xref: /openbmc/qemu/block.c (revision 63186e56)
1 /*
2  * QEMU System Emulator block driver
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "blockjob.h"
30 #include "module.h"
31 #include "qjson.h"
32 #include "sysemu.h"
33 #include "notify.h"
34 #include "qemu-coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu-timer.h"
37 
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47 
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51 
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53 
54 typedef enum {
55     BDRV_REQ_COPY_ON_READ = 0x1,
56     BDRV_REQ_ZERO_WRITE   = 0x2,
57 } BdrvRequestFlags;
58 
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62         BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65         BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67                                          int64_t sector_num, int nb_sectors,
68                                          QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70                                          int64_t sector_num, int nb_sectors,
71                                          QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74     BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77     BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79                                                int64_t sector_num,
80                                                QEMUIOVector *qiov,
81                                                int nb_sectors,
82                                                BlockDriverCompletionFunc *cb,
83                                                void *opaque,
84                                                bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87     int64_t sector_num, int nb_sectors);
88 
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90         bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92         double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94         bool is_write, int64_t *wait);
95 
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97     QTAILQ_HEAD_INITIALIZER(bdrv_states);
98 
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100     QLIST_HEAD_INITIALIZER(bdrv_drivers);
101 
102 /* The device to use for VM snapshots */
103 static BlockDriverState *bs_snapshots;
104 
105 /* If non-zero, use only whitelisted block drivers */
106 static int use_bdrv_whitelist;
107 
108 #ifdef _WIN32
109 static int is_windows_drive_prefix(const char *filename)
110 {
111     return (((filename[0] >= 'a' && filename[0] <= 'z') ||
112              (filename[0] >= 'A' && filename[0] <= 'Z')) &&
113             filename[1] == ':');
114 }
115 
116 int is_windows_drive(const char *filename)
117 {
118     if (is_windows_drive_prefix(filename) &&
119         filename[2] == '\0')
120         return 1;
121     if (strstart(filename, "\\\\.\\", NULL) ||
122         strstart(filename, "//./", NULL))
123         return 1;
124     return 0;
125 }
126 #endif
127 
128 /* throttling disk I/O limits */
129 void bdrv_io_limits_disable(BlockDriverState *bs)
130 {
131     bs->io_limits_enabled = false;
132 
133     while (qemu_co_queue_next(&bs->throttled_reqs));
134 
135     if (bs->block_timer) {
136         qemu_del_timer(bs->block_timer);
137         qemu_free_timer(bs->block_timer);
138         bs->block_timer = NULL;
139     }
140 
141     bs->slice_start = 0;
142     bs->slice_end   = 0;
143     bs->slice_time  = 0;
144     memset(&bs->io_base, 0, sizeof(bs->io_base));
145 }
146 
147 static void bdrv_block_timer(void *opaque)
148 {
149     BlockDriverState *bs = opaque;
150 
151     qemu_co_queue_next(&bs->throttled_reqs);
152 }
153 
154 void bdrv_io_limits_enable(BlockDriverState *bs)
155 {
156     qemu_co_queue_init(&bs->throttled_reqs);
157     bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
158     bs->slice_time  = 5 * BLOCK_IO_SLICE_TIME;
159     bs->slice_start = qemu_get_clock_ns(vm_clock);
160     bs->slice_end   = bs->slice_start + bs->slice_time;
161     memset(&bs->io_base, 0, sizeof(bs->io_base));
162     bs->io_limits_enabled = true;
163 }
164 
165 bool bdrv_io_limits_enabled(BlockDriverState *bs)
166 {
167     BlockIOLimit *io_limits = &bs->io_limits;
168     return io_limits->bps[BLOCK_IO_LIMIT_READ]
169          || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
170          || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
171          || io_limits->iops[BLOCK_IO_LIMIT_READ]
172          || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
173          || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
174 }
175 
176 static void bdrv_io_limits_intercept(BlockDriverState *bs,
177                                      bool is_write, int nb_sectors)
178 {
179     int64_t wait_time = -1;
180 
181     if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
182         qemu_co_queue_wait(&bs->throttled_reqs);
183     }
184 
185     /* In fact, we hope to keep each request's timing, in FIFO mode. The next
186      * throttled requests will not be dequeued until the current request is
187      * allowed to be serviced. So if the current request still exceeds the
188      * limits, it will be inserted to the head. All requests followed it will
189      * be still in throttled_reqs queue.
190      */
191 
192     while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
193         qemu_mod_timer(bs->block_timer,
194                        wait_time + qemu_get_clock_ns(vm_clock));
195         qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
196     }
197 
198     qemu_co_queue_next(&bs->throttled_reqs);
199 }
200 
201 /* check if the path starts with "<protocol>:" */
202 static int path_has_protocol(const char *path)
203 {
204     const char *p;
205 
206 #ifdef _WIN32
207     if (is_windows_drive(path) ||
208         is_windows_drive_prefix(path)) {
209         return 0;
210     }
211     p = path + strcspn(path, ":/\\");
212 #else
213     p = path + strcspn(path, ":/");
214 #endif
215 
216     return *p == ':';
217 }
218 
219 int path_is_absolute(const char *path)
220 {
221 #ifdef _WIN32
222     /* specific case for names like: "\\.\d:" */
223     if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
224         return 1;
225     }
226     return (*path == '/' || *path == '\\');
227 #else
228     return (*path == '/');
229 #endif
230 }
231 
232 /* if filename is absolute, just copy it to dest. Otherwise, build a
233    path to it by considering it is relative to base_path. URL are
234    supported. */
235 void path_combine(char *dest, int dest_size,
236                   const char *base_path,
237                   const char *filename)
238 {
239     const char *p, *p1;
240     int len;
241 
242     if (dest_size <= 0)
243         return;
244     if (path_is_absolute(filename)) {
245         pstrcpy(dest, dest_size, filename);
246     } else {
247         p = strchr(base_path, ':');
248         if (p)
249             p++;
250         else
251             p = base_path;
252         p1 = strrchr(base_path, '/');
253 #ifdef _WIN32
254         {
255             const char *p2;
256             p2 = strrchr(base_path, '\\');
257             if (!p1 || p2 > p1)
258                 p1 = p2;
259         }
260 #endif
261         if (p1)
262             p1++;
263         else
264             p1 = base_path;
265         if (p1 > p)
266             p = p1;
267         len = p - base_path;
268         if (len > dest_size - 1)
269             len = dest_size - 1;
270         memcpy(dest, base_path, len);
271         dest[len] = '\0';
272         pstrcat(dest, dest_size, filename);
273     }
274 }
275 
276 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
277 {
278     if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
279         pstrcpy(dest, sz, bs->backing_file);
280     } else {
281         path_combine(dest, sz, bs->filename, bs->backing_file);
282     }
283 }
284 
285 void bdrv_register(BlockDriver *bdrv)
286 {
287     /* Block drivers without coroutine functions need emulation */
288     if (!bdrv->bdrv_co_readv) {
289         bdrv->bdrv_co_readv = bdrv_co_readv_em;
290         bdrv->bdrv_co_writev = bdrv_co_writev_em;
291 
292         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
293          * the block driver lacks aio we need to emulate that too.
294          */
295         if (!bdrv->bdrv_aio_readv) {
296             /* add AIO emulation layer */
297             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
298             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
299         }
300     }
301 
302     QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
303 }
304 
305 /* create a new block device (by default it is empty) */
306 BlockDriverState *bdrv_new(const char *device_name)
307 {
308     BlockDriverState *bs;
309 
310     bs = g_malloc0(sizeof(BlockDriverState));
311     pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
312     if (device_name[0] != '\0') {
313         QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
314     }
315     bdrv_iostatus_disable(bs);
316     notifier_list_init(&bs->close_notifiers);
317 
318     return bs;
319 }
320 
321 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
322 {
323     notifier_list_add(&bs->close_notifiers, notify);
324 }
325 
326 BlockDriver *bdrv_find_format(const char *format_name)
327 {
328     BlockDriver *drv1;
329     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
330         if (!strcmp(drv1->format_name, format_name)) {
331             return drv1;
332         }
333     }
334     return NULL;
335 }
336 
337 static int bdrv_is_whitelisted(BlockDriver *drv)
338 {
339     static const char *whitelist[] = {
340         CONFIG_BDRV_WHITELIST
341     };
342     const char **p;
343 
344     if (!whitelist[0])
345         return 1;               /* no whitelist, anything goes */
346 
347     for (p = whitelist; *p; p++) {
348         if (!strcmp(drv->format_name, *p)) {
349             return 1;
350         }
351     }
352     return 0;
353 }
354 
355 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
356 {
357     BlockDriver *drv = bdrv_find_format(format_name);
358     return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
359 }
360 
361 typedef struct CreateCo {
362     BlockDriver *drv;
363     char *filename;
364     QEMUOptionParameter *options;
365     int ret;
366 } CreateCo;
367 
368 static void coroutine_fn bdrv_create_co_entry(void *opaque)
369 {
370     CreateCo *cco = opaque;
371     assert(cco->drv);
372 
373     cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
374 }
375 
376 int bdrv_create(BlockDriver *drv, const char* filename,
377     QEMUOptionParameter *options)
378 {
379     int ret;
380 
381     Coroutine *co;
382     CreateCo cco = {
383         .drv = drv,
384         .filename = g_strdup(filename),
385         .options = options,
386         .ret = NOT_DONE,
387     };
388 
389     if (!drv->bdrv_create) {
390         return -ENOTSUP;
391     }
392 
393     if (qemu_in_coroutine()) {
394         /* Fast-path if already in coroutine context */
395         bdrv_create_co_entry(&cco);
396     } else {
397         co = qemu_coroutine_create(bdrv_create_co_entry);
398         qemu_coroutine_enter(co, &cco);
399         while (cco.ret == NOT_DONE) {
400             qemu_aio_wait();
401         }
402     }
403 
404     ret = cco.ret;
405     g_free(cco.filename);
406 
407     return ret;
408 }
409 
410 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
411 {
412     BlockDriver *drv;
413 
414     drv = bdrv_find_protocol(filename);
415     if (drv == NULL) {
416         return -ENOENT;
417     }
418 
419     return bdrv_create(drv, filename, options);
420 }
421 
422 /*
423  * Create a uniquely-named empty temporary file.
424  * Return 0 upon success, otherwise a negative errno value.
425  */
426 int get_tmp_filename(char *filename, int size)
427 {
428 #ifdef _WIN32
429     char temp_dir[MAX_PATH];
430     /* GetTempFileName requires that its output buffer (4th param)
431        have length MAX_PATH or greater.  */
432     assert(size >= MAX_PATH);
433     return (GetTempPath(MAX_PATH, temp_dir)
434             && GetTempFileName(temp_dir, "qem", 0, filename)
435             ? 0 : -GetLastError());
436 #else
437     int fd;
438     const char *tmpdir;
439     tmpdir = getenv("TMPDIR");
440     if (!tmpdir)
441         tmpdir = "/tmp";
442     if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
443         return -EOVERFLOW;
444     }
445     fd = mkstemp(filename);
446     if (fd < 0) {
447         return -errno;
448     }
449     if (close(fd) != 0) {
450         unlink(filename);
451         return -errno;
452     }
453     return 0;
454 #endif
455 }
456 
457 /*
458  * Detect host devices. By convention, /dev/cdrom[N] is always
459  * recognized as a host CDROM.
460  */
461 static BlockDriver *find_hdev_driver(const char *filename)
462 {
463     int score_max = 0, score;
464     BlockDriver *drv = NULL, *d;
465 
466     QLIST_FOREACH(d, &bdrv_drivers, list) {
467         if (d->bdrv_probe_device) {
468             score = d->bdrv_probe_device(filename);
469             if (score > score_max) {
470                 score_max = score;
471                 drv = d;
472             }
473         }
474     }
475 
476     return drv;
477 }
478 
479 BlockDriver *bdrv_find_protocol(const char *filename)
480 {
481     BlockDriver *drv1;
482     char protocol[128];
483     int len;
484     const char *p;
485 
486     /* TODO Drivers without bdrv_file_open must be specified explicitly */
487 
488     /*
489      * XXX(hch): we really should not let host device detection
490      * override an explicit protocol specification, but moving this
491      * later breaks access to device names with colons in them.
492      * Thanks to the brain-dead persistent naming schemes on udev-
493      * based Linux systems those actually are quite common.
494      */
495     drv1 = find_hdev_driver(filename);
496     if (drv1) {
497         return drv1;
498     }
499 
500     if (!path_has_protocol(filename)) {
501         return bdrv_find_format("file");
502     }
503     p = strchr(filename, ':');
504     assert(p != NULL);
505     len = p - filename;
506     if (len > sizeof(protocol) - 1)
507         len = sizeof(protocol) - 1;
508     memcpy(protocol, filename, len);
509     protocol[len] = '\0';
510     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
511         if (drv1->protocol_name &&
512             !strcmp(drv1->protocol_name, protocol)) {
513             return drv1;
514         }
515     }
516     return NULL;
517 }
518 
519 static int find_image_format(const char *filename, BlockDriver **pdrv)
520 {
521     int ret, score, score_max;
522     BlockDriver *drv1, *drv;
523     uint8_t buf[2048];
524     BlockDriverState *bs;
525 
526     ret = bdrv_file_open(&bs, filename, 0);
527     if (ret < 0) {
528         *pdrv = NULL;
529         return ret;
530     }
531 
532     /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
533     if (bs->sg || !bdrv_is_inserted(bs)) {
534         bdrv_delete(bs);
535         drv = bdrv_find_format("raw");
536         if (!drv) {
537             ret = -ENOENT;
538         }
539         *pdrv = drv;
540         return ret;
541     }
542 
543     ret = bdrv_pread(bs, 0, buf, sizeof(buf));
544     bdrv_delete(bs);
545     if (ret < 0) {
546         *pdrv = NULL;
547         return ret;
548     }
549 
550     score_max = 0;
551     drv = NULL;
552     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
553         if (drv1->bdrv_probe) {
554             score = drv1->bdrv_probe(buf, ret, filename);
555             if (score > score_max) {
556                 score_max = score;
557                 drv = drv1;
558             }
559         }
560     }
561     if (!drv) {
562         ret = -ENOENT;
563     }
564     *pdrv = drv;
565     return ret;
566 }
567 
568 /**
569  * Set the current 'total_sectors' value
570  */
571 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
572 {
573     BlockDriver *drv = bs->drv;
574 
575     /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
576     if (bs->sg)
577         return 0;
578 
579     /* query actual device if possible, otherwise just trust the hint */
580     if (drv->bdrv_getlength) {
581         int64_t length = drv->bdrv_getlength(bs);
582         if (length < 0) {
583             return length;
584         }
585         hint = length >> BDRV_SECTOR_BITS;
586     }
587 
588     bs->total_sectors = hint;
589     return 0;
590 }
591 
592 /**
593  * Set open flags for a given cache mode
594  *
595  * Return 0 on success, -1 if the cache mode was invalid.
596  */
597 int bdrv_parse_cache_flags(const char *mode, int *flags)
598 {
599     *flags &= ~BDRV_O_CACHE_MASK;
600 
601     if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
602         *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
603     } else if (!strcmp(mode, "directsync")) {
604         *flags |= BDRV_O_NOCACHE;
605     } else if (!strcmp(mode, "writeback")) {
606         *flags |= BDRV_O_CACHE_WB;
607     } else if (!strcmp(mode, "unsafe")) {
608         *flags |= BDRV_O_CACHE_WB;
609         *flags |= BDRV_O_NO_FLUSH;
610     } else if (!strcmp(mode, "writethrough")) {
611         /* this is the default */
612     } else {
613         return -1;
614     }
615 
616     return 0;
617 }
618 
619 /**
620  * The copy-on-read flag is actually a reference count so multiple users may
621  * use the feature without worrying about clobbering its previous state.
