1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor/monitor.h" 28 #include "block/block_int.h" 29 #include "block/blockjob.h" 30 #include "qemu/module.h" 31 #include "qapi/qmp/qjson.h" 32 #include "sysemu/sysemu.h" 33 #include "qemu/notify.h" 34 #include "block/coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu/timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* The device to use for VM snapshots */ 103 static BlockDriverState *bs_snapshots; 104 105 /* If non-zero, use only whitelisted block drivers */ 106 static int use_bdrv_whitelist; 107 108 #ifdef _WIN32 109 static int is_windows_drive_prefix(const char *filename) 110 { 111 return (((filename[0] >= 'a' && filename[0] <= 'z') || 112 (filename[0] >= 'A' && filename[0] <= 'Z')) && 113 filename[1] == ':'); 114 } 115 116 int is_windows_drive(const char *filename) 117 { 118 if (is_windows_drive_prefix(filename) && 119 filename[2] == '\0') 120 return 1; 121 if (strstart(filename, "\\\\.\\", NULL) || 122 strstart(filename, "//./", NULL)) 123 return 1; 124 return 0; 125 } 126 #endif 127 128 /* throttling disk I/O limits */ 129 void bdrv_io_limits_disable(BlockDriverState *bs) 130 { 131 bs->io_limits_enabled = false; 132 133 while (qemu_co_queue_next(&bs->throttled_reqs)); 134 135 if (bs->block_timer) { 136 qemu_del_timer(bs->block_timer); 137 qemu_free_timer(bs->block_timer); 138 bs->block_timer = NULL; 139 } 140 141 bs->slice_start = 0; 142 bs->slice_end = 0; 143 bs->slice_time = 0; 144 memset(&bs->io_base, 0, sizeof(bs->io_base)); 145 } 146 147 static void bdrv_block_timer(void *opaque) 148 { 149 BlockDriverState *bs = opaque; 150 151 qemu_co_queue_next(&bs->throttled_reqs); 152 } 153 154 void bdrv_io_limits_enable(BlockDriverState *bs) 155 { 156 qemu_co_queue_init(&bs->throttled_reqs); 157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 158 bs->io_limits_enabled = true; 159 } 160 161 bool bdrv_io_limits_enabled(BlockDriverState *bs) 162 { 163 BlockIOLimit *io_limits = &bs->io_limits; 164 return io_limits->bps[BLOCK_IO_LIMIT_READ] 165 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 166 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 167 || io_limits->iops[BLOCK_IO_LIMIT_READ] 168 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 169 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 170 } 171 172 static void bdrv_io_limits_intercept(BlockDriverState *bs, 173 bool is_write, int nb_sectors) 174 { 175 int64_t wait_time = -1; 176 177 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 178 qemu_co_queue_wait(&bs->throttled_reqs); 179 } 180 181 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 182 * throttled requests will not be dequeued until the current request is 183 * allowed to be serviced. So if the current request still exceeds the 184 * limits, it will be inserted to the head. All requests followed it will 185 * be still in throttled_reqs queue. 186 */ 187 188 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 189 qemu_mod_timer(bs->block_timer, 190 wait_time + qemu_get_clock_ns(vm_clock)); 191 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 192 } 193 194 qemu_co_queue_next(&bs->throttled_reqs); 195 } 196 197 /* check if the path starts with "<protocol>:" */ 198 static int path_has_protocol(const char *path) 199 { 200 const char *p; 201 202 #ifdef _WIN32 203 if (is_windows_drive(path) || 204 is_windows_drive_prefix(path)) { 205 return 0; 206 } 207 p = path + strcspn(path, ":/\\"); 208 #else 209 p = path + strcspn(path, ":/"); 210 #endif 211 212 return *p == ':'; 213 } 214 215 int path_is_absolute(const char *path) 216 { 217 #ifdef _WIN32 218 /* specific case for names like: "\\.\d:" */ 219 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 220 return 1; 221 } 222 return (*path == '/' || *path == '\\'); 223 #else 224 return (*path == '/'); 225 #endif 226 } 227 228 /* if filename is absolute, just copy it to dest. Otherwise, build a 229 path to it by considering it is relative to base_path. URL are 230 supported. */ 231 void path_combine(char *dest, int dest_size, 232 const char *base_path, 233 const char *filename) 234 { 235 const char *p, *p1; 236 int len; 237 238 if (dest_size <= 0) 239 return; 240 if (path_is_absolute(filename)) { 241 pstrcpy(dest, dest_size, filename); 242 } else { 243 p = strchr(base_path, ':'); 244 if (p) 245 p++; 246 else 247 p = base_path; 248 p1 = strrchr(base_path, '/'); 249 #ifdef _WIN32 250 { 251 const char *p2; 252 p2 = strrchr(base_path, '\\'); 253 if (!p1 || p2 > p1) 254 p1 = p2; 255 } 256 #endif 257 if (p1) 258 p1++; 259 else 260 p1 = base_path; 261 if (p1 > p) 262 p = p1; 263 len = p - base_path; 264 if (len > dest_size - 1) 265 len = dest_size - 1; 266 memcpy(dest, base_path, len); 267 dest[len] = '\0'; 268 pstrcat(dest, dest_size, filename); 269 } 270 } 271 272 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 273 { 274 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 275 pstrcpy(dest, sz, bs->backing_file); 276 } else { 277 path_combine(dest, sz, bs->filename, bs->backing_file); 278 } 279 } 280 281 void bdrv_register(BlockDriver *bdrv) 282 { 283 /* Block drivers without coroutine functions need emulation */ 284 if (!bdrv->bdrv_co_readv) { 285 bdrv->bdrv_co_readv = bdrv_co_readv_em; 286 bdrv->bdrv_co_writev = bdrv_co_writev_em; 287 288 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 289 * the block driver lacks aio we need to emulate that too. 290 */ 291 if (!bdrv->bdrv_aio_readv) { 292 /* add AIO emulation layer */ 293 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 294 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 295 } 296 } 297 298 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 299 } 300 301 /* create a new block device (by default it is empty) */ 302 BlockDriverState *bdrv_new(const char *device_name) 303 { 304 BlockDriverState *bs; 305 306 bs = g_malloc0(sizeof(BlockDriverState)); 307 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 308 if (device_name[0] != '\0') { 309 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 310 } 311 bdrv_iostatus_disable(bs); 312 notifier_list_init(&bs->close_notifiers); 313 314 return bs; 315 } 316 317 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 318 { 319 notifier_list_add(&bs->close_notifiers, notify); 320 } 321 322 BlockDriver *bdrv_find_format(const char *format_name) 323 { 324 BlockDriver *drv1; 325 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 326 if (!strcmp(drv1->format_name, format_name)) { 327 return drv1; 328 } 329 } 330 return NULL; 331 } 332 333 static int bdrv_is_whitelisted(BlockDriver *drv) 334 { 335 static const char *whitelist[] = { 336 CONFIG_BDRV_WHITELIST 337 }; 338 const char **p; 339 340 if (!whitelist[0]) 341 return 1; /* no whitelist, anything goes */ 342 343 for (p = whitelist; *p; p++) { 344 if (!strcmp(drv->format_name, *p)) { 345 return 1; 346 } 347 } 348 return 0; 349 } 350 351 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 352 { 353 BlockDriver *drv = bdrv_find_format(format_name); 354 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 355 } 356 357 typedef struct CreateCo { 358 BlockDriver *drv; 359 char *filename; 360 QEMUOptionParameter *options; 361 int ret; 362 } CreateCo; 363 364 static void coroutine_fn bdrv_create_co_entry(void *opaque) 365 { 366 CreateCo *cco = opaque; 367 assert(cco->drv); 368 369 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 370 } 371 372 int bdrv_create(BlockDriver *drv, const char* filename, 373 QEMUOptionParameter *options) 374 { 375 int ret; 376 377 Coroutine *co; 378 CreateCo cco = { 379 .drv = drv, 380 .filename = g_strdup(filename), 381 .options = options, 382 .ret = NOT_DONE, 383 }; 384 385 if (!drv->bdrv_create) { 386 ret = -ENOTSUP; 387 goto out; 388 } 389 390 if (qemu_in_coroutine()) { 391 /* Fast-path if already in coroutine context */ 392 bdrv_create_co_entry(&cco); 393 } else { 394 co = qemu_coroutine_create(bdrv_create_co_entry); 395 qemu_coroutine_enter(co, &cco); 396 while (cco.ret == NOT_DONE) { 397 qemu_aio_wait(); 398 } 399 } 400 401 ret = cco.ret; 402 403 out: 404 g_free(cco.filename); 405 return ret; 406 } 407 408 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 409 { 410 BlockDriver *drv; 411 412 drv = bdrv_find_protocol(filename); 413 if (drv == NULL) { 414 return -ENOENT; 415 } 416 417 return bdrv_create(drv, filename, options); 418 } 419 420 /* 421 * Create a uniquely-named empty temporary file. 422 * Return 0 upon success, otherwise a negative errno value. 423 */ 424 int get_tmp_filename(char *filename, int size) 425 { 426 #ifdef _WIN32 427 char temp_dir[MAX_PATH]; 428 /* GetTempFileName requires that its output buffer (4th param) 429 have length MAX_PATH or greater. */ 430 assert(size >= MAX_PATH); 431 return (GetTempPath(MAX_PATH, temp_dir) 432 && GetTempFileName(temp_dir, "qem", 0, filename) 433 ? 0 : -GetLastError()); 434 #else 435 int fd; 436 const char *tmpdir; 437 tmpdir = getenv("TMPDIR"); 438 if (!tmpdir) 439 tmpdir = "/tmp"; 440 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 441 return -EOVERFLOW; 442 } 443 fd = mkstemp(filename); 444 if (fd < 0) { 445 return -errno; 446 } 447 if (close(fd) != 0) { 448 unlink(filename); 449 return -errno; 450 } 451 return 0; 452 #endif 453 } 454 455 /* 456 * Detect host devices. By convention, /dev/cdrom[N] is always 457 * recognized as a host CDROM. 458 */ 459 static BlockDriver *find_hdev_driver(const char *filename) 460 { 461 int score_max = 0, score; 462 BlockDriver *drv = NULL, *d; 463 464 QLIST_FOREACH(d, &bdrv_drivers, list) { 465 if (d->bdrv_probe_device) { 466 score = d->bdrv_probe_device(filename); 467 if (score > score_max) { 468 score_max = score; 469 drv = d; 470 } 471 } 472 } 473 474 return drv; 475 } 476 477 BlockDriver *bdrv_find_protocol(const char *filename) 478 { 479 BlockDriver *drv1; 480 char protocol[128]; 481 int len; 482 const char *p; 483 484 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 485 486 /* 487 * XXX(hch): we really should not let host device detection 488 * override an explicit protocol specification, but moving this 489 * later breaks access to device names with colons in them. 490 * Thanks to the brain-dead persistent naming schemes on udev- 491 * based Linux systems those actually are quite common. 492 */ 493 drv1 = find_hdev_driver(filename); 494 if (drv1) { 495 return drv1; 496 } 497 498 if (!path_has_protocol(filename)) { 499 return bdrv_find_format("file"); 500 } 501 p = strchr(filename, ':'); 502 assert(p != NULL); 503 len = p - filename; 504 if (len > sizeof(protocol) - 1) 505 len = sizeof(protocol) - 1; 506 memcpy(protocol, filename, len); 507 protocol[len] = '\0'; 508 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 509 if (drv1->protocol_name && 510 !strcmp(drv1->protocol_name, protocol)) { 511 return drv1; 512 } 513 } 514 return NULL; 515 } 516 517 static int find_image_format(BlockDriverState *bs, const char *filename, 518 BlockDriver **pdrv) 519 { 520 int score, score_max; 521 BlockDriver *drv1, *drv; 522 uint8_t buf[2048]; 523 int ret = 0; 524 525 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 526 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) { 527 drv = bdrv_find_format("raw"); 528 if (!drv) { 529 ret = -ENOENT; 530 } 531 *pdrv = drv; 532 return ret; 533 } 534 535 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 536 if (ret < 0) { 537 *pdrv = NULL; 538 return ret; 539 } 540 541 score_max = 0; 542 drv = NULL; 543 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 544 if (drv1->bdrv_probe) { 545 score = drv1->bdrv_probe(buf, ret, filename); 546 if (score > score_max) { 547 score_max = score; 548 drv = drv1; 549 } 550 } 551 } 552 if (!drv) { 553 ret = -ENOENT; 554 } 555 *pdrv = drv; 556 return ret; 557 } 558 559 /** 560 * Set the current 'total_sectors' value 561 */ 562 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 563 { 564 BlockDriver *drv = bs->drv; 565 566 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 567 if (bs->sg) 568 return 0; 569 570 /* query actual device if possible, otherwise just trust the hint */ 571 if (drv->bdrv_getlength) { 572 int64_t length = drv->bdrv_getlength(bs); 573 if (length < 0) { 574 return length; 575 } 576 hint = length >> BDRV_SECTOR_BITS; 577 } 578 579 bs->total_sectors = hint; 580 return 0; 581 } 582 583 /** 584 * Set open flags for a given cache mode 585 * 586 * Return 0 on success, -1 if the cache mode was invalid. 