1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor/monitor.h" 28 #include "block/block_int.h" 29 #include "block/blockjob.h" 30 #include "qemu/module.h" 31 #include "qapi/qmp/qjson.h" 32 #include "sysemu/sysemu.h" 33 #include "qemu/notify.h" 34 #include "block/coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu/timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* If non-zero, use only whitelisted block drivers */ 103 static int use_bdrv_whitelist; 104 105 #ifdef _WIN32 106 static int is_windows_drive_prefix(const char *filename) 107 { 108 return (((filename[0] >= 'a' && filename[0] <= 'z') || 109 (filename[0] >= 'A' && filename[0] <= 'Z')) && 110 filename[1] == ':'); 111 } 112 113 int is_windows_drive(const char *filename) 114 { 115 if (is_windows_drive_prefix(filename) && 116 filename[2] == '\0') 117 return 1; 118 if (strstart(filename, "\\\\.\\", NULL) || 119 strstart(filename, "//./", NULL)) 120 return 1; 121 return 0; 122 } 123 #endif 124 125 /* throttling disk I/O limits */ 126 void bdrv_io_limits_disable(BlockDriverState *bs) 127 { 128 bs->io_limits_enabled = false; 129 130 do {} while (qemu_co_enter_next(&bs->throttled_reqs)); 131 132 if (bs->block_timer) { 133 qemu_del_timer(bs->block_timer); 134 qemu_free_timer(bs->block_timer); 135 bs->block_timer = NULL; 136 } 137 138 bs->slice_start = 0; 139 bs->slice_end = 0; 140 } 141 142 static void bdrv_block_timer(void *opaque) 143 { 144 BlockDriverState *bs = opaque; 145 146 qemu_co_enter_next(&bs->throttled_reqs); 147 } 148 149 void bdrv_io_limits_enable(BlockDriverState *bs) 150 { 151 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 152 bs->io_limits_enabled = true; 153 } 154 155 bool bdrv_io_limits_enabled(BlockDriverState *bs) 156 { 157 BlockIOLimit *io_limits = &bs->io_limits; 158 return io_limits->bps[BLOCK_IO_LIMIT_READ] 159 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 160 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 161 || io_limits->iops[BLOCK_IO_LIMIT_READ] 162 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 163 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 164 } 165 166 static void bdrv_io_limits_intercept(BlockDriverState *bs, 167 bool is_write, int nb_sectors) 168 { 169 int64_t wait_time = -1; 170 171 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 172 qemu_co_queue_wait(&bs->throttled_reqs); 173 } 174 175 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 176 * throttled requests will not be dequeued until the current request is 177 * allowed to be serviced. So if the current request still exceeds the 178 * limits, it will be inserted to the head. All requests followed it will 179 * be still in throttled_reqs queue. 180 */ 181 182 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 183 qemu_mod_timer(bs->block_timer, 184 wait_time + qemu_get_clock_ns(vm_clock)); 185 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 186 } 187 188 qemu_co_queue_next(&bs->throttled_reqs); 189 } 190 191 /* check if the path starts with "<protocol>:" */ 192 static int path_has_protocol(const char *path) 193 { 194 const char *p; 195 196 #ifdef _WIN32 197 if (is_windows_drive(path) || 198 is_windows_drive_prefix(path)) { 199 return 0; 200 } 201 p = path + strcspn(path, ":/\\"); 202 #else 203 p = path + strcspn(path, ":/"); 204 #endif 205 206 return *p == ':'; 207 } 208 209 int path_is_absolute(const char *path) 210 { 211 #ifdef _WIN32 212 /* specific case for names like: "\\.\d:" */ 213 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 214 return 1; 215 } 216 return (*path == '/' || *path == '\\'); 217 #else 218 return (*path == '/'); 219 #endif 220 } 221 222 /* if filename is absolute, just copy it to dest. Otherwise, build a 223 path to it by considering it is relative to base_path. URL are 224 supported. */ 225 void path_combine(char *dest, int dest_size, 226 const char *base_path, 227 const char *filename) 228 { 229 const char *p, *p1; 230 int len; 231 232 if (dest_size <= 0) 233 return; 234 if (path_is_absolute(filename)) { 235 pstrcpy(dest, dest_size, filename); 236 } else { 237 p = strchr(base_path, ':'); 238 if (p) 239 p++; 240 else 241 p = base_path; 242 p1 = strrchr(base_path, '/'); 243 #ifdef _WIN32 244 { 245 const char *p2; 246 p2 = strrchr(base_path, '\\'); 247 if (!p1 || p2 > p1) 248 p1 = p2; 249 } 250 #endif 251 if (p1) 252 p1++; 253 else 254 p1 = base_path; 255 if (p1 > p) 256 p = p1; 257 len = p - base_path; 258 if (len > dest_size - 1) 259 len = dest_size - 1; 260 memcpy(dest, base_path, len); 261 dest[len] = '\0'; 262 pstrcat(dest, dest_size, filename); 263 } 264 } 265 266 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 267 { 268 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 269 pstrcpy(dest, sz, bs->backing_file); 270 } else { 271 path_combine(dest, sz, bs->filename, bs->backing_file); 272 } 273 } 274 275 void bdrv_register(BlockDriver *bdrv) 276 { 277 /* Block drivers without coroutine functions need emulation */ 278 if (!bdrv->bdrv_co_readv) { 279 bdrv->bdrv_co_readv = bdrv_co_readv_em; 280 bdrv->bdrv_co_writev = bdrv_co_writev_em; 281 282 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 283 * the block driver lacks aio we need to emulate that too. 284 */ 285 if (!bdrv->bdrv_aio_readv) { 286 /* add AIO emulation layer */ 287 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 288 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 289 } 290 } 291 292 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 293 } 294 295 /* create a new block device (by default it is empty) */ 296 BlockDriverState *bdrv_new(const char *device_name) 297 { 298 BlockDriverState *bs; 299 300 bs = g_malloc0(sizeof(BlockDriverState)); 301 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 302 if (device_name[0] != '\0') { 303 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 304 } 305 bdrv_iostatus_disable(bs); 306 notifier_list_init(&bs->close_notifiers); 307 notifier_with_return_list_init(&bs->before_write_notifiers); 308 qemu_co_queue_init(&bs->throttled_reqs); 309 310 return bs; 311 } 312 313 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 314 { 315 notifier_list_add(&bs->close_notifiers, notify); 316 } 317 318 BlockDriver *bdrv_find_format(const char *format_name) 319 { 320 BlockDriver *drv1; 321 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 322 if (!strcmp(drv1->format_name, format_name)) { 323 return drv1; 324 } 325 } 326 return NULL; 327 } 328 329 static int bdrv_is_whitelisted(BlockDriver *drv, bool read_only) 330 { 331 static const char *whitelist_rw[] = { 332 CONFIG_BDRV_RW_WHITELIST 333 }; 334 static const char *whitelist_ro[] = { 335 CONFIG_BDRV_RO_WHITELIST 336 }; 337 const char **p; 338 339 if (!whitelist_rw[0] && !whitelist_ro[0]) { 340 return 1; /* no whitelist, anything goes */ 341 } 342 343 for (p = whitelist_rw; *p; p++) { 344 if (!strcmp(drv->format_name, *p)) { 345 return 1; 346 } 347 } 348 if (read_only) { 349 for (p = whitelist_ro; *p; p++) { 350 if (!strcmp(drv->format_name, *p)) { 351 return 1; 352 } 353 } 354 } 355 return 0; 356 } 357 358 BlockDriver *bdrv_find_whitelisted_format(const char *format_name, 359 bool read_only) 360 { 361 BlockDriver *drv = bdrv_find_format(format_name); 362 return drv && bdrv_is_whitelisted(drv, read_only) ? drv : NULL; 363 } 364 365 typedef struct CreateCo { 366 BlockDriver *drv; 367 char *filename; 368 QEMUOptionParameter *options; 369 int ret; 370 } CreateCo; 371 372 static void coroutine_fn bdrv_create_co_entry(void *opaque) 373 { 374 CreateCo *cco = opaque; 375 assert(cco->drv); 376 377 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 378 } 379 380 int bdrv_create(BlockDriver *drv, const char* filename, 381 QEMUOptionParameter *options) 382 { 383 int ret; 384 385 Coroutine *co; 386 CreateCo cco = { 387 .drv = drv, 388 .filename = g_strdup(filename), 389 .options = options, 390 .ret = NOT_DONE, 391 }; 392 393 if (!drv->bdrv_create) { 394 ret = -ENOTSUP; 395 goto out; 396 } 397 398 if (qemu_in_coroutine()) { 399 /* Fast-path if already in coroutine context */ 400 bdrv_create_co_entry(&cco); 401 } else { 402 co = qemu_coroutine_create(bdrv_create_co_entry); 403 qemu_coroutine_enter(co, &cco); 404 while (cco.ret == NOT_DONE) { 405 qemu_aio_wait(); 406 } 407 } 408 409 ret = cco.ret; 410 411 out: 412 g_free(cco.filename); 413 return ret; 414 } 415 416 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 417 { 418 BlockDriver *drv; 419 420 drv = bdrv_find_protocol(filename, true); 421 if (drv == NULL) { 422 return -ENOENT; 423 } 424 425 return bdrv_create(drv, filename, options); 426 } 427 428 /* 429 * Create a uniquely-named empty temporary file. 430 * Return 0 upon success, otherwise a negative errno value. 431 */ 432 int get_tmp_filename(char *filename, int size) 433 { 434 #ifdef _WIN32 435 char temp_dir[MAX_PATH]; 436 /* GetTempFileName requires that its output buffer (4th param) 437 have length MAX_PATH or greater. */ 438 assert(size >= MAX_PATH); 439 return (GetTempPath(MAX_PATH, temp_dir) 440 && GetTempFileName(temp_dir, "qem", 0, filename) 441 ? 0 : -GetLastError()); 442 #else 443 int fd; 444 const char *tmpdir; 445 tmpdir = getenv("TMPDIR"); 446 if (!tmpdir) 447 tmpdir = "/tmp"; 448 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 449 return -EOVERFLOW; 450 } 451 fd = mkstemp(filename); 452 if (fd < 0) { 453 return -errno; 454 } 455 if (close(fd) != 0) { 456 unlink(filename); 457 return -errno; 458 } 459 return 0; 460 #endif 461 } 462 463 /* 464 * Detect host devices. By convention, /dev/cdrom[N] is always 465 * recognized as a host CDROM. 466 */ 467 static BlockDriver *find_hdev_driver(const char *filename) 468 { 469 int score_max = 0, score; 470 BlockDriver *drv = NULL, *d; 471 472 QLIST_FOREACH(d, &bdrv_drivers, list) { 473 if (d->bdrv_probe_device) { 474 score = d->bdrv_probe_device(filename); 475 if (score > score_max) { 476 score_max = score; 477 drv = d; 478 } 479 } 480 } 481 482 return drv; 483 } 484 485 BlockDriver *bdrv_find_protocol(const char *filename, 486 bool allow_protocol_prefix) 487 { 488 BlockDriver *drv1; 489 char protocol[128]; 490 int len; 491 const char *p; 492 493 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 494 495 /* 496 * XXX(hch): we really should not let host device detection 497 * override an explicit protocol specification, but moving this 498 * later breaks access to device names with colons in them. 499 * Thanks to the brain-dead persistent naming schemes on udev- 500 * based Linux systems those actually are quite common. 501 */ 502 drv1 = find_hdev_driver(filename); 503 if (drv1) { 504 return drv1; 505 } 506 507 if (!path_has_protocol(filename) || !allow_protocol_prefix) { 508 return bdrv_find_format("file"); 509 } 510 511 p = strchr(filename, ':'); 512 assert(p != NULL); 513 len = p - filename; 514 if (len > sizeof(protocol) - 1) 515 len = sizeof(protocol) - 1; 516 memcpy(protocol, filename, len); 517 protocol[len] = '\0'; 518 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 519 if (drv1->protocol_name && 520 !strcmp(drv1->protocol_name, protocol)) { 521 return drv1; 522 } 523 } 524 return NULL; 525 } 526 527 static int find_image_format(BlockDriverState *bs, const char *filename, 528 BlockDriver **pdrv) 529 { 530 int score, score_max; 531 BlockDriver *drv1, *drv; 532 uint8_t buf[2048]; 533 int ret = 0; 534 535 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 536 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) { 537 drv = bdrv_find_format("raw"); 538 if (!drv) { 539 ret = -ENOENT; 540 } 541 *pdrv = drv; 542 return ret; 543 } 544 545 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 546 if (ret < 0) { 547 *pdrv = NULL; 548 return ret; 549 } 550 551 score_max = 0; 552 drv = NULL; 553 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 554 if (drv1->bdrv_probe) { 555 score = drv1->bdrv_probe(buf, ret, filename); 556 if (score > score_max) { 557 score_max = score; 558 drv = drv1; 559 } 560 } 561 } 562 if (!drv) { 563 ret = -ENOENT; 564 } 565 *pdrv = drv; 566 return ret; 567 } 568 569 /** 570 * Set the current 'total_sectors' value 571 */ 572 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 573 { 574 BlockDriver *drv = bs->drv; 575 576 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 577 if (bs->sg) 578 return 0; 579 580 /* query actual device if possible, otherwise just trust the hint */ 581 if (drv->bdrv_getlength) { 582 int64_t length = drv->bdrv_getlength(bs); 583 if (length < 0) { 584 return length; 585 } 586 hint = length >> BDRV_SECTOR_BITS; 587 } 588 589 bs->total_sectors = hint; 590 return 0; 591 } 592 593 /** 594 * Set open flags for a given discard mode 595 * 596 * Return 0 on success, -1 if the discard mode was invalid. 597 */ 598 int bdrv_parse_discard_flags(const char *mode, int *flags) 599 { 600 *flags &= ~BDRV_O_UNMAP; 601 602 if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) { 603 /* do nothing */ 604 } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) { 605 *flags |= BDRV_O_UNMAP; 606 } else { 607 return -1; 608 } 609 610 return 0; 611 } 612 613 /** 614 * Set open flags for a given cache mode 615 * 616 * Return 0 on success, -1 if the cache mode was invalid. 617 */ 618 int bdrv_parse_cache_flags(const char *mode, int *flags) 619 { 620 *flags &= ~BDRV_O_CACHE_MASK; 621 622 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 623 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 624 } else if (!strcmp(mode, "directsync")) { 625 *flags |= BDRV_O_NOCACHE; 626 } else if (!strcmp(mode, "writeback")) { 627 *flags |= BDRV_O_CACHE_WB; 628 } else if (!strcmp(mode, "unsafe")) { 629 *flags |= BDRV_O_CACHE_WB; 630 *flags |= BDRV_O_NO_FLUSH; 631 } else if (!strcmp(mode, "writethrough")) { 632 /* this is the default */ 633 } else { 634 return -1; 635 } 636 637 return 0; 638 } 639 640 /** 641 * The copy-on-read flag is actually a reference count so multiple users may 642 * use the feature without worrying about clobbering its previous state. 643 * Copy-on-read stays enabled until all users have called to disable it. 644 */ 645 void bdrv_enable_copy_on_read(BlockDriverState *bs) 646 { 647 bs->copy_on_read++; 648 } 649 650 void bdrv_disable_copy_on_read(BlockDriverState *bs) 651 { 652 assert(bs->copy_on_read > 0); 653 bs->copy_on_read--; 654 } 655 656 static int bdrv_open_flags(BlockDriverState *bs, int flags) 657 { 658 int open_flags = flags | BDRV_O_CACHE_WB; 659 660 /* 661 * Clear flags that are internal to the block layer before opening the 662 * image. 663 */ 664 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 665 666 /* 667 * Snapshots should be writable. 668 */ 669 if (bs->is_temporary) { 670 open_flags |= BDRV_O_RDWR; 671 } 672 673 return open_flags; 674 } 675 676 /* 677 * Common part for opening disk images and files 678 * 679 * Removes all processed options from *options. 680 */ 681 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file, 682 QDict *options, int flags, BlockDriver *drv) 683 { 684 int ret, open_flags; 685 const char *filename; 686 687 assert(drv != NULL); 688 assert(bs->file == NULL); 689 assert(options != NULL && bs->options != options); 690 691 if (file != NULL) { 692 filename = file->filename; 693 } else { 694 filename = qdict_get_try_str(options, "filename"); 695 } 696 697 trace_bdrv_open_common(bs, filename ?: "", flags, drv->format_name); 698 699 /* bdrv_open() with directly using a protocol as drv. This layer is already 700 * opened, so assign it to bs (while file becomes a closed BlockDriverState) 701 * and return immediately. */ 702 if (file != NULL && drv->bdrv_file_open) { 703 bdrv_swap(file, bs); 704 return 0; 705 } 706 707 bs->open_flags = flags; 708 bs->buffer_alignment = 512; 709 open_flags = bdrv_open_flags(bs, flags); 710 bs->read_only = !