(bs, filename ?: "", flags, drv->format_name); 686 687 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 688 return -ENOTSUP; 689 } 690 691 /* bdrv_open() with directly using a protocol as drv. This layer is already 692 * opened, so assign it to bs (while file becomes a closed BlockDriverState) 693 * and return immediately. */ 694 if (file != NULL && drv->bdrv_file_open) { 695 bdrv_swap(file, bs); 696 return 0; 697 } 698 699 bs->open_flags = flags; 700 bs->buffer_alignment = 512; 701 702 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 703 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 704 bdrv_enable_copy_on_read(bs); 705 } 706 707 if (filename != NULL) { 708 pstrcpy(bs->filename, sizeof(bs->filename), filename); 709 } else { 710 bs->filename[0] = '\0'; 711 } 712 713 bs->drv = drv; 714 bs->opaque = g_malloc0(drv->instance_size); 715 716 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 717 open_flags = bdrv_open_flags(bs, flags); 718 719 bs->read_only = !(open_flags & BDRV_O_RDWR); 720 721 /* Open the image, either directly or using a protocol */ 722 if (drv->bdrv_file_open) { 723 assert(file == NULL); 724 assert(drv->bdrv_parse_filename || filename != NULL); 725 ret = drv->bdrv_file_open(bs, options, open_flags); 726 } else { 727 if (file == NULL) { 728 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't use '%s' as a " 729 "block driver for the protocol level", 730 drv->format_name); 731 ret = -EINVAL; 732 goto free_and_fail; 733 } 734 assert(file != NULL); 735 bs->file = file; 736 ret = drv->bdrv_open(bs, options, open_flags); 737 } 738 739 if (ret < 0) { 740 goto free_and_fail; 741 } 742 743 ret = refresh_total_sectors(bs, bs->total_sectors); 744 if (ret < 0) { 745 goto free_and_fail; 746 } 747 748 #ifndef _WIN32 749 if (bs->is_temporary) { 750 assert(filename != NULL); 751 unlink(filename); 752 } 753 #endif 754 return 0; 755 756 free_and_fail: 757 bs->file = NULL; 758 g_free(bs->opaque); 759 bs->opaque = NULL; 760 bs->drv = NULL; 761 return ret; 762 } 763 764 /* 765 * Opens a file using a protocol (file, host_device, nbd, ...) 766 * 767 * options is a QDict of options to pass to the block drivers, or NULL for an 768 * empty set of options. The reference to the QDict belongs to the block layer 769 * after the call (even on failure), so if the caller intends to reuse the 770 * dictionary, it needs to use QINCREF() before calling bdrv_file_open. 771 */ 772 int bdrv_file_open(BlockDriverState **pbs, const char *filename, 773 QDict *options, int flags) 774 { 775 BlockDriverState *bs; 776 BlockDriver *drv; 777 const char *drvname; 778 int ret; 779 780 /* NULL means an empty set of options */ 781 if (options == NULL) { 782 options = qdict_new(); 783 } 784 785 bs = bdrv_new(""); 786 bs->options = options; 787 options = qdict_clone_shallow(options); 788 789 /* Fetch the file name from the options QDict if necessary */ 790 if (!filename) { 791 filename = qdict_get_try_str(options, "filename"); 792 } else if (filename && !qdict_haskey(options, "filename")) { 793 qdict_put(options, "filename", qstring_from_str(filename)); 794 } else { 795 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't specify 'file' and " 796 "'filename' options at the same time"); 797 ret = -EINVAL; 798 goto fail; 799 } 800 801 /* Find the right block driver */ 802 drvname = qdict_get_try_str(options, "driver"); 803 if (drvname) { 804 drv = bdrv_find_whitelisted_format(drvname); 805 qdict_del(options, "driver"); 806 } else if (filename) { 807 drv = bdrv_find_protocol(filename); 808 } else { 809 qerror_report(ERROR_CLASS_GENERIC_ERROR, 810 "Must specify either driver or file"); 811 drv = NULL; 812 } 813 814 if (!drv) { 815 ret = -ENOENT; 816 goto fail; 817 } 818 819 /* Parse the filename and open it */ 820 if (drv->bdrv_parse_filename && filename) { 821 Error *local_err = NULL; 822 drv->bdrv_parse_filename(filename, options, &local_err); 823 if (error_is_set(&local_err)) { 824 qerror_report_err(local_err); 825 error_free(local_err); 826 ret = -EINVAL; 827 goto fail; 828 } 829 qdict_del(options, "filename"); 830 } else if (!drv->bdrv_parse_filename && !filename) { 831 qerror_report(ERROR_CLASS_GENERIC_ERROR, 832 "The '%s' block driver requires a file name", 833 drv->format_name); 834 ret = -EINVAL; 835 goto fail; 836 } 837 838 ret = bdrv_open_common(bs, NULL, options, flags, drv); 839 if (ret < 0) { 840 goto fail; 841 } 842 843 /* Check if any unknown options were used */ 844 if (qdict_size(options) != 0) { 845 const QDictEntry *entry = qdict_first(options); 846 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block protocol '%s' doesn't " 847 "support the option '%s'", 848 drv->format_name, entry->key); 849 ret = -EINVAL; 850 goto fail; 851 } 852 QDECREF(options); 853 854 bs->growable = 1; 855 *pbs = bs; 856 return 0; 857 858 fail: 859 QDECREF(options); 860 if (!bs->drv) { 861 QDECREF(bs->options); 862 } 863 bdrv_delete(bs); 864 return ret; 865 } 866 867 /* 868 * Opens the backing file for a BlockDriverState if not yet open 869 * 870 * options is a QDict of options to pass to the block drivers, or NULL for an 871 * empty set of options. The reference to the QDict is transferred to this 872 * function (even on failure), so if the caller intends to reuse the dictionary, 873 * it needs to use QINCREF() before calling bdrv_file_open. 874 */ 875 int bdrv_open_backing_file(BlockDriverState *bs, QDict *options) 876 { 877 char backing_filename[PATH_MAX]; 878 int back_flags, ret; 879 BlockDriver *back_drv = NULL; 880 881 if (bs->backing_hd != NULL) { 882 QDECREF(options); 883 return 0; 884 } 885 886 /* NULL means an empty set of options */ 887 if (options == NULL) { 888 options = qdict_new(); 889 } 890 891 bs->open_flags &= ~BDRV_O_NO_BACKING; 892 if (qdict_haskey(options, "file.filename")) { 893 backing_filename[0] = '\0'; 894 } else if (bs->backing_file[0] == '\0' && qdict_size(options) == 0) { 895 QDECREF(options); 896 return 0; 897 } 898 899 bs->backing_hd = bdrv_new(""); 900 bdrv_get_full_backing_filename(bs, backing_filename, 901 sizeof(backing_filename)); 902 903 if (bs->backing_format[0] != '\0') { 904 back_drv = bdrv_find_format(bs->backing_format); 905 } 906 907 /* backing files always opened read-only */ 908 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 909 910 ret = bdrv_open(bs->backing_hd, 911 *backing_filename ? backing_filename : NULL, options, 912 back_flags, back_drv); 913 if (ret < 0) { 914 bdrv_delete(bs->backing_hd); 915 bs->backing_hd = NULL; 916 bs->open_flags |= BDRV_O_NO_BACKING; 917 return ret; 918 } 919 return 0; 920 } 921 922 static void extract_subqdict(QDict *src, QDict **dst, const char *start) 923 { 924 const QDictEntry *entry, *next; 925 const char *p; 926 927 *dst = qdict_new(); 928 entry = qdict_first(src); 929 930 while (entry != NULL) { 931 next = qdict_next(src, entry); 932 if (strstart(entry->key, start, &p)) { 933 qobject_incref(entry->value); 934 qdict_put_obj(*dst, p, entry->value); 935 qdict_del(src, entry->key); 936 } 937 entry = next; 938 } 939 } 940 941 /* 942 * Opens a disk image (raw, qcow2, vmdk, ...) 943 * 944 * options is a QDict of options to pass to the block drivers, or NULL for an 945 * empty set of options. The reference to the QDict belongs to the block layer 946 * after the call (even on failure), so if the caller intends to reuse the 947 * dictionary, it needs to use QINCREF() before calling bdrv_open. 948 */ 949 int bdrv_open(BlockDriverState *bs, const char *filename, QDict *options, 950 int flags, BlockDriver *drv) 951 { 952 int ret; 953 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ 954 char tmp_filename[PATH_MAX + 1]; 955 BlockDriverState *file = NULL; 956 QDict *file_options = NULL; 957 958 /* NULL means an empty set of options */ 959 if (options == NULL) { 960 options = qdict_new(); 961 } 962 963 bs->options = options; 964 options = qdict_clone_shallow(options); 965 966 /* For snapshot=on, create a temporary qcow2 overlay */ 967 if (flags & BDRV_O_SNAPSHOT) { 968 BlockDriverState *bs1; 969 int64_t total_size; 970 BlockDriver *bdrv_qcow2; 971 QEMUOptionParameter *create_options; 972 char backing_filename[PATH_MAX]; 973 974 if (qdict_size(options) != 0) { 975 error_report("Can't use snapshot=on with driver-specific options"); 976 ret = -EINVAL; 977 goto fail; 978 } 979 assert(filename != NULL); 980 981 /* if snapshot, we create a temporary backing file and open it 982 instead of opening 'filename' directly */ 983 984 /* if there is a backing file, use it */ 985 bs1 = bdrv_new(""); 986 ret = bdrv_open(bs1, filename, NULL, 0, drv); 987 if (ret < 0) { 988 bdrv_delete(bs1); 989 goto fail; 990 } 991 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 992 993 bdrv_delete(bs1); 994 995 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 996 if (ret < 0) { 997 goto fail; 998 } 999 1000 /* Real path is meaningless for protocols */ 1001 if (path_has_protocol(filename)) { 1002 snprintf(backing_filename, sizeof(backing_filename), 1003 "%s", filename); 1004 } else if (!realpath(filename, backing_filename)) { 1005 ret = -errno; 1006 goto fail; 1007 } 1008 1009 bdrv_qcow2 = bdrv_find_format("qcow2"); 1010 create_options = parse_option_parameters("", bdrv_qcow2->create_options, 1011 NULL); 1012 1013 set_option_parameter_int(create_options, BLOCK_OPT_SIZE, total_size); 1014 set_option_parameter(create_options, BLOCK_OPT_BACKING_FILE, 1015 backing_filename); 1016 if (drv) { 1017 set_option_parameter(create_options, BLOCK_OPT_BACKING_FMT, 1018 drv->format_name); 1019 } 1020 1021 ret = bdrv_create(bdrv_qcow2, tmp_filename, create_options); 1022 free_option_parameters(create_options); 1023 if (ret < 0) { 1024 goto fail; 1025 } 1026 1027 filename = tmp_filename; 1028 drv = bdrv_qcow2; 1029 bs->is_temporary = 1; 1030 } 1031 1032 /* Open image file without format layer */ 1033 if (flags & BDRV_O_RDWR) { 1034 flags |= BDRV_O_ALLOW_RDWR; 1035 } 1036 1037 extract_subqdict(options, &file_options, "file."); 1038 1039 ret = bdrv_file_open(&file, filename, file_options, 1040 bdrv_open_flags(bs, flags)); 1041 if (ret < 0) { 1042 goto fail; 1043 } 1044 1045 /* Find the right image format driver */ 1046 if (!drv) { 1047 ret = find_image_format(file, filename, &drv); 1048 } 1049 1050 if (!drv) { 1051 goto unlink_and_fail; 1052 } 1053 1054 /* Open the image */ 1055 ret = bdrv_open_common(bs, file, options, flags, drv); 1056 if (ret < 0) { 1057 goto unlink_and_fail; 1058 } 1059 1060 if (bs->file != file) { 1061 bdrv_delete(file); 1062 file = NULL; 1063 } 1064 1065 /* If there is a backing file, use it */ 1066 if ((flags & BDRV_O_NO_BACKING) == 0) { 1067 QDict *backing_options; 1068 1069 extract_subqdict(options, &backing_options, "backing."); 1070 ret = bdrv_open_backing_file(bs, backing_options); 1071 if (ret < 0) { 1072 goto close_and_fail; 1073 } 1074 } 1075 1076 /* Check if any unknown options were used */ 1077 if (qdict_size(options) != 0) { 1078 const QDictEntry *entry = qdict_first(options); 1079 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block format '%s' used by " 1080 "device '%s' doesn't support the option '%s'", 1081 drv->format_name, bs->device_name, entry->key); 1082 1083 ret = -EINVAL; 1084 goto close_and_fail; 1085 } 1086 QDECREF(options); 1087 1088 if (!bdrv_key_required(bs)) { 1089 bdrv_dev_change_media_cb(bs, true); 1090 } 1091 1092 /* throttling disk I/O limits */ 1093 if (bs->io_limits_enabled) { 1094 bdrv_io_limits_enable(bs); 1095 } 1096 1097 return 0; 1098 1099 unlink_and_fail: 1100 if (file != NULL) { 1101 bdrv_delete(file); 1102 } 1103 if (bs->is_temporary) { 1104 unlink(filename); 1105 } 1106 fail: 1107 QDECREF(bs->options); 1108 QDECREF(options); 1109 bs->options = NULL; 1110 return ret; 1111 1112 close_and_fail: 1113 bdrv_close(bs); 1114 QDECREF(options); 1115 return ret; 1116 } 1117 1118 typedef struct BlockReopenQueueEntry { 1119 bool prepared; 1120 BDRVReopenState state; 1121 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 1122 } BlockReopenQueueEntry; 1123 1124 /* 1125 * Adds a BlockDriverState to a simple queue for an atomic, transactional 1126 * reopen of multiple devices. 1127 * 1128 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 1129 * already performed, or alternatively may be NULL a new BlockReopenQueue will 1130 * be created and initialized. This newly created BlockReopenQueue should be 1131 * passed back in for subsequent calls that are intended to be of the same 1132 * atomic 'set'. 1133 * 1134 * bs is the BlockDriverState to add to the reopen queue. 1135 * 1136 * flags contains the open flags for the associated bs 1137 * 1138 * returns a pointer to bs_queue, which is either the newly allocated 1139 * bs_queue, or the existing bs_queue being used. 1140 * 1141 */ 1142 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 1143 BlockDriverState *bs, int flags) 1144 { 1145 assert(bs != NULL); 1146 1147 BlockReopenQueueEntry *bs_entry; 1148 if (bs_queue == NULL) { 1149 bs_queue = g_new0(BlockReopenQueue, 1); 1150 QSIMPLEQ_INIT(bs_queue); 1151 } 1152 1153 if (bs->file) { 1154 bdrv_reopen_queue(bs_queue, bs->file, flags); 1155 } 1156 1157 bs_entry = g_new0(BlockReopenQueueEntry, 1); 1158 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 1159 1160 bs_entry->state.bs = bs; 1161 bs_entry->state.flags = flags; 1162 1163 return bs_queue; 1164 } 1165 1166 /* 1167 * Reopen multiple BlockDriverStates atomically & transactionally. 1168 * 1169 * The queue passed in (bs_queue) must have been built up previous 1170 * via bdrv_reopen_queue(). 1171 * 1172 * Reopens all BDS specified in the queue, with the appropriate 1173 * flags. All devices are prepared for reopen, and failure of any 1174 * device will cause all device changes to be abandonded, and intermediate 1175 * data cleaned up. 1176 * 1177 * If all devices prepare successfully, then the changes are committed 1178 * to all devices. 