587 */ 588 int bdrv_parse_cache_flags(const char *mode, int *flags) 589 { 590 *flags &= ~BDRV_O_CACHE_MASK; 591 592 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 593 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 594 } else if (!strcmp(mode, "directsync")) { 595 *flags |= BDRV_O_NOCACHE; 596 } else if (!strcmp(mode, "writeback")) { 597 *flags |= BDRV_O_CACHE_WB; 598 } else if (!strcmp(mode, "unsafe")) { 599 *flags |= BDRV_O_CACHE_WB; 600 *flags |= BDRV_O_NO_FLUSH; 601 } else if (!strcmp(mode, "writethrough")) { 602 /* this is the default */ 603 } else { 604 return -1; 605 } 606 607 return 0; 608 } 609 610 /** 611 * The copy-on-read flag is actually a reference count so multiple users may 612 * use the feature without worrying about clobbering its previous state. 613 * Copy-on-read stays enabled until all users have called to disable it. 614 */ 615 void bdrv_enable_copy_on_read(BlockDriverState *bs) 616 { 617 bs->copy_on_read++; 618 } 619 620 void bdrv_disable_copy_on_read(BlockDriverState *bs) 621 { 622 assert(bs->copy_on_read > 0); 623 bs->copy_on_read--; 624 } 625 626 static int bdrv_open_flags(BlockDriverState *bs, int flags) 627 { 628 int open_flags = flags | BDRV_O_CACHE_WB; 629 630 /* 631 * Clear flags that are internal to the block layer before opening the 632 * image. 633 */ 634 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 635 636 /* 637 * Snapshots should be writable. 638 */ 639 if (bs->is_temporary) { 640 open_flags |= BDRV_O_RDWR; 641 } 642 643 return open_flags; 644 } 645 646 /* 647 * Common part for opening disk images and files 648 */ 649 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file, 650 const char *filename, 651 int flags, BlockDriver *drv) 652 { 653 int ret, open_flags; 654 655 assert(drv != NULL); 656 assert(bs->file == NULL); 657 658 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 659 660 bs->open_flags = flags; 661 bs->buffer_alignment = 512; 662 663 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 664 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 665 bdrv_enable_copy_on_read(bs); 666 } 667 668 pstrcpy(bs->filename, sizeof(bs->filename), filename); 669 670 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 671 return -ENOTSUP; 672 } 673 674 bs->drv = drv; 675 bs->opaque = g_malloc0(drv->instance_size); 676 677 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 678 open_flags = bdrv_open_flags(bs, flags); 679 680 bs->read_only = !(open_flags & BDRV_O_RDWR); 681 682 /* Open the image, either directly or using a protocol */ 683 if (drv->bdrv_file_open) { 684 if (file != NULL) { 685 bdrv_swap(file, bs); 686 ret = 0; 687 } else { 688 ret = drv->bdrv_file_open(bs, filename, open_flags); 689 } 690 } else { 691 assert(file != NULL); 692 bs->file = file; 693 ret = drv->bdrv_open(bs, open_flags); 694 } 695 696 if (ret < 0) { 697 goto free_and_fail; 698 } 699 700 ret = refresh_total_sectors(bs, bs->total_sectors); 701 if (ret < 0) { 702 goto free_and_fail; 703 } 704 705 #ifndef _WIN32 706 if (bs->is_temporary) { 707 unlink(filename); 708 } 709 #endif 710 return 0; 711 712 free_and_fail: 713 bs->file = NULL; 714 g_free(bs->opaque); 715 bs->opaque = NULL; 716 bs->drv = NULL; 717 return ret; 718 } 719 720 /* 721 * Opens a file using a protocol (file, host_device, nbd, ...) 722 */ 723 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 724 { 725 BlockDriverState *bs; 726 BlockDriver *drv; 727 int ret; 728 729 drv = bdrv_find_protocol(filename); 730 if (!drv) { 731 return -ENOENT; 732 } 733 734 bs = bdrv_new(""); 735 ret = bdrv_open_common(bs, NULL, filename, flags, drv); 736 if (ret < 0) { 737 bdrv_delete(bs); 738 return ret; 739 } 740 bs->growable = 1; 741 *pbs = bs; 742 return 0; 743 } 744 745 int bdrv_open_backing_file(BlockDriverState *bs) 746 { 747 char backing_filename[PATH_MAX]; 748 int back_flags, ret; 749 BlockDriver *back_drv = NULL; 750 751 if (bs->backing_hd != NULL) { 752 return 0; 753 } 754 755 bs->open_flags &= ~BDRV_O_NO_BACKING; 756 if (bs->backing_file[0] == '\0') { 757 return 0; 758 } 759 760 bs->backing_hd = bdrv_new(""); 761 bdrv_get_full_backing_filename(bs, backing_filename, 762 sizeof(backing_filename)); 763 764 if (bs->backing_format[0] != '\0') { 765 back_drv = bdrv_find_format(bs->backing_format); 766 } 767 768 /* backing files always opened read-only */ 769 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 770 771 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 772 if (ret < 0) { 773 bdrv_delete(bs->backing_hd); 774 bs->backing_hd = NULL; 775 bs->open_flags |= BDRV_O_NO_BACKING; 776 return ret; 777 } 778 return 0; 779 } 780 781 /* 782 * Opens a disk image (raw, qcow2, vmdk, ...) 783 */ 784 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 785 BlockDriver *drv) 786 { 787 int ret; 788 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ 789 char tmp_filename[PATH_MAX + 1]; 790 BlockDriverState *file = NULL; 791 792 if (flags & BDRV_O_SNAPSHOT) { 793 BlockDriverState *bs1; 794 int64_t total_size; 795 int is_protocol = 0; 796 BlockDriver *bdrv_qcow2; 797 QEMUOptionParameter *options; 798 char backing_filename[PATH_MAX]; 799 800 /* if snapshot, we create a temporary backing file and open it 801 instead of opening 'filename' directly */ 802 803 /* if there is a backing file, use it */ 804 bs1 = bdrv_new(""); 805 ret = bdrv_open(bs1, filename, 0, drv); 806 if (ret < 0) { 807 bdrv_delete(bs1); 808 return ret; 809 } 810 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 811 812 if (bs1->drv && bs1->drv->protocol_name) 813 is_protocol = 1; 814 815 bdrv_delete(bs1); 816 817 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 818 if (ret < 0) { 819 return ret; 820 } 821 822 /* Real path is meaningless for protocols */ 823 if (is_protocol) 824 snprintf(backing_filename, sizeof(backing_filename), 825 "%s", filename); 826 else if (!realpath(filename, backing_filename)) 827 return -errno; 828 829 bdrv_qcow2 = bdrv_find_format("qcow2"); 830 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 831 832 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 833 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 834 if (drv) { 835 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 836 drv->format_name); 837 } 838 839 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 840 free_option_parameters(options); 841 if (ret < 0) { 842 return ret; 843 } 844 845 filename = tmp_filename; 846 drv = bdrv_qcow2; 847 bs->is_temporary = 1; 848 } 849 850 /* Open image file without format layer */ 851 if (flags & BDRV_O_RDWR) { 852 flags |= BDRV_O_ALLOW_RDWR; 853 } 854 855 ret = bdrv_file_open(&file, filename, bdrv_open_flags(bs, flags)); 856 if (ret < 0) { 857 return ret; 858 } 859 860 /* Find the right image format driver */ 861 if (!drv) { 862 ret = find_image_format(file, filename, &drv); 863 } 864 865 if (!drv) { 866 goto unlink_and_fail; 867 } 868 869 /* Open the image */ 870 ret = bdrv_open_common(bs, file, filename, flags, drv); 871 if (ret < 0) { 872 goto unlink_and_fail; 873 } 874 875 if (bs->file != file) { 876 bdrv_delete(file); 877 file = NULL; 878 } 879 880 /* If there is a backing file, use it */ 881 if ((flags & BDRV_O_NO_BACKING) == 0) { 882 ret = bdrv_open_backing_file(bs); 883 if (ret < 0) { 884 bdrv_close(bs); 885 return ret; 886 } 887 } 888 889 if (!bdrv_key_required(bs)) { 890 bdrv_dev_change_media_cb(bs, true); 891 } 892 893 /* throttling disk I/O limits */ 894 if (bs->io_limits_enabled) { 895 bdrv_io_limits_enable(bs); 896 } 897 898 return 0; 899 900 unlink_and_fail: 901 if (file != NULL) { 902 bdrv_delete(file); 903 } 904 if (bs->is_temporary) { 905 unlink(filename); 906 } 907 return ret; 908 } 909 910 typedef struct BlockReopenQueueEntry { 911 bool prepared; 912 BDRVReopenState state; 913 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 914 } BlockReopenQueueEntry; 915 916 /* 917 * Adds a BlockDriverState to a simple queue for an atomic, transactional 918 * reopen of multiple devices. 919 * 920 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 921 * already performed, or alternatively may be NULL a new BlockReopenQueue will 922 * be created and initialized. This newly created BlockReopenQueue should be 923 * passed back in for subsequent calls that are intended to be of the same 924 * atomic 'set'. 925 * 926 * bs is the BlockDriverState to add to the reopen queue. 927 * 928 * flags contains the open flags for the associated bs 929 * 930 * returns a pointer to bs_queue, which is either the newly allocated 931 * bs_queue, or the existing bs_queue being used. 932 * 933 */ 934 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 935 BlockDriverState *bs, int flags) 936 { 937 assert(bs != NULL); 938 939 BlockReopenQueueEntry *bs_entry; 940 if (bs_queue == NULL) { 941 bs_queue = g_new0(BlockReopenQueue, 1); 942 QSIMPLEQ_INIT(bs_queue); 943 } 944 945 if (bs->file) { 946 bdrv_reopen_queue(bs_queue, bs->file, flags); 947 } 948 949 bs_entry = g_new0(BlockReopenQueueEntry, 1); 950 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 951 952 bs_entry->state.bs = bs; 953 bs_entry->state.flags = flags; 954 955 return bs_queue; 956 } 957 958 /* 959 * Reopen multiple BlockDriverStates atomically & transactionally. 960 * 961 * The queue passed in (bs_queue) must have been built up previous 962 * via bdrv_reopen_queue(). 963 * 964 * Reopens all BDS specified in the queue, with the appropriate 965 * flags. All devices are prepared for reopen, and failure of any 966 * device will cause all device changes to be abandonded, and intermediate 967 * data cleaned up. 968 * 969 * If all devices prepare successfully, then the changes are committed 970 * to all devices. 