(open_flags & BDRV_O_RDWR); 711 712 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv, bs->read_only)) { 713 return -ENOTSUP; 714 } 715 716 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 717 if (!bs->read_only && (flags & BDRV_O_COPY_ON_READ)) { 718 bdrv_enable_copy_on_read(bs); 719 } 720 721 if (filename != NULL) { 722 pstrcpy(bs->filename, sizeof(bs->filename), filename); 723 } else { 724 bs->filename[0] = '\0'; 725 } 726 727 bs->drv = drv; 728 bs->opaque = g_malloc0(drv->instance_size); 729 730 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 731 732 /* Open the image, either directly or using a protocol */ 733 if (drv->bdrv_file_open) { 734 assert(file == NULL); 735 assert(drv->bdrv_parse_filename || filename != NULL); 736 ret = drv->bdrv_file_open(bs, options, open_flags); 737 } else { 738 if (file == NULL) { 739 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't use '%s' as a " 740 "block driver for the protocol level", 741 drv->format_name); 742 ret = -EINVAL; 743 goto free_and_fail; 744 } 745 assert(file != NULL); 746 bs->file = file; 747 ret = drv->bdrv_open(bs, options, open_flags); 748 } 749 750 if (ret < 0) { 751 goto free_and_fail; 752 } 753 754 ret = refresh_total_sectors(bs, bs->total_sectors); 755 if (ret < 0) { 756 goto free_and_fail; 757 } 758 759 #ifndef _WIN32 760 if (bs->is_temporary) { 761 assert(filename != NULL); 762 unlink(filename); 763 } 764 #endif 765 return 0; 766 767 free_and_fail: 768 bs->file = NULL; 769 g_free(bs->opaque); 770 bs->opaque = NULL; 771 bs->drv = NULL; 772 return ret; 773 } 774 775 /* 776 * Opens a file using a protocol (file, host_device, nbd, ...) 777 * 778 * options is a QDict of options to pass to the block drivers, or NULL for an 779 * empty set of options. The reference to the QDict belongs to the block layer 780 * after the call (even on failure), so if the caller intends to reuse the 781 * dictionary, it needs to use QINCREF() before calling bdrv_file_open. 782 */ 783 int bdrv_file_open(BlockDriverState **pbs, const char *filename, 784 QDict *options, int flags) 785 { 786 BlockDriverState *bs; 787 BlockDriver *drv; 788 const char *drvname; 789 bool allow_protocol_prefix = false; 790 int ret; 791 792 /* NULL means an empty set of options */ 793 if (options == NULL) { 794 options = qdict_new(); 795 } 796 797 bs = bdrv_new(""); 798 bs->options = options; 799 options = qdict_clone_shallow(options); 800 801 /* Fetch the file name from the options QDict if necessary */ 802 if (!filename) { 803 filename = qdict_get_try_str(options, "filename"); 804 } else if (filename && !qdict_haskey(options, "filename")) { 805 qdict_put(options, "filename", qstring_from_str(filename)); 806 allow_protocol_prefix = true; 807 } else { 808 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Can't specify 'file' and " 809 "'filename' options at the same time"); 810 ret = -EINVAL; 811 goto fail; 812 } 813 814 /* Find the right block driver */ 815 drvname = qdict_get_try_str(options, "driver"); 816 if (drvname) { 817 drv = bdrv_find_whitelisted_format(drvname, !(flags & BDRV_O_RDWR)); 818 qdict_del(options, "driver"); 819 } else if (filename) { 820 drv = bdrv_find_protocol(filename, allow_protocol_prefix); 821 if (!drv) { 822 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Unknown protocol"); 823 } 824 } else { 825 qerror_report(ERROR_CLASS_GENERIC_ERROR, 826 "Must specify either driver or file"); 827 drv = NULL; 828 } 829 830 if (!drv) { 831 ret = -ENOENT; 832 goto fail; 833 } 834 835 /* Parse the filename and open it */ 836 if (drv->bdrv_parse_filename && filename) { 837 Error *local_err = NULL; 838 drv->bdrv_parse_filename(filename, options, &local_err); 839 if (error_is_set(&local_err)) { 840 qerror_report_err(local_err); 841 error_free(local_err); 842 ret = -EINVAL; 843 goto fail; 844 } 845 qdict_del(options, "filename"); 846 } else if (!drv->bdrv_parse_filename && !filename) { 847 qerror_report(ERROR_CLASS_GENERIC_ERROR, 848 "The '%s' block driver requires a file name", 849 drv->format_name); 850 ret = -EINVAL; 851 goto fail; 852 } 853 854 ret = bdrv_open_common(bs, NULL, options, flags, drv); 855 if (ret < 0) { 856 goto fail; 857 } 858 859 /* Check if any unknown options were used */ 860 if (qdict_size(options) != 0) { 861 const QDictEntry *entry = qdict_first(options); 862 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block protocol '%s' doesn't " 863 "support the option '%s'", 864 drv->format_name, entry->key); 865 ret = -EINVAL; 866 goto fail; 867 } 868 QDECREF(options); 869 870 bs->growable = 1; 871 *pbs = bs; 872 return 0; 873 874 fail: 875 QDECREF(options); 876 if (!bs->drv) { 877 QDECREF(bs->options); 878 } 879 bdrv_delete(bs); 880 return ret; 881 } 882 883 /* 884 * Opens the backing file for a BlockDriverState if not yet open 885 * 886 * options is a QDict of options to pass to the block drivers, or NULL for an 887 * empty set of options. The reference to the QDict is transferred to this 888 * function (even on failure), so if the caller intends to reuse the dictionary, 889 * it needs to use QINCREF() before calling bdrv_file_open. 890 */ 891 int bdrv_open_backing_file(BlockDriverState *bs, QDict *options) 892 { 893 char backing_filename[PATH_MAX]; 894 int back_flags, ret; 895 BlockDriver *back_drv = NULL; 896 897 if (bs->backing_hd != NULL) { 898 QDECREF(options); 899 return 0; 900 } 901 902 /* NULL means an empty set of options */ 903 if (options == NULL) { 904 options = qdict_new(); 905 } 906 907 bs->open_flags &= ~BDRV_O_NO_BACKING; 908 if (qdict_haskey(options, "file.filename")) { 909 backing_filename[0] = '\0'; 910 } else if (bs->backing_file[0] == '\0' && qdict_size(options) == 0) { 911 QDECREF(options); 912 return 0; 913 } 914 915 bs->backing_hd = bdrv_new(""); 916 bdrv_get_full_backing_filename(bs, backing_filename, 917 sizeof(backing_filename)); 918 919 if (bs->backing_format[0] != '\0') { 920 back_drv = bdrv_find_format(bs->backing_format); 921 } 922 923 /* backing files always opened read-only */ 924 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 925 926 ret = bdrv_open(bs->backing_hd, 927 *backing_filename ? backing_filename : NULL, options, 928 back_flags, back_drv); 929 if (ret < 0) { 930 bdrv_delete(bs->backing_hd); 931 bs->backing_hd = NULL; 932 bs->open_flags |= BDRV_O_NO_BACKING; 933 return ret; 934 } 935 return 0; 936 } 937 938 static void extract_subqdict(QDict *src, QDict **dst, const char *start) 939 { 940 const QDictEntry *entry, *next; 941 const char *p; 942 943 *dst = qdict_new(); 944 entry = qdict_first(src); 945 946 while (entry != NULL) { 947 next = qdict_next(src, entry); 948 if (strstart(entry->key, start, &p)) { 949 qobject_incref(entry->value); 950 qdict_put_obj(*dst, p, entry->value); 951 qdict_del(src, entry->key); 952 } 953 entry = next; 954 } 955 } 956 957 /* 958 * Opens a disk image (raw, qcow2, vmdk, ...) 959 * 960 * options is a QDict of options to pass to the block drivers, or NULL for an 961 * empty set of options. The reference to the QDict belongs to the block layer 962 * after the call (even on failure), so if the caller intends to reuse the 963 * dictionary, it needs to use QINCREF() before calling bdrv_open. 964 */ 965 int bdrv_open(BlockDriverState *bs, const char *filename, QDict *options, 966 int flags, BlockDriver *drv) 967 { 968 int ret; 969 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ 970 char tmp_filename[PATH_MAX + 1]; 971 BlockDriverState *file = NULL; 972 QDict *file_options = NULL; 973 const char *drvname; 974 975 /* NULL means an empty set of options */ 976 if (options == NULL) { 977 options = qdict_new(); 978 } 979 980 bs->options = options; 981 options = qdict_clone_shallow(options); 982 983 /* For snapshot=on, create a temporary qcow2 overlay */ 984 if (flags & BDRV_O_SNAPSHOT) { 985 BlockDriverState *bs1; 986 int64_t total_size; 987 BlockDriver *bdrv_qcow2; 988 QEMUOptionParameter *create_options; 989 char backing_filename[PATH_MAX]; 990 991 if (qdict_size(options) != 0) { 992 error_report("Can't use snapshot=on with driver-specific options"); 993 ret = -EINVAL; 994 goto fail; 995 } 996 assert(filename != NULL); 997 998 /* if snapshot, we create a temporary backing file and open it 999 instead of opening 'filename' directly */ 1000 1001 /* if there is a backing file, use it */ 1002 bs1 = bdrv_new(""); 1003 ret = bdrv_open(bs1, filename, NULL, 0, drv); 1004 if (ret < 0) { 1005 bdrv_delete(bs1); 1006 goto fail; 1007 } 1008 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 1009 1010 bdrv_delete(bs1); 1011 1012 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 1013 if (ret < 0) { 1014 goto fail; 1015 } 1016 1017 /* Real path is meaningless for protocols */ 1018 if (path_has_protocol(filename)) { 1019 snprintf(backing_filename, sizeof(backing_filename), 1020 "%s", filename); 1021 } else if (!realpath(filename, backing_filename)) { 1022 ret = -errno; 1023 goto fail; 1024 } 1025 1026 bdrv_qcow2 = bdrv_find_format("qcow2"); 1027 create_options = parse_option_parameters("", bdrv_qcow2->create_options, 1028 NULL); 1029 1030 set_option_parameter_int(create_options, BLOCK_OPT_SIZE, total_size); 1031 set_option_parameter(create_options, BLOCK_OPT_BACKING_FILE, 1032 backing_filename); 1033 if (drv) { 1034 set_option_parameter(create_options, BLOCK_OPT_BACKING_FMT, 1035 drv->format_name); 1036 } 1037 1038 ret = bdrv_create(bdrv_qcow2, tmp_filename, create_options); 1039 free_option_parameters(create_options); 1040 if (ret < 0) { 1041 goto fail; 1042 } 1043 1044 filename = tmp_filename; 1045 drv = bdrv_qcow2; 1046 bs->is_temporary = 1; 1047 } 1048 1049 /* Open image file without format layer */ 1050 if (flags & BDRV_O_RDWR) { 1051 flags |= BDRV_O_ALLOW_RDWR; 1052 } 1053 1054 extract_subqdict(options, &file_options, "file."); 1055 1056 ret = bdrv_file_open(&file, filename, file_options, 1057 bdrv_open_flags(bs, flags | BDRV_O_UNMAP)); 1058 if (ret < 0) { 1059 goto fail; 1060 } 1061 1062 /* Find the right image format driver */ 1063 drvname = qdict_get_try_str(options, "driver"); 1064 if (drvname) { 1065 drv = bdrv_find_whitelisted_format(drvname, !(flags & BDRV_O_RDWR)); 1066 qdict_del(options, "driver"); 1067 } 1068 1069 if (!drv) { 1070 ret = find_image_format(file, filename, &drv); 1071 } 1072 1073 if (!drv) { 1074 goto unlink_and_fail; 1075 } 1076 1077 /* Open the image */ 1078 ret = bdrv_open_common(bs, file, options, flags, drv); 1079 if (ret < 0) { 1080 goto unlink_and_fail; 1081 } 1082 1083 if (bs->file != file) { 1084 bdrv_delete(file); 1085 file = NULL; 1086 } 1087 1088 /* If there is a backing file, use it */ 1089 if ((flags & BDRV_O_NO_BACKING) == 0) { 1090 QDict *backing_options; 1091 1092 extract_subqdict(options, &backing_options, "backing."); 1093 ret = bdrv_open_backing_file(bs, backing_options); 1094 if (ret < 0) { 1095 goto close_and_fail; 1096 } 1097 } 1098 1099 /* Check if any unknown options were used */ 1100 if (qdict_size(options) != 0) { 1101 const QDictEntry *entry = qdict_first(options); 1102 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block format '%s' used by " 1103 "device '%s' doesn't support the option '%s'", 1104 drv->format_name, bs->device_name, entry->key); 1105 1106 ret = -EINVAL; 1107 goto close_and_fail; 1108 } 1109 QDECREF(options); 1110 1111 if (!bdrv_key_required(bs)) { 1112 bdrv_dev_change_media_cb(bs, true); 1113 } 1114 1115 /* throttling disk I/O limits */ 1116 if (bs->io_limits_enabled) { 1117 bdrv_io_limits_enable(bs); 1118 } 1119 1120 return 0; 1121 1122 unlink_and_fail: 1123 if (file != NULL) { 1124 bdrv_delete(file); 1125 } 1126 if (bs->is_temporary) { 1127 unlink(filename); 1128 } 1129 fail: 1130 QDECREF(bs->options); 1131 QDECREF(options); 1132 bs->options = NULL; 1133 return ret; 1134 1135 close_and_fail: 1136 bdrv_close(bs); 1137 QDECREF(options); 1138 return ret; 1139 } 1140 1141 typedef struct BlockReopenQueueEntry { 1142 bool prepared; 1143 BDRVReopenState state; 1144 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 1145 } BlockReopenQueueEntry; 1146 1147 /* 1148 * Adds a BlockDriverState to a simple queue for an atomic, transactional 1149 * reopen of multiple devices. 1150 * 1151 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 1152 * already performed, or alternatively may be NULL a new BlockReopenQueue will 1153 * be created and initialized. This newly created BlockReopenQueue should be 1154 * passed back in for subsequent calls that are intended to be of the same 1155 * atomic 'set'. 1156 * 1157 * bs is the BlockDriverState to add to the reopen queue. 1158 * 1159 * flags contains the open flags for the associated bs 1160 * 1161 * returns a pointer to bs_queue, which is either the newly allocated 1162 * bs_queue, or the existing bs_queue being used. 1163 * 1164 */ 1165 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 1166 BlockDriverState *bs, int flags) 1167 { 1168 assert(bs != NULL); 1169 1170 BlockReopenQueueEntry *bs_entry; 1171 if (bs_queue == NULL) { 1172 bs_queue = g_new0(BlockReopenQueue, 1); 1173 QSIMPLEQ_INIT(bs_queue); 1174 } 1175 1176 if (bs->file) { 1177 bdrv_reopen_queue(bs_queue, bs->file, flags); 1178 } 1179 1180 bs_entry = g_new0(BlockReopenQueueEntry, 1); 1181 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 1182 1183 bs_entry->state.bs = bs; 1184 bs_entry->state.flags = flags; 1185 1186 return bs_queue; 1187 } 1188 1189 /* 1190 * Reopen multiple BlockDriverStates atomically & transactionally. 1191 * 1192 * The queue passed in (bs_queue) must have been built up previous 1193 * via bdrv_reopen_queue(). 1194 * 1195 * Reopens all BDS specified in the queue, with the appropriate 1196 * flags. All devices are prepared for reopen, and failure of any 1197 * device will cause all device changes to be abandonded, and intermediate 1198 * data cleaned up. 1199 * 1200 * If all devices prepare successfully, then the changes are committed 1201 * to all devices. 