1179 * 1180 */ 1181 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 1182 { 1183 int ret = -1; 1184 BlockReopenQueueEntry *bs_entry, *next; 1185 Error *local_err = NULL; 1186 1187 assert(bs_queue != NULL); 1188 1189 bdrv_drain_all(); 1190 1191 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1192 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 1193 error_propagate(errp, local_err); 1194 goto cleanup; 1195 } 1196 bs_entry->prepared = true; 1197 } 1198 1199 /* If we reach this point, we have success and just need to apply the 1200 * changes 1201 */ 1202 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1203 bdrv_reopen_commit(&bs_entry->state); 1204 } 1205 1206 ret = 0; 1207 1208 cleanup: 1209 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 1210 if (ret && bs_entry->prepared) { 1211 bdrv_reopen_abort(&bs_entry->state); 1212 } 1213 g_free(bs_entry); 1214 } 1215 g_free(bs_queue); 1216 return ret; 1217 } 1218 1219 1220 /* Reopen a single BlockDriverState with the specified flags. */ 1221 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1222 { 1223 int ret = -1; 1224 Error *local_err = NULL; 1225 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1226 1227 ret = bdrv_reopen_multiple(queue, &local_err); 1228 if (local_err != NULL) { 1229 error_propagate(errp, local_err); 1230 } 1231 return ret; 1232 } 1233 1234 1235 /* 1236 * Prepares a BlockDriverState for reopen. All changes are staged in the 1237 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1238 * the block driver layer .bdrv_reopen_prepare() 1239 * 1240 * bs is the BlockDriverState to reopen 1241 * flags are the new open flags 1242 * queue is the reopen queue 1243 * 1244 * Returns 0 on success, non-zero on error. On error errp will be set 1245 * as well. 1246 * 1247 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1248 * It is the responsibility of the caller to then call the abort() or 1249 * commit() for any other BDS that have been left in a prepare() state 1250 * 1251 */ 1252 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1253 Error **errp) 1254 { 1255 int ret = -1; 1256 Error *local_err = NULL; 1257 BlockDriver *drv; 1258 1259 assert(reopen_state != NULL); 1260 assert(reopen_state->bs->drv != NULL); 1261 drv = reopen_state->bs->drv; 1262 1263 /* if we are to stay read-only, do not allow permission change 1264 * to r/w */ 1265 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1266 reopen_state->flags & BDRV_O_RDWR) { 1267 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1268 reopen_state->bs->device_name); 1269 goto error; 1270 } 1271 1272 1273 ret = bdrv_flush(reopen_state->bs); 1274 if (ret) { 1275 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1276 strerror(-ret)); 1277 goto error; 1278 } 1279 1280 if (drv->bdrv_reopen_prepare) { 1281 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1282 if (ret) { 1283 if (local_err != NULL) { 1284 error_propagate(errp, local_err); 1285 } else { 1286 error_set(errp, QERR_OPEN_FILE_FAILED, 1287 reopen_state->bs->filename); 1288 } 1289 goto error; 1290 } 1291 } else { 1292 /* It is currently mandatory to have a bdrv_reopen_prepare() 1293 * handler for each supported drv. */ 1294 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1295 drv->format_name, reopen_state->bs->device_name, 1296 "reopening of file"); 1297 ret = -1; 1298 goto error; 1299 } 1300 1301 ret = 0; 1302 1303 error: 1304 return ret; 1305 } 1306 1307 /* 1308 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1309 * makes them final by swapping the staging BlockDriverState contents into 1310 * the active BlockDriverState contents. 1311 */ 1312 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1313 { 1314 BlockDriver *drv; 1315 1316 assert(reopen_state != NULL); 1317 drv = reopen_state->bs->drv; 1318 assert(drv != NULL); 1319 1320 /* If there are any driver level actions to take */ 1321 if (drv->bdrv_reopen_commit) { 1322 drv->bdrv_reopen_commit(reopen_state); 1323 } 1324 1325 /* set BDS specific flags now */ 1326 reopen_state->bs->open_flags = reopen_state->flags; 1327 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1328 BDRV_O_CACHE_WB); 1329 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1330 } 1331 1332 /* 1333 * Abort the reopen, and delete and free the staged changes in 1334 * reopen_state 1335 */ 1336 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1337 { 1338 BlockDriver *drv; 1339 1340 assert(reopen_state != NULL); 1341 drv = reopen_state->bs->drv; 1342 assert(drv != NULL); 1343 1344 if (drv->bdrv_reopen_abort) { 1345 drv->bdrv_reopen_abort(reopen_state); 1346 } 1347 } 1348 1349 1350 void bdrv_close(BlockDriverState *bs) 1351 { 1352 bdrv_flush(bs); 1353 if (bs->job) { 1354 block_job_cancel_sync(bs->job); 1355 } 1356 bdrv_drain_all(); 1357 notifier_list_notify(&bs->close_notifiers, bs); 1358 1359 if (bs->drv) { 1360 if (bs == bs_snapshots) { 1361 bs_snapshots = NULL; 1362 } 1363 if (bs->backing_hd) { 1364 bdrv_delete(bs->backing_hd); 1365 bs->backing_hd = NULL; 1366 } 1367 bs->drv->bdrv_close(bs); 1368 g_free(bs->opaque); 1369 #ifdef _WIN32 1370 if (bs->is_temporary) { 1371 unlink(bs->filename); 1372 } 1373 #endif 1374 bs->opaque = NULL; 1375 bs->drv = NULL; 1376 bs->copy_on_read = 0; 1377 bs->backing_file[0] = '\0'; 1378 bs->backing_format[0] = '\0'; 1379 bs->total_sectors = 0; 1380 bs->encrypted = 0; 1381 bs->valid_key = 0; 1382 bs->sg = 0; 1383 bs->growable = 0; 1384 QDECREF(bs->options); 1385 bs->options = NULL; 1386 1387 if (bs->file != NULL) { 1388 bdrv_delete(bs->file); 1389 bs->file = NULL; 1390 } 1391 } 1392 1393 bdrv_dev_change_media_cb(bs, false); 1394 1395 /*throttling disk I/O limits*/ 1396 if (bs->io_limits_enabled) { 1397 bdrv_io_limits_disable(bs); 1398 } 1399 } 1400 1401 void bdrv_close_all(void) 1402 { 1403 BlockDriverState *bs; 1404 1405 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1406 bdrv_close(bs); 1407 } 1408 } 1409 1410 /* 1411 * Wait for pending requests to complete across all BlockDriverStates 1412 * 1413 * This function does not flush data to disk, use bdrv_flush_all() for that 1414 * after calling this function. 1415 * 1416 * Note that completion of an asynchronous I/O operation can trigger any 1417 * number of other I/O operations on other devices---for example a coroutine 1418 * can be arbitrarily complex and a constant flow of I/O can come until the 1419 * coroutine is complete. Because of this, it is not possible to have a 1420 * function to drain a single device's I/O queue. 1421 */ 1422 void bdrv_drain_all(void) 1423 { 1424 BlockDriverState *bs; 1425 bool busy; 1426 1427 do { 1428 busy = qemu_aio_wait(); 1429 1430 /* FIXME: We do not have timer support here, so this is effectively 1431 * a busy wait. 1432 */ 1433 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1434 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1435 qemu_co_queue_restart_all(&bs->throttled_reqs); 1436 busy = true; 1437 } 1438 } 1439 } while (busy); 1440 1441 /* If requests are still pending there is a bug somewhere */ 1442 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1443 assert(QLIST_EMPTY(&bs->tracked_requests)); 1444 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1445 } 1446 } 1447 1448 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1449 Also, NULL terminate the device_name to prevent double remove */ 1450 void bdrv_make_anon(BlockDriverState *bs) 1451 { 1452 if (bs->device_name[0] != '\0') { 1453 QTAILQ_REMOVE(&bdrv_states, bs, list); 1454 } 1455 bs->device_name[0] = '\0'; 1456 } 1457 1458 static void bdrv_rebind(BlockDriverState *bs) 1459 { 1460 if (bs->drv && bs->drv->bdrv_rebind) { 1461 bs->drv->bdrv_rebind(bs); 1462 } 1463 } 1464 1465 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1466 BlockDriverState *bs_src) 1467 { 1468 /* move some fields that need to stay attached to the device */ 1469 bs_dest->open_flags = bs_src->open_flags; 1470 1471 /* dev info */ 1472 bs_dest->dev_ops = bs_src->dev_ops; 1473 bs_dest->dev_opaque = bs_src->dev_opaque; 1474 bs_dest->dev = bs_src->dev; 1475 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1476 bs_dest->copy_on_read = bs_src->copy_on_read; 1477 1478 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1479 1480 /* i/o timing parameters */ 1481 bs_dest->slice_start = bs_src->slice_start; 1482 bs_dest->slice_end = bs_src->slice_end; 1483 bs_dest->slice_submitted = bs_src->slice_submitted; 1484 bs_dest->io_limits = bs_src->io_limits; 1485 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1486 bs_dest->block_timer = bs_src->block_timer; 1487 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1488 1489 /* r/w error */ 1490 bs_dest->on_read_error = bs_src->on_read_error; 1491 bs_dest->on_write_error = bs_src->on_write_error; 1492 1493 /* i/o status */ 1494 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1495 bs_dest->iostatus = bs_src->iostatus; 1496 1497 /* dirty bitmap */ 1498 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1499 1500 /* job */ 1501 bs_dest->in_use = bs_src->in_use; 1502 bs_dest->job = bs_src->job; 1503 1504 /* keep the same entry in bdrv_states */ 1505 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1506 bs_src->device_name); 1507 bs_dest->list = bs_src->list; 1508 } 1509 1510 /* 1511 * Swap bs contents for two image chains while they are live, 1512 * while keeping required fields on the BlockDriverState that is 1513 * actually attached to a device. 1514 * 1515 * This will modify the BlockDriverState fields, and swap contents 1516 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1517 * 1518 * bs_new is required to be anonymous. 1519 * 1520 * This function does not create any image files. 1521 */ 1522 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1523 { 1524 BlockDriverState tmp; 1525 1526 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1527 assert(bs_new->device_name[0] == '\0'); 1528 assert(bs_new->dirty_bitmap == NULL); 1529 assert(bs_new->job == NULL); 1530 assert(bs_new->dev == NULL); 1531 assert(bs_new->in_use == 0); 1532 assert(bs_new->io_limits_enabled == false); 1533 assert(bs_new->block_timer == NULL); 1534 1535 tmp = *bs_new; 1536 *bs_new = *bs_old; 1537 *bs_old = tmp; 1538 1539 /* there are some fields that should not be swapped, move them back */ 1540 bdrv_move_feature_fields(&tmp, bs_old); 1541 bdrv_move_feature_fields(bs_old, bs_new); 1542 bdrv_move_feature_fields(bs_new, &tmp); 1543 1544 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1545 assert(bs_new->device_name[0] == '\0'); 1546 1547 /* Check a few fields that should remain attached to the device */ 1548 assert(bs_new->dev == NULL); 1549 assert(bs_new->job == NULL); 1550 assert(bs_new->in_use == 0); 1551 assert(bs_new->io_limits_enabled == false); 1552 assert(bs_new->block_timer == NULL); 1553 1554 bdrv_rebind(bs_new); 1555 bdrv_rebind(bs_old); 1556 } 1557 1558 /* 1559 * Add new bs contents at the top of an image chain while the chain is 1560 * live, while keeping required fields on the top layer. 1561 * 1562 * This will modify the BlockDriverState fields, and swap contents 1563 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1564 * 1565 * bs_new is required to be anonymous. 1566 * 1567 * This function does not create any image files. 1568 */ 1569 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1570 { 1571 bdrv_swap(bs_new, bs_top); 1572 1573 /* The contents of 'tmp' will become bs_top, as we are 1574 * swapping bs_new and bs_top contents. */ 1575 bs_top->backing_hd = bs_new; 1576 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1577 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1578 bs_new->filename); 1579 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1580 bs_new->drv ? bs_new->drv->format_name : ""); 1581 } 1582 1583 void bdrv_delete(BlockDriverState *bs) 1584 { 1585 assert(!bs->dev); 1586 assert(!bs->job); 1587 assert(!bs->in_use); 1588 1589 /* remove from list, if necessary */ 1590 bdrv_make_anon(bs); 1591 1592 bdrv_close(bs); 1593 1594 assert(bs != bs_snapshots); 1595 g_free(bs); 1596 } 1597 1598 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1599 /* TODO change to DeviceState *dev when all users are qdevified */ 1600 { 1601 if (bs->dev) { 1602 return -EBUSY; 1603 } 1604 bs->dev = dev; 1605 bdrv_iostatus_reset(bs); 1606 return 0; 1607 } 1608 1609 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1610 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1611 { 1612 if (bdrv_attach_dev(bs, dev) < 0) { 1613 abort(); 1614 } 1615 } 1616 1617 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1618 /* TODO change to DeviceState *dev when all users are qdevified */ 1619 { 1620 assert(bs->dev == dev); 1621 bs->dev = NULL; 1622 bs->dev_ops = NULL; 1623 bs->dev_opaque = NULL; 1624 bs->buffer_alignment = 512; 1625 } 1626 1627 /* TODO change to return DeviceState * when all users are qdevified */ 1628 void *bdrv_get_attached_dev(BlockDriverState *bs) 1629 { 1630 return bs->dev; 1631 } 1632 1633 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1634 void *opaque) 1635 { 1636 bs->dev_ops = ops; 1637 bs->dev_opaque = opaque; 1638 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1639 bs_snapshots = NULL; 1640 } 1641 } 1642 1643 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1644 enum MonitorEvent ev, 1645 BlockErrorAction action, bool is_read) 1646 { 1647 QObject *data; 1648 const char *action_str; 1649 1650 switch (action) { 1651 case BDRV_ACTION_REPORT: 1652 action_str = "report"; 1653 break; 1654 case BDRV_ACTION_IGNORE: 1655 action_str = "ignore"; 1656 break; 1657 case BDRV_ACTION_STOP: 1658 action_str = "stop"; 1659 break; 1660 default: 1661 abort(); 1662 } 1663 1664 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1665 bdrv->device_name, 1666 action_str, 1667 is_read ? "read" : "write"); 1668 monitor_protocol_event(ev, data); 1669 1670 qobject_decref(data); 1671 } 1672 1673 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1674 { 1675 QObject *data; 1676 1677 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1678 bdrv_get_device_name(bs), ejected); 1679 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1680 1681 qobject_decref(data); 1682 } 1683 1684 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1685 { 1686 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1687 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1688 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1689 if (tray_was_closed) { 1690 /* tray open */ 1691 bdrv_emit_qmp_eject_event(bs, true); 1692 } 1693 if (load) { 1694 /* tray close */ 1695 bdrv_emit_qmp_eject_event(bs, false); 1696 } 1697 } 1698 } 1699 1700 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1701 { 1702 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1703 } 1704 1705 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1706 { 1707 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1708 