971 * 972 */ 973 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 974 { 975 int ret = -1; 976 BlockReopenQueueEntry *bs_entry, *next; 977 Error *local_err = NULL; 978 979 assert(bs_queue != NULL); 980 981 bdrv_drain_all(); 982 983 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 984 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 985 error_propagate(errp, local_err); 986 goto cleanup; 987 } 988 bs_entry->prepared = true; 989 } 990 991 /* If we reach this point, we have success and just need to apply the 992 * changes 993 */ 994 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 995 bdrv_reopen_commit(&bs_entry->state); 996 } 997 998 ret = 0; 999 1000 cleanup: 1001 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 1002 if (ret && bs_entry->prepared) { 1003 bdrv_reopen_abort(&bs_entry->state); 1004 } 1005 g_free(bs_entry); 1006 } 1007 g_free(bs_queue); 1008 return ret; 1009 } 1010 1011 1012 /* Reopen a single BlockDriverState with the specified flags. */ 1013 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1014 { 1015 int ret = -1; 1016 Error *local_err = NULL; 1017 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1018 1019 ret = bdrv_reopen_multiple(queue, &local_err); 1020 if (local_err != NULL) { 1021 error_propagate(errp, local_err); 1022 } 1023 return ret; 1024 } 1025 1026 1027 /* 1028 * Prepares a BlockDriverState for reopen. All changes are staged in the 1029 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1030 * the block driver layer .bdrv_reopen_prepare() 1031 * 1032 * bs is the BlockDriverState to reopen 1033 * flags are the new open flags 1034 * queue is the reopen queue 1035 * 1036 * Returns 0 on success, non-zero on error. On error errp will be set 1037 * as well. 1038 * 1039 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1040 * It is the responsibility of the caller to then call the abort() or 1041 * commit() for any other BDS that have been left in a prepare() state 1042 * 1043 */ 1044 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1045 Error **errp) 1046 { 1047 int ret = -1; 1048 Error *local_err = NULL; 1049 BlockDriver *drv; 1050 1051 assert(reopen_state != NULL); 1052 assert(reopen_state->bs->drv != NULL); 1053 drv = reopen_state->bs->drv; 1054 1055 /* if we are to stay read-only, do not allow permission change 1056 * to r/w */ 1057 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1058 reopen_state->flags & BDRV_O_RDWR) { 1059 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1060 reopen_state->bs->device_name); 1061 goto error; 1062 } 1063 1064 1065 ret = bdrv_flush(reopen_state->bs); 1066 if (ret) { 1067 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1068 strerror(-ret)); 1069 goto error; 1070 } 1071 1072 if (drv->bdrv_reopen_prepare) { 1073 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1074 if (ret) { 1075 if (local_err != NULL) { 1076 error_propagate(errp, local_err); 1077 } else { 1078 error_set(errp, QERR_OPEN_FILE_FAILED, 1079 reopen_state->bs->filename); 1080 } 1081 goto error; 1082 } 1083 } else { 1084 /* It is currently mandatory to have a bdrv_reopen_prepare() 1085 * handler for each supported drv. */ 1086 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1087 drv->format_name, reopen_state->bs->device_name, 1088 "reopening of file"); 1089 ret = -1; 1090 goto error; 1091 } 1092 1093 ret = 0; 1094 1095 error: 1096 return ret; 1097 } 1098 1099 /* 1100 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1101 * makes them final by swapping the staging BlockDriverState contents into 1102 * the active BlockDriverState contents. 1103 */ 1104 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1105 { 1106 BlockDriver *drv; 1107 1108 assert(reopen_state != NULL); 1109 drv = reopen_state->bs->drv; 1110 assert(drv != NULL); 1111 1112 /* If there are any driver level actions to take */ 1113 if (drv->bdrv_reopen_commit) { 1114 drv->bdrv_reopen_commit(reopen_state); 1115 } 1116 1117 /* set BDS specific flags now */ 1118 reopen_state->bs->open_flags = reopen_state->flags; 1119 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1120 BDRV_O_CACHE_WB); 1121 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1122 } 1123 1124 /* 1125 * Abort the reopen, and delete and free the staged changes in 1126 * reopen_state 1127 */ 1128 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1129 { 1130 BlockDriver *drv; 1131 1132 assert(reopen_state != NULL); 1133 drv = reopen_state->bs->drv; 1134 assert(drv != NULL); 1135 1136 if (drv->bdrv_reopen_abort) { 1137 drv->bdrv_reopen_abort(reopen_state); 1138 } 1139 } 1140 1141 1142 void bdrv_close(BlockDriverState *bs) 1143 { 1144 bdrv_flush(bs); 1145 if (bs->job) { 1146 block_job_cancel_sync(bs->job); 1147 } 1148 bdrv_drain_all(); 1149 notifier_list_notify(&bs->close_notifiers, bs); 1150 1151 if (bs->drv) { 1152 if (bs == bs_snapshots) { 1153 bs_snapshots = NULL; 1154 } 1155 if (bs->backing_hd) { 1156 bdrv_delete(bs->backing_hd); 1157 bs->backing_hd = NULL; 1158 } 1159 bs->drv->bdrv_close(bs); 1160 g_free(bs->opaque); 1161 #ifdef _WIN32 1162 if (bs->is_temporary) { 1163 unlink(bs->filename); 1164 } 1165 #endif 1166 bs->opaque = NULL; 1167 bs->drv = NULL; 1168 bs->copy_on_read = 0; 1169 bs->backing_file[0] = '\0'; 1170 bs->backing_format[0] = '\0'; 1171 bs->total_sectors = 0; 1172 bs->encrypted = 0; 1173 bs->valid_key = 0; 1174 bs->sg = 0; 1175 bs->growable = 0; 1176 1177 if (bs->file != NULL) { 1178 bdrv_delete(bs->file); 1179 bs->file = NULL; 1180 } 1181 } 1182 1183 bdrv_dev_change_media_cb(bs, false); 1184 1185 /*throttling disk I/O limits*/ 1186 if (bs->io_limits_enabled) { 1187 bdrv_io_limits_disable(bs); 1188 } 1189 } 1190 1191 void bdrv_close_all(void) 1192 { 1193 BlockDriverState *bs; 1194 1195 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1196 bdrv_close(bs); 1197 } 1198 } 1199 1200 /* 1201 * Wait for pending requests to complete across all BlockDriverStates 1202 * 1203 * This function does not flush data to disk, use bdrv_flush_all() for that 1204 * after calling this function. 1205 * 1206 * Note that completion of an asynchronous I/O operation can trigger any 1207 * number of other I/O operations on other devices---for example a coroutine 1208 * can be arbitrarily complex and a constant flow of I/O can come until the 1209 * coroutine is complete. Because of this, it is not possible to have a 1210 * function to drain a single device's I/O queue. 1211 */ 1212 void bdrv_drain_all(void) 1213 { 1214 BlockDriverState *bs; 1215 bool busy; 1216 1217 do { 1218 busy = qemu_aio_wait(); 1219 1220 /* FIXME: We do not have timer support here, so this is effectively 1221 * a busy wait. 1222 */ 1223 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1224 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1225 qemu_co_queue_restart_all(&bs->throttled_reqs); 1226 busy = true; 1227 } 1228 } 1229 } while (busy); 1230 1231 /* If requests are still pending there is a bug somewhere */ 1232 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1233 assert(QLIST_EMPTY(&bs->tracked_requests)); 1234 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1235 } 1236 } 1237 1238 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1239 Also, NULL terminate the device_name to prevent double remove */ 1240 void bdrv_make_anon(BlockDriverState *bs) 1241 { 1242 if (bs->device_name[0] != '\0') { 1243 QTAILQ_REMOVE(&bdrv_states, bs, list); 1244 } 1245 bs->device_name[0] = '\0'; 1246 } 1247 1248 static void bdrv_rebind(BlockDriverState *bs) 1249 { 1250 if (bs->drv && bs->drv->bdrv_rebind) { 1251 bs->drv->bdrv_rebind(bs); 1252 } 1253 } 1254 1255 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1256 BlockDriverState *bs_src) 1257 { 1258 /* move some fields that need to stay attached to the device */ 1259 bs_dest->open_flags = bs_src->open_flags; 1260 1261 /* dev info */ 1262 bs_dest->dev_ops = bs_src->dev_ops; 1263 bs_dest->dev_opaque = bs_src->dev_opaque; 1264 bs_dest->dev = bs_src->dev; 1265 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1266 bs_dest->copy_on_read = bs_src->copy_on_read; 1267 1268 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1269 1270 /* i/o timing parameters */ 1271 bs_dest->slice_time = bs_src->slice_time; 1272 bs_dest->slice_start = bs_src->slice_start; 1273 bs_dest->slice_end = bs_src->slice_end; 1274 bs_dest->io_limits = bs_src->io_limits; 1275 bs_dest->io_base = bs_src->io_base; 1276 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1277 bs_dest->block_timer = bs_src->block_timer; 1278 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1279 1280 /* r/w error */ 1281 bs_dest->on_read_error = bs_src->on_read_error; 1282 bs_dest->on_write_error = bs_src->on_write_error; 1283 1284 /* i/o status */ 1285 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1286 bs_dest->iostatus = bs_src->iostatus; 1287 1288 /* dirty bitmap */ 1289 bs_dest->dirty_count = bs_src->dirty_count; 1290 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1291 1292 /* job */ 1293 bs_dest->in_use = bs_src->in_use; 1294 bs_dest->job = bs_src->job; 1295 1296 /* keep the same entry in bdrv_states */ 1297 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1298 bs_src->device_name); 1299 bs_dest->list = bs_src->list; 1300 } 1301 1302 /* 1303 * Swap bs contents for two image chains while they are live, 1304 * while keeping required fields on the BlockDriverState that is 1305 * actually attached to a device. 1306 * 1307 * This will modify the BlockDriverState fields, and swap contents 1308 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1309 * 1310 * bs_new is required to be anonymous. 1311 * 1312 * This function does not create any image files. 1313 */ 1314 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1315 { 1316 BlockDriverState tmp; 1317 1318 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1319 assert(bs_new->device_name[0] == '\0'); 1320 assert(bs_new->dirty_bitmap == NULL); 1321 assert(bs_new->job == NULL); 1322 assert(bs_new->dev == NULL); 1323 assert(bs_new->in_use == 0); 1324 assert(bs_new->io_limits_enabled == false); 1325 assert(bs_new->block_timer == NULL); 1326 1327 tmp = *bs_new; 1328 *bs_new = *bs_old; 1329 *bs_old = tmp; 1330 1331 /* there are some fields that should not be swapped, move them back */ 1332 bdrv_move_feature_fields(&tmp, bs_old); 1333 bdrv_move_feature_fields(bs_old, bs_new); 1334 bdrv_move_feature_fields(bs_new, &tmp); 1335 1336 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1337 assert(bs_new->device_name[0] == '\0'); 1338 1339 /* Check a few fields that should remain attached to the device */ 1340 assert(bs_new->dev == NULL); 1341 assert(bs_new->job == NULL); 1342 assert(bs_new->in_use == 0); 1343 assert(bs_new->io_limits_enabled == false); 1344 assert(bs_new->block_timer == NULL); 1345 1346 bdrv_rebind(bs_new); 1347 bdrv_rebind(bs_old); 1348 } 1349 1350 /* 1351 * Add new bs contents at the top of an image chain while the chain is 1352 * live, while keeping required fields on the top layer. 1353 * 1354 * This will modify the BlockDriverState fields, and swap contents 1355 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1356 * 1357 * bs_new is required to be anonymous. 1358 * 1359 * This function does not create any image files. 