1202 * 1203 */ 1204 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 1205 { 1206 int ret = -1; 1207 BlockReopenQueueEntry *bs_entry, *next; 1208 Error *local_err = NULL; 1209 1210 assert(bs_queue != NULL); 1211 1212 bdrv_drain_all(); 1213 1214 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1215 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 1216 error_propagate(errp, local_err); 1217 goto cleanup; 1218 } 1219 bs_entry->prepared = true; 1220 } 1221 1222 /* If we reach this point, we have success and just need to apply the 1223 * changes 1224 */ 1225 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1226 bdrv_reopen_commit(&bs_entry->state); 1227 } 1228 1229 ret = 0; 1230 1231 cleanup: 1232 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 1233 if (ret && bs_entry->prepared) { 1234 bdrv_reopen_abort(&bs_entry->state); 1235 } 1236 g_free(bs_entry); 1237 } 1238 g_free(bs_queue); 1239 return ret; 1240 } 1241 1242 1243 /* Reopen a single BlockDriverState with the specified flags. */ 1244 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1245 { 1246 int ret = -1; 1247 Error *local_err = NULL; 1248 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1249 1250 ret = bdrv_reopen_multiple(queue, &local_err); 1251 if (local_err != NULL) { 1252 error_propagate(errp, local_err); 1253 } 1254 return ret; 1255 } 1256 1257 1258 /* 1259 * Prepares a BlockDriverState for reopen. All changes are staged in the 1260 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1261 * the block driver layer .bdrv_reopen_prepare() 1262 * 1263 * bs is the BlockDriverState to reopen 1264 * flags are the new open flags 1265 * queue is the reopen queue 1266 * 1267 * Returns 0 on success, non-zero on error. On error errp will be set 1268 * as well. 1269 * 1270 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1271 * It is the responsibility of the caller to then call the abort() or 1272 * commit() for any other BDS that have been left in a prepare() state 1273 * 1274 */ 1275 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1276 Error **errp) 1277 { 1278 int ret = -1; 1279 Error *local_err = NULL; 1280 BlockDriver *drv; 1281 1282 assert(reopen_state != NULL); 1283 assert(reopen_state->bs->drv != NULL); 1284 drv = reopen_state->bs->drv; 1285 1286 /* if we are to stay read-only, do not allow permission change 1287 * to r/w */ 1288 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1289 reopen_state->flags & BDRV_O_RDWR) { 1290 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1291 reopen_state->bs->device_name); 1292 goto error; 1293 } 1294 1295 1296 ret = bdrv_flush(reopen_state->bs); 1297 if (ret) { 1298 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1299 strerror(-ret)); 1300 goto error; 1301 } 1302 1303 if (drv->bdrv_reopen_prepare) { 1304 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1305 if (ret) { 1306 if (local_err != NULL) { 1307 error_propagate(errp, local_err); 1308 } else { 1309 error_setg(errp, "failed while preparing to reopen image '%s'", 1310 reopen_state->bs->filename); 1311 } 1312 goto error; 1313 } 1314 } else { 1315 /* It is currently mandatory to have a bdrv_reopen_prepare() 1316 * handler for each supported drv. */ 1317 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1318 drv->format_name, reopen_state->bs->device_name, 1319 "reopening of file"); 1320 ret = -1; 1321 goto error; 1322 } 1323 1324 ret = 0; 1325 1326 error: 1327 return ret; 1328 } 1329 1330 /* 1331 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1332 * makes them final by swapping the staging BlockDriverState contents into 1333 * the active BlockDriverState contents. 1334 */ 1335 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1336 { 1337 BlockDriver *drv; 1338 1339 assert(reopen_state != NULL); 1340 drv = reopen_state->bs->drv; 1341 assert(drv != NULL); 1342 1343 /* If there are any driver level actions to take */ 1344 if (drv->bdrv_reopen_commit) { 1345 drv->bdrv_reopen_commit(reopen_state); 1346 } 1347 1348 /* set BDS specific flags now */ 1349 reopen_state->bs->open_flags = reopen_state->flags; 1350 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1351 BDRV_O_CACHE_WB); 1352 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1353 } 1354 1355 /* 1356 * Abort the reopen, and delete and free the staged changes in 1357 * reopen_state 1358 */ 1359 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1360 { 1361 BlockDriver *drv; 1362 1363 assert(reopen_state != NULL); 1364 drv = reopen_state->bs->drv; 1365 assert(drv != NULL); 1366 1367 if (drv->bdrv_reopen_abort) { 1368 drv->bdrv_reopen_abort(reopen_state); 1369 } 1370 } 1371 1372 1373 void bdrv_close(BlockDriverState *bs) 1374 { 1375 if (bs->job) { 1376 block_job_cancel_sync(bs->job); 1377 } 1378 bdrv_drain_all(); /* complete I/O */ 1379 bdrv_flush(bs); 1380 bdrv_drain_all(); /* in case flush left pending I/O */ 1381 notifier_list_notify(&bs->close_notifiers, bs); 1382 1383 if (bs->drv) { 1384 if (bs->backing_hd) { 1385 bdrv_delete(bs->backing_hd); 1386 bs->backing_hd = NULL; 1387 } 1388 bs->drv->bdrv_close(bs); 1389 g_free(bs->opaque); 1390 #ifdef _WIN32 1391 if (bs->is_temporary) { 1392 unlink(bs->filename); 1393 } 1394 #endif 1395 bs->opaque = NULL; 1396 bs->drv = NULL; 1397 bs->copy_on_read = 0; 1398 bs->backing_file[0] = '\0'; 1399 bs->backing_format[0] = '\0'; 1400 bs->total_sectors = 0; 1401 bs->encrypted = 0; 1402 bs->valid_key = 0; 1403 bs->sg = 0; 1404 bs->growable = 0; 1405 QDECREF(bs->options); 1406 bs->options = NULL; 1407 1408 if (bs->file != NULL) { 1409 bdrv_delete(bs->file); 1410 bs->file = NULL; 1411 } 1412 } 1413 1414 bdrv_dev_change_media_cb(bs, false); 1415 1416 /*throttling disk I/O limits*/ 1417 if (bs->io_limits_enabled) { 1418 bdrv_io_limits_disable(bs); 1419 } 1420 } 1421 1422 void bdrv_close_all(void) 1423 { 1424 BlockDriverState *bs; 1425 1426 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1427 bdrv_close(bs); 1428 } 1429 } 1430 1431 /* Check if any requests are in-flight (including throttled requests) */ 1432 static bool bdrv_requests_pending(BlockDriverState *bs) 1433 { 1434 if (!QLIST_EMPTY(&bs->tracked_requests)) { 1435 return true; 1436 } 1437 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1438 return true; 1439 } 1440 if (bs->file && bdrv_requests_pending(bs->file)) { 1441 return true; 1442 } 1443 if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) { 1444 return true; 1445 } 1446 return false; 1447 } 1448 1449 static bool bdrv_requests_pending_all(void) 1450 { 1451 BlockDriverState *bs; 1452 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1453 if (bdrv_requests_pending(bs)) { 1454 return true; 1455 } 1456 } 1457 return false; 1458 } 1459 1460 /* 1461 * Wait for pending requests to complete across all BlockDriverStates 1462 * 1463 * This function does not flush data to disk, use bdrv_flush_all() for that 1464 * after calling this function. 1465 * 1466 * Note that completion of an asynchronous I/O operation can trigger any 1467 * number of other I/O operations on other devices---for example a coroutine 1468 * can be arbitrarily complex and a constant flow of I/O can come until the 1469 * coroutine is complete. Because of this, it is not possible to have a 1470 * function to drain a single device's I/O queue. 1471 */ 1472 void bdrv_drain_all(void) 1473 { 1474 /* Always run first iteration so any pending completion BHs run */ 1475 bool busy = true; 1476 BlockDriverState *bs; 1477 1478 while (busy) { 1479 /* FIXME: We do not have timer support here, so this is effectively 1480 * a busy wait. 1481 */ 1482 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1483 while (qemu_co_enter_next(&bs->throttled_reqs)) { 1484 busy = true; 1485 } 1486 } 1487 1488 busy = bdrv_requests_pending_all(); 1489 busy |= aio_poll(qemu_get_aio_context(), busy); 1490 } 1491 } 1492 1493 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1494 Also, NULL terminate the device_name to prevent double remove */ 1495 void bdrv_make_anon(BlockDriverState *bs) 1496 { 1497 if (bs->device_name[0] != '\0') { 1498 QTAILQ_REMOVE(&bdrv_states, bs, list); 1499 } 1500 bs->device_name[0] = '\0'; 1501 } 1502 1503 static void bdrv_rebind(BlockDriverState *bs) 1504 { 1505 if (bs->drv && bs->drv->bdrv_rebind) { 1506 bs->drv->bdrv_rebind(bs); 1507 } 1508 } 1509 1510 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1511 BlockDriverState *bs_src) 1512 { 1513 /* move some fields that need to stay attached to the device */ 1514 bs_dest->open_flags = bs_src->open_flags; 1515 1516 /* dev info */ 1517 bs_dest->dev_ops = bs_src->dev_ops; 1518 bs_dest->dev_opaque = bs_src->dev_opaque; 1519 bs_dest->dev = bs_src->dev; 1520 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1521 bs_dest->copy_on_read = bs_src->copy_on_read; 1522 1523 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1524 1525 /* i/o timing parameters */ 1526 bs_dest->slice_start = bs_src->slice_start; 1527 bs_dest->slice_end = bs_src->slice_end; 1528 bs_dest->slice_submitted = bs_src->slice_submitted; 1529 bs_dest->io_limits = bs_src->io_limits; 1530 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1531 bs_dest->block_timer = bs_src->block_timer; 1532 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1533 1534 /* r/w error */ 1535 bs_dest->on_read_error = bs_src->on_read_error; 1536 bs_dest->on_write_error = bs_src->on_write_error; 1537 1538 /* i/o status */ 1539 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1540 bs_dest->iostatus = bs_src->iostatus; 1541 1542 /* dirty bitmap */ 1543 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1544 1545 /* job */ 1546 bs_dest->in_use = bs_src->in_use; 1547 bs_dest->job = bs_src->job; 1548 1549 /* keep the same entry in bdrv_states */ 1550 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1551 bs_src->device_name); 1552 bs_dest->list = bs_src->list; 1553 } 1554 1555 /* 1556 * Swap bs contents for two image chains while they are live, 1557 * while keeping required fields on the BlockDriverState that is 1558 * actually attached to a device. 1559 * 1560 * This will modify the BlockDriverState fields, and swap contents 1561 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1562 * 1563 * bs_new is required to be anonymous. 1564 * 1565 * This function does not create any image files. 1566 */ 1567 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1568 { 1569 BlockDriverState tmp; 1570 1571 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1572 assert(bs_new->device_name[0] == '\0'); 1573 assert(bs_new->dirty_bitmap == NULL); 1574 assert(bs_new->job == NULL); 1575 assert(bs_new->dev == NULL); 1576 assert(bs_new->in_use == 0); 1577 assert(bs_new->io_limits_enabled == false); 1578 assert(bs_new->block_timer == NULL); 1579 1580 tmp = *bs_new; 1581 *bs_new = *bs_old; 1582 *bs_old = tmp; 1583 1584 /* there are some fields that should not be swapped, move them back */ 1585 bdrv_move_feature_fields(&tmp, bs_old); 1586 bdrv_move_feature_fields(bs_old, bs_new); 1587 bdrv_move_feature_fields(bs_new, &tmp); 1588 1589 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1590 assert(bs_new->device_name[0] == '\0'); 1591 1592 /* Check a few fields that should remain attached to the device */ 1593 assert(bs_new->dev == NULL); 1594 assert(bs_new->job == NULL); 1595 assert(bs_new->in_use == 0); 1596 assert(bs_new->io_limits_enabled == false); 1597 assert(bs_new->block_timer == NULL); 1598 1599 bdrv_rebind(bs_new); 1600 bdrv_rebind(bs_old); 1601 } 1602 1603 /* 1604 * Add new bs contents at the top of an image chain while the chain is 1605 * live, while keeping required fields on the top layer. 1606 * 1607 * This will modify the BlockDriverState fields, and swap contents 1608 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1609 * 1610 * bs_new is required to be anonymous. 1611 * 1612 * This function does not create any image files. 1613 */ 1614 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1615 { 1616 bdrv_swap(bs_new, bs_top); 1617 1618 /* The contents of 'tmp' will become bs_top, as we are 1619 * swapping bs_new and bs_top contents. */ 1620 bs_top->backing_hd = bs_new; 1621 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1622 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1623 bs_new->filename); 1624 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1625 bs_new->drv ? bs_new->drv->format_name : ""); 1626 } 1627 1628 void bdrv_delete(BlockDriverState *bs) 1629 { 1630 assert(!bs->dev); 1631 assert(!bs->job); 1632 assert(!bs->in_use); 1633 1634 bdrv_close(bs); 1635 1636 /* remove from list, if necessary */ 1637 bdrv_make_anon(bs); 1638 1639 g_free(bs); 1640 } 1641 1642 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1643 /* TODO change to DeviceState *dev when all users are qdevified */ 1644 { 1645 if (bs->dev) { 1646 return -EBUSY; 1647 } 1648 bs->dev = dev; 1649 bdrv_iostatus_reset(bs); 1650 return 0; 1651 } 1652 1653 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1654 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1655 { 1656 if (bdrv_attach_dev(bs, dev) < 0) { 1657 abort(); 1658 } 1659 } 1660 1661 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1662 /* TODO change to DeviceState *dev when all users are qdevified */ 1663 { 1664 assert(bs->dev == dev); 1665 bs->dev = NULL; 1666 bs->dev_ops = NULL; 1667 bs->dev_opaque = NULL; 1668 bs->buffer_alignment = 512; 1669 } 1670 1671 /* TODO change to return DeviceState * when all users are qdevified */ 1672 void *bdrv_get_attached_dev(BlockDriverState *bs) 1673 { 1674 return bs->dev; 1675 } 1676 1677 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1678 void *opaque) 1679 { 1680 bs->dev_ops = ops; 1681 bs->dev_opaque = opaque; 1682 } 1683 1684 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1685 enum MonitorEvent ev, 1686 BlockErrorAction action, bool is_read) 1687 { 1688 QObject *data; 1689 const char *action_str; 1690 1691 switch (action) { 1692 case BDRV_ACTION_REPORT: 1693 action_str = "report"; 1694 break; 1695 case BDRV_ACTION_IGNORE: 1696 action_str = "ignore"; 1697 break; 1698 case BDRV_ACTION_STOP: 1699 action_str = "stop"; 1700 break; 1701 default: 1702 abort(); 1703 } 1704 1705 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1706 bdrv->device_name, 1707 action_str, 1708 is_read ? "read" : "write"); 1709 monitor_protocol_event(ev, data); 1710 1711 qobject_decref(data); 1712 } 1713 1714 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1715 { 1716 QObject *data; 1717 1718 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1719 bdrv_get_device_name(bs), ejected); 1720 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1721 1722 qobject_decref(data); 1723 } 1724 1725 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1726 { 1727 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1728 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1729 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1730 if (tray_was_closed) { 1731 /* tray open */ 1732 bdrv_emit_qmp_eject_event(bs, true); 1733 } 1734 if (load) { 1735 /* tray close */ 1736 bdrv_emit_qmp_eject_event(bs, false); 1737 } 1738 } 1739 } 1740 1741 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1742 { 1743 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1744 } 1745 1746 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1747 { 1748 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1749 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1750 } 1751 } 1752 1753 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1754 { 1755 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1756 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1757 } 1758 return false; 1759 } 1760 1761 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1762 { 1763 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1764 bs->dev_ops->resize_cb(bs->dev_opaque); 1765 } 1766 } 1767 1768 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1769 { 1770 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1771 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1772 } 1773 return false; 1774 } 1775 1776 /* 1777 * Run consistency checks on an image 1778 * 1779 * Returns 0 if the check could be completed (it doesn't mean that the image is 1780 * free of errors) or -errno when an internal error occurred. The results of the 1781 * check are stored in res. 1782 */ 1783 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1784 { 1785 if (bs->drv->bdrv_check == NULL) { 1786 return -ENOTSUP; 1787 } 1788 1789 memset(res, 0, sizeof(*res)); 1790 return bs->drv->bdrv_check(bs, res, fix); 1791 } 1792 1793 #define COMMIT_BUF_SECTORS 2048 1794 1795 /* commit COW file into the raw image */ 1796 int bdrv_commit(BlockDriverState *bs) 1797 { 1798 BlockDriver *drv = bs->drv; 1799 int64_t sector, total_sectors; 1800 int n, ro, open_flags; 1801 int ret = 0; 1802 uint8_t *buf; 1803 char filename[PATH_MAX]; 1804 1805 if (!drv) 1806 return -ENOMEDIUM; 1807 1808 if (!bs->backing_hd) { 1809 return -ENOTSUP; 1810 } 1811 1812 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1813 return -EBUSY; 1814 } 1815 1816 ro = bs->backing_hd->read_only; 1817 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1818 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1819 open_flags = bs->backing_hd->open_flags; 1820 1821 if (ro) { 1822 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1823 return -EACCES; 1824 } 1825 } 1826 1827 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1828 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1829 1830 for (sector = 0; sector < total_sectors; sector += n) { 1831 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1832 1833 if (bdrv_read(bs, sector, buf, n) != 0) { 1834 ret = -EIO; 1835 goto ro_cleanup; 1836 } 1837 1838 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1839 ret = -EIO; 1840 goto ro_cleanup; 1841 } 1842 } 1843 } 1844 1845 if (drv->bdrv_make_empty) { 1846 ret = drv->bdrv_make_empty(bs); 1847 bdrv_flush(bs); 1848 } 1849 1850 /* 1851 * Make sure all data we wrote to the backing device is actually 1852 * stable on disk. 1853 */ 1854 if (bs->backing_hd) 1855 bdrv_flush(bs->backing_hd); 1856 1857 ro_cleanup: 1858 g_free(buf); 1859 1860 if (ro) { 1861 /* ignoring error return here */ 1862 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1863 } 1864 1865 return ret; 1866 } 1867 1868 int bdrv_commit_all(void) 1869 { 1870 BlockDriverState *bs; 1871 1872 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1873 if (bs->drv && bs->backing_hd) { 1874 int ret = bdrv_commit(bs); 1875 if (ret < 0) { 1876 return ret; 1877 } 1878 } 1879 } 1880 return 0; 1881 } 1882 1883 /** 1884 * Remove an active request from the tracked requests list 1885 * 1886 * This function should be called when a tracked request is completing. 