622  * Copy-on-read stays enabled until all users have called to disable it.
623  */
624 void bdrv_enable_copy_on_read(BlockDriverState *bs)
625 {
626     bs->copy_on_read++;
627 }
628 
629 void bdrv_disable_copy_on_read(BlockDriverState *bs)
630 {
631     assert(bs->copy_on_read > 0);
632     bs->copy_on_read--;
633 }
634 
635 /*
636  * Common part for opening disk images and files
637  */
638 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
639     int flags, BlockDriver *drv)
640 {
641     int ret, open_flags;
642 
643     assert(drv != NULL);
644     assert(bs->file == NULL);
645 
646     trace_bdrv_open_common(bs, filename, flags, drv->format_name);
647 
648     bs->open_flags = flags;
649     bs->buffer_alignment = 512;
650 
651     assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
652     if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
653         bdrv_enable_copy_on_read(bs);
654     }
655 
656     pstrcpy(bs->filename, sizeof(bs->filename), filename);
657 
658     if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
659         return -ENOTSUP;
660     }
661 
662     bs->drv = drv;
663     bs->opaque = g_malloc0(drv->instance_size);
664 
665     bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
666     open_flags = flags | BDRV_O_CACHE_WB;
667 
668     /*
669      * Clear flags that are internal to the block layer before opening the
670      * image.
671      */
672     open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
673 
674     /*
675      * Snapshots should be writable.
676      */
677     if (bs->is_temporary) {
678         open_flags |= BDRV_O_RDWR;
679     }
680 
681     bs->read_only = !(open_flags & BDRV_O_RDWR);
682 
683     /* Open the image, either directly or using a protocol */
684     if (drv->bdrv_file_open) {
685         ret = drv->bdrv_file_open(bs, filename, open_flags);
686     } else {
687         ret = bdrv_file_open(&bs->file, filename, open_flags);
688         if (ret >= 0) {
689             ret = drv->bdrv_open(bs, open_flags);
690         }
691     }
692 
693     if (ret < 0) {
694         goto free_and_fail;
695     }
696 
697     ret = refresh_total_sectors(bs, bs->total_sectors);
698     if (ret < 0) {
699         goto free_and_fail;
700     }
701 
702 #ifndef _WIN32
703     if (bs->is_temporary) {
704         unlink(filename);
705     }
706 #endif
707     return 0;
708 
709 free_and_fail:
710     if (bs->file) {
711         bdrv_delete(bs->file);
712         bs->file = NULL;
713     }
714     g_free(bs->opaque);
715     bs->opaque = NULL;
716     bs->drv = NULL;
717     return ret;
718 }
719 
720 /*
721  * Opens a file using a protocol (file, host_device, nbd, ...)
722  */
723 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
724 {
725     BlockDriverState *bs;
726     BlockDriver *drv;
727     int ret;
728 
729     drv = bdrv_find_protocol(filename);
730     if (!drv) {
731         return -ENOENT;
732     }
733 
734     bs = bdrv_new("");
735     ret = bdrv_open_common(bs, filename, flags, drv);
736     if (ret < 0) {
737         bdrv_delete(bs);
738         return ret;
739     }
740     bs->growable = 1;
741     *pbs = bs;
742     return 0;
743 }
744 
745 /*
746  * Opens a disk image (raw, qcow2, vmdk, ...)
747  */
748 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
749               BlockDriver *drv)
750 {
751     int ret;
752     char tmp_filename[PATH_MAX];
753 
754     if (flags & BDRV_O_SNAPSHOT) {
755         BlockDriverState *bs1;
756         int64_t total_size;
757         int is_protocol = 0;
758         BlockDriver *bdrv_qcow2;
759         QEMUOptionParameter *options;
760         char backing_filename[PATH_MAX];
761 
762         /* if snapshot, we create a temporary backing file and open it
763            instead of opening 'filename' directly */
764 
765         /* if there is a backing file, use it */
766         bs1 = bdrv_new("");
767         ret = bdrv_open(bs1, filename, 0, drv);
768         if (ret < 0) {
769             bdrv_delete(bs1);
770             return ret;
771         }
772         total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
773 
774         if (bs1->drv && bs1->drv->protocol_name)
775             is_protocol = 1;
776 
777         bdrv_delete(bs1);
778 
779         ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
780         if (ret < 0) {
781             return ret;
782         }
783 
784         /* Real path is meaningless for protocols */
785         if (is_protocol)
786             snprintf(backing_filename, sizeof(backing_filename),
787                      "%s", filename);
788         else if (!realpath(filename, backing_filename))
789             return -errno;
790 
791         bdrv_qcow2 = bdrv_find_format("qcow2");
792         options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
793 
794         set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
795         set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
796         if (drv) {
797             set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
798                 drv->format_name);
799         }
800 
801         ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
802         free_option_parameters(options);
803         if (ret < 0) {
804             return ret;
805         }
806 
807         filename = tmp_filename;
808         drv = bdrv_qcow2;
809         bs->is_temporary = 1;
810     }
811 
812     /* Find the right image format driver */
813     if (!drv) {
814         ret = find_image_format(filename, &drv);
815     }
816 
817     if (!drv) {
818         goto unlink_and_fail;
819     }
820 
821     if (flags & BDRV_O_RDWR) {
822         flags |= BDRV_O_ALLOW_RDWR;
823     }
824 
825     /* Open the image */
826     ret = bdrv_open_common(bs, filename, flags, drv);
827     if (ret < 0) {
828         goto unlink_and_fail;
829     }
830 
831     /* If there is a backing file, use it */
832     if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
833         char backing_filename[PATH_MAX];
834         int back_flags;
835         BlockDriver *back_drv = NULL;
836 
837         bs->backing_hd = bdrv_new("");
838         bdrv_get_full_backing_filename(bs, backing_filename,
839                                        sizeof(backing_filename));
840 
841         if (bs->backing_format[0] != '\0') {
842             back_drv = bdrv_find_format(bs->backing_format);
843         }
844 
845         /* backing files always opened read-only */
846         back_flags =
847             flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
848 
849         ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
850         if (ret < 0) {
851             bdrv_close(bs);
852             return ret;
853         }
854     }
855 
856     if (!bdrv_key_required(bs)) {
857         bdrv_dev_change_media_cb(bs, true);
858     }
859 
860     /* throttling disk I/O limits */
861     if (bs->io_limits_enabled) {
862         bdrv_io_limits_enable(bs);
863     }
864 
865     return 0;
866 
867 unlink_and_fail:
868     if (bs->is_temporary) {
869         unlink(filename);
870     }
871     return ret;
872 }
873 
874 typedef struct BlockReopenQueueEntry {
875      bool prepared;
876      BDRVReopenState state;
877      QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
878 } BlockReopenQueueEntry;
879 
880 /*
881  * Adds a BlockDriverState to a simple queue for an atomic, transactional
882  * reopen of multiple devices.
883  *
884  * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
885  * already performed, or alternatively may be NULL a new BlockReopenQueue will
886  * be created and initialized. This newly created BlockReopenQueue should be
887  * passed back in for subsequent calls that are intended to be of the same
888  * atomic 'set'.
889  *
890  * bs is the BlockDriverState to add to the reopen queue.
891  *
892  * flags contains the open flags for the associated bs
893  *
894  * returns a pointer to bs_queue, which is either the newly allocated
895  * bs_queue, or the existing bs_queue being used.
896  *
897  */
898 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
899                                     BlockDriverState *bs, int flags)
900 {
901     assert(bs != NULL);
902 
903     BlockReopenQueueEntry *bs_entry;
904     if (bs_queue == NULL) {
905         bs_queue = g_new0(BlockReopenQueue, 1);
906         QSIMPLEQ_INIT(bs_queue);
907     }
908 
909     if (bs->file) {
910         bdrv_reopen_queue(bs_queue, bs->file, flags);
911     }
912 
913     bs_entry = g_new0(BlockReopenQueueEntry, 1);
914     QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
915 
916     bs_entry->state.bs = bs;
917     bs_entry->state.flags = flags;
918 
919     return bs_queue;
920 }
921 
922 /*
923  * Reopen multiple BlockDriverStates atomically & transactionally.
924  *
925  * The queue passed in (bs_queue) must have been built up previous
926  * via bdrv_reopen_queue().
927  *
928  * Reopens all BDS specified in the queue, with the appropriate
929  * flags.  All devices are prepared for reopen, and failure of any
930  * device will cause all device changes to be abandonded, and intermediate
931  * data cleaned up.
932  *
933  * If all devices prepare successfully, then the changes are committed
934  * to all devices.
935  *
936  */
937 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
938 {
939     int ret = -1;
940     BlockReopenQueueEntry *bs_entry, *next;
941     Error *local_err = NULL;
942 
943     assert(bs_queue != NULL);
944 
945     bdrv_drain_all();
946 
947     QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
948         if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
949             error_propagate(errp, local_err);
950             goto cleanup;
951         }
952         bs_entry->prepared = true;
953     }
954 
955     /* If we reach this point, we have success and just need to apply the
956      * changes
957      */
958     QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
959         bdrv_reopen_commit(&bs_entry->state);
960     }
961 
962     ret = 0;
963 
964 cleanup:
965     QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
966         if (ret && bs_entry->prepared) {
967             bdrv_reopen_abort(&bs_entry->state);
968         }
969         g_free(bs_entry);
970     }
971     g_free(bs_queue);
972     return ret;
973 }
974 
975 
976 /* Reopen a single BlockDriverState with the specified flags. */
977 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
978 {
979     int ret = -1;
980     Error *local_err = NULL;
981     BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
982 
983     ret = bdrv_reopen_multiple(queue, &local_err);
984     if (local_err != NULL) {
985         error_propagate(errp, local_err);
986     }
987     return ret;
988 }
989 
990 
991 /*
992  * Prepares a BlockDriverState for reopen. All changes are staged in the
993  * 'opaque' field of the BDRVReopenState, which is used and allocated by
994  * the block driver layer .bdrv_reopen_prepare()
995  *
996  * bs is the BlockDriverState to reopen
997  * flags are the new open flags
998  * queue is the reopen queue
999  *
1000  * Returns 0 on success, non-zero on error.  On error errp will be set
1001  * as well.
1002  *
1003  * On failure, bdrv_reopen_abort() will be called to clean up any data.
1004  * It is the responsibility of the caller to then call the abort() or
1005  * commit() for any other BDS that have been left in a prepare() state
1006  *
1007  */
1008 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1009                         Error **errp)
1010 {
1011     int ret = -1;
1012     Error *local_err = NULL;
1013     BlockDriver *drv;
1014 
1015     assert(reopen_state != NULL);
1016     assert(reopen_state->bs->drv != NULL);
1017     drv = reopen_state->bs->drv;
1018 
1019     /* if we are to stay read-only, do not allow permission change
1020      * to r/w */
1021     if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1022         reopen_state->flags & BDRV_O_RDWR) {
1023         error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1024                   reopen_state->bs->device_name);
1025         goto error;
1026     }
1027 
1028 
1029     ret = bdrv_flush(reopen_state->bs);
1030     if (ret) {
1031         error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1032                   strerror(-ret));
1033         goto error;
1034     }
1035 
1036     if (drv->bdrv_reopen_prepare) {
1037         ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1038         if (ret) {
1039             if (local_err != NULL) {
1040                 error_propagate(errp, local_err);
1041             } else {
1042                 error_set(errp, QERR_OPEN_FILE_FAILED,
1043                           reopen_state->bs->filename);
1044             }
1045             goto error;
1046         }
1047     } else {
1048         /* It is currently mandatory to have a bdrv_reopen_prepare()
1049          * handler for each supported drv. */
1050         error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1051                   drv->format_name, reopen_state->bs->device_name,
1052                  "reopening of file");
1053         ret = -1;
1054         goto error;
1055     }
1056 
1057     ret = 0;
1058 
1059 error:
1060     return ret;
1061 }
1062 
1063 /*
1064  * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1065  * makes them final by swapping the staging BlockDriverState contents into
1066  * the active BlockDriverState contents.
1067  */
1068 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1069 {
1070     BlockDriver *drv;
1071 
1072     assert(reopen_state != NULL);
1073     drv = reopen_state->bs->drv;
1074     assert(drv != NULL);
1075 
1076     /* If there are any driver level actions to take */
1077     if (drv->bdrv_reopen_commit) {
1078         drv->bdrv_reopen_commit(reopen_state);
1079     }
1080 
1081     /* set BDS specific flags now */
1082     reopen_state->bs->open_flags         = reopen_state->flags;
1083     reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1084                                               BDRV_O_CACHE_WB);
1085     reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1086 }
1087 
1088 /*
1089  * Abort the reopen, and delete and free the staged changes in
1090  * reopen_state
1091  */
1092 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1093 {
1094     BlockDriver *drv;
1095 
1096     assert(reopen_state != NULL);
1097     drv = reopen_state->bs->drv;
1098     assert(drv != NULL);
1099 
1100     if (drv->bdrv_reopen_abort) {
1101         drv->bdrv_reopen_abort(reopen_state);
1102     }
1103 }
1104 
1105 
1106 void bdrv_close(BlockDriverState *bs)
1107 {
1108     bdrv_flush(bs);
1109     if (bs->job) {
1110         block_job_cancel_sync(bs->job);
1111     }
1112     bdrv_drain_all();
1113     notifier_list_notify(&bs->close_notifiers, bs);
1114 
1115     if (bs->drv) {
1116         if (bs == bs_snapshots) {
1117             bs_snapshots = NULL;
1118         }
1119         if (bs->backing_hd) {
1120             bdrv_delete(bs->backing_hd);
1121             bs->backing_hd = NULL;
1122         }
1123         bs->drv->bdrv_close(bs);
1124         g_free(bs->opaque);
1125 #ifdef _WIN32
1126         if (bs->is_temporary) {
1127             unlink(bs->filename);
1128         }
1129 #endif
1130         bs->opaque = NULL;
1131         bs->drv = NULL;
1132         bs->copy_on_read = 0;
1133         bs->backing_file[0] = '\0';
1134         bs->backing_format[0] = '\0';
1135         bs->total_sectors = 0;
1136         bs->encrypted = 0;
1137         bs->valid_key = 0;
1138         bs->sg = 0;
1139         bs->growable = 0;
1140 
1141         if (bs->file != NULL) {
1142             bdrv_delete(bs->file);
1143             bs->file = NULL;
1144         }
1145     }
1146 
1147     bdrv_dev_change_media_cb(bs, false);
1148 
1149     /*throttling disk I/O limits*/
1150     if (bs->io_limits_enabled) {
1151         bdrv_io_limits_disable(bs);
1152     }
1153 }
1154 
1155 void bdrv_close_all(void)
1156 {
1157     BlockDriverState *bs;
1158 
1159     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1160         bdrv_close(bs);
1161     }
1162 }
1163 
1164 /*
1165  * Wait for pending requests to complete across all BlockDriverStates
1166  *
1167  * This function does not flush data to disk, use bdrv_flush_all() for that
1168  * after calling this function.
1169  *
1170  * Note that completion of an asynchronous I/O operation can trigger any
1171  * number of other I/O operations on other devices---for example a coroutine
1172  * can be arbitrarily complex and a constant flow of I/O can come until the
1173  * coroutine is complete.  Because of this, it is not possible to have a
1174  * function to drain a single device's I/O queue.