1360 */ 1361 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1362 { 1363 bdrv_swap(bs_new, bs_top); 1364 1365 /* The contents of 'tmp' will become bs_top, as we are 1366 * swapping bs_new and bs_top contents. */ 1367 bs_top->backing_hd = bs_new; 1368 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1369 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1370 bs_new->filename); 1371 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1372 bs_new->drv ? bs_new->drv->format_name : ""); 1373 } 1374 1375 void bdrv_delete(BlockDriverState *bs) 1376 { 1377 assert(!bs->dev); 1378 assert(!bs->job); 1379 assert(!bs->in_use); 1380 1381 /* remove from list, if necessary */ 1382 bdrv_make_anon(bs); 1383 1384 bdrv_close(bs); 1385 1386 assert(bs != bs_snapshots); 1387 g_free(bs); 1388 } 1389 1390 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1391 /* TODO change to DeviceState *dev when all users are qdevified */ 1392 { 1393 if (bs->dev) { 1394 return -EBUSY; 1395 } 1396 bs->dev = dev; 1397 bdrv_iostatus_reset(bs); 1398 return 0; 1399 } 1400 1401 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1402 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1403 { 1404 if (bdrv_attach_dev(bs, dev) < 0) { 1405 abort(); 1406 } 1407 } 1408 1409 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1410 /* TODO change to DeviceState *dev when all users are qdevified */ 1411 { 1412 assert(bs->dev == dev); 1413 bs->dev = NULL; 1414 bs->dev_ops = NULL; 1415 bs->dev_opaque = NULL; 1416 bs->buffer_alignment = 512; 1417 } 1418 1419 /* TODO change to return DeviceState * when all users are qdevified */ 1420 void *bdrv_get_attached_dev(BlockDriverState *bs) 1421 { 1422 return bs->dev; 1423 } 1424 1425 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1426 void *opaque) 1427 { 1428 bs->dev_ops = ops; 1429 bs->dev_opaque = opaque; 1430 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1431 bs_snapshots = NULL; 1432 } 1433 } 1434 1435 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1436 enum MonitorEvent ev, 1437 BlockErrorAction action, bool is_read) 1438 { 1439 QObject *data; 1440 const char *action_str; 1441 1442 switch (action) { 1443 case BDRV_ACTION_REPORT: 1444 action_str = "report"; 1445 break; 1446 case BDRV_ACTION_IGNORE: 1447 action_str = "ignore"; 1448 break; 1449 case BDRV_ACTION_STOP: 1450 action_str = "stop"; 1451 break; 1452 default: 1453 abort(); 1454 } 1455 1456 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1457 bdrv->device_name, 1458 action_str, 1459 is_read ? "read" : "write"); 1460 monitor_protocol_event(ev, data); 1461 1462 qobject_decref(data); 1463 } 1464 1465 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1466 { 1467 QObject *data; 1468 1469 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1470 bdrv_get_device_name(bs), ejected); 1471 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1472 1473 qobject_decref(data); 1474 } 1475 1476 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1477 { 1478 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1479 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1480 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1481 if (tray_was_closed) { 1482 /* tray open */ 1483 bdrv_emit_qmp_eject_event(bs, true); 1484 } 1485 if (load) { 1486 /* tray close */ 1487 bdrv_emit_qmp_eject_event(bs, false); 1488 } 1489 } 1490 } 1491 1492 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1493 { 1494 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1495 } 1496 1497 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1498 { 1499 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1500 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1501 } 1502 } 1503 1504 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1505 { 1506 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1507 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1508 } 1509 return false; 1510 } 1511 1512 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1513 { 1514 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1515 bs->dev_ops->resize_cb(bs->dev_opaque); 1516 } 1517 } 1518 1519 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1520 { 1521 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1522 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1523 } 1524 return false; 1525 } 1526 1527 /* 1528 * Run consistency checks on an image 1529 * 1530 * Returns 0 if the check could be completed (it doesn't mean that the image is 1531 * free of errors) or -errno when an internal error occurred. The results of the 1532 * check are stored in res. 1533 */ 1534 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1535 { 1536 if (bs->drv->bdrv_check == NULL) { 1537 return -ENOTSUP; 1538 } 1539 1540 memset(res, 0, sizeof(*res)); 1541 return bs->drv->bdrv_check(bs, res, fix); 1542 } 1543 1544 #define COMMIT_BUF_SECTORS 2048 1545 1546 /* commit COW file into the raw image */ 1547 int bdrv_commit(BlockDriverState *bs) 1548 { 1549 BlockDriver *drv = bs->drv; 1550 int64_t sector, total_sectors; 1551 int n, ro, open_flags; 1552 int ret = 0; 1553 uint8_t *buf; 1554 char filename[PATH_MAX]; 1555 1556 if (!drv) 1557 return -ENOMEDIUM; 1558 1559 if (!bs->backing_hd) { 1560 return -ENOTSUP; 1561 } 1562 1563 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1564 return -EBUSY; 1565 } 1566 1567 ro = bs->backing_hd->read_only; 1568 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1569 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1570 open_flags = bs->backing_hd->open_flags; 1571 1572 if (ro) { 1573 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1574 return -EACCES; 1575 } 1576 } 1577 1578 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1579 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1580 1581 for (sector = 0; sector < total_sectors; sector += n) { 1582 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1583 1584 if (bdrv_read(bs, sector, buf, n) != 0) { 1585 ret = -EIO; 1586 goto ro_cleanup; 1587 } 1588 1589 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1590 ret = -EIO; 1591 goto ro_cleanup; 1592 } 1593 } 1594 } 1595 1596 if (drv->bdrv_make_empty) { 1597 ret = drv->bdrv_make_empty(bs); 1598 bdrv_flush(bs); 1599 } 1600 1601 /* 1602 * Make sure all data we wrote to the backing device is actually 1603 * stable on disk. 1604 */ 1605 if (bs->backing_hd) 1606 bdrv_flush(bs->backing_hd); 1607 1608 ro_cleanup: 1609 g_free(buf); 1610 1611 if (ro) { 1612 /* ignoring error return here */ 1613 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1614 } 1615 1616 return ret; 1617 } 1618 1619 int bdrv_commit_all(void) 1620 { 1621 BlockDriverState *bs; 1622 1623 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1624 int ret = bdrv_commit(bs); 1625 if (ret < 0) { 1626 return ret; 1627 } 1628 } 1629 return 0; 1630 } 1631 1632 struct BdrvTrackedRequest { 1633 BlockDriverState *bs; 1634 int64_t sector_num; 1635 int nb_sectors; 1636 bool is_write; 1637 QLIST_ENTRY(BdrvTrackedRequest) list; 1638 Coroutine *co; /* owner, used for deadlock detection */ 1639 CoQueue wait_queue; /* coroutines blocked on this request */ 1640 }; 1641 1642 /** 1643 * Remove an active request from the tracked requests list 1644 * 1645 * This function should be called when a tracked request is completing. 1646 */ 1647 static void tracked_request_end(BdrvTrackedRequest *req) 1648 { 1649 QLIST_REMOVE(req, list); 1650 qemu_co_queue_restart_all(&req->wait_queue); 1651 } 1652 1653 /** 1654 * Add an active request to the tracked requests list 1655 */ 1656 static void tracked_request_begin(BdrvTrackedRequest *req, 1657 BlockDriverState *bs, 1658 int64_t sector_num, 1659 int nb_sectors, bool is_write) 1660 { 1661 *req = (BdrvTrackedRequest){ 1662 .bs = bs, 1663 .sector_num = sector_num, 1664 .nb_sectors = nb_sectors, 1665 .is_write = is_write, 1666 .co = qemu_coroutine_self(), 1667 }; 1668 1669 qemu_co_queue_init(&req->wait_queue); 1670 1671 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1672 } 1673 1674 /** 1675 * Round a region to cluster boundaries 1676 */ 1677 static void round_to_clusters(BlockDriverState *bs, 1678 int64_t sector_num, int nb_sectors, 1679 int64_t *cluster_sector_num, 1680 int *cluster_nb_sectors) 1681 { 1682 BlockDriverInfo bdi; 1683 1684 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1685 *cluster_sector_num = sector_num; 1686 *cluster_nb_sectors = nb_sectors; 1687 } else { 1688 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1689 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1690 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1691 nb_sectors, c); 1692 } 1693 } 1694 1695 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1696 int64_t sector_num, int nb_sectors) { 1697 /* aaaa bbbb */ 1698 if (sector_num >= req->sector_num + req->nb_sectors) { 1699 return false; 1700 } 1701 /* bbbb aaaa */ 1702 if (req->sector_num >= sector_num + nb_sectors) { 1703 return false; 1704 } 1705 return true; 1706 } 1707 1708 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1709 int64_t sector_num, int nb_sectors) 1710 { 1711 BdrvTrackedRequest *req; 1712 int64_t cluster_sector_num; 1713 int cluster_nb_sectors; 1714 bool retry; 1715 1716 /* If we touch the same cluster it counts as an overlap. This guarantees 1717 * that allocating writes will be serialized and not race with each other 1718 * for the same cluster. For example, in copy-on-read it ensures that the 1719 * CoR read and write operations are atomic and guest writes cannot 1720 * interleave between them. 1721 */ 1722 round_to_clusters(bs, sector_num, nb_sectors, 1723 &cluster_sector_num, &cluster_nb_sectors); 1724 1725 do { 1726 retry = false; 1727 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1728 if (tracked_request_overlaps(req, cluster_sector_num, 1729 cluster_nb_sectors)) { 1730 /* Hitting this means there was a reentrant request, for 1731 * example, a block driver issuing nested requests. This must 1732 * never happen since it means deadlock. 1733 */ 1734 assert(qemu_coroutine_self() != req->co); 1735 1736 qemu_co_queue_wait(&req->wait_queue); 1737 retry = true; 1738 break; 1739 } 1740 } 1741 } while (retry); 1742 } 1743 1744 /* 1745 * Return values: 1746 * 0 - success 1747 * -EINVAL - backing format specified, but no file 1748 * -ENOSPC - can't update the backing file because no space is left in the 1749 * image file header 1750 * -ENOTSUP - format driver doesn't support changing the backing file 1751 */ 1752 int bdrv_change_backing_file(BlockDriverState *bs, 1753 const char *backing_file, const char *backing_fmt) 1754 { 1755 BlockDriver *drv = bs->drv; 1756 int ret; 1757 1758 /* Backing file format doesn't make sense without a backing file */ 1759 if (backing_fmt && !backing_file) { 1760 return -EINVAL; 1761 } 1762 1763 if (drv->bdrv_change_backing_file != NULL) { 1764 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1765 } else { 1766 ret = -ENOTSUP; 1767 } 1768 1769 if (ret == 0) { 1770 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1771 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1772 } 1773 return ret; 1774 } 1775 1776 /* 1777 * Finds the image layer in the chain that has 'bs' as its backing file. 1778 * 1779 * active is the current topmost image. 1780 * 1781 * Returns NULL if bs is not found in active's image chain, 1782 * or if active == bs. 1783 */ 1784 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1785 BlockDriverState *bs) 1786 { 1787 BlockDriverState *overlay = NULL; 1788 BlockDriverState *intermediate; 1789 1790 assert(active != NULL); 1791 assert(bs != NULL); 1792 1793 /* if bs is the same as active, then by definition it has no overlay 1794 */ 1795 if (active == bs) { 1796 return NULL; 1797 } 1798 1799 intermediate = active; 1800 while (intermediate->backing_hd) { 1801 if (intermediate->backing_hd == bs) { 1802 overlay = intermediate; 1803 break; 1804 } 1805 intermediate = intermediate->backing_hd; 1806 } 1807 1808 return overlay; 1809 } 1810 1811 typedef struct BlkIntermediateStates { 1812 BlockDriverState *bs; 1813 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 1814 } BlkIntermediateStates; 1815 1816 1817 /* 1818 * Drops images above 'base' up to and including 'top', and sets the image 1819 * above 'top' to have base as its backing file. 1820 * 1821 * Requires that the overlay to 'top' is opened r/w, so that the backing file 1822 * information in 'bs' can be properly updated. 