1887 */ 1888 static void tracked_request_end(BdrvTrackedRequest *req) 1889 { 1890 QLIST_REMOVE(req, list); 1891 qemu_co_queue_restart_all(&req->wait_queue); 1892 } 1893 1894 /** 1895 * Add an active request to the tracked requests list 1896 */ 1897 static void tracked_request_begin(BdrvTrackedRequest *req, 1898 BlockDriverState *bs, 1899 int64_t sector_num, 1900 int nb_sectors, bool is_write) 1901 { 1902 *req = (BdrvTrackedRequest){ 1903 .bs = bs, 1904 .sector_num = sector_num, 1905 .nb_sectors = nb_sectors, 1906 .is_write = is_write, 1907 .co = qemu_coroutine_self(), 1908 }; 1909 1910 qemu_co_queue_init(&req->wait_queue); 1911 1912 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1913 } 1914 1915 /** 1916 * Round a region to cluster boundaries 1917 */ 1918 void bdrv_round_to_clusters(BlockDriverState *bs, 1919 int64_t sector_num, int nb_sectors, 1920 int64_t *cluster_sector_num, 1921 int *cluster_nb_sectors) 1922 { 1923 BlockDriverInfo bdi; 1924 1925 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1926 *cluster_sector_num = sector_num; 1927 *cluster_nb_sectors = nb_sectors; 1928 } else { 1929 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1930 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1931 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1932 nb_sectors, c); 1933 } 1934 } 1935 1936 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1937 int64_t sector_num, int nb_sectors) { 1938 /* aaaa bbbb */ 1939 if (sector_num >= req->sector_num + req->nb_sectors) { 1940 return false; 1941 } 1942 /* bbbb aaaa */ 1943 if (req->sector_num >= sector_num + nb_sectors) { 1944 return false; 1945 } 1946 return true; 1947 } 1948 1949 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1950 int64_t sector_num, int nb_sectors) 1951 { 1952 BdrvTrackedRequest *req; 1953 int64_t cluster_sector_num; 1954 int cluster_nb_sectors; 1955 bool retry; 1956 1957 /* If we touch the same cluster it counts as an overlap. This guarantees 1958 * that allocating writes will be serialized and not race with each other 1959 * for the same cluster. For example, in copy-on-read it ensures that the 1960 * CoR read and write operations are atomic and guest writes cannot 1961 * interleave between them. 1962 */ 1963 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 1964 &cluster_sector_num, &cluster_nb_sectors); 1965 1966 do { 1967 retry = false; 1968 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1969 if (tracked_request_overlaps(req, cluster_sector_num, 1970 cluster_nb_sectors)) { 1971 /* Hitting this means there was a reentrant request, for 1972 * example, a block driver issuing nested requests. This must 1973 * never happen since it means deadlock. 1974 */ 1975 assert(qemu_coroutine_self() != req->co); 1976 1977 qemu_co_queue_wait(&req->wait_queue); 1978 retry = true; 1979 break; 1980 } 1981 } 1982 } while (retry); 1983 } 1984 1985 /* 1986 * Return values: 1987 * 0 - success 1988 * -EINVAL - backing format specified, but no file 1989 * -ENOSPC - can't update the backing file because no space is left in the 1990 * image file header 1991 * -ENOTSUP - format driver doesn't support changing the backing file 1992 */ 1993 int bdrv_change_backing_file(BlockDriverState *bs, 1994 const char *backing_file, const char *backing_fmt) 1995 { 1996 BlockDriver *drv = bs->drv; 1997 int ret; 1998 1999 /* Backing file format doesn't make sense without a backing file */ 2000 if (backing_fmt && !backing_file) { 2001 return -EINVAL; 2002 } 2003 2004 if (drv->bdrv_change_backing_file != NULL) { 2005 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 2006 } else { 2007 ret = -ENOTSUP; 2008 } 2009 2010 if (ret == 0) { 2011 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 2012 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 2013 } 2014 return ret; 2015 } 2016 2017 /* 2018 * Finds the image layer in the chain that has 'bs' as its backing file. 2019 * 2020 * active is the current topmost image. 2021 * 2022 * Returns NULL if bs is not found in active's image chain, 2023 * or if active == bs. 2024 */ 2025 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 2026 BlockDriverState *bs) 2027 { 2028 BlockDriverState *overlay = NULL; 2029 BlockDriverState *intermediate; 2030 2031 assert(active != NULL); 2032 assert(bs != NULL); 2033 2034 /* if bs is the same as active, then by definition it has no overlay 2035 */ 2036 if (active == bs) { 2037 return NULL; 2038 } 2039 2040 intermediate = active; 2041 while (intermediate->backing_hd) { 2042 if (intermediate->backing_hd == bs) { 2043 overlay = intermediate; 2044 break; 2045 } 2046 intermediate = intermediate->backing_hd; 2047 } 2048 2049 return overlay; 2050 } 2051 2052 typedef struct BlkIntermediateStates { 2053 BlockDriverState *bs; 2054 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 2055 } BlkIntermediateStates; 2056 2057 2058 /* 2059 * Drops images above 'base' up to and including 'top', and sets the image 2060 * above 'top' to have base as its backing file. 2061 * 2062 * Requires that the overlay to 'top' is opened r/w, so that the backing file 2063 * information in 'bs' can be properly updated. 2064 * 2065 * E.g., this will convert the following chain: 2066 * bottom <- base <- intermediate <- top <- active 2067 * 2068 * to 2069 * 2070 * bottom <- base <- active 2071 * 2072 * It is allowed for bottom==base, in which case it converts: 2073 * 2074 * base <- intermediate <- top <- active 2075 * 2076 * to 2077 * 2078 * base <- active 2079 * 2080 * Error conditions: 2081 * if active == top, that is considered an error 2082 * 2083 */ 2084 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 2085 BlockDriverState *base) 2086 { 2087 BlockDriverState *intermediate; 2088 BlockDriverState *base_bs = NULL; 2089 BlockDriverState *new_top_bs = NULL; 2090 BlkIntermediateStates *intermediate_state, *next; 2091 int ret = -EIO; 2092 2093 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 2094 QSIMPLEQ_INIT(&states_to_delete); 2095 2096 if (!top->drv || !base->drv) { 2097 goto exit; 2098 } 2099 2100 new_top_bs = bdrv_find_overlay(active, top); 2101 2102 if (new_top_bs == NULL) { 2103 /* we could not find the image above 'top', this is an error */ 2104 goto exit; 2105 } 2106 2107 /* special case of new_top_bs->backing_hd already pointing to base - nothing 2108 * to do, no intermediate images */ 2109 if (new_top_bs->backing_hd == base) { 2110 ret = 0; 2111 goto exit; 2112 } 2113 2114 intermediate = top; 2115 2116 /* now we will go down through the list, and add each BDS we find 2117 * into our deletion queue, until we hit the 'base' 2118 */ 2119 while (intermediate) { 2120 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 2121 intermediate_state->bs = intermediate; 2122 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 2123 2124 if (intermediate->backing_hd == base) { 2125 base_bs = intermediate->backing_hd; 2126 break; 2127 } 2128 intermediate = intermediate->backing_hd; 2129 } 2130 if (base_bs == NULL) { 2131 /* something went wrong, we did not end at the base. safely 2132 * unravel everything, and exit with error */ 2133 goto exit; 2134 } 2135 2136 /* success - we can delete the intermediate states, and link top->base */ 2137 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 2138 base_bs->drv ? base_bs->drv->format_name : ""); 2139 if (ret) { 2140 goto exit; 2141 } 2142 new_top_bs->backing_hd = base_bs; 2143 2144 2145 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 2146 /* so that bdrv_close() does not recursively close the chain */ 2147 intermediate_state->bs->backing_hd = NULL; 2148 bdrv_delete(intermediate_state->bs); 2149 } 2150 ret = 0; 2151 2152 exit: 2153 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 2154 g_free(intermediate_state); 2155 } 2156 return ret; 2157 } 2158 2159 2160 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 2161 size_t size) 2162 { 2163 int64_t len; 2164 2165 if (!bdrv_is_inserted(bs)) 2166 return -ENOMEDIUM; 2167 2168 if (bs->growable) 2169 return 0; 2170 2171 len = bdrv_getlength(bs); 2172 2173 if (offset < 0) 2174 return -EIO; 2175 2176 if ((offset > len) || (len - offset < size)) 2177 return -EIO; 2178 2179 return 0; 2180 } 2181 2182 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 2183 int nb_sectors) 2184 { 2185 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 2186 nb_sectors * BDRV_SECTOR_SIZE); 2187 } 2188 2189 typedef struct RwCo { 2190 BlockDriverState *bs; 2191 int64_t sector_num; 2192 int nb_sectors; 2193 QEMUIOVector *qiov; 2194 bool is_write; 2195 int ret; 2196 BdrvRequestFlags flags; 2197 } RwCo; 2198 2199 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 2200 { 2201 RwCo *rwco = opaque; 2202 2203 if (!rwco->is_write) { 2204 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 2205 rwco->nb_sectors, rwco->qiov, 2206 rwco->flags); 2207 } else { 2208 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 2209 rwco->nb_sectors, rwco->qiov, 2210 rwco->flags); 2211 } 2212 } 2213 2214 /* 2215 * Process a vectored synchronous request using coroutines 2216 */ 2217 static int bdrv_rwv_co(BlockDriverState *bs, int64_t sector_num, 2218 QEMUIOVector *qiov, bool is_write, 2219 BdrvRequestFlags flags) 2220 { 2221 Coroutine *co; 2222 RwCo rwco = { 2223 .bs = bs, 2224 .sector_num = sector_num, 2225 .nb_sectors = qiov->size >> BDRV_SECTOR_BITS, 2226 .qiov = qiov, 2227 .is_write = is_write, 2228 .ret = NOT_DONE, 2229 .flags = flags, 2230 }; 2231 assert((qiov->size & (BDRV_SECTOR_SIZE - 1)) == 0); 2232 2233 /** 2234 * In sync call context, when the vcpu is blocked, this throttling timer 2235 * will not fire; so the I/O throttling function has to be disabled here 2236 * if it has been enabled. 2237 */ 2238 if (bs->io_limits_enabled) { 2239 fprintf(stderr, "Disabling I/O throttling on '%s' due " 2240 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 2241 bdrv_io_limits_disable(bs); 2242 } 2243 2244 if (qemu_in_coroutine()) { 2245 /* Fast-path if already in coroutine context */ 2246 bdrv_rw_co_entry(&rwco); 2247 } else { 2248 co = qemu_coroutine_create(bdrv_rw_co_entry); 2249 qemu_coroutine_enter(co, &rwco); 2250 while (rwco.ret == NOT_DONE) { 2251 qemu_aio_wait(); 2252 } 2253 } 2254 return rwco.ret; 2255 } 2256 2257 /* 2258 * Process a synchronous request using coroutines 2259 */ 2260 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 2261 int nb_sectors, bool is_write, BdrvRequestFlags flags) 2262 { 2263 QEMUIOVector qiov; 2264 struct iovec iov = { 2265 .iov_base = (void *)buf, 2266 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 2267 }; 2268 2269 qemu_iovec_init_external(&qiov, &iov, 1); 2270 return bdrv_rwv_co(bs, sector_num, &qiov, is_write, flags); 2271 } 2272 2273 /* return < 0 if error. See bdrv_write() for the return codes */ 2274 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2275 uint8_t *buf, int nb_sectors) 2276 { 2277 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0); 2278 } 2279 2280 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2281 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2282 uint8_t *buf, int nb_sectors) 2283 { 2284 bool enabled; 2285 int ret; 2286 2287 enabled = bs->io_limits_enabled; 2288 bs->io_limits_enabled = false; 2289 ret = bdrv_read(bs, sector_num, buf, nb_sectors); 2290 bs->io_limits_enabled = enabled; 2291 return ret; 2292 } 2293 2294 /* Return < 0 if error. Important errors are: 2295 -EIO generic I/O error (may happen for all errors) 2296 -ENOMEDIUM No media inserted. 2297 -EINVAL Invalid sector number or nb_sectors 2298 -EACCES Trying to write a read-only device 2299 */ 2300 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2301 const uint8_t *buf, int nb_sectors) 2302 { 2303 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0); 2304 } 2305 2306 int bdrv_writev(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov) 2307 { 2308 return bdrv_rwv_co(bs, sector_num, qiov, true, 0); 2309 } 2310 2311 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 2312 { 2313 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true, 2314 BDRV_REQ_ZERO_WRITE); 2315 } 2316 2317 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2318 void *buf, int count1) 2319 { 2320 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2321 int len, nb_sectors, count; 2322 int64_t sector_num; 2323 int ret; 2324 2325 count = count1; 2326 /* first read to align to sector start */ 2327 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2328 if (len > count) 2329 len = count; 2330 sector_num = offset >> BDRV_SECTOR_BITS; 2331 if (len > 0) { 2332 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2333 return ret; 2334 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2335 count -= len; 2336 if (count == 0) 2337 return count1; 2338 sector_num++; 2339 buf += len; 2340 } 2341 2342 /* read the sectors "in place" */ 2343 nb_sectors = count >> BDRV_SECTOR_BITS; 2344 if (nb_sectors > 0) { 2345 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2346 return ret; 2347 sector_num += nb_sectors; 2348 len = nb_sectors << BDRV_SECTOR_BITS; 2349 buf += len; 2350 count -= len; 2351 } 2352 2353 /* add data from the last sector */ 2354 if (count > 0) { 2355 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2356 return ret; 2357 memcpy(buf, tmp_buf, count); 2358 } 2359 return count1; 2360 } 2361 2362 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov) 2363 { 2364 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2365 int len, nb_sectors, count; 2366 int64_t sector_num; 2367 int ret; 2368 2369 count = qiov->size; 2370 2371 /* first write to align to sector start */ 2372 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2373 if (len > count) 2374 len = count; 2375 sector_num = offset >> BDRV_SECTOR_BITS; 2376 if (len > 0) { 2377 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2378 return ret; 2379 qemu_iovec_to_buf(qiov, 0, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), 2380 len); 2381 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2382 return ret; 2383 count -= len; 2384 if (count == 0) 2385 return qiov->size; 2386 sector_num++; 2387 } 2388 2389 /* write the sectors "in place" */ 2390 nb_sectors = count >> BDRV_SECTOR_BITS; 2391 if (nb_sectors > 0) { 2392 QEMUIOVector qiov_inplace; 2393 2394 qemu_iovec_init(&qiov_inplace, qiov->niov); 2395 qemu_iovec_concat(&qiov_inplace, qiov, len, 2396 nb_sectors << BDRV_SECTOR_BITS); 2397 ret = bdrv_writev(bs, sector_num, &qiov_inplace); 2398 qemu_iovec_destroy(&qiov_inplace); 2399 if (ret < 0) { 2400 return ret; 2401 } 2402 2403 sector_num += nb_sectors; 2404 len = nb_sectors << BDRV_SECTOR_BITS; 2405 count -= len; 2406 } 2407 2408 /* add data from the last sector */ 2409 if (count > 0) { 2410 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2411 return ret; 2412 qemu_iovec_to_buf(qiov, qiov->size - count, tmp_buf, count); 2413 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2414 return ret; 2415 } 2416 return qiov->size; 2417 } 2418 2419 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2420 const void *buf, int count1) 2421 { 2422 QEMUIOVector qiov; 2423 struct iovec iov = { 2424 .iov_base = (void *) buf, 2425 .iov_len = count1, 2426 }; 2427 2428 qemu_iovec_init_external(&qiov, &iov, 1); 2429 return bdrv_pwritev(bs, offset, &qiov); 2430 } 2431 2432 /* 2433 * Writes to the file and ensures that no writes are reordered across this 2434 * request (acts as a barrier) 2435 * 2436 * Returns 0 on success, -errno in error cases. 