1175  */
1176 void bdrv_drain_all(void)
1177 {
1178     BlockDriverState *bs;
1179     bool busy;
1180 
1181     do {
1182         busy = qemu_aio_wait();
1183 
1184         /* FIXME: We do not have timer support here, so this is effectively
1185          * a busy wait.
1186          */
1187         QTAILQ_FOREACH(bs, &bdrv_states, list) {
1188             if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1189                 qemu_co_queue_restart_all(&bs->throttled_reqs);
1190                 busy = true;
1191             }
1192         }
1193     } while (busy);
1194 
1195     /* If requests are still pending there is a bug somewhere */
1196     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1197         assert(QLIST_EMPTY(&bs->tracked_requests));
1198         assert(qemu_co_queue_empty(&bs->throttled_reqs));
1199     }
1200 }
1201 
1202 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1203    Also, NULL terminate the device_name to prevent double remove */
1204 void bdrv_make_anon(BlockDriverState *bs)
1205 {
1206     if (bs->device_name[0] != '\0') {
1207         QTAILQ_REMOVE(&bdrv_states, bs, list);
1208     }
1209     bs->device_name[0] = '\0';
1210 }
1211 
1212 static void bdrv_rebind(BlockDriverState *bs)
1213 {
1214     if (bs->drv && bs->drv->bdrv_rebind) {
1215         bs->drv->bdrv_rebind(bs);
1216     }
1217 }
1218 
1219 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1220                                      BlockDriverState *bs_src)
1221 {
1222     /* move some fields that need to stay attached to the device */
1223     bs_dest->open_flags         = bs_src->open_flags;
1224 
1225     /* dev info */
1226     bs_dest->dev_ops            = bs_src->dev_ops;
1227     bs_dest->dev_opaque         = bs_src->dev_opaque;
1228     bs_dest->dev                = bs_src->dev;
1229     bs_dest->buffer_alignment   = bs_src->buffer_alignment;
1230     bs_dest->copy_on_read       = bs_src->copy_on_read;
1231 
1232     bs_dest->enable_write_cache = bs_src->enable_write_cache;
1233 
1234     /* i/o timing parameters */
1235     bs_dest->slice_time         = bs_src->slice_time;
1236     bs_dest->slice_start        = bs_src->slice_start;
1237     bs_dest->slice_end          = bs_src->slice_end;
1238     bs_dest->io_limits          = bs_src->io_limits;
1239     bs_dest->io_base            = bs_src->io_base;
1240     bs_dest->throttled_reqs     = bs_src->throttled_reqs;
1241     bs_dest->block_timer        = bs_src->block_timer;
1242     bs_dest->io_limits_enabled  = bs_src->io_limits_enabled;
1243 
1244     /* r/w error */
1245     bs_dest->on_read_error      = bs_src->on_read_error;
1246     bs_dest->on_write_error     = bs_src->on_write_error;
1247 
1248     /* i/o status */
1249     bs_dest->iostatus_enabled   = bs_src->iostatus_enabled;
1250     bs_dest->iostatus           = bs_src->iostatus;
1251 
1252     /* dirty bitmap */
1253     bs_dest->dirty_count        = bs_src->dirty_count;
1254     bs_dest->dirty_bitmap       = bs_src->dirty_bitmap;
1255 
1256     /* job */
1257     bs_dest->in_use             = bs_src->in_use;
1258     bs_dest->job                = bs_src->job;
1259 
1260     /* keep the same entry in bdrv_states */
1261     pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1262             bs_src->device_name);
1263     bs_dest->list = bs_src->list;
1264 }
1265 
1266 /*
1267  * Swap bs contents for two image chains while they are live,
1268  * while keeping required fields on the BlockDriverState that is
1269  * actually attached to a device.
1270  *
1271  * This will modify the BlockDriverState fields, and swap contents
1272  * between bs_new and bs_old. Both bs_new and bs_old are modified.
1273  *
1274  * bs_new is required to be anonymous.
1275  *
1276  * This function does not create any image files.
1277  */
1278 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1279 {
1280     BlockDriverState tmp;
1281 
1282     /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1283     assert(bs_new->device_name[0] == '\0');
1284     assert(bs_new->dirty_bitmap == NULL);
1285     assert(bs_new->job == NULL);
1286     assert(bs_new->dev == NULL);
1287     assert(bs_new->in_use == 0);
1288     assert(bs_new->io_limits_enabled == false);
1289     assert(bs_new->block_timer == NULL);
1290 
1291     tmp = *bs_new;
1292     *bs_new = *bs_old;
1293     *bs_old = tmp;
1294 
1295     /* there are some fields that should not be swapped, move them back */
1296     bdrv_move_feature_fields(&tmp, bs_old);
1297     bdrv_move_feature_fields(bs_old, bs_new);
1298     bdrv_move_feature_fields(bs_new, &tmp);
1299 
1300     /* bs_new shouldn't be in bdrv_states even after the swap!  */
1301     assert(bs_new->device_name[0] == '\0');
1302 
1303     /* Check a few fields that should remain attached to the device */
1304     assert(bs_new->dev == NULL);
1305     assert(bs_new->job == NULL);
1306     assert(bs_new->in_use == 0);
1307     assert(bs_new->io_limits_enabled == false);
1308     assert(bs_new->block_timer == NULL);
1309 
1310     bdrv_rebind(bs_new);
1311     bdrv_rebind(bs_old);
1312 }
1313 
1314 /*
1315  * Add new bs contents at the top of an image chain while the chain is
1316  * live, while keeping required fields on the top layer.
1317  *
1318  * This will modify the BlockDriverState fields, and swap contents
1319  * between bs_new and bs_top. Both bs_new and bs_top are modified.
1320  *
1321  * bs_new is required to be anonymous.
1322  *
1323  * This function does not create any image files.
1324  */
1325 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1326 {
1327     bdrv_swap(bs_new, bs_top);
1328 
1329     /* The contents of 'tmp' will become bs_top, as we are
1330      * swapping bs_new and bs_top contents. */
1331     bs_top->backing_hd = bs_new;
1332     bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1333     pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1334             bs_new->filename);
1335     pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1336             bs_new->drv ? bs_new->drv->format_name : "");
1337 }
1338 
1339 void bdrv_delete(BlockDriverState *bs)
1340 {
1341     assert(!bs->dev);
1342     assert(!bs->job);
1343     assert(!bs->in_use);
1344 
1345     /* remove from list, if necessary */
1346     bdrv_make_anon(bs);
1347 
1348     bdrv_close(bs);
1349 
1350     assert(bs != bs_snapshots);
1351     g_free(bs);
1352 }
1353 
1354 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1355 /* TODO change to DeviceState *dev when all users are qdevified */
1356 {
1357     if (bs->dev) {
1358         return -EBUSY;
1359     }
1360     bs->dev = dev;
1361     bdrv_iostatus_reset(bs);
1362     return 0;
1363 }
1364 
1365 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1366 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1367 {
1368     if (bdrv_attach_dev(bs, dev) < 0) {
1369         abort();
1370     }
1371 }
1372 
1373 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1374 /* TODO change to DeviceState *dev when all users are qdevified */
1375 {
1376     assert(bs->dev == dev);
1377     bs->dev = NULL;
1378     bs->dev_ops = NULL;
1379     bs->dev_opaque = NULL;
1380     bs->buffer_alignment = 512;
1381 }
1382 
1383 /* TODO change to return DeviceState * when all users are qdevified */
1384 void *bdrv_get_attached_dev(BlockDriverState *bs)
1385 {
1386     return bs->dev;
1387 }
1388 
1389 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1390                       void *opaque)
1391 {
1392     bs->dev_ops = ops;
1393     bs->dev_opaque = opaque;
1394     if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1395         bs_snapshots = NULL;
1396     }
1397 }
1398 
1399 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1400                                enum MonitorEvent ev,
1401                                BlockErrorAction action, bool is_read)
1402 {
1403     QObject *data;
1404     const char *action_str;
1405 
1406     switch (action) {
1407     case BDRV_ACTION_REPORT:
1408         action_str = "report";
1409         break;
1410     case BDRV_ACTION_IGNORE:
1411         action_str = "ignore";
1412         break;
1413     case BDRV_ACTION_STOP:
1414         action_str = "stop";
1415         break;
1416     default:
1417         abort();
1418     }
1419 
1420     data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1421                               bdrv->device_name,
1422                               action_str,
1423                               is_read ? "read" : "write");
1424     monitor_protocol_event(ev, data);
1425 
1426     qobject_decref(data);
1427 }
1428 
1429 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1430 {
1431     QObject *data;
1432 
1433     data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1434                               bdrv_get_device_name(bs), ejected);
1435     monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1436 
1437     qobject_decref(data);
1438 }
1439 
1440 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1441 {
1442     if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1443         bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1444         bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1445         if (tray_was_closed) {
1446             /* tray open */
1447             bdrv_emit_qmp_eject_event(bs, true);
1448         }
1449         if (load) {
1450             /* tray close */
1451             bdrv_emit_qmp_eject_event(bs, false);
1452         }
1453     }
1454 }
1455 
1456 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1457 {
1458     return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1459 }
1460 
1461 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1462 {
1463     if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1464         bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1465     }
1466 }
1467 
1468 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1469 {
1470     if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1471         return bs->dev_ops->is_tray_open(bs->dev_opaque);
1472     }
1473     return false;
1474 }
1475 
1476 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1477 {
1478     if (bs->dev_ops && bs->dev_ops->resize_cb) {
1479         bs->dev_ops->resize_cb(bs->dev_opaque);
1480     }
1481 }
1482 
1483 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1484 {
1485     if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1486         return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1487     }
1488     return false;
1489 }
1490 
1491 /*
1492  * Run consistency checks on an image
1493  *
1494  * Returns 0 if the check could be completed (it doesn't mean that the image is
1495  * free of errors) or -errno when an internal error occurred. The results of the
1496  * check are stored in res.
1497  */
1498 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1499 {
1500     if (bs->drv->bdrv_check == NULL) {
1501         return -ENOTSUP;
1502     }
1503 
1504     memset(res, 0, sizeof(*res));
1505     return bs->drv->bdrv_check(bs, res, fix);
1506 }
1507 
1508 #define COMMIT_BUF_SECTORS 2048
1509 
1510 /* commit COW file into the raw image */
1511 int bdrv_commit(BlockDriverState *bs)
1512 {
1513     BlockDriver *drv = bs->drv;
1514     int64_t sector, total_sectors;
1515     int n, ro, open_flags;
1516     int ret = 0;
1517     uint8_t *buf;
1518     char filename[PATH_MAX];
1519 
1520     if (!drv)
1521         return -ENOMEDIUM;
1522 
1523     if (!bs->backing_hd) {
1524         return -ENOTSUP;
1525     }
1526 
1527     if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1528         return -EBUSY;
1529     }
1530 
1531     ro = bs->backing_hd->read_only;
1532     /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1533     pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1534     open_flags =  bs->backing_hd->open_flags;
1535 
1536     if (ro) {
1537         if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1538             return -EACCES;
1539         }
1540     }
1541 
1542     total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1543     buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1544 
1545     for (sector = 0; sector < total_sectors; sector += n) {
1546         if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1547 
1548             if (bdrv_read(bs, sector, buf, n) != 0) {
1549                 ret = -EIO;
1550                 goto ro_cleanup;
1551             }
1552 
1553             if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1554                 ret = -EIO;
1555                 goto ro_cleanup;
1556             }
1557         }
1558     }
1559 
1560     if (drv->bdrv_make_empty) {
1561         ret = drv->bdrv_make_empty(bs);
1562         bdrv_flush(bs);
1563     }
1564 
1565     /*
1566      * Make sure all data we wrote to the backing device is actually
1567      * stable on disk.
1568      */
1569     if (bs->backing_hd)
1570         bdrv_flush(bs->backing_hd);
1571 
1572 ro_cleanup:
1573     g_free(buf);
1574 
1575     if (ro) {
1576         /* ignoring error return here */
1577         bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1578     }
1579 
1580     return ret;
1581 }
1582 
1583 int bdrv_commit_all(void)
1584 {
1585     BlockDriverState *bs;
1586 
1587     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1588         int ret = bdrv_commit(bs);
1589         if (ret < 0) {
1590             return ret;
1591         }
1592     }
1593     return 0;
1594 }
1595 
1596 struct BdrvTrackedRequest {
1597     BlockDriverState *bs;
1598     int64_t sector_num;
1599     int nb_sectors;
1600     bool is_write;
1601     QLIST_ENTRY(BdrvTrackedRequest) list;
1602     Coroutine *co; /* owner, used for deadlock detection */
1603     CoQueue wait_queue; /* coroutines blocked on this request */
1604 };
1605 
1606 /**
1607  * Remove an active request from the tracked requests list
1608  *
1609  * This function should be called when a tracked request is completing.
1610  */
1611 static void tracked_request_end(BdrvTrackedRequest *req)
1612 {
1613     QLIST_REMOVE(req, list);
1614     qemu_co_queue_restart_all(&req->wait_queue);
1615 }
1616 
1617 /**
1618  * Add an active request to the tracked requests list
1619  */
1620 static void tracked_request_begin(BdrvTrackedRequest *req,
1621                                   BlockDriverState *bs,
1622                                   int64_t sector_num,
1623                                   int nb_sectors, bool is_write)
1624 {
1625     *req = (BdrvTrackedRequest){
1626         .bs = bs,
1627         .sector_num = sector_num,
1628         .nb_sectors = nb_sectors,
1629         .is_write = is_write,
1630         .co = qemu_coroutine_self(),
1631     };
1632 
1633     qemu_co_queue_init(&req->wait_queue);
1634 
1635     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1636 }
1637 
1638 /**
1639  * Round a region to cluster boundaries
1640  */
1641 static void round_to_clusters(BlockDriverState *bs,
1642                               int64_t sector_num, int nb_sectors,
1643                               int64_t *cluster_sector_num,
1644                               int *cluster_nb_sectors)
1645 {
1646     BlockDriverInfo bdi;
1647 
1648     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1649         *cluster_sector_num = sector_num;
1650         *cluster_nb_sectors = nb_sectors;
1651     } else {
1652         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1653         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1654         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1655                                             nb_sectors, c);
1656     }
1657 }
1658 
1659 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1660                                      int64_t sector_num, int nb_sectors) {
1661     /*        aaaa   bbbb */
1662     if (sector_num >= req->sector_num + req->nb_sectors) {
1663         return false;
1664     }
1665     /* bbbb   aaaa        */
1666     if (req->sector_num >= sector_num + nb_sectors) {
1667         return false;
1668     }
1669     return true;
1670 }
1671 
1672 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1673         int64_t sector_num, int nb_sectors)
1674 {
1675     BdrvTrackedRequest *req;
1676     int64_t cluster_sector_num;
1677     int cluster_nb_sectors;
1678     bool retry;
1679 
1680     /* If we touch the same cluster it counts as an overlap.  This guarantees
1681      * that allocating writes will be serialized and not race with each other
1682      * for the same cluster.  For example, in copy-on-read it ensures that the
1683      * CoR read and write operations are atomic and guest writes cannot
1684      * interleave between them.
1685      */
1686     round_to_clusters(bs, sector_num, nb_sectors,
1687                       &cluster_sector_num, &cluster_nb_sectors);
1688 
1689     do {
1690         retry = false;
1691         QLIST_FOREACH(req, &bs->tracked_requests, list) {
1692             if (tracked_request_overlaps(req, cluster_sector_num,
1693                                          cluster_nb_sectors)) {
1694                 /* Hitting this means there was a reentrant request, for
1695                  * example, a block driver issuing nested requests.  This must
1696                  * never happen since it means deadlock.