1823 * 1824 * E.g., this will convert the following chain: 1825 * bottom <- base <- intermediate <- top <- active 1826 * 1827 * to 1828 * 1829 * bottom <- base <- active 1830 * 1831 * It is allowed for bottom==base, in which case it converts: 1832 * 1833 * base <- intermediate <- top <- active 1834 * 1835 * to 1836 * 1837 * base <- active 1838 * 1839 * Error conditions: 1840 * if active == top, that is considered an error 1841 * 1842 */ 1843 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 1844 BlockDriverState *base) 1845 { 1846 BlockDriverState *intermediate; 1847 BlockDriverState *base_bs = NULL; 1848 BlockDriverState *new_top_bs = NULL; 1849 BlkIntermediateStates *intermediate_state, *next; 1850 int ret = -EIO; 1851 1852 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 1853 QSIMPLEQ_INIT(&states_to_delete); 1854 1855 if (!top->drv || !base->drv) { 1856 goto exit; 1857 } 1858 1859 new_top_bs = bdrv_find_overlay(active, top); 1860 1861 if (new_top_bs == NULL) { 1862 /* we could not find the image above 'top', this is an error */ 1863 goto exit; 1864 } 1865 1866 /* special case of new_top_bs->backing_hd already pointing to base - nothing 1867 * to do, no intermediate images */ 1868 if (new_top_bs->backing_hd == base) { 1869 ret = 0; 1870 goto exit; 1871 } 1872 1873 intermediate = top; 1874 1875 /* now we will go down through the list, and add each BDS we find 1876 * into our deletion queue, until we hit the 'base' 1877 */ 1878 while (intermediate) { 1879 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 1880 intermediate_state->bs = intermediate; 1881 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 1882 1883 if (intermediate->backing_hd == base) { 1884 base_bs = intermediate->backing_hd; 1885 break; 1886 } 1887 intermediate = intermediate->backing_hd; 1888 } 1889 if (base_bs == NULL) { 1890 /* something went wrong, we did not end at the base. safely 1891 * unravel everything, and exit with error */ 1892 goto exit; 1893 } 1894 1895 /* success - we can delete the intermediate states, and link top->base */ 1896 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 1897 base_bs->drv ? base_bs->drv->format_name : ""); 1898 if (ret) { 1899 goto exit; 1900 } 1901 new_top_bs->backing_hd = base_bs; 1902 1903 1904 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1905 /* so that bdrv_close() does not recursively close the chain */ 1906 intermediate_state->bs->backing_hd = NULL; 1907 bdrv_delete(intermediate_state->bs); 1908 } 1909 ret = 0; 1910 1911 exit: 1912 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1913 g_free(intermediate_state); 1914 } 1915 return ret; 1916 } 1917 1918 1919 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1920 size_t size) 1921 { 1922 int64_t len; 1923 1924 if (!bdrv_is_inserted(bs)) 1925 return -ENOMEDIUM; 1926 1927 if (bs->growable) 1928 return 0; 1929 1930 len = bdrv_getlength(bs); 1931 1932 if (offset < 0) 1933 return -EIO; 1934 1935 if ((offset > len) || (len - offset < size)) 1936 return -EIO; 1937 1938 return 0; 1939 } 1940 1941 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1942 int nb_sectors) 1943 { 1944 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1945 nb_sectors * BDRV_SECTOR_SIZE); 1946 } 1947 1948 typedef struct RwCo { 1949 BlockDriverState *bs; 1950 int64_t sector_num; 1951 int nb_sectors; 1952 QEMUIOVector *qiov; 1953 bool is_write; 1954 int ret; 1955 } RwCo; 1956 1957 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1958 { 1959 RwCo *rwco = opaque; 1960 1961 if (!rwco->is_write) { 1962 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1963 rwco->nb_sectors, rwco->qiov, 0); 1964 } else { 1965 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1966 rwco->nb_sectors, rwco->qiov, 0); 1967 } 1968 } 1969 1970 /* 1971 * Process a synchronous request using coroutines 1972 */ 1973 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1974 int nb_sectors, bool is_write) 1975 { 1976 QEMUIOVector qiov; 1977 struct iovec iov = { 1978 .iov_base = (void *)buf, 1979 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1980 }; 1981 Coroutine *co; 1982 RwCo rwco = { 1983 .bs = bs, 1984 .sector_num = sector_num, 1985 .nb_sectors = nb_sectors, 1986 .qiov = &qiov, 1987 .is_write = is_write, 1988 .ret = NOT_DONE, 1989 }; 1990 1991 qemu_iovec_init_external(&qiov, &iov, 1); 1992 1993 /** 1994 * In sync call context, when the vcpu is blocked, this throttling timer 1995 * will not fire; so the I/O throttling function has to be disabled here 1996 * if it has been enabled. 1997 */ 1998 if (bs->io_limits_enabled) { 1999 fprintf(stderr, "Disabling I/O throttling on '%s' due " 2000 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 2001 bdrv_io_limits_disable(bs); 2002 } 2003 2004 if (qemu_in_coroutine()) { 2005 /* Fast-path if already in coroutine context */ 2006 bdrv_rw_co_entry(&rwco); 2007 } else { 2008 co = qemu_coroutine_create(bdrv_rw_co_entry); 2009 qemu_coroutine_enter(co, &rwco); 2010 while (rwco.ret == NOT_DONE) { 2011 qemu_aio_wait(); 2012 } 2013 } 2014 return rwco.ret; 2015 } 2016 2017 /* return < 0 if error. See bdrv_write() for the return codes */ 2018 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2019 uint8_t *buf, int nb_sectors) 2020 { 2021 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 2022 } 2023 2024 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2025 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2026 uint8_t *buf, int nb_sectors) 2027 { 2028 bool enabled; 2029 int ret; 2030 2031 enabled = bs->io_limits_enabled; 2032 bs->io_limits_enabled = false; 2033 ret = bdrv_read(bs, 0, buf, 1); 2034 bs->io_limits_enabled = enabled; 2035 return ret; 2036 } 2037 2038 #define BITS_PER_LONG (sizeof(unsigned long) * 8) 2039 2040 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num, 2041 int nb_sectors, int dirty) 2042 { 2043 int64_t start, end; 2044 unsigned long val, idx, bit; 2045 2046 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK; 2047 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK; 2048 2049 for (; start <= end; start++) { 2050 idx = start / BITS_PER_LONG; 2051 bit = start % BITS_PER_LONG; 2052 val = bs->dirty_bitmap[idx]; 2053 if (dirty) { 2054 if (!(val & (1UL << bit))) { 2055 bs->dirty_count++; 2056 val |= 1UL << bit; 2057 } 2058 } else { 2059 if (val & (1UL << bit)) { 2060 bs->dirty_count--; 2061 val &= ~(1UL << bit); 2062 } 2063 } 2064 bs->dirty_bitmap[idx] = val; 2065 } 2066 } 2067 2068 /* Return < 0 if error. Important errors are: 2069 -EIO generic I/O error (may happen for all errors) 2070 -ENOMEDIUM No media inserted. 2071 -EINVAL Invalid sector number or nb_sectors 2072 -EACCES Trying to write a read-only device 2073 */ 2074 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2075 const uint8_t *buf, int nb_sectors) 2076 { 2077 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2078 } 2079 2080 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2081 void *buf, int count1) 2082 { 2083 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2084 int len, nb_sectors, count; 2085 int64_t sector_num; 2086 int ret; 2087 2088 count = count1; 2089 /* first read to align to sector start */ 2090 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2091 if (len > count) 2092 len = count; 2093 sector_num = offset >> BDRV_SECTOR_BITS; 2094 if (len > 0) { 2095 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2096 return ret; 2097 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2098 count -= len; 2099 if (count == 0) 2100 return count1; 2101 sector_num++; 2102 buf += len; 2103 } 2104 2105 /* read the sectors "in place" */ 2106 nb_sectors = count >> BDRV_SECTOR_BITS; 2107 if (nb_sectors > 0) { 2108 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2109 return ret; 2110 sector_num += nb_sectors; 2111 len = nb_sectors << BDRV_SECTOR_BITS; 2112 buf += len; 2113 count -= len; 2114 } 2115 2116 /* add data from the last sector */ 2117 if (count > 0) { 2118 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2119 return ret; 2120 memcpy(buf, tmp_buf, count); 2121 } 2122 return count1; 2123 } 2124 2125 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2126 const void *buf, int count1) 2127 { 2128 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2129 int len, nb_sectors, count; 2130 int64_t sector_num; 2131 int ret; 2132 2133 count = count1; 2134 /* first write to align to sector start */ 2135 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2136 if (len > count) 2137 len = count; 2138 sector_num = offset >> BDRV_SECTOR_BITS; 2139 if (len > 0) { 2140 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2141 return ret; 2142 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 2143 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2144 return ret; 2145 count -= len; 2146 if (count == 0) 2147 return count1; 2148 sector_num++; 2149 buf += len; 2150 } 2151 2152 /* write the sectors "in place" */ 2153 nb_sectors = count >> BDRV_SECTOR_BITS; 2154 if (nb_sectors > 0) { 2155 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 2156 return ret; 2157 sector_num += nb_sectors; 2158 len = nb_sectors << BDRV_SECTOR_BITS; 2159 buf += len; 2160 count -= len; 2161 } 2162 2163 /* add data from the last sector */ 2164 if (count > 0) { 2165 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2166 return ret; 2167 memcpy(tmp_buf, buf, count); 2168 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2169 return ret; 2170 } 2171 return count1; 2172 } 2173 2174 /* 2175 * Writes to the file and ensures that no writes are reordered across this 2176 * request (acts as a barrier) 2177 * 2178 * Returns 0 on success, -errno in error cases. 2179 */ 2180 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2181 const void *buf, int count) 2182 { 2183 int ret; 2184 2185 ret = bdrv_pwrite(bs, offset, buf, count); 2186 if (ret < 0) { 2187 return ret; 2188 } 2189 2190 /* No flush needed for cache modes that already do it */ 2191 if (bs->enable_write_cache) { 2192 bdrv_flush(bs); 2193 } 2194 2195 return 0; 2196 } 2197 2198 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2199 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2200 { 2201 /* Perform I/O through a temporary buffer so that users who scribble over 2202 * their read buffer while the operation is in progress do not end up 2203 * modifying the image file. This is critical for zero-copy guest I/O 2204 * where anything might happen inside guest memory. 2205 */ 2206 void *bounce_buffer; 2207 2208 BlockDriver *drv = bs->drv; 2209 struct iovec iov; 2210 QEMUIOVector bounce_qiov; 2211 int64_t cluster_sector_num; 2212 int cluster_nb_sectors; 2213 size_t skip_bytes; 2214 int ret; 2215 2216 /* Cover entire cluster so no additional backing file I/O is required when 2217 * allocating cluster in the image file. 2218 */ 2219 round_to_clusters(bs, sector_num, nb_sectors, 2220 &cluster_sector_num, &cluster_nb_sectors); 2221 2222 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2223 cluster_sector_num, cluster_nb_sectors); 2224 2225 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2226 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2227 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2228 2229 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2230 &bounce_qiov); 2231 if (ret < 0) { 2232 goto err; 2233 } 2234 2235 if (drv->bdrv_co_write_zeroes && 2236 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2237 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2238 cluster_nb_sectors); 2239 } else { 2240 /* This does not change the data on the disk, it is not necessary 2241 * to flush even in cache=writethrough mode. 2242 */ 2243 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2244 &bounce_qiov); 2245 } 2246 2247 if (ret < 0) { 2248 /* It might be okay to ignore write errors for guest requests. If this 2249 * is a deliberate copy-on-read then we don't want to ignore the error. 2250 * Simply report it in all cases. 