2437 */ 2438 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2439 const void *buf, int count) 2440 { 2441 int ret; 2442 2443 ret = bdrv_pwrite(bs, offset, buf, count); 2444 if (ret < 0) { 2445 return ret; 2446 } 2447 2448 /* No flush needed for cache modes that already do it */ 2449 if (bs->enable_write_cache) { 2450 bdrv_flush(bs); 2451 } 2452 2453 return 0; 2454 } 2455 2456 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2457 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2458 { 2459 /* Perform I/O through a temporary buffer so that users who scribble over 2460 * their read buffer while the operation is in progress do not end up 2461 * modifying the image file. This is critical for zero-copy guest I/O 2462 * where anything might happen inside guest memory. 2463 */ 2464 void *bounce_buffer; 2465 2466 BlockDriver *drv = bs->drv; 2467 struct iovec iov; 2468 QEMUIOVector bounce_qiov; 2469 int64_t cluster_sector_num; 2470 int cluster_nb_sectors; 2471 size_t skip_bytes; 2472 int ret; 2473 2474 /* Cover entire cluster so no additional backing file I/O is required when 2475 * allocating cluster in the image file. 2476 */ 2477 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 2478 &cluster_sector_num, &cluster_nb_sectors); 2479 2480 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2481 cluster_sector_num, cluster_nb_sectors); 2482 2483 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2484 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2485 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2486 2487 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2488 &bounce_qiov); 2489 if (ret < 0) { 2490 goto err; 2491 } 2492 2493 if (drv->bdrv_co_write_zeroes && 2494 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2495 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2496 cluster_nb_sectors); 2497 } else { 2498 /* This does not change the data on the disk, it is not necessary 2499 * to flush even in cache=writethrough mode. 2500 */ 2501 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2502 &bounce_qiov); 2503 } 2504 2505 if (ret < 0) { 2506 /* It might be okay to ignore write errors for guest requests. If this 2507 * is a deliberate copy-on-read then we don't want to ignore the error. 2508 * Simply report it in all cases. 2509 */ 2510 goto err; 2511 } 2512 2513 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2514 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2515 nb_sectors * BDRV_SECTOR_SIZE); 2516 2517 err: 2518 qemu_vfree(bounce_buffer); 2519 return ret; 2520 } 2521 2522 /* 2523 * Handle a read request in coroutine context 2524 */ 2525 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2526 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2527 BdrvRequestFlags flags) 2528 { 2529 BlockDriver *drv = bs->drv; 2530 BdrvTrackedRequest req; 2531 int ret; 2532 2533 if (!drv) { 2534 return -ENOMEDIUM; 2535 } 2536 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2537 return -EIO; 2538 } 2539 2540 /* throttling disk read I/O */ 2541 if (bs->io_limits_enabled) { 2542 bdrv_io_limits_intercept(bs, false, nb_sectors); 2543 } 2544 2545 if (bs->copy_on_read) { 2546 flags |= BDRV_REQ_COPY_ON_READ; 2547 } 2548 if (flags & BDRV_REQ_COPY_ON_READ) { 2549 bs->copy_on_read_in_flight++; 2550 } 2551 2552 if (bs->copy_on_read_in_flight) { 2553 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2554 } 2555 2556 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2557 2558 if (flags & BDRV_REQ_COPY_ON_READ) { 2559 int pnum; 2560 2561 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2562 if (ret < 0) { 2563 goto out; 2564 } 2565 2566 if (!ret || pnum != nb_sectors) { 2567 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2568 goto out; 2569 } 2570 } 2571 2572 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2573 2574 out: 2575 tracked_request_end(&req); 2576 2577 if (flags & BDRV_REQ_COPY_ON_READ) { 2578 bs->copy_on_read_in_flight--; 2579 } 2580 2581 return ret; 2582 } 2583 2584 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2585 int nb_sectors, QEMUIOVector *qiov) 2586 { 2587 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2588 2589 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2590 } 2591 2592 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2593 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2594 { 2595 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2596 2597 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2598 BDRV_REQ_COPY_ON_READ); 2599 } 2600 2601 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2602 int64_t sector_num, int nb_sectors) 2603 { 2604 BlockDriver *drv = bs->drv; 2605 QEMUIOVector qiov; 2606 struct iovec iov; 2607 int ret; 2608 2609 /* TODO Emulate only part of misaligned requests instead of letting block 2610 * drivers return -ENOTSUP and emulate everything */ 2611 2612 /* First try the efficient write zeroes operation */ 2613 if (drv->bdrv_co_write_zeroes) { 2614 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2615 if (ret != -ENOTSUP) { 2616 return ret; 2617 } 2618 } 2619 2620 /* Fall back to bounce buffer if write zeroes is unsupported */ 2621 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2622 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2623 memset(iov.iov_base, 0, iov.iov_len); 2624 qemu_iovec_init_external(&qiov, &iov, 1); 2625 2626 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2627 2628 qemu_vfree(iov.iov_base); 2629 return ret; 2630 } 2631 2632 /* 2633 * Handle a write request in coroutine context 2634 */ 2635 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2636 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2637 BdrvRequestFlags flags) 2638 { 2639 BlockDriver *drv = bs->drv; 2640 BdrvTrackedRequest req; 2641 int ret; 2642 2643 if (!bs->drv) { 2644 return -ENOMEDIUM; 2645 } 2646 if (bs->read_only) { 2647 return -EACCES; 2648 } 2649 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2650 return -EIO; 2651 } 2652 2653 /* throttling disk write I/O */ 2654 if (bs->io_limits_enabled) { 2655 bdrv_io_limits_intercept(bs, true, nb_sectors); 2656 } 2657 2658 if (bs->copy_on_read_in_flight) { 2659 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2660 } 2661 2662 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2663 2664 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); 2665 2666 if (ret < 0) { 2667 /* Do nothing, write notifier decided to fail this request */ 2668 } else if (flags & BDRV_REQ_ZERO_WRITE) { 2669 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2670 } else { 2671 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2672 } 2673 2674 if (ret == 0 && !bs->enable_write_cache) { 2675 ret = bdrv_co_flush(bs); 2676 } 2677 2678 if (bs->dirty_bitmap) { 2679 bdrv_set_dirty(bs, sector_num, nb_sectors); 2680 } 2681 2682 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2683 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2684 } 2685 2686 tracked_request_end(&req); 2687 2688 return ret; 2689 } 2690 2691 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2692 int nb_sectors, QEMUIOVector *qiov) 2693 { 2694 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2695 2696 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2697 } 2698 2699 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2700 int64_t sector_num, int nb_sectors) 2701 { 2702 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2703 2704 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2705 BDRV_REQ_ZERO_WRITE); 2706 } 2707 2708 /** 2709 * Truncate file to 'offset' bytes (needed only for file protocols) 2710 */ 2711 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2712 { 2713 BlockDriver *drv = bs->drv; 2714 int ret; 2715 if (!drv) 2716 return -ENOMEDIUM; 2717 if (!drv->bdrv_truncate) 2718 return -ENOTSUP; 2719 if (bs->read_only) 2720 return -EACCES; 2721 if (bdrv_in_use(bs)) 2722 return -EBUSY; 2723 ret = drv->bdrv_truncate(bs, offset); 2724 if (ret == 0) { 2725 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2726 bdrv_dev_resize_cb(bs); 2727 } 2728 return ret; 2729 } 2730 2731 /** 2732 * Length of a allocated file in bytes. Sparse files are counted by actual 2733 * allocated space. Return < 0 if error or unknown. 2734 */ 2735 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2736 { 2737 BlockDriver *drv = bs->drv; 2738 if (!drv) { 2739 return -ENOMEDIUM; 2740 } 2741 if (drv->bdrv_get_allocated_file_size) { 2742 return drv->bdrv_get_allocated_file_size(bs); 2743 } 2744 if (bs->file) { 2745 return bdrv_get_allocated_file_size(bs->file); 2746 } 2747 return -ENOTSUP; 2748 } 2749 2750 /** 2751 * Length of a file in bytes. Return < 0 if error or unknown. 2752 */ 2753 int64_t bdrv_getlength(BlockDriverState *bs) 2754 { 2755 BlockDriver *drv = bs->drv; 2756 if (!drv) 2757 return -ENOMEDIUM; 2758 2759 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2760 if (drv->bdrv_getlength) { 2761 return drv->bdrv_getlength(bs); 2762 } 2763 } 2764 return bs->total_sectors * BDRV_SECTOR_SIZE; 2765 } 2766 2767 /* return 0 as number of sectors if no device present or error */ 2768 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2769 { 2770 int64_t length; 2771 length = bdrv_getlength(bs); 2772 if (length < 0) 2773 length = 0; 2774 else 2775 length = length >> BDRV_SECTOR_BITS; 2776 *nb_sectors_ptr = length; 2777 } 2778 2779 /* throttling disk io limits */ 2780 void bdrv_set_io_limits(BlockDriverState *bs, 2781 BlockIOLimit *io_limits) 2782 { 2783 bs->io_limits = *io_limits; 2784 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2785 } 2786 2787 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2788 BlockdevOnError on_write_error) 2789 { 2790 bs->on_read_error = on_read_error; 2791 bs->on_write_error = on_write_error; 2792 } 2793 2794 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2795 { 2796 return is_read ? bs->on_read_error : bs->on_write_error; 2797 } 2798 2799 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2800 { 2801 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2802 2803 switch (on_err) { 2804 case BLOCKDEV_ON_ERROR_ENOSPC: 2805 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2806 case BLOCKDEV_ON_ERROR_STOP: 2807 return BDRV_ACTION_STOP; 2808 case BLOCKDEV_ON_ERROR_REPORT: 2809 return BDRV_ACTION_REPORT; 2810 case BLOCKDEV_ON_ERROR_IGNORE: 2811 return BDRV_ACTION_IGNORE; 2812 default: 2813 abort(); 2814 } 2815 } 2816 2817 /* This is done by device models because, while the block layer knows 2818 * about the error, it does not know whether an operation comes from 2819 * the device or the block layer (from a job, for example). 2820 */ 2821 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2822 bool is_read, int error) 2823 { 2824 assert(error >= 0); 2825 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2826 if (action == BDRV_ACTION_STOP) { 2827 vm_stop(RUN_STATE_IO_ERROR); 2828 bdrv_iostatus_set_err(bs, error); 2829 } 2830 } 2831 2832 int bdrv_is_read_only(BlockDriverState *bs) 2833 { 2834 return bs->read_only; 2835 } 2836 2837 int bdrv_is_sg(BlockDriverState *bs) 2838 { 2839 return bs->sg; 2840 } 2841 2842 int bdrv_enable_write_cache(BlockDriverState *bs) 2843 { 2844 return bs->enable_write_cache; 2845 } 2846 2847 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2848 { 2849 bs->enable_write_cache = wce; 2850 2851 /* so a reopen() will preserve wce */ 2852 if (wce) { 2853 bs->open_flags |= BDRV_O_CACHE_WB; 2854 } else { 2855 bs->open_flags &= ~BDRV_O_CACHE_WB; 2856 } 2857 } 2858 2859 int bdrv_is_encrypted(BlockDriverState *bs) 2860 { 2861 if (bs->backing_hd && bs->backing_hd->encrypted) 2862 return 1; 2863 return bs->encrypted; 2864 } 2865 2866 int bdrv_key_required(BlockDriverState *bs) 2867 { 2868 BlockDriverState *backing_hd = bs->backing_hd; 2869 2870 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2871 return 1; 2872 return (bs->encrypted && !bs->valid_key); 2873 } 2874 2875 int bdrv_set_key(BlockDriverState *bs, const char *key) 2876 { 2877 int ret; 2878 if (bs->backing_hd && bs->backing_hd->encrypted) { 2879 ret = bdrv_set_key(bs->backing_hd, key); 2880 if (ret < 0) 2881 return ret; 2882 if (!bs->encrypted) 2883 return 0; 2884 } 2885 if (!bs->encrypted) { 2886 return -EINVAL; 2887 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2888 return -ENOMEDIUM; 2889 } 2890 ret = bs->drv->bdrv_set_key(bs, key); 2891 if (ret < 0) { 2892 bs->valid_key = 0; 2893 } else if (!bs->valid_key) { 2894 bs->valid_key = 1; 2895 /* call the change callback now, we skipped it on open */ 2896 bdrv_dev_change_media_cb(bs, true); 2897 } 2898 return ret; 2899 } 2900 2901 const char *bdrv_get_format_name(BlockDriverState *bs) 2902 { 2903 return bs->drv ? bs->drv->format_name : NULL; 2904 } 2905 2906 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2907 void *opaque) 2908 { 2909 BlockDriver *drv; 2910 2911 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2912 it(opaque, drv->format_name); 2913 } 2914 } 2915 2916 BlockDriverState *bdrv_find(const char *name) 2917 { 2918 BlockDriverState *bs; 2919 2920 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2921 if (!strcmp(name, bs->device_name)) { 2922 return bs; 2923 } 2924 } 2925 return NULL; 2926 } 2927 2928 BlockDriverState *bdrv_next(BlockDriverState *bs) 2929 { 2930 if (!bs) { 2931 return QTAILQ_FIRST(&bdrv_states); 2932 } 2933 return QTAILQ_NEXT(bs, list); 2934 } 2935 2936 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2937 { 2938 BlockDriverState *bs; 2939 2940 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2941 it(opaque, bs); 2942 } 2943 } 2944 2945 const char *bdrv_get_device_name(BlockDriverState *bs) 2946 { 2947 return bs->device_name; 2948 } 2949 2950 int bdrv_get_flags(BlockDriverState *bs) 2951 { 2952 return bs->open_flags; 2953 } 2954 2955 int bdrv_flush_all(void) 2956 { 2957 BlockDriverState *bs; 2958 int result = 0; 2959 2960 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2961 int ret = bdrv_flush(bs); 2962 if (ret < 0 && !result) { 2963 result = ret; 2964 } 2965 } 2966 2967 return result; 2968 } 2969 2970 int bdrv_has_zero_init_1(BlockDriverState *bs) 2971 { 2972 return 1; 2973 } 2974 2975 int bdrv_has_zero_init(BlockDriverState *bs) 2976 { 2977 assert(bs->drv); 2978 2979 if (bs->drv->bdrv_has_zero_init) { 2980 return bs->drv->bdrv_has_zero_init(bs); 2981 } 2982 2983 /* safe default */ 2984 return 0; 2985 } 2986 2987 typedef struct BdrvCoIsAllocatedData { 2988 BlockDriverState *bs; 2989 BlockDriverState *base; 2990 int64_t sector_num; 2991 int nb_sectors; 2992 int *pnum; 2993 int ret; 2994 bool done; 2995 } BdrvCoIsAllocatedData; 2996 2997 /* 2998 * Returns true iff the specified sector is present in the disk image. Drivers 2999 * not implementing the functionality are assumed to not support backing files, 3000 * hence all their sectors are reported as allocated. 