1697                  */
1698                 assert(qemu_coroutine_self() != req->co);
1699 
1700                 qemu_co_queue_wait(&req->wait_queue);
1701                 retry = true;
1702                 break;
1703             }
1704         }
1705     } while (retry);
1706 }
1707 
1708 /*
1709  * Return values:
1710  * 0        - success
1711  * -EINVAL  - backing format specified, but no file
1712  * -ENOSPC  - can't update the backing file because no space is left in the
1713  *            image file header
1714  * -ENOTSUP - format driver doesn't support changing the backing file
1715  */
1716 int bdrv_change_backing_file(BlockDriverState *bs,
1717     const char *backing_file, const char *backing_fmt)
1718 {
1719     BlockDriver *drv = bs->drv;
1720     int ret;
1721 
1722     /* Backing file format doesn't make sense without a backing file */
1723     if (backing_fmt && !backing_file) {
1724         return -EINVAL;
1725     }
1726 
1727     if (drv->bdrv_change_backing_file != NULL) {
1728         ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1729     } else {
1730         ret = -ENOTSUP;
1731     }
1732 
1733     if (ret == 0) {
1734         pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1735         pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1736     }
1737     return ret;
1738 }
1739 
1740 /*
1741  * Finds the image layer in the chain that has 'bs' as its backing file.
1742  *
1743  * active is the current topmost image.
1744  *
1745  * Returns NULL if bs is not found in active's image chain,
1746  * or if active == bs.
1747  */
1748 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1749                                     BlockDriverState *bs)
1750 {
1751     BlockDriverState *overlay = NULL;
1752     BlockDriverState *intermediate;
1753 
1754     assert(active != NULL);
1755     assert(bs != NULL);
1756 
1757     /* if bs is the same as active, then by definition it has no overlay
1758      */
1759     if (active == bs) {
1760         return NULL;
1761     }
1762 
1763     intermediate = active;
1764     while (intermediate->backing_hd) {
1765         if (intermediate->backing_hd == bs) {
1766             overlay = intermediate;
1767             break;
1768         }
1769         intermediate = intermediate->backing_hd;
1770     }
1771 
1772     return overlay;
1773 }
1774 
1775 typedef struct BlkIntermediateStates {
1776     BlockDriverState *bs;
1777     QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1778 } BlkIntermediateStates;
1779 
1780 
1781 /*
1782  * Drops images above 'base' up to and including 'top', and sets the image
1783  * above 'top' to have base as its backing file.
1784  *
1785  * Requires that the overlay to 'top' is opened r/w, so that the backing file
1786  * information in 'bs' can be properly updated.
1787  *
1788  * E.g., this will convert the following chain:
1789  * bottom <- base <- intermediate <- top <- active
1790  *
1791  * to
1792  *
1793  * bottom <- base <- active
1794  *
1795  * It is allowed for bottom==base, in which case it converts:
1796  *
1797  * base <- intermediate <- top <- active
1798  *
1799  * to
1800  *
1801  * base <- active
1802  *
1803  * Error conditions:
1804  *  if active == top, that is considered an error
1805  *
1806  */
1807 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1808                            BlockDriverState *base)
1809 {
1810     BlockDriverState *intermediate;
1811     BlockDriverState *base_bs = NULL;
1812     BlockDriverState *new_top_bs = NULL;
1813     BlkIntermediateStates *intermediate_state, *next;
1814     int ret = -EIO;
1815 
1816     QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1817     QSIMPLEQ_INIT(&states_to_delete);
1818 
1819     if (!top->drv || !base->drv) {
1820         goto exit;
1821     }
1822 
1823     new_top_bs = bdrv_find_overlay(active, top);
1824 
1825     if (new_top_bs == NULL) {
1826         /* we could not find the image above 'top', this is an error */
1827         goto exit;
1828     }
1829 
1830     /* special case of new_top_bs->backing_hd already pointing to base - nothing
1831      * to do, no intermediate images */
1832     if (new_top_bs->backing_hd == base) {
1833         ret = 0;
1834         goto exit;
1835     }
1836 
1837     intermediate = top;
1838 
1839     /* now we will go down through the list, and add each BDS we find
1840      * into our deletion queue, until we hit the 'base'
1841      */
1842     while (intermediate) {
1843         intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1844         intermediate_state->bs = intermediate;
1845         QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1846 
1847         if (intermediate->backing_hd == base) {
1848             base_bs = intermediate->backing_hd;
1849             break;
1850         }
1851         intermediate = intermediate->backing_hd;
1852     }
1853     if (base_bs == NULL) {
1854         /* something went wrong, we did not end at the base. safely
1855          * unravel everything, and exit with error */
1856         goto exit;
1857     }
1858 
1859     /* success - we can delete the intermediate states, and link top->base */
1860     ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1861                                    base_bs->drv ? base_bs->drv->format_name : "");
1862     if (ret) {
1863         goto exit;
1864     }
1865     new_top_bs->backing_hd = base_bs;
1866 
1867 
1868     QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1869         /* so that bdrv_close() does not recursively close the chain */
1870         intermediate_state->bs->backing_hd = NULL;
1871         bdrv_delete(intermediate_state->bs);
1872     }
1873     ret = 0;
1874 
1875 exit:
1876     QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1877         g_free(intermediate_state);
1878     }
1879     return ret;
1880 }
1881 
1882 
1883 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1884                                    size_t size)
1885 {
1886     int64_t len;
1887 
1888     if (!bdrv_is_inserted(bs))
1889         return -ENOMEDIUM;
1890 
1891     if (bs->growable)
1892         return 0;
1893 
1894     len = bdrv_getlength(bs);
1895 
1896     if (offset < 0)
1897         return -EIO;
1898 
1899     if ((offset > len) || (len - offset < size))
1900         return -EIO;
1901 
1902     return 0;
1903 }
1904 
1905 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1906                               int nb_sectors)
1907 {
1908     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1909                                    nb_sectors * BDRV_SECTOR_SIZE);
1910 }
1911 
1912 typedef struct RwCo {
1913     BlockDriverState *bs;
1914     int64_t sector_num;
1915     int nb_sectors;
1916     QEMUIOVector *qiov;
1917     bool is_write;
1918     int ret;
1919 } RwCo;
1920 
1921 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1922 {
1923     RwCo *rwco = opaque;
1924 
1925     if (!rwco->is_write) {
1926         rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1927                                      rwco->nb_sectors, rwco->qiov, 0);
1928     } else {
1929         rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1930                                       rwco->nb_sectors, rwco->qiov, 0);
1931     }
1932 }
1933 
1934 /*
1935  * Process a synchronous request using coroutines
1936  */
1937 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1938                       int nb_sectors, bool is_write)
1939 {
1940     QEMUIOVector qiov;
1941     struct iovec iov = {
1942         .iov_base = (void *)buf,
1943         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1944     };
1945     Coroutine *co;
1946     RwCo rwco = {
1947         .bs = bs,
1948         .sector_num = sector_num,
1949         .nb_sectors = nb_sectors,
1950         .qiov = &qiov,
1951         .is_write = is_write,
1952         .ret = NOT_DONE,
1953     };
1954 
1955     qemu_iovec_init_external(&qiov, &iov, 1);
1956 
1957     /**
1958      * In sync call context, when the vcpu is blocked, this throttling timer
1959      * will not fire; so the I/O throttling function has to be disabled here
1960      * if it has been enabled.
1961      */
1962     if (bs->io_limits_enabled) {
1963         fprintf(stderr, "Disabling I/O throttling on '%s' due "
1964                         "to synchronous I/O.\n", bdrv_get_device_name(bs));
1965         bdrv_io_limits_disable(bs);
1966     }
1967 
1968     if (qemu_in_coroutine()) {
1969         /* Fast-path if already in coroutine context */
1970         bdrv_rw_co_entry(&rwco);
1971     } else {
1972         co = qemu_coroutine_create(bdrv_rw_co_entry);
1973         qemu_coroutine_enter(co, &rwco);
1974         while (rwco.ret == NOT_DONE) {
1975             qemu_aio_wait();
1976         }
1977     }
1978     return rwco.ret;
1979 }
1980 
1981 /* return < 0 if error. See bdrv_write() for the return codes */
1982 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1983               uint8_t *buf, int nb_sectors)
1984 {
1985     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1986 }
1987 
1988 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
1989 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
1990                           uint8_t *buf, int nb_sectors)
1991 {
1992     bool enabled;
1993     int ret;
1994 
1995     enabled = bs->io_limits_enabled;
1996     bs->io_limits_enabled = false;
1997     ret = bdrv_read(bs, 0, buf, 1);
1998     bs->io_limits_enabled = enabled;
1999     return ret;
2000 }
2001 
2002 #define BITS_PER_LONG  (sizeof(unsigned long) * 8)
2003 
2004 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
2005                              int nb_sectors, int dirty)
2006 {
2007     int64_t start, end;
2008     unsigned long val, idx, bit;
2009 
2010     start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
2011     end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
2012 
2013     for (; start <= end; start++) {
2014         idx = start / BITS_PER_LONG;
2015         bit = start % BITS_PER_LONG;
2016         val = bs->dirty_bitmap[idx];
2017         if (dirty) {
2018             if (!(val & (1UL << bit))) {
2019                 bs->dirty_count++;
2020                 val |= 1UL << bit;
2021             }
2022         } else {
2023             if (val & (1UL << bit)) {
2024                 bs->dirty_count--;
2025                 val &= ~(1UL << bit);
2026             }
2027         }
2028         bs->dirty_bitmap[idx] = val;
2029     }
2030 }
2031 
2032 /* Return < 0 if error. Important errors are:
2033   -EIO         generic I/O error (may happen for all errors)
2034   -ENOMEDIUM   No media inserted.
2035   -EINVAL      Invalid sector number or nb_sectors
2036   -EACCES      Trying to write a read-only device
2037 */
2038 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2039                const uint8_t *buf, int nb_sectors)
2040 {
2041     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2042 }
2043 
2044 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2045                void *buf, int count1)
2046 {
2047     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2048     int len, nb_sectors, count;
2049     int64_t sector_num;
2050     int ret;
2051 
2052     count = count1;
2053     /* first read to align to sector start */
2054     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2055     if (len > count)
2056         len = count;
2057     sector_num = offset >> BDRV_SECTOR_BITS;
2058     if (len > 0) {
2059         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2060             return ret;
2061         memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2062         count -= len;
2063         if (count == 0)
2064             return count1;
2065         sector_num++;
2066         buf += len;
2067     }
2068 
2069     /* read the sectors "in place" */
2070     nb_sectors = count >> BDRV_SECTOR_BITS;
2071     if (nb_sectors > 0) {
2072         if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2073             return ret;
2074         sector_num += nb_sectors;
2075         len = nb_sectors << BDRV_SECTOR_BITS;
2076         buf += len;
2077         count -= len;
2078     }
2079 
2080     /* add data from the last sector */
2081     if (count > 0) {
2082         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2083             return ret;
2084         memcpy(buf, tmp_buf, count);
2085     }
2086     return count1;
2087 }
2088 
2089 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2090                 const void *buf, int count1)
2091 {
2092     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2093     int len, nb_sectors, count;
2094     int64_t sector_num;
2095     int ret;
2096 
2097     count = count1;
2098     /* first write to align to sector start */
2099     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2100     if (len > count)
2101         len = count;
2102     sector_num = offset >> BDRV_SECTOR_BITS;
2103     if (len > 0) {
2104         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2105             return ret;
2106         memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2107         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2108             return ret;
2109         count -= len;
2110         if (count == 0)
2111             return count1;
2112         sector_num++;
2113         buf += len;
2114     }
2115 
2116     /* write the sectors "in place" */
2117     nb_sectors = count >> BDRV_SECTOR_BITS;
2118     if (nb_sectors > 0) {
2119         if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2120             return ret;
2121         sector_num += nb_sectors;
2122         len = nb_sectors << BDRV_SECTOR_BITS;
2123         buf += len;
2124         count -= len;
2125     }
2126 
2127     /* add data from the last sector */
2128     if (count > 0) {
2129         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2130             return ret;
2131         memcpy(tmp_buf, buf, count);
2132         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2133             return ret;
2134     }
2135     return count1;
2136 }
2137 
2138 /*
2139  * Writes to the file and ensures that no writes are reordered across this
2140  * request (acts as a barrier)
2141  *
2142  * Returns 0 on success, -errno in error cases.
2143  */
2144 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2145     const void *buf, int count)
2146 {
2147     int ret;
2148 
2149     ret = bdrv_pwrite(bs, offset, buf, count);
2150     if (ret < 0) {
2151         return ret;
2152     }
2153 
2154     /* No flush needed for cache modes that already do it */
2155     if (bs->enable_write_cache) {
2156         bdrv_flush(bs);
2157     }
2158 
2159     return 0;
2160 }
2161 
2162 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2163         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2164 {
2165     /* Perform I/O through a temporary buffer so that users who scribble over
2166      * their read buffer while the operation is in progress do not end up
2167      * modifying the image file.  This is critical for zero-copy guest I/O
2168      * where anything might happen inside guest memory.
2169      */
2170     void *bounce_buffer;
2171 
2172     BlockDriver *drv = bs->drv;
2173     struct iovec iov;
2174     QEMUIOVector bounce_qiov;
2175     int64_t cluster_sector_num;
2176     int cluster_nb_sectors;
2177     size_t skip_bytes;
2178     int ret;
2179 
2180     /* Cover entire cluster so no additional backing file I/O is required when
2181      * allocating cluster in the image file.
2182      */
2183     round_to_clusters(bs, sector_num, nb_sectors,
2184                       &cluster_sector_num, &cluster_nb_sectors);
2185 
2186     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2187                                    cluster_sector_num, cluster_nb_sectors);
2188 
2189     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2190     iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2191     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2192 
2193     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2194                              &bounce_qiov);
2195     if (ret < 0) {
2196         goto err;
2197     }
2198 
2199     if (drv->bdrv_co_write_zeroes &&
2200         buffer_is_zero(bounce_buffer, iov.iov_len)) {
2201         ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2202                                       cluster_nb_sectors);
2203     } else {
2204         /* This does not change the data on the disk, it is not necessary
2205          * to flush even in cache=writethrough mode.
2206          */
2207         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2208                                   &bounce_qiov);
2209     }
2210 
2211     if (ret < 0) {
2212         /* It might be okay to ignore write errors for guest requests.  If this
2213          * is a deliberate copy-on-read then we don't want to ignore the error.
2214          * Simply report it in all cases.