2251 */ 2252 goto err; 2253 } 2254 2255 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2256 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2257 nb_sectors * BDRV_SECTOR_SIZE); 2258 2259 err: 2260 qemu_vfree(bounce_buffer); 2261 return ret; 2262 } 2263 2264 /* 2265 * Handle a read request in coroutine context 2266 */ 2267 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2268 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2269 BdrvRequestFlags flags) 2270 { 2271 BlockDriver *drv = bs->drv; 2272 BdrvTrackedRequest req; 2273 int ret; 2274 2275 if (!drv) { 2276 return -ENOMEDIUM; 2277 } 2278 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2279 return -EIO; 2280 } 2281 2282 /* throttling disk read I/O */ 2283 if (bs->io_limits_enabled) { 2284 bdrv_io_limits_intercept(bs, false, nb_sectors); 2285 } 2286 2287 if (bs->copy_on_read) { 2288 flags |= BDRV_REQ_COPY_ON_READ; 2289 } 2290 if (flags & BDRV_REQ_COPY_ON_READ) { 2291 bs->copy_on_read_in_flight++; 2292 } 2293 2294 if (bs->copy_on_read_in_flight) { 2295 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2296 } 2297 2298 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2299 2300 if (flags & BDRV_REQ_COPY_ON_READ) { 2301 int pnum; 2302 2303 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2304 if (ret < 0) { 2305 goto out; 2306 } 2307 2308 if (!ret || pnum != nb_sectors) { 2309 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2310 goto out; 2311 } 2312 } 2313 2314 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2315 2316 out: 2317 tracked_request_end(&req); 2318 2319 if (flags & BDRV_REQ_COPY_ON_READ) { 2320 bs->copy_on_read_in_flight--; 2321 } 2322 2323 return ret; 2324 } 2325 2326 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2327 int nb_sectors, QEMUIOVector *qiov) 2328 { 2329 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2330 2331 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2332 } 2333 2334 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2335 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2336 { 2337 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2338 2339 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2340 BDRV_REQ_COPY_ON_READ); 2341 } 2342 2343 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2344 int64_t sector_num, int nb_sectors) 2345 { 2346 BlockDriver *drv = bs->drv; 2347 QEMUIOVector qiov; 2348 struct iovec iov; 2349 int ret; 2350 2351 /* TODO Emulate only part of misaligned requests instead of letting block 2352 * drivers return -ENOTSUP and emulate everything */ 2353 2354 /* First try the efficient write zeroes operation */ 2355 if (drv->bdrv_co_write_zeroes) { 2356 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2357 if (ret != -ENOTSUP) { 2358 return ret; 2359 } 2360 } 2361 2362 /* Fall back to bounce buffer if write zeroes is unsupported */ 2363 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2364 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2365 memset(iov.iov_base, 0, iov.iov_len); 2366 qemu_iovec_init_external(&qiov, &iov, 1); 2367 2368 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2369 2370 qemu_vfree(iov.iov_base); 2371 return ret; 2372 } 2373 2374 /* 2375 * Handle a write request in coroutine context 2376 */ 2377 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2378 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2379 BdrvRequestFlags flags) 2380 { 2381 BlockDriver *drv = bs->drv; 2382 BdrvTrackedRequest req; 2383 int ret; 2384 2385 if (!bs->drv) { 2386 return -ENOMEDIUM; 2387 } 2388 if (bs->read_only) { 2389 return -EACCES; 2390 } 2391 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2392 return -EIO; 2393 } 2394 2395 /* throttling disk write I/O */ 2396 if (bs->io_limits_enabled) { 2397 bdrv_io_limits_intercept(bs, true, nb_sectors); 2398 } 2399 2400 if (bs->copy_on_read_in_flight) { 2401 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2402 } 2403 2404 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2405 2406 if (flags & BDRV_REQ_ZERO_WRITE) { 2407 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2408 } else { 2409 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2410 } 2411 2412 if (ret == 0 && !bs->enable_write_cache) { 2413 ret = bdrv_co_flush(bs); 2414 } 2415 2416 if (bs->dirty_bitmap) { 2417 bdrv_set_dirty(bs, sector_num, nb_sectors); 2418 } 2419 2420 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2421 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2422 } 2423 2424 tracked_request_end(&req); 2425 2426 return ret; 2427 } 2428 2429 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2430 int nb_sectors, QEMUIOVector *qiov) 2431 { 2432 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2433 2434 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2435 } 2436 2437 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2438 int64_t sector_num, int nb_sectors) 2439 { 2440 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2441 2442 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2443 BDRV_REQ_ZERO_WRITE); 2444 } 2445 2446 /** 2447 * Truncate file to 'offset' bytes (needed only for file protocols) 2448 */ 2449 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2450 { 2451 BlockDriver *drv = bs->drv; 2452 int ret; 2453 if (!drv) 2454 return -ENOMEDIUM; 2455 if (!drv->bdrv_truncate) 2456 return -ENOTSUP; 2457 if (bs->read_only) 2458 return -EACCES; 2459 if (bdrv_in_use(bs)) 2460 return -EBUSY; 2461 ret = drv->bdrv_truncate(bs, offset); 2462 if (ret == 0) { 2463 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2464 bdrv_dev_resize_cb(bs); 2465 } 2466 return ret; 2467 } 2468 2469 /** 2470 * Length of a allocated file in bytes. Sparse files are counted by actual 2471 * allocated space. Return < 0 if error or unknown. 2472 */ 2473 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2474 { 2475 BlockDriver *drv = bs->drv; 2476 if (!drv) { 2477 return -ENOMEDIUM; 2478 } 2479 if (drv->bdrv_get_allocated_file_size) { 2480 return drv->bdrv_get_allocated_file_size(bs); 2481 } 2482 if (bs->file) { 2483 return bdrv_get_allocated_file_size(bs->file); 2484 } 2485 return -ENOTSUP; 2486 } 2487 2488 /** 2489 * Length of a file in bytes. Return < 0 if error or unknown. 2490 */ 2491 int64_t bdrv_getlength(BlockDriverState *bs) 2492 { 2493 BlockDriver *drv = bs->drv; 2494 if (!drv) 2495 return -ENOMEDIUM; 2496 2497 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2498 if (drv->bdrv_getlength) { 2499 return drv->bdrv_getlength(bs); 2500 } 2501 } 2502 return bs->total_sectors * BDRV_SECTOR_SIZE; 2503 } 2504 2505 /* return 0 as number of sectors if no device present or error */ 2506 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2507 { 2508 int64_t length; 2509 length = bdrv_getlength(bs); 2510 if (length < 0) 2511 length = 0; 2512 else 2513 length = length >> BDRV_SECTOR_BITS; 2514 *nb_sectors_ptr = length; 2515 } 2516 2517 /* throttling disk io limits */ 2518 void bdrv_set_io_limits(BlockDriverState *bs, 2519 BlockIOLimit *io_limits) 2520 { 2521 bs->io_limits = *io_limits; 2522 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2523 } 2524 2525 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2526 BlockdevOnError on_write_error) 2527 { 2528 bs->on_read_error = on_read_error; 2529 bs->on_write_error = on_write_error; 2530 } 2531 2532 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2533 { 2534 return is_read ? bs->on_read_error : bs->on_write_error; 2535 } 2536 2537 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2538 { 2539 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2540 2541 switch (on_err) { 2542 case BLOCKDEV_ON_ERROR_ENOSPC: 2543 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2544 case BLOCKDEV_ON_ERROR_STOP: 2545 return BDRV_ACTION_STOP; 2546 case BLOCKDEV_ON_ERROR_REPORT: 2547 return BDRV_ACTION_REPORT; 2548 case BLOCKDEV_ON_ERROR_IGNORE: 2549 return BDRV_ACTION_IGNORE; 2550 default: 2551 abort(); 2552 } 2553 } 2554 2555 /* This is done by device models because, while the block layer knows 2556 * about the error, it does not know whether an operation comes from 2557 * the device or the block layer (from a job, for example). 2558 */ 2559 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2560 bool is_read, int error) 2561 { 2562 assert(error >= 0); 2563 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2564 if (action == BDRV_ACTION_STOP) { 2565 vm_stop(RUN_STATE_IO_ERROR); 2566 bdrv_iostatus_set_err(bs, error); 2567 } 2568 } 2569 2570 int bdrv_is_read_only(BlockDriverState *bs) 2571 { 2572 return bs->read_only; 2573 } 2574 2575 int bdrv_is_sg(BlockDriverState *bs) 2576 { 2577 return bs->sg; 2578 } 2579 2580 int bdrv_enable_write_cache(BlockDriverState *bs) 2581 { 2582 return bs->enable_write_cache; 2583 } 2584 2585 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2586 { 2587 bs->enable_write_cache = wce; 2588 2589 /* so a reopen() will preserve wce */ 2590 if (wce) { 2591 bs->open_flags |= BDRV_O_CACHE_WB; 2592 } else { 2593 bs->open_flags &= ~BDRV_O_CACHE_WB; 2594 } 2595 } 2596 2597 int bdrv_is_encrypted(BlockDriverState *bs) 2598 { 2599 if (bs->backing_hd && bs->backing_hd->encrypted) 2600 return 1; 2601 return bs->encrypted; 2602 } 2603 2604 int bdrv_key_required(BlockDriverState *bs) 2605 { 2606 BlockDriverState *backing_hd = bs->backing_hd; 2607 2608 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2609 return 1; 2610 return (bs->encrypted && !bs->valid_key); 2611 } 2612 2613 int bdrv_set_key(BlockDriverState *bs, const char *key) 2614 { 2615 int ret; 2616 if (bs->backing_hd && bs->backing_hd->encrypted) { 2617 ret = bdrv_set_key(bs->backing_hd, key); 2618 if (ret < 0) 2619 return ret; 2620 if (!bs->encrypted) 2621 return 0; 2622 } 2623 if (!bs->encrypted) { 2624 return -EINVAL; 2625 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2626 return -ENOMEDIUM; 2627 } 2628 ret = bs->drv->bdrv_set_key(bs, key); 2629 if (ret < 0) { 2630 bs->valid_key = 0; 2631 } else if (!bs->valid_key) { 2632 bs->valid_key = 1; 2633 /* call the change callback now, we skipped it on open */ 2634 bdrv_dev_change_media_cb(bs, true); 2635 } 2636 return ret; 2637 } 2638 2639 const char *bdrv_get_format_name(BlockDriverState *bs) 2640 { 2641 return bs->drv ? bs->drv->format_name : NULL; 2642 } 2643 2644 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2645 void *opaque) 2646 { 2647 BlockDriver *drv; 2648 2649 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2650 it(opaque, drv->format_name); 2651 } 2652 } 2653 2654 BlockDriverState *bdrv_find(const char *name) 2655 { 2656 BlockDriverState *bs; 2657 2658 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2659 if (!strcmp(name, bs->device_name)) { 2660 return bs; 2661 } 2662 } 2663 return NULL; 2664 } 2665 2666 BlockDriverState *bdrv_next(BlockDriverState *bs) 2667 { 2668 if (!bs) { 2669 return QTAILQ_FIRST(&bdrv_states); 2670 } 2671 return QTAILQ_NEXT(bs, list); 2672 } 2673 2674 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2675 { 2676 BlockDriverState *bs; 2677 2678 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2679 it(opaque, bs); 2680 } 2681 } 2682 2683 const char *bdrv_get_device_name(BlockDriverState *bs) 2684 { 2685 return bs->device_name; 2686 } 2687 2688 int bdrv_get_flags(BlockDriverState *bs) 2689 { 2690 return bs->open_flags; 2691 } 2692 2693 void bdrv_flush_all(void) 2694 { 2695 BlockDriverState *bs; 2696 2697 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2698 bdrv_flush(bs); 2699 } 2700 } 2701 2702 int bdrv_has_zero_init(BlockDriverState *bs) 2703 { 2704 assert(bs->drv); 2705 2706 if (bs->drv->bdrv_has_zero_init) { 2707 return bs->drv->bdrv_has_zero_init(bs); 2708 } 2709 2710 return 1; 2711 } 2712 2713 typedef struct BdrvCoIsAllocatedData { 2714 BlockDriverState *bs; 2715 int64_t sector_num; 2716 int nb_sectors; 2717 int *pnum; 2718 int ret; 2719 bool done; 2720 } BdrvCoIsAllocatedData; 2721 2722 /* 2723 * Returns true iff the specified sector is present in the disk image. Drivers 2724 * not implementing the functionality are assumed to not support backing files, 2725 * hence all their sectors are reported as allocated. 