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1709 } 1710 } 1711 1712 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1713 { 1714 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1715 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1716 } 1717 return false; 1718 } 1719 1720 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1721 { 1722 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1723 bs->dev_ops->resize_cb(bs->dev_opaque); 1724 } 1725 } 1726 1727 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1728 { 1729 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1730 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1731 } 1732 return false; 1733 } 1734 1735 /* 1736 * Run consistency checks on an image 1737 * 1738 * Returns 0 if the check could be completed (it doesn't mean that the image is 1739 * free of errors) or -errno when an internal error occurred. The results of the 1740 * check are stored in res. 1741 */ 1742 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1743 { 1744 if (bs->drv->bdrv_check == NULL) { 1745 return -ENOTSUP; 1746 } 1747 1748 memset(res, 0, sizeof(*res)); 1749 return bs->drv->bdrv_check(bs, res, fix); 1750 } 1751 1752 #define COMMIT_BUF_SECTORS 2048 1753 1754 /* commit COW file into the raw image */ 1755 int bdrv_commit(BlockDriverState *bs) 1756 { 1757 BlockDriver *drv = bs->drv; 1758 int64_t sector, total_sectors; 1759 int n, ro, open_flags; 1760 int ret = 0; 1761 uint8_t *buf; 1762 char filename[PATH_MAX]; 1763 1764 if (!drv) 1765 return -ENOMEDIUM; 1766 1767 if (!bs->backing_hd) { 1768 return -ENOTSUP; 1769 } 1770 1771 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1772 return -EBUSY; 1773 } 1774 1775 ro = bs->backing_hd->read_only; 1776 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1777 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1778 open_flags = bs->backing_hd->open_flags; 1779 1780 if (ro) { 1781 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1782 return -EACCES; 1783 } 1784 } 1785 1786 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1787 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1788 1789 for (sector = 0; sector < total_sectors; sector += n) { 1790 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1791 1792 if (bdrv_read(bs, sector, buf, n) != 0) { 1793 ret = -EIO; 1794 goto ro_cleanup; 1795 } 1796 1797 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1798 ret = -EIO; 1799 goto ro_cleanup; 1800 } 1801 } 1802 } 1803 1804 if (drv->bdrv_make_empty) { 1805 ret = drv->bdrv_make_empty(bs); 1806 bdrv_flush(bs); 1807 } 1808 1809 /* 1810 * Make sure all data we wrote to the backing device is actually 1811 * stable on disk. 1812 */ 1813 if (bs->backing_hd) 1814 bdrv_flush(bs->backing_hd); 1815 1816 ro_cleanup: 1817 g_free(buf); 1818 1819 if (ro) { 1820 /* ignoring error return here */ 1821 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1822 } 1823 1824 return ret; 1825 } 1826 1827 int bdrv_commit_all(void) 1828 { 1829 BlockDriverState *bs; 1830 1831 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1832 if (bs->drv && bs->backing_hd) { 1833 int ret = bdrv_commit(bs); 1834 if (ret < 0) { 1835 return ret; 1836 } 1837 } 1838 } 1839 return 0; 1840 } 1841 1842 struct BdrvTrackedRequest { 1843 BlockDriverState *bs; 1844 int64_t sector_num; 1845 int nb_sectors; 1846 bool is_write; 1847 QLIST_ENTRY(BdrvTrackedRequest) list; 1848 Coroutine *co; /* owner, used for deadlock detection */ 1849 CoQueue wait_queue; /* coroutines blocked on this request */ 1850 }; 1851 1852 /** 1853 * Remove an active request from the tracked requests list 1854 * 1855 * This function should be called when a tracked request is completing. 1856 */ 1857 static void tracked_request_end(BdrvTrackedRequest *req) 1858 { 1859 QLIST_REMOVE(req, list); 1860 qemu_co_queue_restart_all(&req->wait_queue); 1861 } 1862 1863 /** 1864 * Add an active request to the tracked requests list 1865 */ 1866 static void tracked_request_begin(BdrvTrackedRequest *req, 1867 BlockDriverState *bs, 1868 int64_t sector_num, 1869 int nb_sectors, bool is_write) 1870 { 1871 *req = (BdrvTrackedRequest){ 1872 .bs = bs, 1873 .sector_num = sector_num, 1874 .nb_sectors = nb_sectors, 1875 .is_write = is_write, 1876 .co = qemu_coroutine_self(), 1877 }; 1878 1879 qemu_co_queue_init(&req->wait_queue); 1880 1881 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1882 } 1883 1884 /** 1885 * Round a region to cluster boundaries 1886 */ 1887 void bdrv_round_to_clusters(BlockDriverState *bs, 1888 int64_t sector_num, int nb_sectors, 1889 int64_t *cluster_sector_num, 1890 int *cluster_nb_sectors) 1891 { 1892 BlockDriverInfo bdi; 1893 1894 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1895 *cluster_sector_num = sector_num; 1896 *cluster_nb_sectors = nb_sectors; 1897 } else { 1898 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1899 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1900 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1901 nb_sectors, c); 1902 } 1903 } 1904 1905 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1906 int64_t sector_num, int nb_sectors) { 1907 /* aaaa bbbb */ 1908 if (sector_num >= req->sector_num + req->nb_sectors) { 1909 return false; 1910 } 1911 /* bbbb aaaa */ 1912 if (req->sector_num >= sector_num + nb_sectors) { 1913 return false; 1914 } 1915 return true; 1916 } 1917 1918 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1919 int64_t sector_num, int nb_sectors) 1920 { 1921 BdrvTrackedRequest *req; 1922 int64_t cluster_sector_num; 1923 int cluster_nb_sectors; 1924 bool retry; 1925 1926 /* If we touch the same cluster it counts as an overlap. This guarantees 1927 * that allocating writes will be serialized and not race with each other 1928 * for the same cluster. For example, in copy-on-read it ensures that the 1929 * CoR read and write operations are atomic and guest writes cannot 1930 * interleave between them. 1931 */ 1932 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 1933 &cluster_sector_num, &cluster_nb_sectors); 1934 1935 do { 1936 retry = false; 1937 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1938 if (tracked_request_overlaps(req, cluster_sector_num, 1939 cluster_nb_sectors)) { 1940 /* Hitting this means there was a reentrant request, for 1941 * example, a block driver issuing nested requests. This must 1942 * never happen since it means deadlock. 1943 */ 1944 assert(qemu_coroutine_self() != req->co); 1945 1946 qemu_co_queue_wait(&req->wait_queue); 1947 retry = true; 1948 break; 1949 } 1950 } 1951 } while (retry); 1952 } 1953 1954 /* 1955 * Return values: 1956 * 0 - success 1957 * -EINVAL - backing format specified, but no file 1958 * -ENOSPC - can't update the backing file because no space is left in the 1959 * image file header 1960 * -ENOTSUP - format driver doesn't support changing the backing file 1961 */ 1962 int bdrv_change_backing_file(BlockDriverState *bs, 1963 const char *backing_file, const char *backing_fmt) 1964 { 1965 BlockDriver *drv = bs->drv; 1966 int ret; 1967 1968 /* Backing file format doesn't make sense without a backing file */ 1969 if (backing_fmt && !backing_file) { 1970 return -EINVAL; 1971 } 1972 1973 if (drv->bdrv_change_backing_file != NULL) { 1974 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1975 } else { 1976 ret = -ENOTSUP; 1977 } 1978 1979 if (ret == 0) { 1980 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1981 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1982 } 1983 return ret; 1984 } 1985 1986 /* 1987 * Finds the image layer in the chain that has 'bs' as its backing file. 1988 * 1989 * active is the current topmost image. 1990 * 1991 * Returns NULL if bs is not found in active's image chain, 1992 * or if active == bs. 1993 */ 1994 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1995 BlockDriverState *bs) 1996 { 1997 BlockDriverState *overlay = NULL; 1998 BlockDriverState *intermediate; 1999 2000 assert(active != NULL); 2001 assert(bs != NULL); 2002 2003 /* if bs is the same as active, then by definition it has no overlay 2004 */ 2005 if (active == bs) { 2006 return NULL; 2007 } 2008 2009 intermediate = active; 2010 while (intermediate->backing_hd) { 2011 if (intermediate->backing_hd == bs) { 2012 overlay = intermediate; 2013 break; 2014 } 2015 intermediate = intermediate->backing_hd; 2016 } 2017 2018 return overlay; 2019 } 2020 2021 typedef struct BlkIntermediateStates { 2022 BlockDriverState *bs; 2023 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 2024 } BlkIntermediateStates; 2025 2026 2027 /* 2028 * Drops images above 'base' up to and including 'top', and sets the image 2029 * above 'top' to have base as its backing file. 2030 * 2031 * Requires that the overlay to 'top' is opened r/w, so that the backing file 2032 * information in 'bs' can be properly updated. 2033 * 2034 * E.g., this will convert the following chain: 2035 * bottom <- base <- intermediate <- top <- active 2036 * 2037 * to 2038 * 2039 * bottom <- base <- active 2040 * 2041 * It is allowed for bottom==base, in which case it converts: 2042 * 2043 * base <- intermediate <- top <- active 2044 * 2045 * to 2046 * 2047 * base <- active 2048 * 2049 * Error conditions: 2050 * if active == top, that is considered an error 2051 * 2052 */ 2053 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 2054 BlockDriverState *base) 2055 { 2056 BlockDriverState *intermediate; 2057 BlockDriverState *base_bs = NULL; 2058 BlockDriverState *new_top_bs = NULL; 2059 BlkIntermediateStates *intermediate_state, *next; 2060 int ret = -EIO; 2061 2062 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 2063 QSIMPLEQ_INIT(&states_to_delete); 2064 2065 if (!top->drv || !base->drv) { 2066 goto exit; 2067 } 2068 2069 new_top_bs = bdrv_find_overlay(active, top); 2070 2071 if (new_top_bs == NULL) { 2072 /* we could not find the image above 'top', this is an error */ 2073 goto exit; 2074 } 2075 2076 /* special case of new_top_bs->backing_hd already pointing to base - nothing 2077 * to do, no intermediate images */ 2078 if (new_top_bs->backing_hd == base) { 2079 ret = 0; 2080 goto exit; 2081 } 2082 2083 intermediate = top; 2084 2085 /* now we will go down through the list, and add each BDS we find 2086 * into our deletion queue, until we hit the 'base' 2087 */ 2088 while (intermediate) { 2089 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 2090 intermediate_state->bs = intermediate; 2091 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 2092 2093 if (intermediate->backing_hd == base) { 2094 base_bs = intermediate->backing_hd; 2095 break; 2096 } 2097 intermediate = intermediate->backing_hd; 2098 } 2099 if (base_bs == NULL) { 2100 /* something went wrong, we did not end at the base. safely 2101 * unravel everything, and exit with error */ 2102 goto exit; 2103 } 2104 2105 /* success - we can delete the intermediate states, and link top->base */ 2106 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 2107 base_bs->drv ? base_bs->drv->format_name : ""); 2108 if (ret) { 2109 goto exit; 2110 } 2111 new_top_bs->backing_hd = base_bs; 2112 2113 2114 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 2115 /* so that bdrv_close() does not recursively close the chain */ 2116 intermediate_state->bs->backing_hd = NULL; 2117 bdrv_delete(intermediate_state->bs); 2118 } 2119 ret = 0; 2120 2121 exit: 2122 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 2123 g_free(intermediate_state); 2124 } 2125 return ret; 2126 } 2127 2128 2129 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 2130 size_t size) 2131 { 2132 int64_t len; 2133 2134 if (!bdrv_is_inserted(bs)) 2135 return -ENOMEDIUM; 2136 2137 if (bs->growable) 2138 return 0; 2139 2140 len = bdrv_getlength(bs); 2141 2142 if (offset < 0) 2143 return -EIO; 2144 2145 if ((offset > len) || (len - offset < size)) 2146 return -EIO; 2147 2148 return 0; 2149 } 2150 2151 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 2152 int nb_sectors) 2153 { 2154 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 2155 nb_sectors * BDRV_SECTOR_SIZE); 2156 } 2157 2158 typedef struct RwCo { 2159 BlockDriverState *bs; 2160 int64_t sector_num; 2161 int nb_sectors; 2162 QEMUIOVector *qiov; 2163 bool is_write; 2164 int ret; 2165 } RwCo; 2166 2167 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 2168 { 2169 RwCo *rwco = opaque; 2170 2171 if (!rwco->is_write) { 2172 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 2173 rwco->nb_sectors, rwco->qiov, 0); 2174 } else { 2175 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 2176 rwco->nb_sectors, rwco->qiov, 0); 2177 } 2178 } 2179 2180 /* 2181 * Process a vectored synchronous request using coroutines 2182 */ 2183 static int bdrv_rwv_co(BlockDriverState *bs, int64_t sector_num, 2184 QEMUIOVector *qiov, bool is_write) 2185 { 2186 Coroutine *co; 2187 RwCo rwco = { 2188 .bs = bs, 2189 .sector_num = sector_num, 2190 .nb_sectors = qiov->size >> BDRV_SECTOR_BITS, 2191 .qiov = qiov, 2192 .is_write = is_write, 2193 .ret = NOT_DONE, 2194 }; 2195 assert((qiov->size & (BDRV_SECTOR_SIZE - 1)) == 0); 2196 2197 /** 2198 * In sync call context, when the vcpu is blocked, this throttling timer 2199 * will not fire; so the I/O throttling function has to be disabled here 2200 * if it has been enabled. 2201 */ 2202 if (bs->io_limits_enabled) { 2203 fprintf(stderr, "Disabling I/O throttling on '%s' due " 2204 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 2205 bdrv_io_limits_disable(bs); 2206 } 2207 2208 if (qemu_in_coroutine()) { 2209 /* Fast-path if already in coroutine context */ 2210 bdrv_rw_co_entry(&rwco); 2211 } else { 2212 co = qemu_coroutine_create(bdrv_rw_co_entry); 2213 qemu_coroutine_enter(co, &rwco); 2214 while (rwco.ret == NOT_DONE) { 2215 qemu_aio_wait(); 2216 } 2217 } 2218 return rwco.ret; 2219 } 2220 2221 /* 2222 * Process a synchronous request using coroutines 2223 */ 2224 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 2225 int nb_sectors, bool is_write) 2226 { 2227 QEMUIOVector qiov; 2228 struct iovec iov = { 2229 .iov_base = (void *)buf, 2230 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 2231 }; 2232 2233 qemu_iovec_init_external(&qiov, &iov, 1); 2234 return bdrv_rwv_co(bs, sector_num, &qiov, is_write); 2235 } 2236 2237 /* return < 0 if error. See bdrv_write() for the return codes */ 2238 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2239 uint8_t *buf, int nb_sectors) 2240 { 2241 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 2242 } 2243 2244 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2245 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2246 uint8_t *buf, int nb_sectors) 2247 { 2248 bool enabled; 2249 int ret; 2250 2251 enabled = bs->io_limits_enabled; 2252 bs->io_limits_enabled = false; 2253 ret = bdrv_read(bs, 0, buf, 1); 2254 bs->io_limits_enabled = enabled; 2255 return ret; 2256 } 2257 2258 /* Return < 0 if error. Important errors are: 2259 -EIO generic I/O error (may happen for all errors) 2260 -ENOMEDIUM No media inserted. 