2215          */
2216         goto err;
2217     }
2218 
2219     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2220     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2221                         nb_sectors * BDRV_SECTOR_SIZE);
2222 
2223 err:
2224     qemu_vfree(bounce_buffer);
2225     return ret;
2226 }
2227 
2228 /*
2229  * Handle a read request in coroutine context
2230  */
2231 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2232     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2233     BdrvRequestFlags flags)
2234 {
2235     BlockDriver *drv = bs->drv;
2236     BdrvTrackedRequest req;
2237     int ret;
2238 
2239     if (!drv) {
2240         return -ENOMEDIUM;
2241     }
2242     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2243         return -EIO;
2244     }
2245 
2246     /* throttling disk read I/O */
2247     if (bs->io_limits_enabled) {
2248         bdrv_io_limits_intercept(bs, false, nb_sectors);
2249     }
2250 
2251     if (bs->copy_on_read) {
2252         flags |= BDRV_REQ_COPY_ON_READ;
2253     }
2254     if (flags & BDRV_REQ_COPY_ON_READ) {
2255         bs->copy_on_read_in_flight++;
2256     }
2257 
2258     if (bs->copy_on_read_in_flight) {
2259         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2260     }
2261 
2262     tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2263 
2264     if (flags & BDRV_REQ_COPY_ON_READ) {
2265         int pnum;
2266 
2267         ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2268         if (ret < 0) {
2269             goto out;
2270         }
2271 
2272         if (!ret || pnum != nb_sectors) {
2273             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2274             goto out;
2275         }
2276     }
2277 
2278     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2279 
2280 out:
2281     tracked_request_end(&req);
2282 
2283     if (flags & BDRV_REQ_COPY_ON_READ) {
2284         bs->copy_on_read_in_flight--;
2285     }
2286 
2287     return ret;
2288 }
2289 
2290 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2291     int nb_sectors, QEMUIOVector *qiov)
2292 {
2293     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2294 
2295     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2296 }
2297 
2298 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2299     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2300 {
2301     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2302 
2303     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2304                             BDRV_REQ_COPY_ON_READ);
2305 }
2306 
2307 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2308     int64_t sector_num, int nb_sectors)
2309 {
2310     BlockDriver *drv = bs->drv;
2311     QEMUIOVector qiov;
2312     struct iovec iov;
2313     int ret;
2314 
2315     /* TODO Emulate only part of misaligned requests instead of letting block
2316      * drivers return -ENOTSUP and emulate everything */
2317 
2318     /* First try the efficient write zeroes operation */
2319     if (drv->bdrv_co_write_zeroes) {
2320         ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2321         if (ret != -ENOTSUP) {
2322             return ret;
2323         }
2324     }
2325 
2326     /* Fall back to bounce buffer if write zeroes is unsupported */
2327     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE;
2328     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2329     memset(iov.iov_base, 0, iov.iov_len);
2330     qemu_iovec_init_external(&qiov, &iov, 1);
2331 
2332     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2333 
2334     qemu_vfree(iov.iov_base);
2335     return ret;
2336 }
2337 
2338 /*
2339  * Handle a write request in coroutine context
2340  */
2341 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2342     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2343     BdrvRequestFlags flags)
2344 {
2345     BlockDriver *drv = bs->drv;
2346     BdrvTrackedRequest req;
2347     int ret;
2348 
2349     if (!bs->drv) {
2350         return -ENOMEDIUM;
2351     }
2352     if (bs->read_only) {
2353         return -EACCES;
2354     }
2355     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2356         return -EIO;
2357     }
2358 
2359     /* throttling disk write I/O */
2360     if (bs->io_limits_enabled) {
2361         bdrv_io_limits_intercept(bs, true, nb_sectors);
2362     }
2363 
2364     if (bs->copy_on_read_in_flight) {
2365         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2366     }
2367 
2368     tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2369 
2370     if (flags & BDRV_REQ_ZERO_WRITE) {
2371         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2372     } else {
2373         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2374     }
2375 
2376     if (ret == 0 && !bs->enable_write_cache) {
2377         ret = bdrv_co_flush(bs);
2378     }
2379 
2380     if (bs->dirty_bitmap) {
2381         set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2382     }
2383 
2384     if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2385         bs->wr_highest_sector = sector_num + nb_sectors - 1;
2386     }
2387 
2388     tracked_request_end(&req);
2389 
2390     return ret;
2391 }
2392 
2393 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2394     int nb_sectors, QEMUIOVector *qiov)
2395 {
2396     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2397 
2398     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2399 }
2400 
2401 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2402                                       int64_t sector_num, int nb_sectors)
2403 {
2404     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2405 
2406     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2407                              BDRV_REQ_ZERO_WRITE);
2408 }
2409 
2410 /**
2411  * Truncate file to 'offset' bytes (needed only for file protocols)
2412  */
2413 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2414 {
2415     BlockDriver *drv = bs->drv;
2416     int ret;
2417     if (!drv)
2418         return -ENOMEDIUM;
2419     if (!drv->bdrv_truncate)
2420         return -ENOTSUP;
2421     if (bs->read_only)
2422         return -EACCES;
2423     if (bdrv_in_use(bs))
2424         return -EBUSY;
2425     ret = drv->bdrv_truncate(bs, offset);
2426     if (ret == 0) {
2427         ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2428         bdrv_dev_resize_cb(bs);
2429     }
2430     return ret;
2431 }
2432 
2433 /**
2434  * Length of a allocated file in bytes. Sparse files are counted by actual
2435  * allocated space. Return < 0 if error or unknown.
2436  */
2437 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2438 {
2439     BlockDriver *drv = bs->drv;
2440     if (!drv) {
2441         return -ENOMEDIUM;
2442     }
2443     if (drv->bdrv_get_allocated_file_size) {
2444         return drv->bdrv_get_allocated_file_size(bs);
2445     }
2446     if (bs->file) {
2447         return bdrv_get_allocated_file_size(bs->file);
2448     }
2449     return -ENOTSUP;
2450 }
2451 
2452 /**
2453  * Length of a file in bytes. Return < 0 if error or unknown.
2454  */
2455 int64_t bdrv_getlength(BlockDriverState *bs)
2456 {
2457     BlockDriver *drv = bs->drv;
2458     if (!drv)
2459         return -ENOMEDIUM;
2460 
2461     if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2462         if (drv->bdrv_getlength) {
2463             return drv->bdrv_getlength(bs);
2464         }
2465     }
2466     return bs->total_sectors * BDRV_SECTOR_SIZE;
2467 }
2468 
2469 /* return 0 as number of sectors if no device present or error */
2470 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2471 {
2472     int64_t length;
2473     length = bdrv_getlength(bs);
2474     if (length < 0)
2475         length = 0;
2476     else
2477         length = length >> BDRV_SECTOR_BITS;
2478     *nb_sectors_ptr = length;
2479 }
2480 
2481 /* throttling disk io limits */
2482 void bdrv_set_io_limits(BlockDriverState *bs,
2483                         BlockIOLimit *io_limits)
2484 {
2485     bs->io_limits = *io_limits;
2486     bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2487 }
2488 
2489 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2490                        BlockdevOnError on_write_error)
2491 {
2492     bs->on_read_error = on_read_error;
2493     bs->on_write_error = on_write_error;
2494 }
2495 
2496 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2497 {
2498     return is_read ? bs->on_read_error : bs->on_write_error;
2499 }
2500 
2501 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2502 {
2503     BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2504 
2505     switch (on_err) {
2506     case BLOCKDEV_ON_ERROR_ENOSPC:
2507         return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2508     case BLOCKDEV_ON_ERROR_STOP:
2509         return BDRV_ACTION_STOP;
2510     case BLOCKDEV_ON_ERROR_REPORT:
2511         return BDRV_ACTION_REPORT;
2512     case BLOCKDEV_ON_ERROR_IGNORE:
2513         return BDRV_ACTION_IGNORE;
2514     default:
2515         abort();
2516     }
2517 }
2518 
2519 /* This is done by device models because, while the block layer knows
2520  * about the error, it does not know whether an operation comes from
2521  * the device or the block layer (from a job, for example).
2522  */
2523 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2524                        bool is_read, int error)
2525 {
2526     assert(error >= 0);
2527     bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2528     if (action == BDRV_ACTION_STOP) {
2529         vm_stop(RUN_STATE_IO_ERROR);
2530         bdrv_iostatus_set_err(bs, error);
2531     }
2532 }
2533 
2534 int bdrv_is_read_only(BlockDriverState *bs)
2535 {
2536     return bs->read_only;
2537 }
2538 
2539 int bdrv_is_sg(BlockDriverState *bs)
2540 {
2541     return bs->sg;
2542 }
2543 
2544 int bdrv_enable_write_cache(BlockDriverState *bs)
2545 {
2546     return bs->enable_write_cache;
2547 }
2548 
2549 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2550 {
2551     bs->enable_write_cache = wce;
2552 
2553     /* so a reopen() will preserve wce */
2554     if (wce) {
2555         bs->open_flags |= BDRV_O_CACHE_WB;
2556     } else {
2557         bs->open_flags &= ~BDRV_O_CACHE_WB;
2558     }
2559 }
2560 
2561 int bdrv_is_encrypted(BlockDriverState *bs)
2562 {
2563     if (bs->backing_hd && bs->backing_hd->encrypted)
2564         return 1;
2565     return bs->encrypted;
2566 }
2567 
2568 int bdrv_key_required(BlockDriverState *bs)
2569 {
2570     BlockDriverState *backing_hd = bs->backing_hd;
2571 
2572     if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2573         return 1;
2574     return (bs->encrypted && !bs->valid_key);
2575 }
2576 
2577 int bdrv_set_key(BlockDriverState *bs, const char *key)
2578 {
2579     int ret;
2580     if (bs->backing_hd && bs->backing_hd->encrypted) {
2581         ret = bdrv_set_key(bs->backing_hd, key);
2582         if (ret < 0)
2583             return ret;
2584         if (!bs->encrypted)
2585             return 0;
2586     }
2587     if (!bs->encrypted) {
2588         return -EINVAL;
2589     } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2590         return -ENOMEDIUM;
2591     }
2592     ret = bs->drv->bdrv_set_key(bs, key);
2593     if (ret < 0) {
2594         bs->valid_key = 0;
2595     } else if (!bs->valid_key) {
2596         bs->valid_key = 1;
2597         /* call the change callback now, we skipped it on open */
2598         bdrv_dev_change_media_cb(bs, true);
2599     }
2600     return ret;
2601 }
2602 
2603 const char *bdrv_get_format_name(BlockDriverState *bs)
2604 {
2605     return bs->drv ? bs->drv->format_name : NULL;
2606 }
2607 
2608 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2609                          void *opaque)
2610 {
2611     BlockDriver *drv;
2612 
2613     QLIST_FOREACH(drv, &bdrv_drivers, list) {
2614         it(opaque, drv->format_name);
2615     }
2616 }
2617 
2618 BlockDriverState *bdrv_find(const char *name)
2619 {
2620     BlockDriverState *bs;
2621 
2622     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2623         if (!strcmp(name, bs->device_name)) {
2624             return bs;
2625         }
2626     }
2627     return NULL;
2628 }
2629 
2630 BlockDriverState *bdrv_next(BlockDriverState *bs)
2631 {
2632     if (!bs) {
2633         return QTAILQ_FIRST(&bdrv_states);
2634     }
2635     return QTAILQ_NEXT(bs, list);
2636 }
2637 
2638 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2639 {
2640     BlockDriverState *bs;
2641 
2642     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2643         it(opaque, bs);
2644     }
2645 }
2646 
2647 const char *bdrv_get_device_name(BlockDriverState *bs)
2648 {
2649     return bs->device_name;
2650 }
2651 
2652 int bdrv_get_flags(BlockDriverState *bs)
2653 {
2654     return bs->open_flags;
2655 }
2656 
2657 void bdrv_flush_all(void)
2658 {
2659     BlockDriverState *bs;
2660 
2661     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2662         bdrv_flush(bs);
2663     }
2664 }
2665 
2666 int bdrv_has_zero_init(BlockDriverState *bs)
2667 {
2668     assert(bs->drv);
2669 
2670     if (bs->drv->bdrv_has_zero_init) {
2671         return bs->drv->bdrv_has_zero_init(bs);
2672     }
2673 
2674     return 1;
2675 }
2676 
2677 typedef struct BdrvCoIsAllocatedData {
2678     BlockDriverState *bs;
2679     int64_t sector_num;
2680     int nb_sectors;
2681     int *pnum;
2682     int ret;
2683     bool done;
2684 } BdrvCoIsAllocatedData;
2685 
2686 /*
2687  * Returns true iff the specified sector is present in the disk image. Drivers
2688  * not implementing the functionality are assumed to not support backing files,
2689  * hence all their sectors are reported as allocated.
2690  *
2691  * If 'sector_num' is beyond the end of the disk image the return value is 0
2692  * and 'pnum' is set to 0.
2693  *
2694  * 'pnum' is set to the number of sectors (including and immediately following
2695  * the specified sector) that are known to be in the same
2696  * allocated/unallocated state.
2697  *
2698  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
2699  * beyond the end of the disk image it will be clamped.
2700  */
2701 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2702                                       int nb_sectors, int *pnum)
2703 {
2704     int64_t n;
2705 
2706     if (sector_num >= bs->total_sectors) {
2707         *pnum = 0;
2708         return 0;
2709     }
2710 
2711     n = bs->total_sectors - sector_num;
2712     if (n < nb_sectors) {
2713         nb_sectors = n;
2714     }
2715 
2716     if (!bs->drv->bdrv_co_is_allocated) {
2717         *pnum = nb_sectors;
2718         return 1;
2719     }
2720 
2721     return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2722 }
2723 
2724 /* Coroutine wrapper for bdrv_is_allocated() */
2725 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2726 {
2727     BdrvCoIsAllocatedData *data = opaque;
2728     BlockDriverState *bs = data->bs;
2729 
2730     data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2731                                      data->pnum);
2732     data->done = true;
2733 }
2734 
2735 /*
2736  * Synchronous wrapper around bdrv_co_is_allocated().
2737  *
2738  * See bdrv_co_is_allocated() for details.
2739  */
2740 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2741                       int *pnum)
2742 {
2743     Coroutine *co;
2744     BdrvCoIsAllocatedData data = {
2745         .bs = bs,
2746         .sector_num = sector_num,
2747         .nb_sectors = nb_sectors,
2748         .pnum = pnum,
2749         .done = false,
2750     };
2751 
2752     co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2753     qemu_coroutine_enter(co, &data);
2754     while (!data.done) {
2755         qemu_aio_wait();
2756     }
2757     return data.ret;
2758 }
2759 
2760 /*
2761  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2762  *
2763  * Return true if the given sector is allocated in any image between
2764  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
2765  * sector is allocated in any image of the chain.  Return false otherwise.
2766  *
2767  * 'pnum' is set to the number of sectors (including and immediately following
2768  *  the specified sector) that are known to be in the same
2769  *  allocated/unallocated state.
2770  *
2771  */
2772 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2773                                             BlockDriverState *base,
2774                                             int64_t sector_num,
2775                                             int nb_sectors, int *pnum)
2776 {
2777     BlockDriverState *intermediate;
2778     int ret, n = nb_sectors;
2779 
2780     intermediate = top;
2781     while (intermediate && intermediate != base) {
2782         int pnum_inter;
2783         ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2784                                    &pnum_inter);
2785         if (ret < 0) {
2786             return ret;
2787         } else if (ret) {
2788             *pnum = pnum_inter;
2789             return 1;
2790         }
2791 
2792         /*
2793          * [sector_num, nb_sectors] is unallocated on top but intermediate
2794          * might have
2795          *
2796          * [sector_num+x, nr_sectors] allocated.