3001 * 3002 * If 'sector_num' is beyond the end of the disk image the return value is 0 3003 * and 'pnum' is set to 0. 3004 * 3005 * 'pnum' is set to the number of sectors (including and immediately following 3006 * the specified sector) that are known to be in the same 3007 * allocated/unallocated state. 3008 * 3009 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 3010 * beyond the end of the disk image it will be clamped. 3011 */ 3012 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 3013 int nb_sectors, int *pnum) 3014 { 3015 int64_t n; 3016 3017 if (sector_num >= bs->total_sectors) { 3018 *pnum = 0; 3019 return 0; 3020 } 3021 3022 n = bs->total_sectors - sector_num; 3023 if (n < nb_sectors) { 3024 nb_sectors = n; 3025 } 3026 3027 if (!bs->drv->bdrv_co_is_allocated) { 3028 *pnum = nb_sectors; 3029 return 1; 3030 } 3031 3032 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 3033 } 3034 3035 /* Coroutine wrapper for bdrv_is_allocated() */ 3036 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 3037 { 3038 BdrvCoIsAllocatedData *data = opaque; 3039 BlockDriverState *bs = data->bs; 3040 3041 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 3042 data->pnum); 3043 data->done = true; 3044 } 3045 3046 /* 3047 * Synchronous wrapper around bdrv_co_is_allocated(). 3048 * 3049 * See bdrv_co_is_allocated() for details. 3050 */ 3051 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 3052 int *pnum) 3053 { 3054 Coroutine *co; 3055 BdrvCoIsAllocatedData data = { 3056 .bs = bs, 3057 .sector_num = sector_num, 3058 .nb_sectors = nb_sectors, 3059 .pnum = pnum, 3060 .done = false, 3061 }; 3062 3063 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 3064 qemu_coroutine_enter(co, &data); 3065 while (!data.done) { 3066 qemu_aio_wait(); 3067 } 3068 return data.ret; 3069 } 3070 3071 /* 3072 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 3073 * 3074 * Return true if the given sector is allocated in any image between 3075 * BASE and TOP (inclusive). BASE can be NULL to check if the given 3076 * sector is allocated in any image of the chain. Return false otherwise. 3077 * 3078 * 'pnum' is set to the number of sectors (including and immediately following 3079 * the specified sector) that are known to be in the same 3080 * allocated/unallocated state. 3081 * 3082 */ 3083 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 3084 BlockDriverState *base, 3085 int64_t sector_num, 3086 int nb_sectors, int *pnum) 3087 { 3088 BlockDriverState *intermediate; 3089 int ret, n = nb_sectors; 3090 3091 intermediate = top; 3092 while (intermediate && intermediate != base) { 3093 int pnum_inter; 3094 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 3095 &pnum_inter); 3096 if (ret < 0) { 3097 return ret; 3098 } else if (ret) { 3099 *pnum = pnum_inter; 3100 return 1; 3101 } 3102 3103 /* 3104 * [sector_num, nb_sectors] is unallocated on top but intermediate 3105 * might have 3106 * 3107 * [sector_num+x, nr_sectors] allocated. 3108 */ 3109 if (n > pnum_inter && 3110 (intermediate == top || 3111 sector_num + pnum_inter < intermediate->total_sectors)) { 3112 n = pnum_inter; 3113 } 3114 3115 intermediate = intermediate->backing_hd; 3116 } 3117 3118 *pnum = n; 3119 return 0; 3120 } 3121 3122 /* Coroutine wrapper for bdrv_is_allocated_above() */ 3123 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque) 3124 { 3125 BdrvCoIsAllocatedData *data = opaque; 3126 BlockDriverState *top = data->bs; 3127 BlockDriverState *base = data->base; 3128 3129 data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num, 3130 data->nb_sectors, data->pnum); 3131 data->done = true; 3132 } 3133 3134 /* 3135 * Synchronous wrapper around bdrv_co_is_allocated_above(). 3136 * 3137 * See bdrv_co_is_allocated_above() for details. 3138 */ 3139 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base, 3140 int64_t sector_num, int nb_sectors, int *pnum) 3141 { 3142 Coroutine *co; 3143 BdrvCoIsAllocatedData data = { 3144 .bs = top, 3145 .base = base, 3146 .sector_num = sector_num, 3147 .nb_sectors = nb_sectors, 3148 .pnum = pnum, 3149 .done = false, 3150 }; 3151 3152 co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry); 3153 qemu_coroutine_enter(co, &data); 3154 while (!data.done) { 3155 qemu_aio_wait(); 3156 } 3157 return data.ret; 3158 } 3159 3160 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 3161 { 3162 if (bs->backing_hd && bs->backing_hd->encrypted) 3163 return bs->backing_file; 3164 else if (bs->encrypted) 3165 return bs->filename; 3166 else 3167 return NULL; 3168 } 3169 3170 void bdrv_get_backing_filename(BlockDriverState *bs, 3171 char *filename, int filename_size) 3172 { 3173 pstrcpy(filename, filename_size, bs->backing_file); 3174 } 3175 3176 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 3177 const uint8_t *buf, int nb_sectors) 3178 { 3179 BlockDriver *drv = bs->drv; 3180 if (!drv) 3181 return -ENOMEDIUM; 3182 if (!drv->bdrv_write_compressed) 3183 return -ENOTSUP; 3184 if (bdrv_check_request(bs, sector_num, nb_sectors)) 3185 return -EIO; 3186 3187 assert(!bs->dirty_bitmap); 3188 3189 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 3190 } 3191 3192 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 3193 { 3194 BlockDriver *drv = bs->drv; 3195 if (!drv) 3196 return -ENOMEDIUM; 3197 if (!drv->bdrv_get_info) 3198 return -ENOTSUP; 3199 memset(bdi, 0, sizeof(*bdi)); 3200 return drv->bdrv_get_info(bs, bdi); 3201 } 3202 3203 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 3204 int64_t pos, int size) 3205 { 3206 QEMUIOVector qiov; 3207 struct iovec iov = { 3208 .iov_base = (void *) buf, 3209 .iov_len = size, 3210 }; 3211 3212 qemu_iovec_init_external(&qiov, &iov, 1); 3213 return bdrv_writev_vmstate(bs, &qiov, pos); 3214 } 3215 3216 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) 3217 { 3218 BlockDriver *drv = bs->drv; 3219 3220 if (!drv) { 3221 return -ENOMEDIUM; 3222 } else if (drv->bdrv_save_vmstate) { 3223 return drv->bdrv_save_vmstate(bs, qiov, pos); 3224 } else if (bs->file) { 3225 return bdrv_writev_vmstate(bs->file, qiov, pos); 3226 } 3227 3228 return -ENOTSUP; 3229 } 3230 3231 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3232 int64_t pos, int size) 3233 { 3234 BlockDriver *drv = bs->drv; 3235 if (!drv) 3236 return -ENOMEDIUM; 3237 if (drv->bdrv_load_vmstate) 3238 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3239 if (bs->file) 3240 return bdrv_load_vmstate(bs->file, buf, pos, size); 3241 return -ENOTSUP; 3242 } 3243 3244 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3245 { 3246 if (!bs || !bs->drv || !bs->drv->bdrv_debug_event) { 3247 return; 3248 } 3249 3250 bs->drv->bdrv_debug_event(bs, event); 3251 } 3252 3253 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event, 3254 const char *tag) 3255 { 3256 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) { 3257 bs = bs->file; 3258 } 3259 3260 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) { 3261 return bs->drv->bdrv_debug_breakpoint(bs, event, tag); 3262 } 3263 3264 return -ENOTSUP; 3265 } 3266 3267 int bdrv_debug_resume(BlockDriverState *bs, const char *tag) 3268 { 3269 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) { 3270 bs = bs->file; 3271 } 3272 3273 if (bs && bs->drv && bs->drv->bdrv_debug_resume) { 3274 return bs->drv->bdrv_debug_resume(bs, tag); 3275 } 3276 3277 return -ENOTSUP; 3278 } 3279 3280 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag) 3281 { 3282 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) { 3283 bs = bs->file; 3284 } 3285 3286 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) { 3287 return bs->drv->bdrv_debug_is_suspended(bs, tag); 3288 } 3289 3290 return false; 3291 } 3292 3293 int bdrv_is_snapshot(BlockDriverState *bs) 3294 { 3295 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3296 } 3297 3298 /* backing_file can either be relative, or absolute, or a protocol. If it is 3299 * relative, it must be relative to the chain. So, passing in bs->filename 3300 * from a BDS as backing_file should not be done, as that may be relative to 3301 * the CWD rather than the chain. */ 3302 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3303 const char *backing_file) 3304 { 3305 char *filename_full = NULL; 3306 char *backing_file_full = NULL; 3307 char *filename_tmp = NULL; 3308 int is_protocol = 0; 3309 BlockDriverState *curr_bs = NULL; 3310 BlockDriverState *retval = NULL; 3311 3312 if (!bs || !bs->drv || !backing_file) { 3313 return NULL; 3314 } 3315 3316 filename_full = g_malloc(PATH_MAX); 3317 backing_file_full = g_malloc(PATH_MAX); 3318 filename_tmp = g_malloc(PATH_MAX); 3319 3320 is_protocol = path_has_protocol(backing_file); 3321 3322 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3323 3324 /* If either of the filename paths is actually a protocol, then 3325 * compare unmodified paths; otherwise make paths relative */ 3326 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3327 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3328 retval = curr_bs->backing_hd; 3329 break; 3330 } 3331 } else { 3332 /* If not an absolute filename path, make it relative to the current 3333 * image's filename path */ 3334 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3335 backing_file); 3336 3337 /* We are going to compare absolute pathnames */ 3338 if (!realpath(filename_tmp, filename_full)) { 3339 continue; 3340 } 3341 3342 /* We need to make sure the backing filename we are comparing against 3343 * is relative to the current image filename (or absolute) */ 3344 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3345 curr_bs->backing_file); 3346 3347 if (!realpath(filename_tmp, backing_file_full)) { 3348 continue; 3349 } 3350 3351 if (strcmp(backing_file_full, filename_full) == 0) { 3352 retval = curr_bs->backing_hd; 3353 break; 3354 } 3355 } 3356 } 3357 3358 g_free(filename_full); 3359 g_free(backing_file_full); 3360 g_free(filename_tmp); 3361 return retval; 3362 } 3363 3364 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3365 { 3366 if (!bs->drv) { 3367 return 0; 3368 } 3369 3370 if (!bs->backing_hd) { 3371 return 0; 3372 } 3373 3374 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3375 } 3376 3377 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3378 { 3379 BlockDriverState *curr_bs = NULL; 3380 3381 if (!bs) { 3382 return NULL; 3383 } 3384 3385 curr_bs = bs; 3386 3387 while (curr_bs->backing_hd) { 3388 curr_bs = curr_bs->backing_hd; 3389 } 3390 return curr_bs; 3391 } 3392 3393 /**************************************************************/ 3394 /* async I/Os */ 3395 3396 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3397 QEMUIOVector *qiov, int nb_sectors, 3398 BlockDriverCompletionFunc *cb, void *opaque) 3399 { 3400 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3401 3402 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3403 cb, opaque, false); 3404 } 3405 3406 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3407 QEMUIOVector *qiov, int nb_sectors, 3408 BlockDriverCompletionFunc *cb, void *opaque) 3409 { 3410 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3411 3412 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3413 cb, opaque, true); 3414 } 3415 3416 3417 typedef struct MultiwriteCB { 3418 int error; 3419 int num_requests; 3420 int num_callbacks; 3421 struct { 3422 BlockDriverCompletionFunc *cb; 3423 void *opaque; 3424 QEMUIOVector *free_qiov; 3425 } callbacks[]; 3426 } MultiwriteCB; 3427 3428 static void multiwrite_user_cb(MultiwriteCB *mcb) 3429 { 3430 int i; 3431 3432 for (i = 0; i < mcb->num_callbacks; i++) { 3433 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3434 if (mcb->callbacks[i].free_qiov) { 3435 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3436 } 3437 g_free(mcb->callbacks[i].free_qiov); 3438 } 3439 } 3440 3441 static void multiwrite_cb(void *opaque, int ret) 3442 { 3443 MultiwriteCB *mcb = opaque; 3444 3445 trace_multiwrite_cb(mcb, ret); 3446 3447 if (ret < 0 && !mcb->error) { 3448 mcb->error = ret; 3449 } 3450 3451 mcb->num_requests--; 3452 if (mcb->num_requests == 0) { 3453 multiwrite_user_cb(mcb); 3454 g_free(mcb); 3455 } 3456 } 3457 3458 static int multiwrite_req_compare(const void *a, const void *b) 3459 { 3460 const BlockRequest *req1 = a, *req2 = b; 3461 3462 /* 3463 * Note that we can't simply subtract req2->sector from req1->sector 3464 * here as that could overflow the return value. 3465 */ 3466 if (req1->sector > req2->sector) { 3467 return 1; 3468 } else if (req1->sector < req2->sector) { 3469 return -1; 3470 } else { 3471 return 0; 3472 } 3473 } 3474 3475 /* 3476 * Takes a bunch of requests and tries to merge them. Returns the number of 3477 * requests that remain after merging. 3478 */ 3479 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3480 int num_reqs, MultiwriteCB *mcb) 3481 { 3482 int i, outidx; 3483 3484 // Sort requests by start sector 3485 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3486 3487 // Check if adjacent requests touch the same clusters. If so, combine them, 3488 // filling up gaps with zero sectors. 3489 outidx = 0; 3490 for (i = 1; i < num_reqs; i++) { 3491 int merge = 0; 3492 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3493 3494 // Handle exactly sequential writes and overlapping writes. 3495 if (reqs[i].sector <= oldreq_last) { 3496 merge = 1; 3497 } 3498 3499 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3500 merge = 0; 3501 } 3502 3503 if (merge) { 3504 size_t size; 3505 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3506 qemu_iovec_init(qiov, 3507 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3508 3509 // Add the first request to the merged one. If the requests are 3510 // overlapping, drop the last sectors of the first request. 