2261 -EINVAL Invalid sector number or nb_sectors 2262 -EACCES Trying to write a read-only device 2263 */ 2264 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2265 const uint8_t *buf, int nb_sectors) 2266 { 2267 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2268 } 2269 2270 int bdrv_writev(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov) 2271 { 2272 return bdrv_rwv_co(bs, sector_num, qiov, true); 2273 } 2274 2275 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2276 void *buf, int count1) 2277 { 2278 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2279 int len, nb_sectors, count; 2280 int64_t sector_num; 2281 int ret; 2282 2283 count = count1; 2284 /* first read to align to sector start */ 2285 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2286 if (len > count) 2287 len = count; 2288 sector_num = offset >> BDRV_SECTOR_BITS; 2289 if (len > 0) { 2290 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2291 return ret; 2292 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2293 count -= len; 2294 if (count == 0) 2295 return count1; 2296 sector_num++; 2297 buf += len; 2298 } 2299 2300 /* read the sectors "in place" */ 2301 nb_sectors = count >> BDRV_SECTOR_BITS; 2302 if (nb_sectors > 0) { 2303 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2304 return ret; 2305 sector_num += nb_sectors; 2306 len = nb_sectors << BDRV_SECTOR_BITS; 2307 buf += len; 2308 count -= len; 2309 } 2310 2311 /* add data from the last sector */ 2312 if (count > 0) { 2313 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2314 return ret; 2315 memcpy(buf, tmp_buf, count); 2316 } 2317 return count1; 2318 } 2319 2320 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov) 2321 { 2322 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2323 int len, nb_sectors, count; 2324 int64_t sector_num; 2325 int ret; 2326 2327 count = qiov->size; 2328 2329 /* first write to align to sector start */ 2330 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2331 if (len > count) 2332 len = count; 2333 sector_num = offset >> BDRV_SECTOR_BITS; 2334 if (len > 0) { 2335 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2336 return ret; 2337 qemu_iovec_to_buf(qiov, 0, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), 2338 len); 2339 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2340 return ret; 2341 count -= len; 2342 if (count == 0) 2343 return qiov->size; 2344 sector_num++; 2345 } 2346 2347 /* write the sectors "in place" */ 2348 nb_sectors = count >> BDRV_SECTOR_BITS; 2349 if (nb_sectors > 0) { 2350 QEMUIOVector qiov_inplace; 2351 2352 qemu_iovec_init(&qiov_inplace, qiov->niov); 2353 qemu_iovec_concat(&qiov_inplace, qiov, len, 2354 nb_sectors << BDRV_SECTOR_BITS); 2355 ret = bdrv_writev(bs, sector_num, &qiov_inplace); 2356 qemu_iovec_destroy(&qiov_inplace); 2357 if (ret < 0) { 2358 return ret; 2359 } 2360 2361 sector_num += nb_sectors; 2362 len = nb_sectors << BDRV_SECTOR_BITS; 2363 count -= len; 2364 } 2365 2366 /* add data from the last sector */ 2367 if (count > 0) { 2368 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2369 return ret; 2370 qemu_iovec_to_buf(qiov, qiov->size - count, tmp_buf, count); 2371 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2372 return ret; 2373 } 2374 return qiov->size; 2375 } 2376 2377 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2378 const void *buf, int count1) 2379 { 2380 QEMUIOVector qiov; 2381 struct iovec iov = { 2382 .iov_base = (void *) buf, 2383 .iov_len = count1, 2384 }; 2385 2386 qemu_iovec_init_external(&qiov, &iov, 1); 2387 return bdrv_pwritev(bs, offset, &qiov); 2388 } 2389 2390 /* 2391 * Writes to the file and ensures that no writes are reordered across this 2392 * request (acts as a barrier) 2393 * 2394 * Returns 0 on success, -errno in error cases. 2395 */ 2396 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2397 const void *buf, int count) 2398 { 2399 int ret; 2400 2401 ret = bdrv_pwrite(bs, offset, buf, count); 2402 if (ret < 0) { 2403 return ret; 2404 } 2405 2406 /* No flush needed for cache modes that already do it */ 2407 if (bs->enable_write_cache) { 2408 bdrv_flush(bs); 2409 } 2410 2411 return 0; 2412 } 2413 2414 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2415 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2416 { 2417 /* Perform I/O through a temporary buffer so that users who scribble over 2418 * their read buffer while the operation is in progress do not end up 2419 * modifying the image file. This is critical for zero-copy guest I/O 2420 * where anything might happen inside guest memory. 2421 */ 2422 void *bounce_buffer; 2423 2424 BlockDriver *drv = bs->drv; 2425 struct iovec iov; 2426 QEMUIOVector bounce_qiov; 2427 int64_t cluster_sector_num; 2428 int cluster_nb_sectors; 2429 size_t skip_bytes; 2430 int ret; 2431 2432 /* Cover entire cluster so no additional backing file I/O is required when 2433 * allocating cluster in the image file. 2434 */ 2435 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 2436 &cluster_sector_num, &cluster_nb_sectors); 2437 2438 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2439 cluster_sector_num, cluster_nb_sectors); 2440 2441 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2442 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2443 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2444 2445 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2446 &bounce_qiov); 2447 if (ret < 0) { 2448 goto err; 2449 } 2450 2451 if (drv->bdrv_co_write_zeroes && 2452 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2453 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2454 cluster_nb_sectors); 2455 } else { 2456 /* This does not change the data on the disk, it is not necessary 2457 * to flush even in cache=writethrough mode. 2458 */ 2459 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2460 &bounce_qiov); 2461 } 2462 2463 if (ret < 0) { 2464 /* It might be okay to ignore write errors for guest requests. If this 2465 * is a deliberate copy-on-read then we don't want to ignore the error. 2466 * Simply report it in all cases. 2467 */ 2468 goto err; 2469 } 2470 2471 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2472 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2473 nb_sectors * BDRV_SECTOR_SIZE); 2474 2475 err: 2476 qemu_vfree(bounce_buffer); 2477 return ret; 2478 } 2479 2480 /* 2481 * Handle a read request in coroutine context 2482 */ 2483 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2484 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2485 BdrvRequestFlags flags) 2486 { 2487 BlockDriver *drv = bs->drv; 2488 BdrvTrackedRequest req; 2489 int ret; 2490 2491 if (!drv) { 2492 return -ENOMEDIUM; 2493 } 2494 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2495 return -EIO; 2496 } 2497 2498 /* throttling disk read I/O */ 2499 if (bs->io_limits_enabled) { 2500 bdrv_io_limits_intercept(bs, false, nb_sectors); 2501 } 2502 2503 if (bs->copy_on_read) { 2504 flags |= BDRV_REQ_COPY_ON_READ; 2505 } 2506 if (flags & BDRV_REQ_COPY_ON_READ) { 2507 bs->copy_on_read_in_flight++; 2508 } 2509 2510 if (bs->copy_on_read_in_flight) { 2511 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2512 } 2513 2514 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2515 2516 if (flags & BDRV_REQ_COPY_ON_READ) { 2517 int pnum; 2518 2519 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2520 if (ret < 0) { 2521 goto out; 2522 } 2523 2524 if (!ret || pnum != nb_sectors) { 2525 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2526 goto out; 2527 } 2528 } 2529 2530 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2531 2532 out: 2533 tracked_request_end(&req); 2534 2535 if (flags & BDRV_REQ_COPY_ON_READ) { 2536 bs->copy_on_read_in_flight--; 2537 } 2538 2539 return ret; 2540 } 2541 2542 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2543 int nb_sectors, QEMUIOVector *qiov) 2544 { 2545 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2546 2547 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2548 } 2549 2550 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2551 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2552 { 2553 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2554 2555 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2556 BDRV_REQ_COPY_ON_READ); 2557 } 2558 2559 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2560 int64_t sector_num, int nb_sectors) 2561 { 2562 BlockDriver *drv = bs->drv; 2563 QEMUIOVector qiov; 2564 struct iovec iov; 2565 int ret; 2566 2567 /* TODO Emulate only part of misaligned requests instead of letting block 2568 * drivers return -ENOTSUP and emulate everything */ 2569 2570 /* First try the efficient write zeroes operation */ 2571 if (drv->bdrv_co_write_zeroes) { 2572 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2573 if (ret != -ENOTSUP) { 2574 return ret; 2575 } 2576 } 2577 2578 /* Fall back to bounce buffer if write zeroes is unsupported */ 2579 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2580 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2581 memset(iov.iov_base, 0, iov.iov_len); 2582 qemu_iovec_init_external(&qiov, &iov, 1); 2583 2584 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2585 2586 qemu_vfree(iov.iov_base); 2587 return ret; 2588 } 2589 2590 /* 2591 * Handle a write request in coroutine context 2592 */ 2593 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2594 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2595 BdrvRequestFlags flags) 2596 { 2597 BlockDriver *drv = bs->drv; 2598 BdrvTrackedRequest req; 2599 int ret; 2600 2601 if (!bs->drv) { 2602 return -ENOMEDIUM; 2603 } 2604 if (bs->read_only) { 2605 return -EACCES; 2606 } 2607 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2608 return -EIO; 2609 } 2610 2611 /* throttling disk write I/O */ 2612 if (bs->io_limits_enabled) { 2613 bdrv_io_limits_intercept(bs, true, nb_sectors); 2614 } 2615 2616 if (bs->copy_on_read_in_flight) { 2617 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2618 } 2619 2620 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2621 2622 if (flags & BDRV_REQ_ZERO_WRITE) { 2623 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2624 } else { 2625 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2626 } 2627 2628 if (ret == 0 && !bs->enable_write_cache) { 2629 ret = bdrv_co_flush(bs); 2630 } 2631 2632 if (bs->dirty_bitmap) { 2633 bdrv_set_dirty(bs, sector_num, nb_sectors); 2634 } 2635 2636 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2637 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2638 } 2639 2640 tracked_request_end(&req); 2641 2642 return ret; 2643 } 2644 2645 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2646 int nb_sectors, QEMUIOVector *qiov) 2647 { 2648 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2649 2650 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2651 } 2652 2653 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2654 int64_t sector_num, int nb_sectors) 2655 { 2656 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2657 2658 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2659 BDRV_REQ_ZERO_WRITE); 2660 } 2661 2662 /** 2663 * Truncate file to 'offset' bytes (needed only for file protocols) 2664 */ 2665 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2666 { 2667 BlockDriver *drv = bs->drv; 2668 int ret; 2669 if (!drv) 2670 return -ENOMEDIUM; 2671 if (!drv->bdrv_truncate) 2672 return -ENOTSUP; 2673 if (bs->read_only) 2674 return -EACCES; 2675 if (bdrv_in_use(bs)) 2676 return -EBUSY; 2677 ret = drv->bdrv_truncate(bs, offset); 2678 if (ret == 0) { 2679 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2680 bdrv_dev_resize_cb(bs); 2681 } 2682 return ret; 2683 } 2684 2685 /** 2686 * Length of a allocated file in bytes. Sparse files are counted by actual 2687 * allocated space. Return < 0 if error or unknown. 2688 */ 2689 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2690 { 2691 BlockDriver *drv = bs->drv; 2692 if (!drv) { 2693 return -ENOMEDIUM; 2694 } 2695 if (drv->bdrv_get_allocated_file_size) { 2696 return drv->bdrv_get_allocated_file_size(bs); 2697 } 2698 if (bs->file) { 2699 return bdrv_get_allocated_file_size(bs->file); 2700 } 2701 return -ENOTSUP; 2702 } 2703 2704 /** 2705 * Length of a file in bytes. Return < 0 if error or unknown. 2706 */ 2707 int64_t bdrv_getlength(BlockDriverState *bs) 2708 { 2709 BlockDriver *drv = bs->drv; 2710 if (!drv) 2711 return -ENOMEDIUM; 2712 2713 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2714 if (drv->bdrv_getlength) { 2715 return drv->bdrv_getlength(bs); 2716 } 2717 } 2718 return bs->total_sectors * BDRV_SECTOR_SIZE; 2719 } 2720 2721 /* return 0 as number of sectors if no device present or error */ 2722 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2723 { 2724 int64_t length; 2725 length = bdrv_getlength(bs); 2726 if (length < 0) 2727 length = 0; 2728 else 2729 length = length >> BDRV_SECTOR_BITS; 2730 *nb_sectors_ptr = length; 2731 } 2732 2733 /* throttling disk io limits */ 2734 void bdrv_set_io_limits(BlockDriverState *bs, 2735 BlockIOLimit *io_limits) 2736 { 2737 bs->io_limits = *io_limits; 2738 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2739 } 2740 2741 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2742 BlockdevOnError on_write_error) 2743 { 2744 bs->on_read_error = on_read_error; 2745 bs->on_write_error = on_write_error; 2746 } 2747 2748 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2749 { 2750 return is_read ? bs->on_read_error : bs->on_write_error; 2751 } 2752 2753 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2754 { 2755 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2756 2757 switch (on_err) { 2758 case BLOCKDEV_ON_ERROR_ENOSPC: 2759 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2760 case BLOCKDEV_ON_ERROR_STOP: 2761 return BDRV_ACTION_STOP; 2762 case BLOCKDEV_ON_ERROR_REPORT: 2763 return BDRV_ACTION_REPORT; 2764 case BLOCKDEV_ON_ERROR_IGNORE: 2765 return BDRV_ACTION_IGNORE; 2766 default: 2767 abort(); 2768 } 2769 } 2770 2771 /* This is done by device models because, while the block layer knows 2772 * about the error, it does not know whether an operation comes from 2773 * the device or the block layer (from a job, for example). 