2797          */
2798         if (n > pnum_inter) {
2799             n = pnum_inter;
2800         }
2801 
2802         intermediate = intermediate->backing_hd;
2803     }
2804 
2805     *pnum = n;
2806     return 0;
2807 }
2808 
2809 BlockInfoList *qmp_query_block(Error **errp)
2810 {
2811     BlockInfoList *head = NULL, *cur_item = NULL;
2812     BlockDriverState *bs;
2813 
2814     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2815         BlockInfoList *info = g_malloc0(sizeof(*info));
2816 
2817         info->value = g_malloc0(sizeof(*info->value));
2818         info->value->device = g_strdup(bs->device_name);
2819         info->value->type = g_strdup("unknown");
2820         info->value->locked = bdrv_dev_is_medium_locked(bs);
2821         info->value->removable = bdrv_dev_has_removable_media(bs);
2822 
2823         if (bdrv_dev_has_removable_media(bs)) {
2824             info->value->has_tray_open = true;
2825             info->value->tray_open = bdrv_dev_is_tray_open(bs);
2826         }
2827 
2828         if (bdrv_iostatus_is_enabled(bs)) {
2829             info->value->has_io_status = true;
2830             info->value->io_status = bs->iostatus;
2831         }
2832 
2833         if (bs->drv) {
2834             info->value->has_inserted = true;
2835             info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2836             info->value->inserted->file = g_strdup(bs->filename);
2837             info->value->inserted->ro = bs->read_only;
2838             info->value->inserted->drv = g_strdup(bs->drv->format_name);
2839             info->value->inserted->encrypted = bs->encrypted;
2840             info->value->inserted->encryption_key_missing = bdrv_key_required(bs);
2841             if (bs->backing_file[0]) {
2842                 info->value->inserted->has_backing_file = true;
2843                 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2844             }
2845 
2846             info->value->inserted->backing_file_depth =
2847                 bdrv_get_backing_file_depth(bs);
2848 
2849             if (bs->io_limits_enabled) {
2850                 info->value->inserted->bps =
2851                                bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2852                 info->value->inserted->bps_rd =
2853                                bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2854                 info->value->inserted->bps_wr =
2855                                bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2856                 info->value->inserted->iops =
2857                                bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2858                 info->value->inserted->iops_rd =
2859                                bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2860                 info->value->inserted->iops_wr =
2861                                bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2862             }
2863         }
2864 
2865         /* XXX: waiting for the qapi to support GSList */
2866         if (!cur_item) {
2867             head = cur_item = info;
2868         } else {
2869             cur_item->next = info;
2870             cur_item = info;
2871         }
2872     }
2873 
2874     return head;
2875 }
2876 
2877 /* Consider exposing this as a full fledged QMP command */
2878 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2879 {
2880     BlockStats *s;
2881 
2882     s = g_malloc0(sizeof(*s));
2883 
2884     if (bs->device_name[0]) {
2885         s->has_device = true;
2886         s->device = g_strdup(bs->device_name);
2887     }
2888 
2889     s->stats = g_malloc0(sizeof(*s->stats));
2890     s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2891     s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2892     s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2893     s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2894     s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2895     s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2896     s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2897     s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2898     s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2899 
2900     if (bs->file) {
2901         s->has_parent = true;
2902         s->parent = qmp_query_blockstat(bs->file, NULL);
2903     }
2904 
2905     return s;
2906 }
2907 
2908 BlockStatsList *qmp_query_blockstats(Error **errp)
2909 {
2910     BlockStatsList *head = NULL, *cur_item = NULL;
2911     BlockDriverState *bs;
2912 
2913     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2914         BlockStatsList *info = g_malloc0(sizeof(*info));
2915         info->value = qmp_query_blockstat(bs, NULL);
2916 
2917         /* XXX: waiting for the qapi to support GSList */
2918         if (!cur_item) {
2919             head = cur_item = info;
2920         } else {
2921             cur_item->next = info;
2922             cur_item = info;
2923         }
2924     }
2925 
2926     return head;
2927 }
2928 
2929 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2930 {
2931     if (bs->backing_hd && bs->backing_hd->encrypted)
2932         return bs->backing_file;
2933     else if (bs->encrypted)
2934         return bs->filename;
2935     else
2936         return NULL;
2937 }
2938 
2939 void bdrv_get_backing_filename(BlockDriverState *bs,
2940                                char *filename, int filename_size)
2941 {
2942     pstrcpy(filename, filename_size, bs->backing_file);
2943 }
2944 
2945 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2946                           const uint8_t *buf, int nb_sectors)
2947 {
2948     BlockDriver *drv = bs->drv;
2949     if (!drv)
2950         return -ENOMEDIUM;
2951     if (!drv->bdrv_write_compressed)
2952         return -ENOTSUP;
2953     if (bdrv_check_request(bs, sector_num, nb_sectors))
2954         return -EIO;
2955 
2956     if (bs->dirty_bitmap) {
2957         set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2958     }
2959 
2960     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2961 }
2962 
2963 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2964 {
2965     BlockDriver *drv = bs->drv;
2966     if (!drv)
2967         return -ENOMEDIUM;
2968     if (!drv->bdrv_get_info)
2969         return -ENOTSUP;
2970     memset(bdi, 0, sizeof(*bdi));
2971     return drv->bdrv_get_info(bs, bdi);
2972 }
2973 
2974 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2975                       int64_t pos, int size)
2976 {
2977     BlockDriver *drv = bs->drv;
2978     if (!drv)
2979         return -ENOMEDIUM;
2980     if (drv->bdrv_save_vmstate)
2981         return drv->bdrv_save_vmstate(bs, buf, pos, size);
2982     if (bs->file)
2983         return bdrv_save_vmstate(bs->file, buf, pos, size);
2984     return -ENOTSUP;
2985 }
2986 
2987 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2988                       int64_t pos, int size)
2989 {
2990     BlockDriver *drv = bs->drv;
2991     if (!drv)
2992         return -ENOMEDIUM;
2993     if (drv->bdrv_load_vmstate)
2994         return drv->bdrv_load_vmstate(bs, buf, pos, size);
2995     if (bs->file)
2996         return bdrv_load_vmstate(bs->file, buf, pos, size);
2997     return -ENOTSUP;
2998 }
2999 
3000 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3001 {
3002     BlockDriver *drv = bs->drv;
3003 
3004     if (!drv || !drv->bdrv_debug_event) {
3005         return;
3006     }
3007 
3008     drv->bdrv_debug_event(bs, event);
3009 
3010 }
3011 
3012 /**************************************************************/
3013 /* handling of snapshots */
3014 
3015 int bdrv_can_snapshot(BlockDriverState *bs)
3016 {
3017     BlockDriver *drv = bs->drv;
3018     if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3019         return 0;
3020     }
3021 
3022     if (!drv->bdrv_snapshot_create) {
3023         if (bs->file != NULL) {
3024             return bdrv_can_snapshot(bs->file);
3025         }
3026         return 0;
3027     }
3028 
3029     return 1;
3030 }
3031 
3032 int bdrv_is_snapshot(BlockDriverState *bs)
3033 {
3034     return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3035 }
3036 
3037 BlockDriverState *bdrv_snapshots(void)
3038 {
3039     BlockDriverState *bs;
3040 
3041     if (bs_snapshots) {
3042         return bs_snapshots;
3043     }
3044 
3045     bs = NULL;
3046     while ((bs = bdrv_next(bs))) {
3047         if (bdrv_can_snapshot(bs)) {
3048             bs_snapshots = bs;
3049             return bs;
3050         }
3051     }
3052     return NULL;
3053 }
3054 
3055 int bdrv_snapshot_create(BlockDriverState *bs,
3056                          QEMUSnapshotInfo *sn_info)
3057 {
3058     BlockDriver *drv = bs->drv;
3059     if (!drv)
3060         return -ENOMEDIUM;
3061     if (drv->bdrv_snapshot_create)
3062         return drv->bdrv_snapshot_create(bs, sn_info);
3063     if (bs->file)
3064         return bdrv_snapshot_create(bs->file, sn_info);
3065     return -ENOTSUP;
3066 }
3067 
3068 int bdrv_snapshot_goto(BlockDriverState *bs,
3069                        const char *snapshot_id)
3070 {
3071     BlockDriver *drv = bs->drv;
3072     int ret, open_ret;
3073 
3074     if (!drv)
3075         return -ENOMEDIUM;
3076     if (drv->bdrv_snapshot_goto)
3077         return drv->bdrv_snapshot_goto(bs, snapshot_id);
3078 
3079     if (bs->file) {
3080         drv->bdrv_close(bs);
3081         ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3082         open_ret = drv->bdrv_open(bs, bs->open_flags);
3083         if (open_ret < 0) {
3084             bdrv_delete(bs->file);
3085             bs->drv = NULL;
3086             return open_ret;
3087         }
3088         return ret;
3089     }
3090 
3091     return -ENOTSUP;
3092 }
3093 
3094 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3095 {
3096     BlockDriver *drv = bs->drv;
3097     if (!drv)
3098         return -ENOMEDIUM;
3099     if (drv->bdrv_snapshot_delete)
3100         return drv->bdrv_snapshot_delete(bs, snapshot_id);
3101     if (bs->file)
3102         return bdrv_snapshot_delete(bs->file, snapshot_id);
3103     return -ENOTSUP;
3104 }
3105 
3106 int bdrv_snapshot_list(BlockDriverState *bs,
3107                        QEMUSnapshotInfo **psn_info)
3108 {
3109     BlockDriver *drv = bs->drv;
3110     if (!drv)
3111         return -ENOMEDIUM;
3112     if (drv->bdrv_snapshot_list)
3113         return drv->bdrv_snapshot_list(bs, psn_info);
3114     if (bs->file)
3115         return bdrv_snapshot_list(bs->file, psn_info);
3116     return -ENOTSUP;
3117 }
3118 
3119 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3120         const char *snapshot_name)
3121 {
3122     BlockDriver *drv = bs->drv;
3123     if (!drv) {
3124         return -ENOMEDIUM;
3125     }
3126     if (!bs->read_only) {
3127         return -EINVAL;
3128     }
3129     if (drv->bdrv_snapshot_load_tmp) {
3130         return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3131     }
3132     return -ENOTSUP;
3133 }
3134 
3135 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3136         const char *backing_file)
3137 {
3138     if (!bs->drv) {
3139         return NULL;
3140     }
3141 
3142     if (bs->backing_hd) {
3143         if (strcmp(bs->backing_file, backing_file) == 0) {
3144             return bs->backing_hd;
3145         } else {
3146             return bdrv_find_backing_image(bs->backing_hd, backing_file);
3147         }
3148     }
3149 
3150     return NULL;
3151 }
3152 
3153 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3154 {
3155     if (!bs->drv) {
3156         return 0;
3157     }
3158 
3159     if (!bs->backing_hd) {
3160         return 0;
3161     }
3162 
3163     return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3164 }
3165 
3166 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3167 {
3168     BlockDriverState *curr_bs = NULL;
3169 
3170     if (!bs) {
3171         return NULL;
3172     }
3173 
3174     curr_bs = bs;
3175 
3176     while (curr_bs->backing_hd) {
3177         curr_bs = curr_bs->backing_hd;
3178     }
3179     return curr_bs;
3180 }
3181 
3182 #define NB_SUFFIXES 4
3183 
3184 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3185 {
3186     static const char suffixes[NB_SUFFIXES] = "KMGT";
3187     int64_t base;
3188     int i;
3189 
3190     if (size <= 999) {
3191         snprintf(buf, buf_size, "%" PRId64, size);
3192     } else {
3193         base = 1024;
3194         for(i = 0; i < NB_SUFFIXES; i++) {
3195             if (size < (10 * base)) {
3196                 snprintf(buf, buf_size, "%0.1f%c",
3197                          (double)size / base,
3198                          suffixes[i]);
3199                 break;
3200             } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3201                 snprintf(buf, buf_size, "%" PRId64 "%c",
3202                          ((size + (base >> 1)) / base),
3203                          suffixes[i]);
3204                 break;
3205             }
3206             base = base * 1024;
3207         }
3208     }
3209     return buf;
3210 }
3211 
3212 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3213 {
3214     char buf1[128], date_buf[128], clock_buf[128];
3215 #ifdef _WIN32
3216     struct tm *ptm;
3217 #else
3218     struct tm tm;
3219 #endif
3220     time_t ti;
3221     int64_t secs;
3222 
3223     if (!sn) {
3224         snprintf(buf, buf_size,
3225                  "%-10s%-20s%7s%20s%15s",
3226                  "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3227     } else {
3228         ti = sn->date_sec;
3229 #ifdef _WIN32
3230         ptm = localtime(&ti);
3231         strftime(date_buf, sizeof(date_buf),
3232                  "%Y-%m-%d %H:%M:%S", ptm);
3233 #else
3234         localtime_r(&ti, &tm);
3235         strftime(date_buf, sizeof(date_buf),
3236                  "%Y-%m-%d %H:%M:%S", &tm);
3237 #endif
3238         secs = sn->vm_clock_nsec / 1000000000;
3239         snprintf(clock_buf, sizeof(clock_buf),
3240                  "%02d:%02d:%02d.%03d",
3241                  (int)(secs / 3600),
3242                  (int)((secs / 60) % 60),
3243                  (int)(secs % 60),
3244                  (int)((sn->vm_clock_nsec / 1000000) % 1000));
3245         snprintf(buf, buf_size,
3246                  "%-10s%-20s%7s%20s%15s",
3247                  sn->id_str, sn->name,
3248                  get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3249                  date_buf,
3250                  clock_buf);
3251     }
3252     return buf;
3253 }
3254 
3255 /**************************************************************/
3256 /* async I/Os */
3257 
3258 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3259                                  QEMUIOVector *qiov, int nb_sectors,
3260                                  BlockDriverCompletionFunc *cb, void *opaque)
3261 {
3262     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3263 
3264     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3265                                  cb, opaque, false);
3266 }
3267 
3268 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3269                                   QEMUIOVector *qiov, int nb_sectors,
3270                                   BlockDriverCompletionFunc *cb, void *opaque)
3271 {
3272     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3273 
3274     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3275                                  cb, opaque, true);
3276 }
3277 
3278 
3279 typedef struct MultiwriteCB {
3280     int error;
3281     int num_requests;
3282     int num_callbacks;
3283     struct {
3284         BlockDriverCompletionFunc *cb;
3285         void *opaque;
3286         QEMUIOVector *free_qiov;
3287     } callbacks[];
3288 } MultiwriteCB;
3289 
3290 static void multiwrite_user_cb(MultiwriteCB *mcb)
3291 {
3292     int i;
3293 
3294     for (i = 0; i < mcb->num_callbacks; i++) {
3295         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3296         if (mcb->callbacks[i].free_qiov) {
3297             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3298         }
3299         g_free(mcb->callbacks[i].free_qiov);
3300     }
3301 }
3302 
3303 static void multiwrite_cb(void *opaque, int ret)
3304 {
3305     MultiwriteCB *mcb = opaque;
3306 
3307     trace_multiwrite_cb(mcb, ret);
3308 
3309     if (ret < 0 && !mcb->error) {
3310         mcb->error = ret;
3311     }
3312 
3313     mcb->num_requests--;
3314     if (mcb->num_requests == 0) {
3315         multiwrite_user_cb(mcb);
3316         g_free(mcb);
3317     }
3318 }
3319 
3320 static int multiwrite_req_compare(const void *a, const void *b)
3321 {
3322     const BlockRequest *req1 = a, *req2 = b;
3323 
3324     /*
3325      * Note that we can't simply subtract req2->sector from req1->sector
3326      * here as that could overflow the return value.
3327      */
3328     if (req1->sector > req2->sector) {
3329         return 1;
3330     } else if (req1->sector < req2->sector) {
3331         return -1;
3332     } else {
3333         return 0;
3334     }
3335 }
3336 
3337 /*
3338  * Takes a bunch of requests and tries to merge them. Returns the number of
3339  * requests that remain after merging.
3340  */
3341 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3342     int num_reqs, MultiwriteCB *mcb)
3343 {
3344     int i, outidx;
3345 
3346     // Sort requests by start sector
3347     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3348 
3349     // Check if adjacent requests touch the same clusters. If so, combine them,
3350     // filling up gaps with zero sectors.
3351     outidx = 0;
3352     for (i = 1; i < num_reqs; i++) {
3353         int merge = 0;
3354         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3355 
3356         // Handle exactly sequential writes and overlapping writes.