2726 * 2727 * If 'sector_num' is beyond the end of the disk image the return value is 0 2728 * and 'pnum' is set to 0. 2729 * 2730 * 'pnum' is set to the number of sectors (including and immediately following 2731 * the specified sector) that are known to be in the same 2732 * allocated/unallocated state. 2733 * 2734 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2735 * beyond the end of the disk image it will be clamped. 2736 */ 2737 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2738 int nb_sectors, int *pnum) 2739 { 2740 int64_t n; 2741 2742 if (sector_num >= bs->total_sectors) { 2743 *pnum = 0; 2744 return 0; 2745 } 2746 2747 n = bs->total_sectors - sector_num; 2748 if (n < nb_sectors) { 2749 nb_sectors = n; 2750 } 2751 2752 if (!bs->drv->bdrv_co_is_allocated) { 2753 *pnum = nb_sectors; 2754 return 1; 2755 } 2756 2757 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2758 } 2759 2760 /* Coroutine wrapper for bdrv_is_allocated() */ 2761 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2762 { 2763 BdrvCoIsAllocatedData *data = opaque; 2764 BlockDriverState *bs = data->bs; 2765 2766 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2767 data->pnum); 2768 data->done = true; 2769 } 2770 2771 /* 2772 * Synchronous wrapper around bdrv_co_is_allocated(). 2773 * 2774 * See bdrv_co_is_allocated() for details. 2775 */ 2776 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2777 int *pnum) 2778 { 2779 Coroutine *co; 2780 BdrvCoIsAllocatedData data = { 2781 .bs = bs, 2782 .sector_num = sector_num, 2783 .nb_sectors = nb_sectors, 2784 .pnum = pnum, 2785 .done = false, 2786 }; 2787 2788 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2789 qemu_coroutine_enter(co, &data); 2790 while (!data.done) { 2791 qemu_aio_wait(); 2792 } 2793 return data.ret; 2794 } 2795 2796 /* 2797 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2798 * 2799 * Return true if the given sector is allocated in any image between 2800 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2801 * sector is allocated in any image of the chain. Return false otherwise. 2802 * 2803 * 'pnum' is set to the number of sectors (including and immediately following 2804 * the specified sector) that are known to be in the same 2805 * allocated/unallocated state. 2806 * 2807 */ 2808 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2809 BlockDriverState *base, 2810 int64_t sector_num, 2811 int nb_sectors, int *pnum) 2812 { 2813 BlockDriverState *intermediate; 2814 int ret, n = nb_sectors; 2815 2816 intermediate = top; 2817 while (intermediate && intermediate != base) { 2818 int pnum_inter; 2819 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2820 &pnum_inter); 2821 if (ret < 0) { 2822 return ret; 2823 } else if (ret) { 2824 *pnum = pnum_inter; 2825 return 1; 2826 } 2827 2828 /* 2829 * [sector_num, nb_sectors] is unallocated on top but intermediate 2830 * might have 2831 * 2832 * [sector_num+x, nr_sectors] allocated. 2833 */ 2834 if (n > pnum_inter) { 2835 n = pnum_inter; 2836 } 2837 2838 intermediate = intermediate->backing_hd; 2839 } 2840 2841 *pnum = n; 2842 return 0; 2843 } 2844 2845 BlockInfo *bdrv_query_info(BlockDriverState *bs) 2846 { 2847 BlockInfo *info = g_malloc0(sizeof(*info)); 2848 info->device = g_strdup(bs->device_name); 2849 info->type = g_strdup("unknown"); 2850 info->locked = bdrv_dev_is_medium_locked(bs); 2851 info->removable = bdrv_dev_has_removable_media(bs); 2852 2853 if (bdrv_dev_has_removable_media(bs)) { 2854 info->has_tray_open = true; 2855 info->tray_open = bdrv_dev_is_tray_open(bs); 2856 } 2857 2858 if (bdrv_iostatus_is_enabled(bs)) { 2859 info->has_io_status = true; 2860 info->io_status = bs->iostatus; 2861 } 2862 2863 if (bs->dirty_bitmap) { 2864 info->has_dirty = true; 2865 info->dirty = g_malloc0(sizeof(*info->dirty)); 2866 info->dirty->count = bdrv_get_dirty_count(bs) * 2867 BDRV_SECTORS_PER_DIRTY_CHUNK * BDRV_SECTOR_SIZE; 2868 } 2869 2870 if (bs->drv) { 2871 info->has_inserted = true; 2872 info->inserted = g_malloc0(sizeof(*info->inserted)); 2873 info->inserted->file = g_strdup(bs->filename); 2874 info->inserted->ro = bs->read_only; 2875 info->inserted->drv = g_strdup(bs->drv->format_name); 2876 info->inserted->encrypted = bs->encrypted; 2877 info->inserted->encryption_key_missing = bdrv_key_required(bs); 2878 2879 if (bs->backing_file[0]) { 2880 info->inserted->has_backing_file = true; 2881 info->inserted->backing_file = g_strdup(bs->backing_file); 2882 } 2883 2884 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs); 2885 2886 if (bs->io_limits_enabled) { 2887 info->inserted->bps = 2888 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2889 info->inserted->bps_rd = 2890 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2891 info->inserted->bps_wr = 2892 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2893 info->inserted->iops = 2894 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2895 info->inserted->iops_rd = 2896 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2897 info->inserted->iops_wr = 2898 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2899 } 2900 } 2901 return info; 2902 } 2903 2904 BlockInfoList *qmp_query_block(Error **errp) 2905 { 2906 BlockInfoList *head = NULL, **p_next = &head; 2907 BlockDriverState *bs; 2908 2909 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2910 BlockInfoList *info = g_malloc0(sizeof(*info)); 2911 info->value = bdrv_query_info(bs); 2912 2913 *p_next = info; 2914 p_next = &info->next; 2915 } 2916 2917 return head; 2918 } 2919 2920 BlockStats *bdrv_query_stats(const BlockDriverState *bs) 2921 { 2922 BlockStats *s; 2923 2924 s = g_malloc0(sizeof(*s)); 2925 2926 if (bs->device_name[0]) { 2927 s->has_device = true; 2928 s->device = g_strdup(bs->device_name); 2929 } 2930 2931 s->stats = g_malloc0(sizeof(*s->stats)); 2932 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2933 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2934 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2935 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2936 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2937 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2938 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2939 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2940 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2941 2942 if (bs->file) { 2943 s->has_parent = true; 2944 s->parent = bdrv_query_stats(bs->file); 2945 } 2946 2947 return s; 2948 } 2949 2950 BlockStatsList *qmp_query_blockstats(Error **errp) 2951 { 2952 BlockStatsList *head = NULL, **p_next = &head; 2953 BlockDriverState *bs; 2954 2955 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2956 BlockStatsList *info = g_malloc0(sizeof(*info)); 2957 info->value = bdrv_query_stats(bs); 2958 2959 *p_next = info; 2960 p_next = &info->next; 2961 } 2962 2963 return head; 2964 } 2965 2966 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 2967 { 2968 if (bs->backing_hd && bs->backing_hd->encrypted) 2969 return bs->backing_file; 2970 else if (bs->encrypted) 2971 return bs->filename; 2972 else 2973 return NULL; 2974 } 2975 2976 void bdrv_get_backing_filename(BlockDriverState *bs, 2977 char *filename, int filename_size) 2978 { 2979 pstrcpy(filename, filename_size, bs->backing_file); 2980 } 2981 2982 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 2983 const uint8_t *buf, int nb_sectors) 2984 { 2985 BlockDriver *drv = bs->drv; 2986 if (!drv) 2987 return -ENOMEDIUM; 2988 if (!drv->bdrv_write_compressed) 2989 return -ENOTSUP; 2990 if (bdrv_check_request(bs, sector_num, nb_sectors)) 2991 return -EIO; 2992 2993 assert(!bs->dirty_bitmap); 2994 2995 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 2996 } 2997 2998 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 2999 { 3000 BlockDriver *drv = bs->drv; 3001 if (!drv) 3002 return -ENOMEDIUM; 3003 if (!drv->bdrv_get_info) 3004 return -ENOTSUP; 3005 memset(bdi, 0, sizeof(*bdi)); 3006 return drv->bdrv_get_info(bs, bdi); 3007 } 3008 3009 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 3010 int64_t pos, int size) 3011 { 3012 BlockDriver *drv = bs->drv; 3013 if (!drv) 3014 return -ENOMEDIUM; 3015 if (drv->bdrv_save_vmstate) 3016 return drv->bdrv_save_vmstate(bs, buf, pos, size); 3017 if (bs->file) 3018 return bdrv_save_vmstate(bs->file, buf, pos, size); 3019 return -ENOTSUP; 3020 } 3021 3022 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3023 int64_t pos, int size) 3024 { 3025 BlockDriver *drv = bs->drv; 3026 if (!drv) 3027 return -ENOMEDIUM; 3028 if (drv->bdrv_load_vmstate) 3029 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3030 if (bs->file) 3031 return bdrv_load_vmstate(bs->file, buf, pos, size); 3032 return -ENOTSUP; 3033 } 3034 3035 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3036 { 3037 BlockDriver *drv = bs->drv; 3038 3039 if (!drv || !drv->bdrv_debug_event) { 3040 return; 3041 } 3042 3043 drv->bdrv_debug_event(bs, event); 3044 } 3045 3046 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event, 3047 const char *tag) 3048 { 3049 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) { 3050 bs = bs->file; 3051 } 3052 3053 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) { 3054 return bs->drv->bdrv_debug_breakpoint(bs, event, tag); 3055 } 3056 3057 return -ENOTSUP; 3058 } 3059 3060 int bdrv_debug_resume(BlockDriverState *bs, const char *tag) 3061 { 3062 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) { 3063 bs = bs->file; 3064 } 3065 3066 if (bs && bs->drv && bs->drv->bdrv_debug_resume) { 3067 return bs->drv->bdrv_debug_resume(bs, tag); 3068 } 3069 3070 return -ENOTSUP; 3071 } 3072 3073 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag) 3074 { 3075 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) { 3076 bs = bs->file; 3077 } 3078 3079 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) { 3080 return bs->drv->bdrv_debug_is_suspended(bs, tag); 3081 } 3082 3083 return false; 3084 } 3085 3086 /**************************************************************/ 3087 /* handling of snapshots */ 3088 3089 int bdrv_can_snapshot(BlockDriverState *bs) 3090 { 3091 BlockDriver *drv = bs->drv; 3092 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3093 return 0; 3094 } 3095 3096 if (!drv->bdrv_snapshot_create) { 3097 if (bs->file != NULL) { 3098 return bdrv_can_snapshot(bs->file); 3099 } 3100 return 0; 3101 } 3102 3103 return 1; 3104 } 3105 3106 int bdrv_is_snapshot(BlockDriverState *bs) 3107 { 3108 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3109 } 3110 3111 BlockDriverState *bdrv_snapshots(void) 3112 { 3113 BlockDriverState *bs; 3114 3115 if (bs_snapshots) { 3116 return bs_snapshots; 3117 } 3118 3119 bs = NULL; 3120 while ((bs = bdrv_next(bs))) { 3121 if (bdrv_can_snapshot(bs)) { 3122 bs_snapshots = bs; 3123 return bs; 3124 } 3125 } 3126 return NULL; 3127 } 3128 3129 int bdrv_snapshot_create(BlockDriverState *bs, 3130 QEMUSnapshotInfo *sn_info) 3131 { 3132 BlockDriver *drv = bs->drv; 3133 if (!drv) 3134 return -ENOMEDIUM; 3135 if (drv->bdrv_snapshot_create) 3136 return drv->bdrv_snapshot_create(bs, sn_info); 3137 if (bs->file) 3138 return bdrv_snapshot_create(bs->file, sn_info); 3139 return -ENOTSUP; 3140 } 3141 3142 int bdrv_snapshot_goto(BlockDriverState *bs, 3143 const char *snapshot_id) 3144 { 3145 BlockDriver *drv = bs->drv; 3146 int ret, open_ret; 3147 3148 if (!drv) 3149 return -ENOMEDIUM; 3150 if (drv->bdrv_snapshot_goto) 3151 return drv->bdrv_snapshot_goto(bs, snapshot_id); 3152 3153 if (bs->file) { 3154 drv->bdrv_close(bs); 3155 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 