3511 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3512 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3513 3514 // We should need to add any zeros between the two requests 3515 assert (reqs[i].sector <= oldreq_last); 3516 3517 // Add the second request 3518 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3519 3520 reqs[outidx].nb_sectors = qiov->size >> 9; 3521 reqs[outidx].qiov = qiov; 3522 3523 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3524 } else { 3525 outidx++; 3526 reqs[outidx].sector = reqs[i].sector; 3527 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3528 reqs[outidx].qiov = reqs[i].qiov; 3529 } 3530 } 3531 3532 return outidx + 1; 3533 } 3534 3535 /* 3536 * Submit multiple AIO write requests at once. 3537 * 3538 * On success, the function returns 0 and all requests in the reqs array have 3539 * been submitted. In error case this function returns -1, and any of the 3540 * requests may or may not be submitted yet. In particular, this means that the 3541 * callback will be called for some of the requests, for others it won't. The 3542 * caller must check the error field of the BlockRequest to wait for the right 3543 * callbacks (if error != 0, no callback will be called). 3544 * 3545 * The implementation may modify the contents of the reqs array, e.g. to merge 3546 * requests. However, the fields opaque and error are left unmodified as they 3547 * are used to signal failure for a single request to the caller. 3548 */ 3549 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3550 { 3551 MultiwriteCB *mcb; 3552 int i; 3553 3554 /* don't submit writes if we don't have a medium */ 3555 if (bs->drv == NULL) { 3556 for (i = 0; i < num_reqs; i++) { 3557 reqs[i].error = -ENOMEDIUM; 3558 } 3559 return -1; 3560 } 3561 3562 if (num_reqs == 0) { 3563 return 0; 3564 } 3565 3566 // Create MultiwriteCB structure 3567 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3568 mcb->num_requests = 0; 3569 mcb->num_callbacks = num_reqs; 3570 3571 for (i = 0; i < num_reqs; i++) { 3572 mcb->callbacks[i].cb = reqs[i].cb; 3573 mcb->callbacks[i].opaque = reqs[i].opaque; 3574 } 3575 3576 // Check for mergable requests 3577 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3578 3579 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3580 3581 /* Run the aio requests. */ 3582 mcb->num_requests = num_reqs; 3583 for (i = 0; i < num_reqs; i++) { 3584 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3585 reqs[i].nb_sectors, multiwrite_cb, mcb); 3586 } 3587 3588 return 0; 3589 } 3590 3591 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3592 { 3593 acb->aiocb_info->cancel(acb); 3594 } 3595 3596 /* block I/O throttling */ 3597 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3598 bool is_write, double elapsed_time, uint64_t *wait) 3599 { 3600 uint64_t bps_limit = 0; 3601 uint64_t extension; 3602 double bytes_limit, bytes_base, bytes_res; 3603 double slice_time, wait_time; 3604 3605 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3606 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3607 } else if (bs->io_limits.bps[is_write]) { 3608 bps_limit = bs->io_limits.bps[is_write]; 3609 } else { 3610 if (wait) { 3611 *wait = 0; 3612 } 3613 3614 return false; 3615 } 3616 3617 slice_time = bs->slice_end - bs->slice_start; 3618 slice_time /= (NANOSECONDS_PER_SECOND); 3619 bytes_limit = bps_limit * slice_time; 3620 bytes_base = bs->slice_submitted.bytes[is_write]; 3621 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3622 bytes_base += bs->slice_submitted.bytes[!is_write]; 3623 } 3624 3625 /* bytes_base: the bytes of data which have been read/written; and 3626 * it is obtained from the history statistic info. 3627 * bytes_res: the remaining bytes of data which need to be read/written. 3628 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3629 * the total time for completing reading/writting all data. 3630 */ 3631 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3632 3633 if (bytes_base + bytes_res <= bytes_limit) { 3634 if (wait) { 3635 *wait = 0; 3636 } 3637 3638 return false; 3639 } 3640 3641 /* Calc approx time to dispatch */ 3642 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3643 3644 /* When the I/O rate at runtime exceeds the limits, 3645 * bs->slice_end need to be extended in order that the current statistic 3646 * info can be kept until the timer fire, so it is increased and tuned 3647 * based on the result of experiment. 3648 */ 3649 extension = wait_time * NANOSECONDS_PER_SECOND; 3650 extension = DIV_ROUND_UP(extension, BLOCK_IO_SLICE_TIME) * 3651 BLOCK_IO_SLICE_TIME; 3652 bs->slice_end += extension; 3653 if (wait) { 3654 *wait = wait_time * NANOSECONDS_PER_SECOND; 3655 } 3656 3657 return true; 3658 } 3659 3660 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3661 double elapsed_time, uint64_t *wait) 3662 { 3663 uint64_t iops_limit = 0; 3664 double ios_limit, ios_base; 3665 double slice_time, wait_time; 3666 3667 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3668 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3669 } else if (bs->io_limits.iops[is_write]) { 3670 iops_limit = bs->io_limits.iops[is_write]; 3671 } else { 3672 if (wait) { 3673 *wait = 0; 3674 } 3675 3676 return false; 3677 } 3678 3679 slice_time = bs->slice_end - bs->slice_start; 3680 slice_time /= (NANOSECONDS_PER_SECOND); 3681 ios_limit = iops_limit * slice_time; 3682 ios_base = bs->slice_submitted.ios[is_write]; 3683 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3684 ios_base += bs->slice_submitted.ios[!is_write]; 3685 } 3686 3687 if (ios_base + 1 <= ios_limit) { 3688 if (wait) { 3689 *wait = 0; 3690 } 3691 3692 return false; 3693 } 3694 3695 /* Calc approx time to dispatch, in seconds */ 3696 wait_time = (ios_base + 1) / iops_limit; 3697 if (wait_time > elapsed_time) { 3698 wait_time = wait_time - elapsed_time; 3699 } else { 3700 wait_time = 0; 3701 } 3702 3703 /* Exceeded current slice, extend it by another slice time */ 3704 bs->slice_end += BLOCK_IO_SLICE_TIME; 3705 if (wait) { 3706 *wait = wait_time * NANOSECONDS_PER_SECOND; 3707 } 3708 3709 return true; 3710 } 3711 3712 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3713 bool is_write, int64_t *wait) 3714 { 3715 int64_t now, max_wait; 3716 uint64_t bps_wait = 0, iops_wait = 0; 3717 double elapsed_time; 3718 int bps_ret, iops_ret; 3719 3720 now = qemu_get_clock_ns(vm_clock); 3721 if (now > bs->slice_end) { 3722 bs->slice_start = now; 3723 bs->slice_end = now + BLOCK_IO_SLICE_TIME; 3724 memset(&bs->slice_submitted, 0, sizeof(bs->slice_submitted)); 3725 } 3726 3727 elapsed_time = now - bs->slice_start; 3728 elapsed_time /= (NANOSECONDS_PER_SECOND); 3729 3730 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3731 is_write, elapsed_time, &bps_wait); 3732 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3733 elapsed_time, &iops_wait); 3734 if (bps_ret || iops_ret) { 3735 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3736 if (wait) { 3737 *wait = max_wait; 3738 } 3739 3740 now = qemu_get_clock_ns(vm_clock); 3741 if (bs->slice_end < now + max_wait) { 3742 bs->slice_end = now + max_wait; 3743 } 3744 3745 return true; 3746 } 3747 3748 if (wait) { 3749 *wait = 0; 3750 } 3751 3752 bs->slice_submitted.bytes[is_write] += (int64_t)nb_sectors * 3753 BDRV_SECTOR_SIZE; 3754 bs->slice_submitted.ios[is_write]++; 3755 3756 return false; 3757 } 3758 3759 /**************************************************************/ 3760 /* async block device emulation */ 3761 3762 typedef struct BlockDriverAIOCBSync { 3763 BlockDriverAIOCB common; 3764 QEMUBH *bh; 3765 int ret; 3766 /* vector translation state */ 3767 QEMUIOVector *qiov; 3768 uint8_t *bounce; 3769 int is_write; 3770 } BlockDriverAIOCBSync; 3771 3772 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3773 { 3774 BlockDriverAIOCBSync *acb = 3775 container_of(blockacb, BlockDriverAIOCBSync, common); 3776 qemu_bh_delete(acb->bh); 3777 acb->bh = NULL; 3778 qemu_aio_release(acb); 3779 } 3780 3781 static const AIOCBInfo bdrv_em_aiocb_info = { 3782 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3783 .cancel = bdrv_aio_cancel_em, 3784 }; 3785 3786 static void bdrv_aio_bh_cb(void *opaque) 3787 { 3788 BlockDriverAIOCBSync *acb = opaque; 3789 3790 if (!acb->is_write) 3791 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3792 qemu_vfree(acb->bounce); 3793 acb->common.cb(acb->common.opaque, acb->ret); 3794 qemu_bh_delete(acb->bh); 3795 acb->bh = NULL; 3796 qemu_aio_release(acb); 3797 } 3798 3799 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3800 int64_t sector_num, 3801 QEMUIOVector *qiov, 3802 int nb_sectors, 3803 BlockDriverCompletionFunc *cb, 3804 void *opaque, 3805 int is_write) 3806 3807 { 3808 BlockDriverAIOCBSync *acb; 3809 3810 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 3811 acb->is_write = is_write; 3812 acb->qiov = qiov; 3813 acb->bounce = qemu_blockalign(bs, qiov->size); 3814 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3815 3816 if (is_write) { 3817 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3818 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3819 } else { 3820 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3821 } 3822 3823 qemu_bh_schedule(acb->bh); 3824 3825 return &acb->common; 3826 } 3827 3828 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3829 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3830 BlockDriverCompletionFunc *cb, void *opaque) 3831 { 3832 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3833 } 3834 3835 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3836 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3837 BlockDriverCompletionFunc *cb, void *opaque) 3838 { 3839 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3840 } 3841 3842 3843 typedef struct BlockDriverAIOCBCoroutine { 3844 BlockDriverAIOCB common; 3845 BlockRequest req; 3846 bool is_write; 3847 bool *done; 3848 QEMUBH* bh; 3849 } BlockDriverAIOCBCoroutine; 3850 3851 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3852 { 3853 BlockDriverAIOCBCoroutine *acb = 3854 container_of(blockacb, BlockDriverAIOCBCoroutine, common); 3855 bool done = false; 3856 3857 acb->done = &done; 3858 while (!done) { 3859 qemu_aio_wait(); 3860 } 3861 } 3862 3863 static const AIOCBInfo bdrv_em_co_aiocb_info = { 3864 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3865 .cancel = bdrv_aio_co_cancel_em, 3866 }; 3867 3868 static void bdrv_co_em_bh(void *opaque) 3869 { 3870 BlockDriverAIOCBCoroutine *acb = opaque; 3871 3872 acb->common.cb(acb->common.opaque, acb->req.error); 3873 3874 if (acb->done) { 3875 *acb->done = true; 3876 } 3877 3878 qemu_bh_delete(acb->bh); 3879 qemu_aio_release(acb); 3880 } 3881 3882 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3883 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3884 { 3885 BlockDriverAIOCBCoroutine *acb = opaque; 3886 BlockDriverState *bs = acb->common.bs; 3887 3888 if (!acb->is_write) { 3889 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3890 acb->req.nb_sectors, acb->req.qiov, 0); 3891 } else { 3892 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3893 acb->req.nb_sectors, acb->req.qiov, 0); 3894 } 3895 3896 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3897 qemu_bh_schedule(acb->bh); 3898 } 3899 3900 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3901 int64_t sector_num, 3902 QEMUIOVector *qiov, 3903 int nb_sectors, 3904 BlockDriverCompletionFunc *cb, 3905 void *opaque, 3906 bool is_write) 3907 { 3908 Coroutine *co; 3909 BlockDriverAIOCBCoroutine *acb; 3910 3911 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3912 acb->req.sector = sector_num; 3913 acb->req.nb_sectors = nb_sectors; 3914 acb->req.qiov = qiov; 3915 acb->is_write = is_write; 3916 acb->done = NULL; 3917 3918 co = qemu_coroutine_create(bdrv_co_do_rw); 3919 qemu_coroutine_enter(co, acb); 3920 3921 return &acb->common; 3922 } 3923 3924 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3925 { 3926 BlockDriverAIOCBCoroutine *acb = opaque; 3927 BlockDriverState *bs = acb->common.bs; 3928 3929 acb->req.error = bdrv_co_flush(bs); 3930 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3931 qemu_bh_schedule(acb->bh); 3932 } 3933 3934 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3935 BlockDriverCompletionFunc *cb, void *opaque) 3936 { 3937 trace_bdrv_aio_flush(bs, opaque); 3938 3939 Coroutine *co; 3940 BlockDriverAIOCBCoroutine *acb; 3941 3942 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3943 acb->done = NULL; 3944 3945 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3946 qemu_coroutine_enter(co, acb); 3947 3948 return &acb->common; 3949 } 3950 3951 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3952 { 3953 BlockDriverAIOCBCoroutine *acb = opaque; 3954 BlockDriverState *bs = acb->common.bs; 3955 3956 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3957 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3958 qemu_bh_schedule(acb->bh); 3959 } 3960 3961 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3962 int64_t sector_num, int nb_sectors, 3963 BlockDriverCompletionFunc *cb, void *opaque) 3964 { 3965 Coroutine *co; 3966 BlockDriverAIOCBCoroutine *acb; 3967 3968 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3969 3970 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3971 acb->req.sector = sector_num; 3972 acb->req.nb_sectors = nb_sectors; 3973 acb->done = NULL; 3974 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3975 qemu_coroutine_enter(co, acb); 3976 3977 return &acb->common; 3978 } 3979 3980 void bdrv_init(void) 3981 { 3982 module_call_init(MODULE_INIT_BLOCK); 3983 } 3984 3985 void bdrv_init_with_whitelist(void) 3986 { 3987 use_bdrv_whitelist = 1; 3988 bdrv_init(); 3989 } 3990 3991 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 3992 BlockDriverCompletionFunc *cb, void *opaque) 3993 { 3994 BlockDriverAIOCB *acb; 3995 3996 acb = g_slice_alloc(aiocb_info->aiocb_size); 3997 acb->aiocb_info = aiocb_info; 3998 acb->bs = bs; 3999 acb->cb = cb; 4000 acb->opaque = opaque; 4001 return acb; 4002 } 4003 4004 void qemu_aio_release(void *p) 4005 { 4006 BlockDriverAIOCB *acb = p; 4007 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 4008 } 4009 4010 /**************************************************************/ 4011 /* Coroutine block device emulation */ 4012 4013 typedef struct CoroutineIOCompletion { 4014 Coroutine *coroutine; 4015 int ret; 4016 } CoroutineIOCompletion; 4017 4018 static void bdrv_co_io_em_complete(void *opaque, int ret) 4019 { 4020 CoroutineIOCompletion *co = opaque; 4021 4022 co->ret = ret; 4023 qemu_coroutine_enter(co->coroutine, NULL); 4024 } 4025 4026 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 4027 int nb_sectors, QEMUIOVector *iov, 4028 bool is_write) 4029 { 4030 CoroutineIOCompletion co = { 4031 .coroutine = qemu_coroutine_self(), 4032 }; 4033 BlockDriverAIOCB *acb; 4034 4035 if (is_write) { 4036 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 4037 bdrv_co_io_em_complete, &co); 4038 } else { 4039 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 4040 bdrv_co_io_em_complete, &co); 4041 } 4042 4043 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 4044 if (!acb) { 4045 return -EIO; 4046 } 4047 qemu_coroutine_yield(); 4048 4049 return co.ret; 4050 } 4051 4052 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 4053 int64_t sector_num, int nb_sectors, 4054 QEMUIOVector *iov) 4055 { 4056 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 4057 } 4058 4059 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 4060 int64_t sector_num, int nb_sectors, 4061 QEMUIOVector *iov) 4062 { 4063 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 4064 } 4065 4066 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 4067 { 4068 RwCo *rwco = opaque; 4069 4070 rwco->ret = bdrv_co_flush(rwco->bs); 4071 } 4072 4073 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 4074 { 4075 int ret; 4076 4077 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 4078 return 0; 4079 } 4080 4081 /* Write back cached data to the OS even with cache=unsafe */ 4082 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); 4083 if (bs->drv->bdrv_co_flush_to_os) { 4084 ret = bs->drv->bdrv_co_flush_to_os(bs); 4085 if (ret < 0) { 4086 return ret; 4087 } 4088 } 4089 4090 /* But don't actually force it to the disk with cache=unsafe */ 4091 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4092 goto flush_parent; 4093 } 4094 4095 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); 4096 if (bs->drv->bdrv_co_flush_to_disk) { 4097 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4098 } else if (bs->drv->bdrv_aio_flush) { 4099 BlockDriverAIOCB *acb; 4100 CoroutineIOCompletion co = { 4101 .coroutine = qemu_coroutine_self(), 4102 }; 4103 4104 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4105 if (acb == NULL) { 4106 ret = -EIO; 4107 } else { 4108 qemu_coroutine_yield(); 4109 ret = co.ret; 4110 } 4111 } else { 4112 /* 4113 * Some block drivers always operate in either writethrough or unsafe 4114 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4115 * know how the server works (because the behaviour is hardcoded or 4116 * depends on server-side configuration), so we can't ensure that 4117 * everything is safe on disk. Returning an error doesn't work because 4118 * that would break guests even if the server operates in writethrough 4119 * mode. 4120 * 4121 * Let's hope the user knows what he's doing. 