3357         if (reqs[i].sector <= oldreq_last) {
3358             merge = 1;
3359         }
3360 
3361         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3362             merge = 0;
3363         }
3364 
3365         if (merge) {
3366             size_t size;
3367             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3368             qemu_iovec_init(qiov,
3369                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3370 
3371             // Add the first request to the merged one. If the requests are
3372             // overlapping, drop the last sectors of the first request.
3373             size = (reqs[i].sector - reqs[outidx].sector) << 9;
3374             qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3375 
3376             // We should need to add any zeros between the two requests
3377             assert (reqs[i].sector <= oldreq_last);
3378 
3379             // Add the second request
3380             qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3381 
3382             reqs[outidx].nb_sectors = qiov->size >> 9;
3383             reqs[outidx].qiov = qiov;
3384 
3385             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3386         } else {
3387             outidx++;
3388             reqs[outidx].sector     = reqs[i].sector;
3389             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3390             reqs[outidx].qiov       = reqs[i].qiov;
3391         }
3392     }
3393 
3394     return outidx + 1;
3395 }
3396 
3397 /*
3398  * Submit multiple AIO write requests at once.
3399  *
3400  * On success, the function returns 0 and all requests in the reqs array have
3401  * been submitted. In error case this function returns -1, and any of the
3402  * requests may or may not be submitted yet. In particular, this means that the
3403  * callback will be called for some of the requests, for others it won't. The
3404  * caller must check the error field of the BlockRequest to wait for the right
3405  * callbacks (if error != 0, no callback will be called).
3406  *
3407  * The implementation may modify the contents of the reqs array, e.g. to merge
3408  * requests. However, the fields opaque and error are left unmodified as they
3409  * are used to signal failure for a single request to the caller.
3410  */
3411 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3412 {
3413     MultiwriteCB *mcb;
3414     int i;
3415 
3416     /* don't submit writes if we don't have a medium */
3417     if (bs->drv == NULL) {
3418         for (i = 0; i < num_reqs; i++) {
3419             reqs[i].error = -ENOMEDIUM;
3420         }
3421         return -1;
3422     }
3423 
3424     if (num_reqs == 0) {
3425         return 0;
3426     }
3427 
3428     // Create MultiwriteCB structure
3429     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3430     mcb->num_requests = 0;
3431     mcb->num_callbacks = num_reqs;
3432 
3433     for (i = 0; i < num_reqs; i++) {
3434         mcb->callbacks[i].cb = reqs[i].cb;
3435         mcb->callbacks[i].opaque = reqs[i].opaque;
3436     }
3437 
3438     // Check for mergable requests
3439     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3440 
3441     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3442 
3443     /* Run the aio requests. */
3444     mcb->num_requests = num_reqs;
3445     for (i = 0; i < num_reqs; i++) {
3446         bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3447             reqs[i].nb_sectors, multiwrite_cb, mcb);
3448     }
3449 
3450     return 0;
3451 }
3452 
3453 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3454 {
3455     acb->pool->cancel(acb);
3456 }
3457 
3458 /* block I/O throttling */
3459 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3460                  bool is_write, double elapsed_time, uint64_t *wait)
3461 {
3462     uint64_t bps_limit = 0;
3463     double   bytes_limit, bytes_base, bytes_res;
3464     double   slice_time, wait_time;
3465 
3466     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3467         bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3468     } else if (bs->io_limits.bps[is_write]) {
3469         bps_limit = bs->io_limits.bps[is_write];
3470     } else {
3471         if (wait) {
3472             *wait = 0;
3473         }
3474 
3475         return false;
3476     }
3477 
3478     slice_time = bs->slice_end - bs->slice_start;
3479     slice_time /= (NANOSECONDS_PER_SECOND);
3480     bytes_limit = bps_limit * slice_time;
3481     bytes_base  = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3482     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3483         bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3484     }
3485 
3486     /* bytes_base: the bytes of data which have been read/written; and
3487      *             it is obtained from the history statistic info.
3488      * bytes_res: the remaining bytes of data which need to be read/written.
3489      * (bytes_base + bytes_res) / bps_limit: used to calcuate
3490      *             the total time for completing reading/writting all data.
3491      */
3492     bytes_res   = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3493 
3494     if (bytes_base + bytes_res <= bytes_limit) {
3495         if (wait) {
3496             *wait = 0;
3497         }
3498 
3499         return false;
3500     }
3501 
3502     /* Calc approx time to dispatch */
3503     wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3504 
3505     /* When the I/O rate at runtime exceeds the limits,
3506      * bs->slice_end need to be extended in order that the current statistic
3507      * info can be kept until the timer fire, so it is increased and tuned
3508      * based on the result of experiment.
3509      */
3510     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3511     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3512     if (wait) {
3513         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3514     }
3515 
3516     return true;
3517 }
3518 
3519 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3520                              double elapsed_time, uint64_t *wait)
3521 {
3522     uint64_t iops_limit = 0;
3523     double   ios_limit, ios_base;
3524     double   slice_time, wait_time;
3525 
3526     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3527         iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3528     } else if (bs->io_limits.iops[is_write]) {
3529         iops_limit = bs->io_limits.iops[is_write];
3530     } else {
3531         if (wait) {
3532             *wait = 0;
3533         }
3534 
3535         return false;
3536     }
3537 
3538     slice_time = bs->slice_end - bs->slice_start;
3539     slice_time /= (NANOSECONDS_PER_SECOND);
3540     ios_limit  = iops_limit * slice_time;
3541     ios_base   = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3542     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3543         ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3544     }
3545 
3546     if (ios_base + 1 <= ios_limit) {
3547         if (wait) {
3548             *wait = 0;
3549         }
3550 
3551         return false;
3552     }
3553 
3554     /* Calc approx time to dispatch */
3555     wait_time = (ios_base + 1) / iops_limit;
3556     if (wait_time > elapsed_time) {
3557         wait_time = wait_time - elapsed_time;
3558     } else {
3559         wait_time = 0;
3560     }
3561 
3562     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3563     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3564     if (wait) {
3565         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3566     }
3567 
3568     return true;
3569 }
3570 
3571 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3572                            bool is_write, int64_t *wait)
3573 {
3574     int64_t  now, max_wait;
3575     uint64_t bps_wait = 0, iops_wait = 0;
3576     double   elapsed_time;
3577     int      bps_ret, iops_ret;
3578 
3579     now = qemu_get_clock_ns(vm_clock);
3580     if ((bs->slice_start < now)
3581         && (bs->slice_end > now)) {
3582         bs->slice_end = now + bs->slice_time;
3583     } else {
3584         bs->slice_time  =  5 * BLOCK_IO_SLICE_TIME;
3585         bs->slice_start = now;
3586         bs->slice_end   = now + bs->slice_time;
3587 
3588         bs->io_base.bytes[is_write]  = bs->nr_bytes[is_write];
3589         bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3590 
3591         bs->io_base.ios[is_write]    = bs->nr_ops[is_write];
3592         bs->io_base.ios[!is_write]   = bs->nr_ops[!is_write];
3593     }
3594 
3595     elapsed_time  = now - bs->slice_start;
3596     elapsed_time  /= (NANOSECONDS_PER_SECOND);
3597 
3598     bps_ret  = bdrv_exceed_bps_limits(bs, nb_sectors,
3599                                       is_write, elapsed_time, &bps_wait);
3600     iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3601                                       elapsed_time, &iops_wait);
3602     if (bps_ret || iops_ret) {
3603         max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3604         if (wait) {
3605             *wait = max_wait;
3606         }
3607 
3608         now = qemu_get_clock_ns(vm_clock);
3609         if (bs->slice_end < now + max_wait) {
3610             bs->slice_end = now + max_wait;
3611         }
3612 
3613         return true;
3614     }
3615 
3616     if (wait) {
3617         *wait = 0;
3618     }
3619 
3620     return false;
3621 }
3622 
3623 /**************************************************************/
3624 /* async block device emulation */
3625 
3626 typedef struct BlockDriverAIOCBSync {
3627     BlockDriverAIOCB common;
3628     QEMUBH *bh;
3629     int ret;
3630     /* vector translation state */
3631     QEMUIOVector *qiov;
3632     uint8_t *bounce;
3633     int is_write;
3634 } BlockDriverAIOCBSync;
3635 
3636 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3637 {
3638     BlockDriverAIOCBSync *acb =
3639         container_of(blockacb, BlockDriverAIOCBSync, common);
3640     qemu_bh_delete(acb->bh);
3641     acb->bh = NULL;
3642     qemu_aio_release(acb);
3643 }
3644 
3645 static AIOPool bdrv_em_aio_pool = {
3646     .aiocb_size         = sizeof(BlockDriverAIOCBSync),
3647     .cancel             = bdrv_aio_cancel_em,
3648 };
3649 
3650 static void bdrv_aio_bh_cb(void *opaque)
3651 {
3652     BlockDriverAIOCBSync *acb = opaque;
3653 
3654     if (!acb->is_write)
3655         qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3656     qemu_vfree(acb->bounce);
3657     acb->common.cb(acb->common.opaque, acb->ret);
3658     qemu_bh_delete(acb->bh);
3659     acb->bh = NULL;
3660     qemu_aio_release(acb);
3661 }
3662 
3663 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3664                                             int64_t sector_num,
3665                                             QEMUIOVector *qiov,
3666                                             int nb_sectors,
3667                                             BlockDriverCompletionFunc *cb,
3668                                             void *opaque,
3669                                             int is_write)
3670 
3671 {
3672     BlockDriverAIOCBSync *acb;
3673 
3674     acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3675     acb->is_write = is_write;
3676     acb->qiov = qiov;
3677     acb->bounce = qemu_blockalign(bs, qiov->size);
3678     acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3679 
3680     if (is_write) {
3681         qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3682         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3683     } else {
3684         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3685     }
3686 
3687     qemu_bh_schedule(acb->bh);
3688 
3689     return &acb->common;
3690 }
3691 
3692 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3693         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3694         BlockDriverCompletionFunc *cb, void *opaque)
3695 {
3696     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3697 }
3698 
3699 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3700         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3701         BlockDriverCompletionFunc *cb, void *opaque)
3702 {
3703     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3704 }
3705 
3706 
3707 typedef struct BlockDriverAIOCBCoroutine {
3708     BlockDriverAIOCB common;
3709     BlockRequest req;
3710     bool is_write;
3711     QEMUBH* bh;
3712 } BlockDriverAIOCBCoroutine;
3713 
3714 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3715 {
3716     qemu_aio_flush();
3717 }
3718 
3719 static AIOPool bdrv_em_co_aio_pool = {
3720     .aiocb_size         = sizeof(BlockDriverAIOCBCoroutine),
3721     .cancel             = bdrv_aio_co_cancel_em,
3722 };
3723 
3724 static void bdrv_co_em_bh(void *opaque)
3725 {
3726     BlockDriverAIOCBCoroutine *acb = opaque;
3727 
3728     acb->common.cb(acb->common.opaque, acb->req.error);
3729     qemu_bh_delete(acb->bh);
3730     qemu_aio_release(acb);
3731 }
3732 
3733 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3734 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3735 {
3736     BlockDriverAIOCBCoroutine *acb = opaque;
3737     BlockDriverState *bs = acb->common.bs;
3738 
3739     if (!acb->is_write) {
3740         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3741             acb->req.nb_sectors, acb->req.qiov, 0);
3742     } else {
3743         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3744             acb->req.nb_sectors, acb->req.qiov, 0);
3745     }
3746 
3747     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3748     qemu_bh_schedule(acb->bh);
3749 }
3750 
3751 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3752                                                int64_t sector_num,
3753                                                QEMUIOVector *qiov,
3754                                                int nb_sectors,
3755                                                BlockDriverCompletionFunc *cb,
3756                                                void *opaque,
3757                                                bool is_write)
3758 {
3759     Coroutine *co;
3760     BlockDriverAIOCBCoroutine *acb;
3761 
3762     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3763     acb->req.sector = sector_num;
3764     acb->req.nb_sectors = nb_sectors;
3765     acb->req.qiov = qiov;
3766     acb->is_write = is_write;
3767 
3768     co = qemu_coroutine_create(bdrv_co_do_rw);
3769     qemu_coroutine_enter(co, acb);
3770 
3771     return &acb->common;
3772 }
3773 
3774 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3775 {
3776     BlockDriverAIOCBCoroutine *acb = opaque;
3777     BlockDriverState *bs = acb->common.bs;
3778 
3779     acb->req.error = bdrv_co_flush(bs);
3780     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3781     qemu_bh_schedule(acb->bh);
3782 }
3783 
3784 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3785         BlockDriverCompletionFunc *cb, void *opaque)
3786 {
3787     trace_bdrv_aio_flush(bs, opaque);
3788 
3789     Coroutine *co;
3790     BlockDriverAIOCBCoroutine *acb;
3791 
3792     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3793     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3794     qemu_coroutine_enter(co, acb);
3795 
3796     return &acb->common;
3797 }
3798 
3799 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3800 {
3801     BlockDriverAIOCBCoroutine *acb = opaque;
3802     BlockDriverState *bs = acb->common.bs;
3803 
3804     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3805     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3806     qemu_bh_schedule(acb->bh);
3807 }
3808 
3809 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3810         int64_t sector_num, int nb_sectors,
3811         BlockDriverCompletionFunc *cb, void *opaque)
3812 {
3813     Coroutine *co;
3814     BlockDriverAIOCBCoroutine *acb;
3815 
3816     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3817 
3818     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3819     acb->req.sector = sector_num;
3820     acb->req.nb_sectors = nb_sectors;
3821     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3822     qemu_coroutine_enter(co, acb);
3823 
3824     return &acb->common;
3825 }
3826 
3827 void bdrv_init(void)
3828 {
3829     module_call_init(MODULE_INIT_BLOCK);
3830 }
3831 
3832 void bdrv_init_with_whitelist(void)
3833 {
3834     use_bdrv_whitelist = 1;
3835     bdrv_init();
3836 }
3837 
3838 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3839                    BlockDriverCompletionFunc *cb, void *opaque)
3840 {
3841     BlockDriverAIOCB *acb;
3842 
3843     if (pool->free_aiocb) {
3844         acb = pool->free_aiocb;
3845         pool->free_aiocb = acb->next;
3846     } else {
3847         acb = g_malloc0(pool->aiocb_size);
3848         acb->pool = pool;
3849     }
3850     acb->bs = bs;
3851     acb->cb = cb;
3852     acb->opaque = opaque;
3853     return acb;
3854 }
3855 
3856 void qemu_aio_release(void *p)
3857 {
3858     BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3859     AIOPool *pool = acb->pool;
3860     acb->next = pool->free_aiocb;
3861     pool->free_aiocb = acb;
3862 }
3863 
3864 /**************************************************************/
3865 /* Coroutine block device emulation */
3866 
3867 typedef struct CoroutineIOCompletion {
3868     Coroutine *coroutine;
3869     int ret;
3870 } CoroutineIOCompletion;
3871 
3872 static void bdrv_co_io_em_complete(void *opaque, int ret)
3873 {
3874     CoroutineIOCompletion *co = opaque;
3875 
3876     co->ret = ret;
3877     qemu_coroutine_enter(co->coroutine, NULL);
3878 }
3879 
3880 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3881                                       int nb_sectors, QEMUIOVector *iov,
3882                                       bool is_write)
3883 {
3884     CoroutineIOCompletion co = {
3885         .coroutine = qemu_coroutine_self(),
3886     };
3887     BlockDriverAIOCB *acb;
3888 
3889     if (is_write) {
3890         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3891                                        bdrv_co_io_em_complete, &co);
3892     } else {
3893         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3894                                       bdrv_co_io_em_complete, &co);
3895     }
3896 
3897     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3898     if (!acb) {
3899         return -EIO;
3900     }
3901     qemu_coroutine_yield();
3902 
3903     return co.ret;
3904 }
3905 
3906 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3907                                          int64_t sector_num, int nb_sectors,
3908                                          QEMUIOVector *iov)
3909 {
3910     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3911 }
3912 
3913 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3914                                          int64_t sector_num, int nb_sectors,
3915                                          QEMUIOVector *iov)
3916 {
3917     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3918 }
3919 
3920 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3921 {
3922     RwCo *rwco = opaque;
3923 
3924     rwco->ret = bdrv_co_flush(rwco->bs);
3925 }
3926 
3927 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3928 {
3929     int ret;
3930 
3931     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3932         return 0;
3933     }
3934 
3935     /* Write back cached data to the OS even with cache=unsafe */
3936     if (bs->drv->bdrv_co_flush_to_os) {
3937         ret = bs->drv->bdrv_co_flush_to_os(bs);
3938         if (ret < 0) {
3939             return ret;
3940         }
3941     }
3942 
3943     /* But don't actually force it to the disk with cache=unsafe */
3944     if (bs->open_flags & BDRV_O_NO_FLUSH) {
3945         goto flush_parent;
3946     }
3947 
3948     if (bs->drv->bdrv_co_flush_to_disk) {
3949         ret = bs->drv->bdrv_co_flush_to_disk(bs);
3950     } else if (bs->drv->bdrv_aio_flush) {
3951         BlockDriverAIOCB *acb;
3952         CoroutineIOCompletion co = {
3953             .coroutine = qemu_coroutine_self(),
3954         };
3955 
3956         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3957         if (acb == NULL) {
3958             ret = -EIO;
3959         } else {
3960             qemu_coroutine_yield();
3961             ret = co.ret;
3962         }
3963     } else {
3964         /*
3965          * Some block drivers always operate in either writethrough or unsafe
3966          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3967          * know how the server works (because the behaviour is hardcoded or
3968          * depends on server-side configuration), so we can't ensure that
3969          * everything is safe on disk. Returning an error doesn't work because
3970          * that would break guests even if the server operates in writethrough
3971          * mode.