2774 */ 2775 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2776 bool is_read, int error) 2777 { 2778 assert(error >= 0); 2779 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2780 if (action == BDRV_ACTION_STOP) { 2781 vm_stop(RUN_STATE_IO_ERROR); 2782 bdrv_iostatus_set_err(bs, error); 2783 } 2784 } 2785 2786 int bdrv_is_read_only(BlockDriverState *bs) 2787 { 2788 return bs->read_only; 2789 } 2790 2791 int bdrv_is_sg(BlockDriverState *bs) 2792 { 2793 return bs->sg; 2794 } 2795 2796 int bdrv_enable_write_cache(BlockDriverState *bs) 2797 { 2798 return bs->enable_write_cache; 2799 } 2800 2801 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2802 { 2803 bs->enable_write_cache = wce; 2804 2805 /* so a reopen() will preserve wce */ 2806 if (wce) { 2807 bs->open_flags |= BDRV_O_CACHE_WB; 2808 } else { 2809 bs->open_flags &= ~BDRV_O_CACHE_WB; 2810 } 2811 } 2812 2813 int bdrv_is_encrypted(BlockDriverState *bs) 2814 { 2815 if (bs->backing_hd && bs->backing_hd->encrypted) 2816 return 1; 2817 return bs->encrypted; 2818 } 2819 2820 int bdrv_key_required(BlockDriverState *bs) 2821 { 2822 BlockDriverState *backing_hd = bs->backing_hd; 2823 2824 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2825 return 1; 2826 return (bs->encrypted && !bs->valid_key); 2827 } 2828 2829 int bdrv_set_key(BlockDriverState *bs, const char *key) 2830 { 2831 int ret; 2832 if (bs->backing_hd && bs->backing_hd->encrypted) { 2833 ret = bdrv_set_key(bs->backing_hd, key); 2834 if (ret < 0) 2835 return ret; 2836 if (!bs->encrypted) 2837 return 0; 2838 } 2839 if (!bs->encrypted) { 2840 return -EINVAL; 2841 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2842 return -ENOMEDIUM; 2843 } 2844 ret = bs->drv->bdrv_set_key(bs, key); 2845 if (ret < 0) { 2846 bs->valid_key = 0; 2847 } else if (!bs->valid_key) { 2848 bs->valid_key = 1; 2849 /* call the change callback now, we skipped it on open */ 2850 bdrv_dev_change_media_cb(bs, true); 2851 } 2852 return ret; 2853 } 2854 2855 const char *bdrv_get_format_name(BlockDriverState *bs) 2856 { 2857 return bs->drv ? bs->drv->format_name : NULL; 2858 } 2859 2860 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2861 void *opaque) 2862 { 2863 BlockDriver *drv; 2864 2865 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2866 it(opaque, drv->format_name); 2867 } 2868 } 2869 2870 BlockDriverState *bdrv_find(const char *name) 2871 { 2872 BlockDriverState *bs; 2873 2874 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2875 if (!strcmp(name, bs->device_name)) { 2876 return bs; 2877 } 2878 } 2879 return NULL; 2880 } 2881 2882 BlockDriverState *bdrv_next(BlockDriverState *bs) 2883 { 2884 if (!bs) { 2885 return QTAILQ_FIRST(&bdrv_states); 2886 } 2887 return QTAILQ_NEXT(bs, list); 2888 } 2889 2890 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2891 { 2892 BlockDriverState *bs; 2893 2894 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2895 it(opaque, bs); 2896 } 2897 } 2898 2899 const char *bdrv_get_device_name(BlockDriverState *bs) 2900 { 2901 return bs->device_name; 2902 } 2903 2904 int bdrv_get_flags(BlockDriverState *bs) 2905 { 2906 return bs->open_flags; 2907 } 2908 2909 void bdrv_flush_all(void) 2910 { 2911 BlockDriverState *bs; 2912 2913 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2914 bdrv_flush(bs); 2915 } 2916 } 2917 2918 int bdrv_has_zero_init(BlockDriverState *bs) 2919 { 2920 assert(bs->drv); 2921 2922 if (bs->drv->bdrv_has_zero_init) { 2923 return bs->drv->bdrv_has_zero_init(bs); 2924 } 2925 2926 return 1; 2927 } 2928 2929 typedef struct BdrvCoIsAllocatedData { 2930 BlockDriverState *bs; 2931 BlockDriverState *base; 2932 int64_t sector_num; 2933 int nb_sectors; 2934 int *pnum; 2935 int ret; 2936 bool done; 2937 } BdrvCoIsAllocatedData; 2938 2939 /* 2940 * Returns true iff the specified sector is present in the disk image. Drivers 2941 * not implementing the functionality are assumed to not support backing files, 2942 * hence all their sectors are reported as allocated. 2943 * 2944 * If 'sector_num' is beyond the end of the disk image the return value is 0 2945 * and 'pnum' is set to 0. 2946 * 2947 * 'pnum' is set to the number of sectors (including and immediately following 2948 * the specified sector) that are known to be in the same 2949 * allocated/unallocated state. 2950 * 2951 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2952 * beyond the end of the disk image it will be clamped. 2953 */ 2954 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2955 int nb_sectors, int *pnum) 2956 { 2957 int64_t n; 2958 2959 if (sector_num >= bs->total_sectors) { 2960 *pnum = 0; 2961 return 0; 2962 } 2963 2964 n = bs->total_sectors - sector_num; 2965 if (n < nb_sectors) { 2966 nb_sectors = n; 2967 } 2968 2969 if (!bs->drv->bdrv_co_is_allocated) { 2970 *pnum = nb_sectors; 2971 return 1; 2972 } 2973 2974 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2975 } 2976 2977 /* Coroutine wrapper for bdrv_is_allocated() */ 2978 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2979 { 2980 BdrvCoIsAllocatedData *data = opaque; 2981 BlockDriverState *bs = data->bs; 2982 2983 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2984 data->pnum); 2985 data->done = true; 2986 } 2987 2988 /* 2989 * Synchronous wrapper around bdrv_co_is_allocated(). 2990 * 2991 * See bdrv_co_is_allocated() for details. 2992 */ 2993 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2994 int *pnum) 2995 { 2996 Coroutine *co; 2997 BdrvCoIsAllocatedData data = { 2998 .bs = bs, 2999 .sector_num = sector_num, 3000 .nb_sectors = nb_sectors, 3001 .pnum = pnum, 3002 .done = false, 3003 }; 3004 3005 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 3006 qemu_coroutine_enter(co, &data); 3007 while (!data.done) { 3008 qemu_aio_wait(); 3009 } 3010 return data.ret; 3011 } 3012 3013 /* 3014 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 3015 * 3016 * Return true if the given sector is allocated in any image between 3017 * BASE and TOP (inclusive). BASE can be NULL to check if the given 3018 * sector is allocated in any image of the chain. Return false otherwise. 3019 * 3020 * 'pnum' is set to the number of sectors (including and immediately following 3021 * the specified sector) that are known to be in the same 3022 * allocated/unallocated state. 3023 * 3024 */ 3025 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 3026 BlockDriverState *base, 3027 int64_t sector_num, 3028 int nb_sectors, int *pnum) 3029 { 3030 BlockDriverState *intermediate; 3031 int ret, n = nb_sectors; 3032 3033 intermediate = top; 3034 while (intermediate && intermediate != base) { 3035 int pnum_inter; 3036 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 3037 &pnum_inter); 3038 if (ret < 0) { 3039 return ret; 3040 } else if (ret) { 3041 *pnum = pnum_inter; 3042 return 1; 3043 } 3044 3045 /* 3046 * [sector_num, nb_sectors] is unallocated on top but intermediate 3047 * might have 3048 * 3049 * [sector_num+x, nr_sectors] allocated. 3050 */ 3051 if (n > pnum_inter && 3052 (intermediate == top || 3053 sector_num + pnum_inter < intermediate->total_sectors)) { 3054 n = pnum_inter; 3055 } 3056 3057 intermediate = intermediate->backing_hd; 3058 } 3059 3060 *pnum = n; 3061 return 0; 3062 } 3063 3064 /* Coroutine wrapper for bdrv_is_allocated_above() */ 3065 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque) 3066 { 3067 BdrvCoIsAllocatedData *data = opaque; 3068 BlockDriverState *top = data->bs; 3069 BlockDriverState *base = data->base; 3070 3071 data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num, 3072 data->nb_sectors, data->pnum); 3073 data->done = true; 3074 } 3075 3076 /* 3077 * Synchronous wrapper around bdrv_co_is_allocated_above(). 3078 * 3079 * See bdrv_co_is_allocated_above() for details. 3080 */ 3081 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base, 3082 int64_t sector_num, int nb_sectors, int *pnum) 3083 { 3084 Coroutine *co; 3085 BdrvCoIsAllocatedData data = { 3086 .bs = top, 3087 .base = base, 3088 .sector_num = sector_num, 3089 .nb_sectors = nb_sectors, 3090 .pnum = pnum, 3091 .done = false, 3092 }; 3093 3094 co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry); 3095 qemu_coroutine_enter(co, &data); 3096 while (!data.done) { 3097 qemu_aio_wait(); 3098 } 3099 return data.ret; 3100 } 3101 3102 BlockInfo *bdrv_query_info(BlockDriverState *bs) 3103 { 3104 BlockInfo *info = g_malloc0(sizeof(*info)); 3105 info->device = g_strdup(bs->device_name); 3106 info->type = g_strdup("unknown"); 3107 info->locked = bdrv_dev_is_medium_locked(bs); 3108 info->removable = bdrv_dev_has_removable_media(bs); 3109 3110 if (bdrv_dev_has_removable_media(bs)) { 3111 info->has_tray_open = true; 3112 info->tray_open = bdrv_dev_is_tray_open(bs); 3113 } 3114 3115 if (bdrv_iostatus_is_enabled(bs)) { 3116 info->has_io_status = true; 3117 info->io_status = bs->iostatus; 3118 } 3119 3120 if (bs->dirty_bitmap) { 3121 info->has_dirty = true; 3122 info->dirty = g_malloc0(sizeof(*info->dirty)); 3123 info->dirty->count = bdrv_get_dirty_count(bs) * BDRV_SECTOR_SIZE; 3124 info->dirty->granularity = 3125 ((int64_t) BDRV_SECTOR_SIZE << hbitmap_granularity(bs->dirty_bitmap)); 3126 } 3127 3128 if (bs->drv) { 3129 info->has_inserted = true; 3130 info->inserted = g_malloc0(sizeof(*info->inserted)); 3131 info->inserted->file = g_strdup(bs->filename); 3132 info->inserted->ro = bs->read_only; 3133 info->inserted->drv = g_strdup(bs->drv->format_name); 3134 info->inserted->encrypted = bs->encrypted; 3135 info->inserted->encryption_key_missing = bdrv_key_required(bs); 3136 3137 if (bs->backing_file[0]) { 3138 info->inserted->has_backing_file = true; 3139 info->inserted->backing_file = g_strdup(bs->backing_file); 3140 } 3141 3142 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs); 3143 3144 if (bs->io_limits_enabled) { 3145 info->inserted->bps = 3146 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3147 info->inserted->bps_rd = 3148 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 3149 info->inserted->bps_wr = 3150 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 3151 info->inserted->iops = 3152 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3153 info->inserted->iops_rd = 3154 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 3155 info->inserted->iops_wr = 3156 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 3157 } 3158 } 3159 return info; 3160 } 3161 3162 BlockInfoList *qmp_query_block(Error **errp) 3163 { 3164 BlockInfoList *head = NULL, **p_next = &head; 3165 BlockDriverState *bs; 3166 3167 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3168 BlockInfoList *info = g_malloc0(sizeof(*info)); 3169 info->value = bdrv_query_info(bs); 3170 3171 *p_next = info; 3172 p_next = &info->next; 3173 } 3174 3175 return head; 3176 } 3177 3178 BlockStats *bdrv_query_stats(const BlockDriverState *bs) 3179 { 3180 BlockStats *s; 3181 3182 s = g_malloc0(sizeof(*s)); 3183 3184 if (bs->device_name[0]) { 3185 s->has_device = true; 3186 s->device = g_strdup(bs->device_name); 3187 } 3188 3189 s->stats = g_malloc0(sizeof(*s->stats)); 3190 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 3191 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 3192 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 3193 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 3194 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 3195 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 3196 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 3197 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 3198 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 3199 3200 if (bs->file) { 3201 s->has_parent = true; 3202 s->parent = bdrv_query_stats(bs->file); 3203 } 3204 3205 return s; 3206 } 3207 3208 BlockStatsList *qmp_query_blockstats(Error **errp) 3209 { 3210 BlockStatsList *head = NULL, **p_next = &head; 3211 BlockDriverState *bs; 3212 3213 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3214 BlockStatsList *info = g_malloc0(sizeof(*info)); 3215 info->value = bdrv_query_stats(bs); 3216 3217 *p_next = info; 3218 p_next = &info->next; 3219 } 3220 3221 return head; 3222 } 3223 3224 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 3225 { 3226 if (bs->backing_hd && bs->backing_hd->encrypted) 3227 return bs->backing_file; 3228 else if (bs->encrypted) 3229 return bs->filename; 3230 else 3231 return NULL; 3232 } 3233 3234 void bdrv_get_backing_filename(BlockDriverState *bs, 3235 char *filename, int filename_size) 3236 { 3237 pstrcpy(filename, filename_size, bs->backing_file); 3238 } 3239 3240 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 3241 const uint8_t *buf, int nb_sectors) 3242 { 3243 BlockDriver *drv = bs->drv; 3244 if (!drv) 3245 return -ENOMEDIUM; 3246 if (!drv->bdrv_write_compressed) 3247 return -ENOTSUP; 3248 if (bdrv_check_request(bs, sector_num, nb_sectors)) 3249 return -EIO; 3250 3251 assert(!bs->dirty_bitmap); 3252 3253 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 3254 } 3255 3256 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 3257 { 3258 BlockDriver *drv = bs->drv; 3259 if (!drv) 3260 return -ENOMEDIUM; 3261 if (!drv->bdrv_get_info) 3262 return -ENOTSUP; 3263 memset(bdi, 0, sizeof(*bdi)); 3264 return drv->bdrv_get_info(bs, bdi); 3265 } 3266 3267 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 3268 int64_t pos, int size) 3269 { 3270 QEMUIOVector qiov; 3271 struct iovec iov = { 3272 .iov_base = (void *) buf, 3273 .iov_len = size, 3274 }; 3275 3276 qemu_iovec_init_external(&qiov, &iov, 1); 3277 return bdrv_writev_vmstate(bs, &qiov, pos); 3278 } 3279 3280 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 3281 { 3282 BlockDriver *drv = bs->drv; 3283 3284 if (!drv) { 3285 return -ENOMEDIUM; 3286 } else if (drv->bdrv_save_vmstate) { 3287 return drv->bdrv_save_vmstate(bs, qiov, pos); 3288 } else if (bs->file) { 3289 return bdrv_writev_vmstate(bs->file, qiov, pos); 3290 } 3291 3292 return -ENOTSUP; 3293 } 3294 3295 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3296 int64_t pos, int size) 3297 { 3298 BlockDriver *drv = bs->drv; 3299 if (!drv) 3300 return -ENOMEDIUM; 3301 if (drv->bdrv_load_vmstate) 3302 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3303 if (bs->file) 3304 return bdrv_load_vmstate(bs->file, buf, pos, size); 3305 return -ENOTSUP; 3306 } 3307 3308 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3309 { 3310 BlockDriver *drv = bs->drv; 3311 3312 if (!drv || !drv->bdrv_debug_event) { 3313 return; 3314 } 3315 3316 drv->bdrv_debug_event(bs, event); 3317 } 3318 3319 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event, 3320 const char *tag) 3321 { 3322 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) { 3323 bs = bs->file; 3324 } 3325 3326 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) { 3327 return bs->drv->bdrv_debug_breakpoint(bs, event, tag); 3328 } 3329 3330 return -ENOTSUP; 3331 } 3332 3333 int bdrv_debug_resume(BlockDriverState *bs, const char *tag) 3334 { 3335 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) { 3336 bs = bs->file; 3337 } 3338 3339 if (bs && bs->drv && bs->drv->bdrv_debug_resume) { 3340 return bs->drv->bdrv_debug_resume(bs, tag); 3341 } 3342 3343 return -ENOTSUP; 3344 } 3345 3346 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag) 3347 { 3348 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) { 3349 bs = bs->file; 3350 } 3351 3352 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) { 3353 return bs->drv->bdrv_debug_is_suspended(bs, tag); 3354 } 3355 3356 return false; 3357 } 3358 3359 /**************************************************************/ 3360 /* handling of snapshots */ 3361 3362 int bdrv_can_snapshot(BlockDriverState *bs) 3363 { 3364 BlockDriver *drv = bs->drv; 3365 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3366 return 0; 3367 } 3368 3369 if (!drv->bdrv_snapshot_create) { 3370 if (bs->file != NULL) { 3371 return bdrv_can_snapshot(bs->file); 3372 } 3373 return 0; 3374 } 3375 3376 return 1; 3377 } 3378 3379 int bdrv_is_snapshot(BlockDriverState *bs) 3380 { 3381 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3382 } 3383 3384 BlockDriverState *bdrv_snapshots(void) 3385 { 3386 BlockDriverState *bs; 3387 3388 if (bs_snapshots) { 3389 return bs_snapshots; 3390 } 3391 3392 bs = NULL; 3393 while ((bs = bdrv_next(bs))) { 3394 if (bdrv_can_snapshot(bs)) { 3395 bs_snapshots = bs; 3396 return bs; 3397 } 3398 } 3399 return NULL; 3400 } 3401 3402 int bdrv_snapshot_create(BlockDriverState *bs, 3403 QEMUSnapshotInfo *sn_info) 3404 { 3405 BlockDriver *drv = bs->drv; 3406 if (!drv) 3407 return -ENOMEDIUM; 3408 if (drv->bdrv_snapshot_create) 3409 return drv->bdrv_snapshot_create(bs, sn_info); 3410 if (bs->file) 3411 return bdrv_snapshot_create(bs->file, sn_info); 3412 return -ENOTSUP; 3413 } 3414 3415 int bdrv_snapshot_goto(BlockDriverState *bs, 3416 const char *snapshot_id) 3417 { 3418 BlockDriver *drv = bs->drv; 3419 int ret, open_ret; 3420 3421 if (!drv) 3422 return -ENOMEDIUM; 3423 if (drv->bdrv_snapshot_goto) 3424 return drv->bdrv_snapshot_goto(bs, snapshot_id); 3425 3426 if (bs->file) { 3427 drv->bdrv_close(bs); 3428 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 3429 open_ret = drv->bdrv_open(bs, NULL, bs->open_flags); 3430 if (open_ret < 0) { 3431 bdrv_delete(bs->file); 3432 bs->drv = NULL; 3433 return open_ret; 3434 } 3435 return ret; 3436 } 3437 3438 return -ENOTSUP; 3439 } 3440 3441 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 3442 { 3443 BlockDriver *drv = bs->drv; 3444 if (!drv) 3445 return -ENOMEDIUM; 3446 if (drv->bdrv_snapshot_delete) 3447 return drv->bdrv_snapshot_delete(bs, snapshot_id); 3448 if (bs->file) 3449 return bdrv_snapshot_delete(bs->file, snapshot_id); 3450 return -ENOTSUP; 3451 } 3452 3453 int bdrv_snapshot_list(BlockDriverState *bs, 3454 QEMUSnapshotInfo **psn_info) 3455 { 3456 BlockDriver *drv = bs->drv; 3457 if (!drv) 3458 return -ENOMEDIUM; 3459 if (drv->bdrv_snapshot_list) 3460 return drv->bdrv_snapshot_list(bs, psn_info); 3461 if (bs->file) 3462 return bdrv_snapshot_list(bs->file, psn_info); 3463 return -ENOTSUP; 3464 } 3465 3466 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 3467 const char *snapshot_name) 3468 { 3469 BlockDriver *drv = bs->drv; 3470 if (!drv) { 3471 return -ENOMEDIUM; 3472 } 3473 if (!bs->read_only) { 3474 return -EINVAL; 3475 } 3476 if (drv->bdrv_snapshot_load_tmp) { 3477 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 3478 } 3479 return -ENOTSUP; 3480 } 3481 3482 /* backing_file can either be relative, or absolute, or a protocol. If it is 3483 * relative, it must be relative to the chain. So, passing in bs->filename 3484 * from a BDS as backing_file should not be done, as that may be relative to 3485 * the CWD rather than the chain. */ 3486 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3487 const char *backing_file) 3488 { 3489 char *filename_full = NULL; 3490 char *backing_file_full = NULL; 3491 char *filename_tmp = NULL; 3492 int is_protocol = 0; 3493 BlockDriverState *curr_bs = NULL; 3494 BlockDriverState *retval = NULL; 3495 3496 if (!bs || !bs->drv || !backing_file) { 3497 return NULL; 3498 } 3499 3500 filename_full = g_malloc(PATH_MAX); 3501 backing_file_full = g_malloc(PATH_MAX); 3502 filename_tmp = g_malloc(PATH_MAX); 3503 3504 is_protocol = path_has_protocol(backing_file); 3505 3506 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3507 3508 /* If either of the filename paths is actually a protocol, then 3509 * compare unmodified paths; otherwise make paths relative */ 3510 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3511 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3512 retval = curr_bs->backing_hd; 3513 break; 3514 } 3515 } else { 3516 /* If not an absolute filename path, make it relative to the current 3517 * image's filename path */ 3518 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3519 backing_file); 3520 3521 /* We are going to compare absolute pathnames */ 3522 if (!realpath(filename_tmp, filename_full)) { 3523 continue; 3524 } 3525 3526 /* We need to make sure the backing filename we are comparing against 3527 * is relative to the current image filename (or absolute) */ 3528 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3529 curr_bs->backing_file); 3530 3531 if (!realpath(filename_tmp, backing_file_full)) { 3532 continue; 3533 } 3534 3535 if (strcmp(backing_file_full, filename_full) == 0) { 3536 retval = curr_bs->backing_hd; 3537 break; 3538 } 3539 } 3540 } 3541 3542 g_free(filename_full); 3543 g_free(backing_file_full); 3544 g_free(filename_tmp); 3545 return retval; 3546 } 3547 3548 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3549 { 3550 if (!bs->drv) { 3551 return 0; 3552 } 3553 3554 if (!bs->backing_hd) { 3555 return 0; 3556 } 3557 3558 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3559 } 3560 3561 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3562 { 3563 BlockDriverState *curr_bs = NULL; 3564 3565 if (!bs) { 3566 return NULL; 3567 } 3568 3569 curr_bs = bs; 3570 3571 while (curr_bs->backing_hd) { 3572 curr_bs = curr_bs->backing_hd; 3573 } 3574 return curr_bs; 3575 } 3576 3577 #define NB_SUFFIXES 4 3578 3579 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 3580 { 3581 static const char suffixes[NB_SUFFIXES] = "KMGT"; 3582 int64_t base; 3583 int i; 3584 3585 if (size <= 999) { 3586 snprintf(buf, buf_size, "%" PRId64, size); 3587 } else { 3588 base = 1024; 3589 for(i = 0; i < NB_SUFFIXES; i++) { 3590 if (size < (10 * base)) { 3591 snprintf(buf, buf_size, "%0.1f%c", 3592 (double)size / base, 3593 suffixes[i]); 3594 break; 3595 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3596 snprintf(buf, buf_size, "%" PRId64 "%c", 3597 ((size + (base >> 1)) / base), 3598 suffixes[i]); 3599 break; 3600 } 3601 base = base * 1024; 3602 } 3603 } 3604 return buf; 3605 } 3606 3607 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3608 { 3609 char buf1[128], date_buf[128], clock_buf[128]; 3610 struct tm tm; 3611 time_t ti; 3612 int64_t secs; 3613 3614 if (!sn) { 3615 snprintf(buf, buf_size, 3616 "%-10s%-20s%7s%20s%15s", 3617 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3618 } else { 3619 ti = sn->date_sec; 3620 localtime_r(&ti, &tm); 3621 strftime(date_buf, sizeof(date_buf), 3622 "%Y-%m-%d %H:%M:%S", &tm); 3623 secs = sn->vm_clock_nsec / 1000000000; 3624 snprintf(clock_buf, sizeof(clock_buf), 3625 "%02d:%02d:%02d.%03d", 3626 (int)(secs / 3600), 3627 (int)((secs / 60) % 60), 3628 (int)(secs % 60), 3629 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3630 snprintf(buf, buf_size, 3631 "%-10s%-20s%7s%20s%15s", 3632 sn->id_str, sn->name, 3633 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3634 date_buf, 3635 clock_buf); 3636 } 3637 return buf; 3638 } 3639 3640 /**************************************************************/ 3641 /* async I/Os */ 3642 3643 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3644 QEMUIOVector *qiov, int nb_sectors, 3645 BlockDriverCompletionFunc *cb, void *opaque) 3646 { 3647 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3648 3649 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3650 cb, opaque, false); 3651 } 3652 3653 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3654 QEMUIOVector *qiov, int nb_sectors, 3655 BlockDriverCompletionFunc *cb, void *opaque) 3656 { 3657 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3658 3659 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3660 cb, opaque, true); 3661 } 3662 3663 3664 typedef struct MultiwriteCB { 3665 int error; 3666 int num_requests; 3667 int num_callbacks; 3668 struct { 3669 BlockDriverCompletionFunc *cb; 3670 void *opaque; 3671 QEMUIOVector *free_qiov; 3672 } callbacks[]; 3673 } MultiwriteCB; 3674 3675 static void multiwrite_user_cb(MultiwriteCB *mcb) 3676 { 3677 int i; 3678 3679 for (i = 0; i < mcb->num_callbacks; i++) { 3680 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3681 if (mcb->callbacks[i].free_qiov) { 3682 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3683 } 3684 g_free(mcb->callbacks[i].free_qiov); 3685 } 3686 } 3687 3688 static void multiwrite_cb(void *opaque, int ret) 3689 { 3690 MultiwriteCB *mcb = opaque; 3691 3692 trace_multiwrite_cb(mcb, ret); 3693 3694 if (ret < 0 && !mcb->error) { 3695 mcb->error = ret; 3696 } 3697 3698 mcb->num_requests--; 3699 if (mcb->num_requests == 0) { 3700 multiwrite_user_cb(mcb); 3701 g_free(mcb); 3702 } 3703 } 3704 3705 static int multiwrite_req_compare(const void *a, const void *b) 3706 { 3707 const BlockRequest *req1 = a, *req2 = b; 3708 3709 /* 3710 * Note that we can't simply subtract req2->sector from req1->sector 3711 * here as that could overflow the return value. 3712 */ 3713 if (req1->sector > req2->sector) { 3714 return 1; 3715 } else if (req1->sector < req2->sector) { 3716 return -1; 3717 } else { 3718 return 0; 3719 } 3720 } 3721 3722 /* 3723 * Takes a bunch of requests and tries to merge them. Returns the number of 3724 * requests that remain after merging. 3725 */ 3726 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3727 int num_reqs, MultiwriteCB *mcb) 3728 { 3729 int i, outidx; 3730 3731 // Sort requests by start sector 3732 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3733 3734 // Check if adjacent requests touch the same clusters. If so, combine them, 3735 // filling up gaps with zero sectors. 3736 outidx = 0; 3737 for (i = 1; i < num_reqs; i++) { 3738 int merge = 0; 3739 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3740 3741 // Handle exactly sequential writes and overlapping writes. 3742 if (reqs[i].sector <= oldreq_last) { 3743 merge = 1; 3744 } 3745 3746 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3747 merge = 0; 3748 } 3749 3750 if (merge) { 3751 size_t size; 3752 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3753 qemu_iovec_init(qiov, 3754 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3755 3756 // Add the first request to the merged one. If the requests are 3757 // overlapping, drop the last sectors of the first request. 3758 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3759 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3760 3761 // We should need to add any zeros between the two requests 3762 assert (reqs[i].sector <= oldreq_last); 3763 3764 // Add the second request 3765 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3766 3767 reqs[outidx].nb_sectors = qiov->size >> 9; 3768 reqs[outidx].qiov = qiov; 3769 3770 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3771 } else { 3772 outidx++; 3773 reqs[outidx].sector = reqs[i].sector; 3774 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3775 reqs[outidx].qiov = reqs[i].qiov; 3776 } 3777 } 3778 3779 return outidx + 1; 3780 } 3781 3782 /* 3783 * Submit multiple AIO write requests at once. 3784 * 3785 * On success, the function returns 0 and all requests in the reqs array have 3786 * been submitted. In error case this function returns -1, and any of the 3787 * requests may or may not be submitted yet. In particular, this means that the 3788 * callback will be called for some of the requests, for others it won't. The 3789 * caller must check the error field of the BlockRequest to wait for the right 3790 * callbacks (if error != 0, no callback will be called). 3791 * 3792 * The implementation may modify the contents of the reqs array, e.g. to merge 3793 * requests. However, the fields opaque and error are left unmodified as they 3794 * are used to signal failure for a single request to the caller. 