4122 */ 4123 ret = 0; 4124 } 4125 if (ret < 0) { 4126 return ret; 4127 } 4128 4129 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4130 * in the case of cache=unsafe, so there are no useless flushes. 4131 */ 4132 flush_parent: 4133 return bdrv_co_flush(bs->file); 4134 } 4135 4136 void bdrv_invalidate_cache(BlockDriverState *bs) 4137 { 4138 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4139 bs->drv->bdrv_invalidate_cache(bs); 4140 } 4141 } 4142 4143 void bdrv_invalidate_cache_all(void) 4144 { 4145 BlockDriverState *bs; 4146 4147 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4148 bdrv_invalidate_cache(bs); 4149 } 4150 } 4151 4152 void bdrv_clear_incoming_migration_all(void) 4153 { 4154 BlockDriverState *bs; 4155 4156 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4157 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4158 } 4159 } 4160 4161 int bdrv_flush(BlockDriverState *bs) 4162 { 4163 Coroutine *co; 4164 RwCo rwco = { 4165 .bs = bs, 4166 .ret = NOT_DONE, 4167 }; 4168 4169 if (qemu_in_coroutine()) { 4170 /* Fast-path if already in coroutine context */ 4171 bdrv_flush_co_entry(&rwco); 4172 } else { 4173 co = qemu_coroutine_create(bdrv_flush_co_entry); 4174 qemu_coroutine_enter(co, &rwco); 4175 while (rwco.ret == NOT_DONE) { 4176 qemu_aio_wait(); 4177 } 4178 } 4179 4180 return rwco.ret; 4181 } 4182 4183 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4184 { 4185 RwCo *rwco = opaque; 4186 4187 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4188 } 4189 4190 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4191 int nb_sectors) 4192 { 4193 if (!bs->drv) { 4194 return -ENOMEDIUM; 4195 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4196 return -EIO; 4197 } else if (bs->read_only) { 4198 return -EROFS; 4199 } 4200 4201 if (bs->dirty_bitmap) { 4202 bdrv_reset_dirty(bs, sector_num, nb_sectors); 4203 } 4204 4205 /* Do nothing if disabled. */ 4206 if (!(bs->open_flags & BDRV_O_UNMAP)) { 4207 return 0; 4208 } 4209 4210 if (bs->drv->bdrv_co_discard) { 4211 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4212 } else if (bs->drv->bdrv_aio_discard) { 4213 BlockDriverAIOCB *acb; 4214 CoroutineIOCompletion co = { 4215 .coroutine = qemu_coroutine_self(), 4216 }; 4217 4218 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4219 bdrv_co_io_em_complete, &co); 4220 if (acb == NULL) { 4221 return -EIO; 4222 } else { 4223 qemu_coroutine_yield(); 4224 return co.ret; 4225 } 4226 } else { 4227 return 0; 4228 } 4229 } 4230 4231 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4232 { 4233 Coroutine *co; 4234 RwCo rwco = { 4235 .bs = bs, 4236 .sector_num = sector_num, 4237 .nb_sectors = nb_sectors, 4238 .ret = NOT_DONE, 4239 }; 4240 4241 if (qemu_in_coroutine()) { 4242 /* Fast-path if already in coroutine context */ 4243 bdrv_discard_co_entry(&rwco); 4244 } else { 4245 co = qemu_coroutine_create(bdrv_discard_co_entry); 4246 qemu_coroutine_enter(co, &rwco); 4247 while (rwco.ret == NOT_DONE) { 4248 qemu_aio_wait(); 4249 } 4250 } 4251 4252 return rwco.ret; 4253 } 4254 4255 /**************************************************************/ 4256 /* removable device support */ 4257 4258 /** 4259 * Return TRUE if the media is present 4260 */ 4261 int bdrv_is_inserted(BlockDriverState *bs) 4262 { 4263 BlockDriver *drv = bs->drv; 4264 4265 if (!drv) 4266 return 0; 4267 if (!drv->bdrv_is_inserted) 4268 return 1; 4269 return drv->bdrv_is_inserted(bs); 4270 } 4271 4272 /** 4273 * Return whether the media changed since the last call to this 4274 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4275 */ 4276 int bdrv_media_changed(BlockDriverState *bs) 4277 { 4278 BlockDriver *drv = bs->drv; 4279 4280 if (drv && drv->bdrv_media_changed) { 4281 return drv->bdrv_media_changed(bs); 4282 } 4283 return -ENOTSUP; 4284 } 4285 4286 /** 4287 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4288 */ 4289 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4290 { 4291 BlockDriver *drv = bs->drv; 4292 4293 if (drv && drv->bdrv_eject) { 4294 drv->bdrv_eject(bs, eject_flag); 4295 } 4296 4297 if (bs->device_name[0] != '\0') { 4298 bdrv_emit_qmp_eject_event(bs, eject_flag); 4299 } 4300 } 4301 4302 /** 4303 * Lock or unlock the media (if it is locked, the user won't be able 4304 * to eject it manually). 4305 */ 4306 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4307 { 4308 BlockDriver *drv = bs->drv; 4309 4310 trace_bdrv_lock_medium(bs, locked); 4311 4312 if (drv && drv->bdrv_lock_medium) { 4313 drv->bdrv_lock_medium(bs, locked); 4314 } 4315 } 4316 4317 /* needed for generic scsi interface */ 4318 4319 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4320 { 4321 BlockDriver *drv = bs->drv; 4322 4323 if (drv && drv->bdrv_ioctl) 4324 return drv->bdrv_ioctl(bs, req, buf); 4325 return -ENOTSUP; 4326 } 4327 4328 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4329 unsigned long int req, void *buf, 4330 BlockDriverCompletionFunc *cb, void *opaque) 4331 { 4332 BlockDriver *drv = bs->drv; 4333 4334 if (drv && drv->bdrv_aio_ioctl) 4335 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4336 return NULL; 4337 } 4338 4339 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4340 { 4341 bs->buffer_alignment = align; 4342 } 4343 4344 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4345 { 4346 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4347 } 4348 4349 /* 4350 * Check if all memory in this vector is sector aligned. 4351 */ 4352 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 4353 { 4354 int i; 4355 4356 for (i = 0; i < qiov->niov; i++) { 4357 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) { 4358 return false; 4359 } 4360 } 4361 4362 return true; 4363 } 4364 4365 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity) 4366 { 4367 int64_t bitmap_size; 4368 4369 assert((granularity & (granularity - 1)) == 0); 4370 4371 if (granularity) { 4372 granularity >>= BDRV_SECTOR_BITS; 4373 assert(!bs->dirty_bitmap); 4374 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS); 4375 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1); 4376 } else { 4377 if (bs->dirty_bitmap) { 4378 hbitmap_free(bs->dirty_bitmap); 4379 bs->dirty_bitmap = NULL; 4380 } 4381 } 4382 } 4383 4384 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4385 { 4386 if (bs->dirty_bitmap) { 4387 return hbitmap_get(bs->dirty_bitmap, sector); 4388 } else { 4389 return 0; 4390 } 4391 } 4392 4393 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi) 4394 { 4395 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0); 4396 } 4397 4398 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4399 int nr_sectors) 4400 { 4401 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors); 4402 } 4403 4404 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4405 int nr_sectors) 4406 { 4407 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors); 4408 } 4409 4410 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4411 { 4412 if (bs->dirty_bitmap) { 4413 return hbitmap_count(bs->dirty_bitmap); 4414 } else { 4415 return 0; 4416 } 4417 } 4418 4419 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4420 { 4421 assert(bs->in_use != in_use); 4422 bs->in_use = in_use; 4423 } 4424 4425 int bdrv_in_use(BlockDriverState *bs) 4426 { 4427 return bs->in_use; 4428 } 4429 4430 void bdrv_iostatus_enable(BlockDriverState *bs) 4431 { 4432 bs->iostatus_enabled = true; 4433 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4434 } 4435 4436 /* The I/O status is only enabled if the drive explicitly 4437 * enables it _and_ the VM is configured to stop on errors */ 4438 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4439 { 4440 return (bs->iostatus_enabled && 4441 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4442 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4443 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4444 } 4445 4446 void bdrv_iostatus_disable(BlockDriverState *bs) 4447 { 4448 bs->iostatus_enabled = false; 4449 } 4450 4451 void bdrv_iostatus_reset(BlockDriverState *bs) 4452 { 4453 if (bdrv_iostatus_is_enabled(bs)) { 4454 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4455 if (bs->job) { 4456 block_job_iostatus_reset(bs->job); 4457 } 4458 } 4459 } 4460 4461 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4462 { 4463 assert(bdrv_iostatus_is_enabled(bs)); 4464 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4465 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4466 BLOCK_DEVICE_IO_STATUS_FAILED; 4467 } 4468 } 4469 4470 void 4471 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4472 enum BlockAcctType type) 4473 { 4474 assert(type < BDRV_MAX_IOTYPE); 4475 4476 cookie->bytes = bytes; 4477 cookie->start_time_ns = get_clock(); 4478 cookie->type = type; 4479 } 4480 4481 void 4482 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4483 { 4484 assert(cookie->type < BDRV_MAX_IOTYPE); 4485 4486 bs->nr_bytes[cookie->type] += cookie->bytes; 4487 bs->nr_ops[cookie->type]++; 4488 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4489 } 4490 4491 void bdrv_img_create(const char *filename, const char *fmt, 4492 const char *base_filename, const char *base_fmt, 4493 char *options, uint64_t img_size, int flags, 4494 Error **errp, bool quiet) 4495 { 4496 QEMUOptionParameter *param = NULL, *create_options = NULL; 4497 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4498 BlockDriverState *bs = NULL; 4499 BlockDriver *drv, *proto_drv; 4500 BlockDriver *backing_drv = NULL; 4501 int ret = 0; 4502 4503 /* Find driver and parse its options */ 4504 drv = bdrv_find_format(fmt); 4505 if (!drv) { 4506 error_setg(errp, "Unknown file format '%s'", fmt); 4507 return; 4508 } 4509 4510 proto_drv = bdrv_find_protocol(filename, true); 4511 if (!proto_drv) { 4512 error_setg(errp, "Unknown protocol '%s'", filename); 4513 return; 4514 } 4515 4516 create_options = append_option_parameters(create_options, 4517 drv->create_options); 4518 create_options = append_option_parameters(create_options, 4519 proto_drv->create_options); 4520 4521 /* Create parameter list with default values */ 4522 param = parse_option_parameters("", create_options, param); 4523 4524 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4525 4526 /* Parse -o options */ 4527 if (options) { 4528 param = parse_option_parameters(options, create_options, param); 4529 if (param == NULL) { 4530 error_setg(errp, "Invalid options for file format '%s'.", fmt); 4531 goto out; 4532 } 4533 } 4534 4535 if (base_filename) { 4536 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4537 base_filename)) { 4538 error_setg(errp, "Backing file not supported for file format '%s'", 4539 fmt); 4540 goto out; 4541 } 4542 } 4543 4544 if (base_fmt) { 4545 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4546 error_setg(errp, "Backing file format not supported for file " 4547 "format '%s'", fmt); 4548 goto out; 4549 } 4550 } 4551 4552 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4553 if (backing_file && backing_file->value.s) { 4554 if (!strcmp(filename, backing_file->value.s)) { 4555 error_setg(errp, "Error: Trying to create an image with the " 4556 "same filename as the backing file"); 4557 goto out; 4558 } 4559 } 4560 4561 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4562 if (backing_fmt && backing_fmt->value.s) { 4563 backing_drv = bdrv_find_format(backing_fmt->value.s); 4564 if (!backing_drv) { 4565 error_setg(errp, "Unknown backing file format '%s'", 4566 backing_fmt->value.s); 4567 goto out; 4568 } 4569 } 4570 4571 // The size for the image must always be specified, with one exception: 4572 // If we are using a backing file, we can obtain the size from there 4573 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4574 if (size && size->value.n == -1) { 4575 if (backing_file && backing_file->value.s) { 4576 uint64_t size; 4577 char buf[32]; 4578 int back_flags; 4579 4580 /* backing files always opened read-only */ 4581 back_flags = 4582 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4583 4584 bs = bdrv_new(""); 4585 4586 ret = bdrv_open(bs, backing_file->value.s, NULL, back_flags, 4587 backing_drv); 4588 if (ret < 0) { 4589 error_setg_errno(errp, -ret, "Could not open '%s'", 4590 backing_file->value.s); 4591 goto out; 4592 } 4593 bdrv_get_geometry(bs, &size); 4594 size *= 512; 4595 4596 snprintf(buf, sizeof(buf), "%" PRId64, size); 4597 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4598 } else { 4599 error_setg(errp, "Image creation needs a size parameter"); 4600 goto out; 4601 } 4602 } 4603 4604 if (!quiet) { 4605 printf("Formatting '%s', fmt=%s ", filename, fmt); 4606 print_option_parameters(param); 4607 puts(""); 4608 } 4609 ret = bdrv_create(drv, filename, param); 4610 if (ret < 0) { 4611 if (ret == -ENOTSUP) { 4612 error_setg(errp,"Formatting or formatting option not supported for " 4613 "file format '%s'", fmt); 4614 } else if (ret == -EFBIG) { 4615 const char *cluster_size_hint = ""; 4616 if (get_option_parameter(create_options, BLOCK_OPT_CLUSTER_SIZE)) { 4617 cluster_size_hint = " (try using a larger cluster size)"; 4618 } 4619 error_setg(errp, "The image size is too large for file format '%s'%s", 4620 fmt, cluster_size_hint); 4621 } else { 4622 error_setg(errp, "%s: error while creating %s: %s", filename, fmt, 4623 strerror(-ret)); 4624 } 4625 } 4626 4627 out: 4628 free_option_parameters(create_options); 4629 free_option_parameters(param); 4630 4631 if (bs) { 4632 bdrv_delete(bs); 4633 } 4634 } 4635 4636 AioContext *bdrv_get_aio_context(BlockDriverState *bs) 4637 { 4638 /* Currently BlockDriverState always uses the main loop AioContext */ 4639 return qemu_get_aio_context(); 4640 } 4641 4642 void bdrv_add_before_write_notifier(BlockDriverState *bs, 4643 NotifierWithReturn *notifier) 4644 { 4645 notifier_with_return_list_add(&bs->before_write_notifiers, notifier); 4646 } 4647