3972          *
3973          * Let's hope the user knows what he's doing.
3974          */
3975         ret = 0;
3976     }
3977     if (ret < 0) {
3978         return ret;
3979     }
3980 
3981     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
3982      * in the case of cache=unsafe, so there are no useless flushes.
3983      */
3984 flush_parent:
3985     return bdrv_co_flush(bs->file);
3986 }
3987 
3988 void bdrv_invalidate_cache(BlockDriverState *bs)
3989 {
3990     if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3991         bs->drv->bdrv_invalidate_cache(bs);
3992     }
3993 }
3994 
3995 void bdrv_invalidate_cache_all(void)
3996 {
3997     BlockDriverState *bs;
3998 
3999     QTAILQ_FOREACH(bs, &bdrv_states, list) {
4000         bdrv_invalidate_cache(bs);
4001     }
4002 }
4003 
4004 void bdrv_clear_incoming_migration_all(void)
4005 {
4006     BlockDriverState *bs;
4007 
4008     QTAILQ_FOREACH(bs, &bdrv_states, list) {
4009         bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4010     }
4011 }
4012 
4013 int bdrv_flush(BlockDriverState *bs)
4014 {
4015     Coroutine *co;
4016     RwCo rwco = {
4017         .bs = bs,
4018         .ret = NOT_DONE,
4019     };
4020 
4021     if (qemu_in_coroutine()) {
4022         /* Fast-path if already in coroutine context */
4023         bdrv_flush_co_entry(&rwco);
4024     } else {
4025         co = qemu_coroutine_create(bdrv_flush_co_entry);
4026         qemu_coroutine_enter(co, &rwco);
4027         while (rwco.ret == NOT_DONE) {
4028             qemu_aio_wait();
4029         }
4030     }
4031 
4032     return rwco.ret;
4033 }
4034 
4035 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4036 {
4037     RwCo *rwco = opaque;
4038 
4039     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4040 }
4041 
4042 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4043                                  int nb_sectors)
4044 {
4045     if (!bs->drv) {
4046         return -ENOMEDIUM;
4047     } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4048         return -EIO;
4049     } else if (bs->read_only) {
4050         return -EROFS;
4051     } else if (bs->drv->bdrv_co_discard) {
4052         return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4053     } else if (bs->drv->bdrv_aio_discard) {
4054         BlockDriverAIOCB *acb;
4055         CoroutineIOCompletion co = {
4056             .coroutine = qemu_coroutine_self(),
4057         };
4058 
4059         acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4060                                         bdrv_co_io_em_complete, &co);
4061         if (acb == NULL) {
4062             return -EIO;
4063         } else {
4064             qemu_coroutine_yield();
4065             return co.ret;
4066         }
4067     } else {
4068         return 0;
4069     }
4070 }
4071 
4072 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4073 {
4074     Coroutine *co;
4075     RwCo rwco = {
4076         .bs = bs,
4077         .sector_num = sector_num,
4078         .nb_sectors = nb_sectors,
4079         .ret = NOT_DONE,
4080     };
4081 
4082     if (qemu_in_coroutine()) {
4083         /* Fast-path if already in coroutine context */
4084         bdrv_discard_co_entry(&rwco);
4085     } else {
4086         co = qemu_coroutine_create(bdrv_discard_co_entry);
4087         qemu_coroutine_enter(co, &rwco);
4088         while (rwco.ret == NOT_DONE) {
4089             qemu_aio_wait();
4090         }
4091     }
4092 
4093     return rwco.ret;
4094 }
4095 
4096 /**************************************************************/
4097 /* removable device support */
4098 
4099 /**
4100  * Return TRUE if the media is present
4101  */
4102 int bdrv_is_inserted(BlockDriverState *bs)
4103 {
4104     BlockDriver *drv = bs->drv;
4105 
4106     if (!drv)
4107         return 0;
4108     if (!drv->bdrv_is_inserted)
4109         return 1;
4110     return drv->bdrv_is_inserted(bs);
4111 }
4112 
4113 /**
4114  * Return whether the media changed since the last call to this
4115  * function, or -ENOTSUP if we don't know.  Most drivers don't know.
4116  */
4117 int bdrv_media_changed(BlockDriverState *bs)
4118 {
4119     BlockDriver *drv = bs->drv;
4120 
4121     if (drv && drv->bdrv_media_changed) {
4122         return drv->bdrv_media_changed(bs);
4123     }
4124     return -ENOTSUP;
4125 }
4126 
4127 /**
4128  * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4129  */
4130 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4131 {
4132     BlockDriver *drv = bs->drv;
4133 
4134     if (drv && drv->bdrv_eject) {
4135         drv->bdrv_eject(bs, eject_flag);
4136     }
4137 
4138     if (bs->device_name[0] != '\0') {
4139         bdrv_emit_qmp_eject_event(bs, eject_flag);
4140     }
4141 }
4142 
4143 /**
4144  * Lock or unlock the media (if it is locked, the user won't be able
4145  * to eject it manually).
4146  */
4147 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4148 {
4149     BlockDriver *drv = bs->drv;
4150 
4151     trace_bdrv_lock_medium(bs, locked);
4152 
4153     if (drv && drv->bdrv_lock_medium) {
4154         drv->bdrv_lock_medium(bs, locked);
4155     }
4156 }
4157 
4158 /* needed for generic scsi interface */
4159 
4160 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4161 {
4162     BlockDriver *drv = bs->drv;
4163 
4164     if (drv && drv->bdrv_ioctl)
4165         return drv->bdrv_ioctl(bs, req, buf);
4166     return -ENOTSUP;
4167 }
4168 
4169 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4170         unsigned long int req, void *buf,
4171         BlockDriverCompletionFunc *cb, void *opaque)
4172 {
4173     BlockDriver *drv = bs->drv;
4174 
4175     if (drv && drv->bdrv_aio_ioctl)
4176         return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4177     return NULL;
4178 }
4179 
4180 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4181 {
4182     bs->buffer_alignment = align;
4183 }
4184 
4185 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4186 {
4187     return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4188 }
4189 
4190 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4191 {
4192     int64_t bitmap_size;
4193 
4194     bs->dirty_count = 0;
4195     if (enable) {
4196         if (!bs->dirty_bitmap) {
4197             bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4198                     BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4199             bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4200 
4201             bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4202         }
4203     } else {
4204         if (bs->dirty_bitmap) {
4205             g_free(bs->dirty_bitmap);
4206             bs->dirty_bitmap = NULL;
4207         }
4208     }
4209 }
4210 
4211 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4212 {
4213     int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4214 
4215     if (bs->dirty_bitmap &&
4216         (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4217         return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
4218             (1UL << (chunk % (sizeof(unsigned long) * 8))));
4219     } else {
4220         return 0;
4221     }
4222 }
4223 
4224 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4225                       int nr_sectors)
4226 {
4227     set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4228 }
4229 
4230 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4231 {
4232     return bs->dirty_count;
4233 }
4234 
4235 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4236 {
4237     assert(bs->in_use != in_use);
4238     bs->in_use = in_use;
4239 }
4240 
4241 int bdrv_in_use(BlockDriverState *bs)
4242 {
4243     return bs->in_use;
4244 }
4245 
4246 void bdrv_iostatus_enable(BlockDriverState *bs)
4247 {
4248     bs->iostatus_enabled = true;
4249     bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4250 }
4251 
4252 /* The I/O status is only enabled if the drive explicitly
4253  * enables it _and_ the VM is configured to stop on errors */
4254 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4255 {
4256     return (bs->iostatus_enabled &&
4257            (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4258             bs->on_write_error == BLOCKDEV_ON_ERROR_STOP   ||
4259             bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4260 }
4261 
4262 void bdrv_iostatus_disable(BlockDriverState *bs)
4263 {
4264     bs->iostatus_enabled = false;
4265 }
4266 
4267 void bdrv_iostatus_reset(BlockDriverState *bs)
4268 {
4269     if (bdrv_iostatus_is_enabled(bs)) {
4270         bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4271     }
4272 }
4273 
4274 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4275 {
4276     assert(bdrv_iostatus_is_enabled(bs));
4277     if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4278         bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4279                                          BLOCK_DEVICE_IO_STATUS_FAILED;
4280     }
4281 }
4282 
4283 void
4284 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4285         enum BlockAcctType type)
4286 {
4287     assert(type < BDRV_MAX_IOTYPE);
4288 
4289     cookie->bytes = bytes;
4290     cookie->start_time_ns = get_clock();
4291     cookie->type = type;
4292 }
4293 
4294 void
4295 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4296 {
4297     assert(cookie->type < BDRV_MAX_IOTYPE);
4298 
4299     bs->nr_bytes[cookie->type] += cookie->bytes;
4300     bs->nr_ops[cookie->type]++;
4301     bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4302 }
4303 
4304 int bdrv_img_create(const char *filename, const char *fmt,
4305                     const char *base_filename, const char *base_fmt,
4306                     char *options, uint64_t img_size, int flags)
4307 {
4308     QEMUOptionParameter *param = NULL, *create_options = NULL;
4309     QEMUOptionParameter *backing_fmt, *backing_file, *size;
4310     BlockDriverState *bs = NULL;
4311     BlockDriver *drv, *proto_drv;
4312     BlockDriver *backing_drv = NULL;
4313     int ret = 0;
4314 
4315     /* Find driver and parse its options */
4316     drv = bdrv_find_format(fmt);
4317     if (!drv) {
4318         error_report("Unknown file format '%s'", fmt);
4319         ret = -EINVAL;
4320         goto out;
4321     }
4322 
4323     proto_drv = bdrv_find_protocol(filename);
4324     if (!proto_drv) {
4325         error_report("Unknown protocol '%s'", filename);
4326         ret = -EINVAL;
4327         goto out;
4328     }
4329 
4330     create_options = append_option_parameters(create_options,
4331                                               drv->create_options);
4332     create_options = append_option_parameters(create_options,
4333                                               proto_drv->create_options);
4334 
4335     /* Create parameter list with default values */
4336     param = parse_option_parameters("", create_options, param);
4337 
4338     set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4339 
4340     /* Parse -o options */
4341     if (options) {
4342         param = parse_option_parameters(options, create_options, param);
4343         if (param == NULL) {
4344             error_report("Invalid options for file format '%s'.", fmt);
4345             ret = -EINVAL;
4346             goto out;
4347         }
4348     }
4349 
4350     if (base_filename) {
4351         if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4352                                  base_filename)) {
4353             error_report("Backing file not supported for file format '%s'",
4354                          fmt);
4355             ret = -EINVAL;
4356             goto out;
4357         }
4358     }
4359 
4360     if (base_fmt) {
4361         if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4362             error_report("Backing file format not supported for file "
4363                          "format '%s'", fmt);
4364             ret = -EINVAL;
4365             goto out;
4366         }
4367     }
4368 
4369     backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4370     if (backing_file && backing_file->value.s) {
4371         if (!strcmp(filename, backing_file->value.s)) {
4372             error_report("Error: Trying to create an image with the "
4373                          "same filename as the backing file");
4374             ret = -EINVAL;
4375             goto out;
4376         }
4377     }
4378 
4379     backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4380     if (backing_fmt && backing_fmt->value.s) {
4381         backing_drv = bdrv_find_format(backing_fmt->value.s);
4382         if (!backing_drv) {
4383             error_report("Unknown backing file format '%s'",
4384                          backing_fmt->value.s);
4385             ret = -EINVAL;
4386             goto out;
4387         }
4388     }
4389 
4390     // The size for the image must always be specified, with one exception:
4391     // If we are using a backing file, we can obtain the size from there
4392     size = get_option_parameter(param, BLOCK_OPT_SIZE);
4393     if (size && size->value.n == -1) {
4394         if (backing_file && backing_file->value.s) {
4395             uint64_t size;
4396             char buf[32];
4397             int back_flags;
4398 
4399             /* backing files always opened read-only */
4400             back_flags =
4401                 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4402 
4403             bs = bdrv_new("");
4404 
4405             ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4406             if (ret < 0) {
4407                 error_report("Could not open '%s'", backing_file->value.s);
4408                 goto out;
4409             }
4410             bdrv_get_geometry(bs, &size);
4411             size *= 512;
4412 
4413             snprintf(buf, sizeof(buf), "%" PRId64, size);
4414             set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4415         } else {
4416             error_report("Image creation needs a size parameter");
4417             ret = -EINVAL;
4418             goto out;
4419         }
4420     }
4421 
4422     printf("Formatting '%s', fmt=%s ", filename, fmt);
4423     print_option_parameters(param);
4424     puts("");
4425 
4426     ret = bdrv_create(drv, filename, param);
4427 
4428     if (ret < 0) {
4429         if (ret == -ENOTSUP) {
4430             error_report("Formatting or formatting option not supported for "
4431                          "file format '%s'", fmt);
4432         } else if (ret == -EFBIG) {
4433             error_report("The image size is too large for file format '%s'",
4434                          fmt);
4435         } else {
4436             error_report("%s: error while creating %s: %s", filename, fmt,
4437                          strerror(-ret));
4438         }
4439     }
4440 
4441 out:
4442     free_option_parameters(create_options);
4443     free_option_parameters(param);
4444 
4445     if (bs) {
4446         bdrv_delete(bs);
4447     }
4448 
4449     return ret;
4450 }
4451