3795 */ 3796 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3797 { 3798 MultiwriteCB *mcb; 3799 int i; 3800 3801 /* don't submit writes if we don't have a medium */ 3802 if (bs->drv == NULL) { 3803 for (i = 0; i < num_reqs; i++) { 3804 reqs[i].error = -ENOMEDIUM; 3805 } 3806 return -1; 3807 } 3808 3809 if (num_reqs == 0) { 3810 return 0; 3811 } 3812 3813 // Create MultiwriteCB structure 3814 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3815 mcb->num_requests = 0; 3816 mcb->num_callbacks = num_reqs; 3817 3818 for (i = 0; i < num_reqs; i++) { 3819 mcb->callbacks[i].cb = reqs[i].cb; 3820 mcb->callbacks[i].opaque = reqs[i].opaque; 3821 } 3822 3823 // Check for mergable requests 3824 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3825 3826 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3827 3828 /* Run the aio requests. */ 3829 mcb->num_requests = num_reqs; 3830 for (i = 0; i < num_reqs; i++) { 3831 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3832 reqs[i].nb_sectors, multiwrite_cb, mcb); 3833 } 3834 3835 return 0; 3836 } 3837 3838 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3839 { 3840 acb->aiocb_info->cancel(acb); 3841 } 3842 3843 /* block I/O throttling */ 3844 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3845 bool is_write, double elapsed_time, uint64_t *wait) 3846 { 3847 uint64_t bps_limit = 0; 3848 uint64_t extension; 3849 double bytes_limit, bytes_base, bytes_res; 3850 double slice_time, wait_time; 3851 3852 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3853 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3854 } else if (bs->io_limits.bps[is_write]) { 3855 bps_limit = bs->io_limits.bps[is_write]; 3856 } else { 3857 if (wait) { 3858 *wait = 0; 3859 } 3860 3861 return false; 3862 } 3863 3864 slice_time = bs->slice_end - bs->slice_start; 3865 slice_time /= (NANOSECONDS_PER_SECOND); 3866 bytes_limit = bps_limit * slice_time; 3867 bytes_base = bs->slice_submitted.bytes[is_write]; 3868 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3869 bytes_base += bs->slice_submitted.bytes[!is_write]; 3870 } 3871 3872 /* bytes_base: the bytes of data which have been read/written; and 3873 * it is obtained from the history statistic info. 3874 * bytes_res: the remaining bytes of data which need to be read/written. 3875 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3876 * the total time for completing reading/writting all data. 3877 */ 3878 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3879 3880 if (bytes_base + bytes_res <= bytes_limit) { 3881 if (wait) { 3882 *wait = 0; 3883 } 3884 3885 return false; 3886 } 3887 3888 /* Calc approx time to dispatch */ 3889 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3890 3891 /* When the I/O rate at runtime exceeds the limits, 3892 * bs->slice_end need to be extended in order that the current statistic 3893 * info can be kept until the timer fire, so it is increased and tuned 3894 * based on the result of experiment. 3895 */ 3896 extension = wait_time * NANOSECONDS_PER_SECOND; 3897 extension = DIV_ROUND_UP(extension, BLOCK_IO_SLICE_TIME) * 3898 BLOCK_IO_SLICE_TIME; 3899 bs->slice_end += extension; 3900 if (wait) { 3901 *wait = wait_time * NANOSECONDS_PER_SECOND; 3902 } 3903 3904 return true; 3905 } 3906 3907 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3908 double elapsed_time, uint64_t *wait) 3909 { 3910 uint64_t iops_limit = 0; 3911 double ios_limit, ios_base; 3912 double slice_time, wait_time; 3913 3914 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3915 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3916 } else if (bs->io_limits.iops[is_write]) { 3917 iops_limit = bs->io_limits.iops[is_write]; 3918 } else { 3919 if (wait) { 3920 *wait = 0; 3921 } 3922 3923 return false; 3924 } 3925 3926 slice_time = bs->slice_end - bs->slice_start; 3927 slice_time /= (NANOSECONDS_PER_SECOND); 3928 ios_limit = iops_limit * slice_time; 3929 ios_base = bs->slice_submitted.ios[is_write]; 3930 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3931 ios_base += bs->slice_submitted.ios[!is_write]; 3932 } 3933 3934 if (ios_base + 1 <= ios_limit) { 3935 if (wait) { 3936 *wait = 0; 3937 } 3938 3939 return false; 3940 } 3941 3942 /* Calc approx time to dispatch, in seconds */ 3943 wait_time = (ios_base + 1) / iops_limit; 3944 if (wait_time > elapsed_time) { 3945 wait_time = wait_time - elapsed_time; 3946 } else { 3947 wait_time = 0; 3948 } 3949 3950 /* Exceeded current slice, extend it by another slice time */ 3951 bs->slice_end += BLOCK_IO_SLICE_TIME; 3952 if (wait) { 3953 *wait = wait_time * NANOSECONDS_PER_SECOND; 3954 } 3955 3956 return true; 3957 } 3958 3959 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3960 bool is_write, int64_t *wait) 3961 { 3962 int64_t now, max_wait; 3963 uint64_t bps_wait = 0, iops_wait = 0; 3964 double elapsed_time; 3965 int bps_ret, iops_ret; 3966 3967 now = qemu_get_clock_ns(vm_clock); 3968 if (now > bs->slice_end) { 3969 bs->slice_start = now; 3970 bs->slice_end = now + BLOCK_IO_SLICE_TIME; 3971 memset(&bs->slice_submitted, 0, sizeof(bs->slice_submitted)); 3972 } 3973 3974 elapsed_time = now - bs->slice_start; 3975 elapsed_time /= (NANOSECONDS_PER_SECOND); 3976 3977 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3978 is_write, elapsed_time, &bps_wait); 3979 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3980 elapsed_time, &iops_wait); 3981 if (bps_ret || iops_ret) { 3982 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3983 if (wait) { 3984 *wait = max_wait; 3985 } 3986 3987 now = qemu_get_clock_ns(vm_clock); 3988 if (bs->slice_end < now + max_wait) { 3989 bs->slice_end = now + max_wait; 3990 } 3991 3992 return true; 3993 } 3994 3995 if (wait) { 3996 *wait = 0; 3997 } 3998 3999 bs->slice_submitted.bytes[is_write] += (int64_t)nb_sectors * 4000 BDRV_SECTOR_SIZE; 4001 bs->slice_submitted.ios[is_write]++; 4002 4003 return false; 4004 } 4005 4006 /**************************************************************/ 4007 /* async block device emulation */ 4008 4009 typedef struct BlockDriverAIOCBSync { 4010 BlockDriverAIOCB common; 4011 QEMUBH *bh; 4012 int ret; 4013 /* vector translation state */ 4014 QEMUIOVector *qiov; 4015 uint8_t *bounce; 4016 int is_write; 4017 } BlockDriverAIOCBSync; 4018 4019 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 4020 { 4021 BlockDriverAIOCBSync *acb = 4022 container_of(blockacb, BlockDriverAIOCBSync, common); 4023 qemu_bh_delete(acb->bh); 4024 acb->bh = NULL; 4025 qemu_aio_release(acb); 4026 } 4027 4028 static const AIOCBInfo bdrv_em_aiocb_info = { 4029 .aiocb_size = sizeof(BlockDriverAIOCBSync), 4030 .cancel = bdrv_aio_cancel_em, 4031 }; 4032 4033 static void bdrv_aio_bh_cb(void *opaque) 4034 { 4035 BlockDriverAIOCBSync *acb = opaque; 4036 4037 if (!acb->is_write) 4038 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 4039 qemu_vfree(acb->bounce); 4040 acb->common.cb(acb->common.opaque, acb->ret); 4041 qemu_bh_delete(acb->bh); 4042 acb->bh = NULL; 4043 qemu_aio_release(acb); 4044 } 4045 4046 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 4047 int64_t sector_num, 4048 QEMUIOVector *qiov, 4049 int nb_sectors, 4050 BlockDriverCompletionFunc *cb, 4051 void *opaque, 4052 int is_write) 4053 4054 { 4055 BlockDriverAIOCBSync *acb; 4056 4057 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 4058 acb->is_write = is_write; 4059 acb->qiov = qiov; 4060 acb->bounce = qemu_blockalign(bs, qiov->size); 4061 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 4062 4063 if (is_write) { 4064 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 4065 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 4066 } else { 4067 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 4068 } 4069 4070 qemu_bh_schedule(acb->bh); 4071 4072 return &acb->common; 4073 } 4074 4075 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 4076 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 4077 BlockDriverCompletionFunc *cb, void *opaque) 4078 { 4079 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 4080 } 4081 4082 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 4083 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 4084 BlockDriverCompletionFunc *cb, void *opaque) 4085 { 4086 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 4087 } 4088 4089 4090 typedef struct BlockDriverAIOCBCoroutine { 4091 BlockDriverAIOCB common; 4092 BlockRequest req; 4093 bool is_write; 4094 bool *done; 4095 QEMUBH* bh; 4096 } BlockDriverAIOCBCoroutine; 4097 4098 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 4099 { 4100 BlockDriverAIOCBCoroutine *acb = 4101 container_of(blockacb, BlockDriverAIOCBCoroutine, common); 4102 bool done = false; 4103 4104 acb->done = &done; 4105 while (!done) { 4106 qemu_aio_wait(); 4107 } 4108 } 4109 4110 static const AIOCBInfo bdrv_em_co_aiocb_info = { 4111 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 4112 .cancel = bdrv_aio_co_cancel_em, 4113 }; 4114 4115 static void bdrv_co_em_bh(void *opaque) 4116 { 4117 BlockDriverAIOCBCoroutine *acb = opaque; 4118 4119 acb->common.cb(acb->common.opaque, acb->req.error); 4120 4121 if (acb->done) { 4122 *acb->done = true; 4123 } 4124 4125 qemu_bh_delete(acb->bh); 4126 qemu_aio_release(acb); 4127 } 4128 4129 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 4130 static void coroutine_fn bdrv_co_do_rw(void *opaque) 4131 { 4132 BlockDriverAIOCBCoroutine *acb = opaque; 4133 BlockDriverState *bs = acb->common.bs; 4134 4135 if (!acb->is_write) { 4136 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 4137 acb->req.nb_sectors, acb->req.qiov, 0); 4138 } else { 4139 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 4140 acb->req.nb_sectors, acb->req.qiov, 0); 4141 } 4142 4143 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 4144 qemu_bh_schedule(acb->bh); 4145 } 4146 4147 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 4148 int64_t sector_num, 4149 QEMUIOVector *qiov, 4150 int nb_sectors, 4151 BlockDriverCompletionFunc *cb, 4152 void *opaque, 4153 bool is_write) 4154 { 4155 Coroutine *co; 4156 BlockDriverAIOCBCoroutine *acb; 4157 4158 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 4159 acb->req.sector = sector_num; 4160 acb->req.nb_sectors = nb_sectors; 4161 acb->req.qiov = qiov; 4162 acb->is_write = is_write; 4163 acb->done = NULL; 4164 4165 co = qemu_coroutine_create(bdrv_co_do_rw); 4166 qemu_coroutine_enter(co, acb); 4167 4168 return &acb->common; 4169 } 4170 4171 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 4172 { 4173 BlockDriverAIOCBCoroutine *acb = opaque; 4174 BlockDriverState *bs = acb->common.bs; 4175 4176 acb->req.error = bdrv_co_flush(bs); 4177 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 4178 qemu_bh_schedule(acb->bh); 4179 } 4180 4181 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 4182 BlockDriverCompletionFunc *cb, void *opaque) 4183 { 4184 trace_bdrv_aio_flush(bs, opaque); 4185 4186 Coroutine *co; 4187 BlockDriverAIOCBCoroutine *acb; 4188 4189 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 4190 acb->done = NULL; 4191 4192 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 4193 qemu_coroutine_enter(co, acb); 4194 4195 return &acb->common; 4196 } 4197 4198 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 4199 { 4200 BlockDriverAIOCBCoroutine *acb = opaque; 4201 BlockDriverState *bs = acb->common.bs; 4202 4203 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 4204 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 4205 qemu_bh_schedule(acb->bh); 4206 } 4207 4208 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 4209 int64_t sector_num, int nb_sectors, 4210 BlockDriverCompletionFunc *cb, void *opaque) 4211 { 4212 Coroutine *co; 4213 BlockDriverAIOCBCoroutine *acb; 4214 4215 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 4216 4217 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 4218 acb->req.sector = sector_num; 4219 acb->req.nb_sectors = nb_sectors; 4220 acb->done = NULL; 4221 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 4222 qemu_coroutine_enter(co, acb); 4223 4224 return &acb->common; 4225 } 4226 4227 void bdrv_init(void) 4228 { 4229 module_call_init(MODULE_INIT_BLOCK); 4230 } 4231 4232 void bdrv_init_with_whitelist(void) 4233 { 4234 use_bdrv_whitelist = 1; 4235 bdrv_init(); 4236 } 4237 4238 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 4239 BlockDriverCompletionFunc *cb, void *opaque) 4240 { 4241 BlockDriverAIOCB *acb; 4242 4243 acb = g_slice_alloc(aiocb_info->aiocb_size); 4244 acb->aiocb_info = aiocb_info; 4245 acb->bs = bs; 4246 acb->cb = cb; 4247 acb->opaque = opaque; 4248 return acb; 4249 } 4250 4251 void qemu_aio_release(void *p) 4252 { 4253 BlockDriverAIOCB *acb = p; 4254 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 4255 } 4256 4257 /**************************************************************/ 4258 /* Coroutine block device emulation */ 4259 4260 typedef struct CoroutineIOCompletion { 4261 Coroutine *coroutine; 4262 int ret; 4263 } CoroutineIOCompletion; 4264 4265 static void bdrv_co_io_em_complete(void *opaque, int ret) 4266 { 4267 CoroutineIOCompletion *co = opaque; 4268 4269 co->ret = ret; 4270 qemu_coroutine_enter(co->coroutine, NULL); 4271 } 4272 4273 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 4274 int nb_sectors, QEMUIOVector *iov, 4275 bool is_write) 4276 { 4277 CoroutineIOCompletion co = { 4278 .coroutine = qemu_coroutine_self(), 4279 }; 4280 BlockDriverAIOCB *acb; 4281 4282 if (is_write) { 4283 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 4284 bdrv_co_io_em_complete, &co); 4285 } else { 4286 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 4287 bdrv_co_io_em_complete, &co); 4288 } 4289 4290 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 4291 if (!acb) { 4292 return -EIO; 4293 } 4294 qemu_coroutine_yield(); 4295 4296 return co.ret; 4297 } 4298 4299 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 4300 int64_t sector_num, int nb_sectors, 4301 QEMUIOVector *iov) 4302 { 4303 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 4304 } 4305 4306 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 4307 int64_t sector_num, int nb_sectors, 4308 QEMUIOVector *iov) 4309 { 4310 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 4311 } 4312 4313 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 4314 { 4315 RwCo *rwco = opaque; 4316 4317 rwco->ret = bdrv_co_flush(rwco->bs); 4318 } 4319 4320 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 4321 { 4322 int ret; 4323 4324 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 4325 return 0; 4326 } 4327 4328 /* Write back cached data to the OS even with cache=unsafe */ 4329 if (bs->drv->bdrv_co_flush_to_os) { 4330 ret = bs->drv->bdrv_co_flush_to_os(bs); 4331 if (ret < 0) { 4332 return ret; 4333 } 4334 } 4335 4336 /* But don't actually force it to the disk with cache=unsafe */ 4337 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4338 goto flush_parent; 4339 } 4340 4341 if (bs->drv->bdrv_co_flush_to_disk) { 4342 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4343 } else if (bs->drv->bdrv_aio_flush) { 4344 BlockDriverAIOCB *acb; 4345 CoroutineIOCompletion co = { 4346 .coroutine = qemu_coroutine_self(), 4347 }; 4348 4349 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4350 if (acb == NULL) { 4351 ret = -EIO; 4352 } else { 4353 qemu_coroutine_yield(); 4354 ret = co.ret; 4355 } 4356 } else { 4357 /* 4358 * Some block drivers always operate in either writethrough or unsafe 4359 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4360 * know how the server works (because the behaviour is hardcoded or 4361 * depends on server-side configuration), so we can't ensure that 4362 * everything is safe on disk. Returning an error doesn't work because 4363 * that would break guests even if the server operates in writethrough 4364 * mode. 4365 * 4366 * Let's hope the user knows what he's doing. 4367 */ 4368 ret = 0; 4369 } 4370 if (ret < 0) { 4371 return ret; 4372 } 4373 4374 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4375 * in the case of cache=unsafe, so there are no useless flushes. 4376 */ 4377 flush_parent: 4378 return bdrv_co_flush(bs->file); 4379 } 4380 4381 void bdrv_invalidate_cache(BlockDriverState *bs) 4382 { 4383 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4384 bs->drv->bdrv_invalidate_cache(bs); 4385 } 4386 } 4387 4388 void bdrv_invalidate_cache_all(void) 4389 { 4390 BlockDriverState *bs; 4391 4392 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4393 bdrv_invalidate_cache(bs); 4394 } 4395 } 4396 4397 void bdrv_clear_incoming_migration_all(void) 4398 { 4399 BlockDriverState *bs; 4400 4401 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4402 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4403 } 4404 } 4405 4406 int bdrv_flush(BlockDriverState *bs) 4407 { 4408 Coroutine *co; 4409 RwCo rwco = { 4410 .bs = bs, 4411 .ret = NOT_DONE, 4412 }; 4413 4414 if (qemu_in_coroutine()) { 4415 /* Fast-path if already in coroutine context */ 4416 bdrv_flush_co_entry(&rwco); 4417 } else { 4418 co = qemu_coroutine_create(bdrv_flush_co_entry); 4419 qemu_coroutine_enter(co, &rwco); 4420 while (rwco.ret == NOT_DONE) { 4421 qemu_aio_wait(); 4422 } 4423 } 4424 4425 return rwco.ret; 4426 } 4427 4428 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4429 { 4430 RwCo *rwco = opaque; 4431 4432 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4433 } 4434 4435 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4436 int nb_sectors) 4437 { 4438 if (!bs->drv) { 4439 return -ENOMEDIUM; 4440 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4441 return -EIO; 4442 } else if (bs->read_only) { 4443 return -EROFS; 4444 } 4445 4446 if (bs->dirty_bitmap) { 4447 bdrv_reset_dirty(bs, sector_num, nb_sectors); 4448 } 4449 4450 /* Do nothing if disabled. */ 4451 if (!(bs->open_flags & BDRV_O_UNMAP)) { 4452 return 0; 4453 } 4454 4455 if (bs->drv->bdrv_co_discard) { 4456 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4457 } else if (bs->drv->bdrv_aio_discard) { 4458 BlockDriverAIOCB *acb; 4459 CoroutineIOCompletion co = { 4460 .coroutine = qemu_coroutine_self(), 4461 }; 4462 4463 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4464 bdrv_co_io_em_complete, &co); 4465 if (acb == NULL) { 4466 return -EIO; 4467 } else { 4468 qemu_coroutine_yield(); 4469 return co.ret; 4470 } 4471 } else { 4472 return 0; 4473 } 4474 } 4475 4476 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4477 { 4478 Coroutine *co; 4479 RwCo rwco = { 4480 .bs = bs, 4481 .sector_num = sector_num, 4482 .nb_sectors = nb_sectors, 4483 .ret = NOT_DONE, 4484 }; 4485 4486 if (qemu_in_coroutine()) { 4487 /* Fast-path if already in coroutine context */ 4488 bdrv_discard_co_entry(&rwco); 4489 } else { 4490 co = qemu_coroutine_create(bdrv_discard_co_entry); 4491 qemu_coroutine_enter(co, &rwco); 4492 while (rwco.ret == NOT_DONE) { 4493 qemu_aio_wait(); 4494 } 4495 } 4496 4497 return rwco.ret; 4498 } 4499 4500 /**************************************************************/ 4501 /* removable device support */ 4502 4503 /** 4504 * Return TRUE if the media is present 4505 */ 4506 int bdrv_is_inserted(BlockDriverState *bs) 4507 { 4508 BlockDriver *drv = bs->drv; 4509 4510 if (!drv) 4511 return 0; 4512 if (!drv->bdrv_is_inserted) 4513 return 1; 4514 return drv->bdrv_is_inserted(bs); 4515 } 4516 4517 /** 4518 * Return whether the media changed since the last call to this 4519 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4520 */ 4521 int bdrv_media_changed(BlockDriverState *bs) 4522 { 4523 BlockDriver *drv = bs->drv; 4524 4525 if (drv && drv->bdrv_media_changed) { 4526 return drv->bdrv_media_changed(bs); 4527 } 4528 return -ENOTSUP; 4529 } 4530 4531 /** 4532 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4533 */ 4534 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4535 { 4536 BlockDriver *drv = bs->drv; 4537 4538 if (drv && drv->bdrv_eject) { 4539 drv->bdrv_eject(bs, eject_flag); 4540 } 4541 4542 if (bs->device_name[0] != '\0') { 4543 bdrv_emit_qmp_eject_event(bs, eject_flag); 4544 } 4545 } 4546 4547 /** 4548 * Lock or unlock the media (if it is locked, the user won't be able 4549 * to eject it manually). 4550 */ 4551 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4552 { 4553 BlockDriver *drv = bs->drv; 4554 4555 trace_bdrv_lock_medium(bs, locked); 4556 4557 if (drv && drv->bdrv_lock_medium) { 4558 drv->bdrv_lock_medium(bs, locked); 4559 } 4560 } 4561 4562 /* needed for generic scsi interface */ 4563 4564 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4565 { 4566 BlockDriver *drv = bs->drv; 4567 4568 if (drv && drv->bdrv_ioctl) 4569 return drv->bdrv_ioctl(bs, req, buf); 4570 return -ENOTSUP; 4571 } 4572 4573 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4574 unsigned long int req, void *buf, 4575 BlockDriverCompletionFunc *cb, void *opaque) 4576 { 4577 BlockDriver *drv = bs->drv; 4578 4579 if (drv && drv->bdrv_aio_ioctl) 4580 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4581 return NULL; 4582 } 4583 4584 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4585 { 4586 bs->buffer_alignment = align; 4587 } 4588 4589 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4590 { 4591 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4592 } 4593 4594 /* 4595 * Check if all memory in this vector is sector aligned. 4596 */ 4597 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 4598 { 4599 int i; 4600 4601 for (i = 0; i < qiov->niov; i++) { 4602 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) { 4603 return false; 4604 } 4605 } 4606 4607 return true; 4608 } 4609 4610 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity) 4611 { 4612 int64_t bitmap_size; 4613 4614 assert((granularity & (granularity - 1)) == 0); 4615 4616 if (granularity) { 4617 granularity >>= BDRV_SECTOR_BITS; 4618 assert(!bs->dirty_bitmap); 4619 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS); 4620 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1); 4621 } else { 4622 if (bs->dirty_bitmap) { 4623 hbitmap_free(bs->dirty_bitmap); 4624 bs->dirty_bitmap = NULL; 4625 } 4626 } 4627 } 4628 4629 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4630 { 4631 if (bs->dirty_bitmap) { 4632 return hbitmap_get(bs->dirty_bitmap, sector); 4633 } else { 4634 return 0; 4635 } 4636 } 4637 4638 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi) 4639 { 4640 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0); 4641 } 4642 4643 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4644 int nr_sectors) 4645 { 4646 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors); 4647 } 4648 4649 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4650 int nr_sectors) 4651 { 4652 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors); 4653 } 4654 4655 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4656 { 4657 if (bs->dirty_bitmap) { 4658 return hbitmap_count(bs->dirty_bitmap); 4659 } else { 4660 return 0; 4661 } 4662 } 4663 4664 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4665 { 4666 assert(bs->in_use != in_use); 4667 bs->in_use = in_use; 4668 } 4669 4670 int bdrv_in_use(BlockDriverState *bs) 4671 { 4672 return bs->in_use; 4673 } 4674 4675 void bdrv_iostatus_enable(BlockDriverState *bs) 4676 { 4677 bs->iostatus_enabled = true; 4678 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4679 } 4680 4681 /* The I/O status is only enabled if the drive explicitly 4682 * enables it _and_ the VM is configured to stop on errors */ 4683 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4684 { 4685 return (bs->iostatus_enabled && 4686 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4687 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4688 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4689 } 4690 4691 void bdrv_iostatus_disable(BlockDriverState *bs) 4692 { 4693 bs->iostatus_enabled = false; 4694 } 4695 4696 void bdrv_iostatus_reset(BlockDriverState *bs) 4697 { 4698 if (bdrv_iostatus_is_enabled(bs)) { 4699 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4700 if (bs->job) { 4701 block_job_iostatus_reset(bs->job); 4702 } 4703 } 4704 } 4705 4706 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4707 { 4708 assert(bdrv_iostatus_is_enabled(bs)); 4709 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4710 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4711 BLOCK_DEVICE_IO_STATUS_FAILED; 4712 } 4713 } 4714 4715 void 4716 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4717 enum BlockAcctType type) 4718 { 4719 assert(type < BDRV_MAX_IOTYPE); 4720 4721 cookie->bytes = bytes; 4722 cookie->start_time_ns = get_clock(); 4723 cookie->type = type; 4724 } 4725 4726 void 4727 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4728 { 4729 assert(cookie->type < BDRV_MAX_IOTYPE); 4730 4731 bs->nr_bytes[cookie->type] += cookie->bytes; 4732 bs->nr_ops[cookie->type]++; 4733 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4734 } 4735 4736 void bdrv_img_create(const char *filename, const char *fmt, 4737 const char *base_filename, const char *base_fmt, 4738 char *options, uint64_t img_size, int flags, 4739 Error **errp, bool quiet) 4740 { 4741 QEMUOptionParameter *param = NULL, *create_options = NULL; 4742 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4743 BlockDriverState *bs = NULL; 4744 BlockDriver *drv, *proto_drv; 4745 BlockDriver *backing_drv = NULL; 4746 int ret = 0; 4747 4748 /* Find driver and parse its options */ 4749 drv = bdrv_find_format(fmt); 4750 if (!drv) { 4751 error_setg(errp, "Unknown file format '%s'", fmt); 4752 return; 4753 } 4754 4755 proto_drv = bdrv_find_protocol(filename); 4756 if (!proto_drv) { 4757 error_setg(errp, "Unknown protocol '%s'", filename); 4758 return; 4759 } 4760 4761 create_options = append_option_parameters(create_options, 4762 drv->create_options); 4763 create_options = append_option_parameters(create_options, 4764 proto_drv->create_options); 4765 4766 /* Create parameter list with default values */ 4767 param = parse_option_parameters("", create_options, param); 4768 4769 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4770 4771 /* Parse -o options */ 4772 if (options) { 4773 param = parse_option_parameters(options, create_options, param); 4774 if (param == NULL) { 4775 error_setg(errp, "Invalid options for file format '%s'.", fmt); 4776 goto out; 4777 } 4778 } 4779 4780 if (base_filename) { 4781 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4782 base_filename)) { 4783 error_setg(errp, "Backing file not supported for file format '%s'", 4784 fmt); 4785 goto out; 4786 } 4787 } 4788 4789 if (base_fmt) { 4790 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4791 error_setg(errp, "Backing file format not supported for file " 4792 "format '%s'", fmt); 4793 goto out; 4794 } 4795 } 4796 4797 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4798 if (backing_file && backing_file->value.s) { 4799 if (!strcmp(filename, backing_file->value.s)) { 4800 error_setg(errp, "Error: Trying to create an image with the " 4801 "same filename as the backing file"); 4802 goto out; 4803 } 4804 } 4805 4806 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4807 if (backing_fmt && backing_fmt->value.s) { 4808 backing_drv = bdrv_find_format(backing_fmt->value.s); 4809 if (!backing_drv) { 4810 error_setg(errp, "Unknown backing file format '%s'", 4811 backing_fmt->value.s); 4812 goto out; 4813 } 4814 } 4815 4816 // The size for the image must always be specified, with one exception: 4817 // If we are using a backing file, we can obtain the size from there 4818 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4819 if (size && size->value.n == -1) { 4820 if (backing_file && backing_file->value.s) { 4821 uint64_t size; 4822 char buf[32]; 4823 int back_flags; 4824 4825 /* backing files always opened read-only */ 4826 back_flags = 4827 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4828 4829 bs = bdrv_new(""); 4830 4831 ret = bdrv_open(bs, backing_file->value.s, NULL, back_flags, 4832 backing_drv); 4833 if (ret < 0) { 4834 error_setg_errno(errp, -ret, "Could not open '%s'", 4835 backing_file->value.s); 4836 goto out; 4837 } 4838 bdrv_get_geometry(bs, &size); 4839 size *= 512; 4840 4841 snprintf(buf, sizeof(buf), "%" PRId64, size); 4842 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4843 } else { 4844 error_setg(errp, "Image creation needs a size parameter"); 4845 goto out; 4846 } 4847 } 4848 4849 if (!quiet) { 4850 printf("Formatting '%s', fmt=%s ", filename, fmt); 4851 print_option_parameters(param); 4852 puts(""); 4853 } 4854 ret = bdrv_create(drv, filename, param); 4855 if (ret < 0) { 4856 if (ret == -ENOTSUP) { 4857 error_setg(errp,"Formatting or formatting option not supported for " 4858 "file format '%s'", fmt); 4859 } else if (ret == -EFBIG) { 4860 const char *cluster_size_hint = ""; 4861 if (get_option_parameter(create_options, BLOCK_OPT_CLUSTER_SIZE)) { 4862 cluster_size_hint = " (try using a larger cluster size)"; 4863 } 4864 error_setg(errp, "The image size is too large for file format '%s'%s", 4865 fmt, cluster_size_hint); 4866 } else { 4867 error_setg(errp, "%s: error while creating %s: %s", filename, fmt, 4868 strerror(-ret)); 4869 } 4870 } 4871 4872 out: 4873 free_option_parameters(create_options); 4874 free_option_parameters(param); 4875 4876 if (bs) { 4877 bdrv_delete(bs); 4878 } 4879 } 4880 4881 AioContext *bdrv_get_aio_context(BlockDriverState *bs) 4882 { 4883 /* Currently BlockDriverState always uses the main loop AioContext */ 4884 return qemu_get_aio_context(); 4885 } 4886