3156 open_ret = drv->bdrv_open(bs, bs->open_flags); 3157 if (open_ret < 0) { 3158 bdrv_delete(bs->file); 3159 bs->drv = NULL; 3160 return open_ret; 3161 } 3162 return ret; 3163 } 3164 3165 return -ENOTSUP; 3166 } 3167 3168 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 3169 { 3170 BlockDriver *drv = bs->drv; 3171 if (!drv) 3172 return -ENOMEDIUM; 3173 if (drv->bdrv_snapshot_delete) 3174 return drv->bdrv_snapshot_delete(bs, snapshot_id); 3175 if (bs->file) 3176 return bdrv_snapshot_delete(bs->file, snapshot_id); 3177 return -ENOTSUP; 3178 } 3179 3180 int bdrv_snapshot_list(BlockDriverState *bs, 3181 QEMUSnapshotInfo **psn_info) 3182 { 3183 BlockDriver *drv = bs->drv; 3184 if (!drv) 3185 return -ENOMEDIUM; 3186 if (drv->bdrv_snapshot_list) 3187 return drv->bdrv_snapshot_list(bs, psn_info); 3188 if (bs->file) 3189 return bdrv_snapshot_list(bs->file, psn_info); 3190 return -ENOTSUP; 3191 } 3192 3193 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 3194 const char *snapshot_name) 3195 { 3196 BlockDriver *drv = bs->drv; 3197 if (!drv) { 3198 return -ENOMEDIUM; 3199 } 3200 if (!bs->read_only) { 3201 return -EINVAL; 3202 } 3203 if (drv->bdrv_snapshot_load_tmp) { 3204 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 3205 } 3206 return -ENOTSUP; 3207 } 3208 3209 /* backing_file can either be relative, or absolute, or a protocol. If it is 3210 * relative, it must be relative to the chain. So, passing in bs->filename 3211 * from a BDS as backing_file should not be done, as that may be relative to 3212 * the CWD rather than the chain. */ 3213 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3214 const char *backing_file) 3215 { 3216 char *filename_full = NULL; 3217 char *backing_file_full = NULL; 3218 char *filename_tmp = NULL; 3219 int is_protocol = 0; 3220 BlockDriverState *curr_bs = NULL; 3221 BlockDriverState *retval = NULL; 3222 3223 if (!bs || !bs->drv || !backing_file) { 3224 return NULL; 3225 } 3226 3227 filename_full = g_malloc(PATH_MAX); 3228 backing_file_full = g_malloc(PATH_MAX); 3229 filename_tmp = g_malloc(PATH_MAX); 3230 3231 is_protocol = path_has_protocol(backing_file); 3232 3233 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3234 3235 /* If either of the filename paths is actually a protocol, then 3236 * compare unmodified paths; otherwise make paths relative */ 3237 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3238 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3239 retval = curr_bs->backing_hd; 3240 break; 3241 } 3242 } else { 3243 /* If not an absolute filename path, make it relative to the current 3244 * image's filename path */ 3245 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3246 backing_file); 3247 3248 /* We are going to compare absolute pathnames */ 3249 if (!realpath(filename_tmp, filename_full)) { 3250 continue; 3251 } 3252 3253 /* We need to make sure the backing filename we are comparing against 3254 * is relative to the current image filename (or absolute) */ 3255 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3256 curr_bs->backing_file); 3257 3258 if (!realpath(filename_tmp, backing_file_full)) { 3259 continue; 3260 } 3261 3262 if (strcmp(backing_file_full, filename_full) == 0) { 3263 retval = curr_bs->backing_hd; 3264 break; 3265 } 3266 } 3267 } 3268 3269 g_free(filename_full); 3270 g_free(backing_file_full); 3271 g_free(filename_tmp); 3272 return retval; 3273 } 3274 3275 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3276 { 3277 if (!bs->drv) { 3278 return 0; 3279 } 3280 3281 if (!bs->backing_hd) { 3282 return 0; 3283 } 3284 3285 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3286 } 3287 3288 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3289 { 3290 BlockDriverState *curr_bs = NULL; 3291 3292 if (!bs) { 3293 return NULL; 3294 } 3295 3296 curr_bs = bs; 3297 3298 while (curr_bs->backing_hd) { 3299 curr_bs = curr_bs->backing_hd; 3300 } 3301 return curr_bs; 3302 } 3303 3304 #define NB_SUFFIXES 4 3305 3306 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 3307 { 3308 static const char suffixes[NB_SUFFIXES] = "KMGT"; 3309 int64_t base; 3310 int i; 3311 3312 if (size <= 999) { 3313 snprintf(buf, buf_size, "%" PRId64, size); 3314 } else { 3315 base = 1024; 3316 for(i = 0; i < NB_SUFFIXES; i++) { 3317 if (size < (10 * base)) { 3318 snprintf(buf, buf_size, "%0.1f%c", 3319 (double)size / base, 3320 suffixes[i]); 3321 break; 3322 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3323 snprintf(buf, buf_size, "%" PRId64 "%c", 3324 ((size + (base >> 1)) / base), 3325 suffixes[i]); 3326 break; 3327 } 3328 base = base * 1024; 3329 } 3330 } 3331 return buf; 3332 } 3333 3334 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3335 { 3336 char buf1[128], date_buf[128], clock_buf[128]; 3337 struct tm tm; 3338 time_t ti; 3339 int64_t secs; 3340 3341 if (!sn) { 3342 snprintf(buf, buf_size, 3343 "%-10s%-20s%7s%20s%15s", 3344 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3345 } else { 3346 ti = sn->date_sec; 3347 localtime_r(&ti, &tm); 3348 strftime(date_buf, sizeof(date_buf), 3349 "%Y-%m-%d %H:%M:%S", &tm); 3350 secs = sn->vm_clock_nsec / 1000000000; 3351 snprintf(clock_buf, sizeof(clock_buf), 3352 "%02d:%02d:%02d.%03d", 3353 (int)(secs / 3600), 3354 (int)((secs / 60) % 60), 3355 (int)(secs % 60), 3356 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3357 snprintf(buf, buf_size, 3358 "%-10s%-20s%7s%20s%15s", 3359 sn->id_str, sn->name, 3360 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3361 date_buf, 3362 clock_buf); 3363 } 3364 return buf; 3365 } 3366 3367 /**************************************************************/ 3368 /* async I/Os */ 3369 3370 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3371 QEMUIOVector *qiov, int nb_sectors, 3372 BlockDriverCompletionFunc *cb, void *opaque) 3373 { 3374 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3375 3376 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3377 cb, opaque, false); 3378 } 3379 3380 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3381 QEMUIOVector *qiov, int nb_sectors, 3382 BlockDriverCompletionFunc *cb, void *opaque) 3383 { 3384 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3385 3386 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3387 cb, opaque, true); 3388 } 3389 3390 3391 typedef struct MultiwriteCB { 3392 int error; 3393 int num_requests; 3394 int num_callbacks; 3395 struct { 3396 BlockDriverCompletionFunc *cb; 3397 void *opaque; 3398 QEMUIOVector *free_qiov; 3399 } callbacks[]; 3400 } MultiwriteCB; 3401 3402 static void multiwrite_user_cb(MultiwriteCB *mcb) 3403 { 3404 int i; 3405 3406 for (i = 0; i < mcb->num_callbacks; i++) { 3407 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3408 if (mcb->callbacks[i].free_qiov) { 3409 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3410 } 3411 g_free(mcb->callbacks[i].free_qiov); 3412 } 3413 } 3414 3415 static void multiwrite_cb(void *opaque, int ret) 3416 { 3417 MultiwriteCB *mcb = opaque; 3418 3419 trace_multiwrite_cb(mcb, ret); 3420 3421 if (ret < 0 && !mcb->error) { 3422 mcb->error = ret; 3423 } 3424 3425 mcb->num_requests--; 3426 if (mcb->num_requests == 0) { 3427 multiwrite_user_cb(mcb); 3428 g_free(mcb); 3429 } 3430 } 3431 3432 static int multiwrite_req_compare(const void *a, const void *b) 3433 { 3434 const BlockRequest *req1 = a, *req2 = b; 3435 3436 /* 3437 * Note that we can't simply subtract req2->sector from req1->sector 3438 * here as that could overflow the return value. 3439 */ 3440 if (req1->sector > req2->sector) { 3441 return 1; 3442 } else if (req1->sector < req2->sector) { 3443 return -1; 3444 } else { 3445 return 0; 3446 } 3447 } 3448 3449 /* 3450 * Takes a bunch of requests and tries to merge them. Returns the number of 3451 * requests that remain after merging. 3452 */ 3453 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3454 int num_reqs, MultiwriteCB *mcb) 3455 { 3456 int i, outidx; 3457 3458 // Sort requests by start sector 3459 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3460 3461 // Check if adjacent requests touch the same clusters. If so, combine them, 3462 // filling up gaps with zero sectors. 3463 outidx = 0; 3464 for (i = 1; i < num_reqs; i++) { 3465 int merge = 0; 3466 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3467 3468 // Handle exactly sequential writes and overlapping writes. 3469 if (reqs[i].sector <= oldreq_last) { 3470 merge = 1; 3471 } 3472 3473 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3474 merge = 0; 3475 } 3476 3477 if (merge) { 3478 size_t size; 3479 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3480 qemu_iovec_init(qiov, 3481 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3482 3483 // Add the first request to the merged one. If the requests are 3484 // overlapping, drop the last sectors of the first request. 3485 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3486 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3487 3488 // We should need to add any zeros between the two requests 3489 assert (reqs[i].sector <= oldreq_last); 3490 3491 // Add the second request 3492 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3493 3494 reqs[outidx].nb_sectors = qiov->size >> 9; 3495 reqs[outidx].qiov = qiov; 3496 3497 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3498 } else { 3499 outidx++; 3500 reqs[outidx].sector = reqs[i].sector; 3501 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3502 reqs[outidx].qiov = reqs[i].qiov; 3503 } 3504 } 3505 3506 return outidx + 1; 3507 } 3508 3509 /* 3510 * Submit multiple AIO write requests at once. 3511 * 3512 * On success, the function returns 0 and all requests in the reqs array have 3513 * been submitted. In error case this function returns -1, and any of the 3514 * requests may or may not be submitted yet. In particular, this means that the 3515 * callback will be called for some of the requests, for others it won't. The 3516 * caller must check the error field of the BlockRequest to wait for the right 3517 * callbacks (if error != 0, no callback will be called). 3518 * 3519 * The implementation may modify the contents of the reqs array, e.g. to merge 3520 * requests. However, the fields opaque and error are left unmodified as they 3521 * are used to signal failure for a single request to the caller. 3522 */ 3523 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3524 { 3525 MultiwriteCB *mcb; 3526 int i; 3527 3528 /* don't submit writes if we don't have a medium */ 3529 if (bs->drv == NULL) { 3530 for (i = 0; i < num_reqs; i++) { 3531 reqs[i].error = -ENOMEDIUM; 3532 } 3533 return -1; 3534 } 3535 3536 if (num_reqs == 0) { 3537 return 0; 3538 } 3539 3540 // Create MultiwriteCB structure 3541 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3542 mcb->num_requests = 0; 3543 mcb->num_callbacks = num_reqs; 3544 3545 for (i = 0; i < num_reqs; i++) { 3546 mcb->callbacks[i].cb = reqs[i].cb; 3547 mcb->callbacks[i].opaque = reqs[i].opaque; 3548 } 3549 3550 // Check for mergable requests 3551 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3552 3553 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3554 3555 /* Run the aio requests. */ 3556 mcb->num_requests = num_reqs; 3557 for (i = 0; i < num_reqs; i++) { 3558 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3559 reqs[i].nb_sectors, multiwrite_cb, mcb); 3560 } 3561 3562 return 0; 3563 } 3564 3565 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3566 { 3567 acb->aiocb_info->cancel(acb); 3568 } 3569 3570 /* block I/O throttling */ 3571 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3572 bool is_write, double elapsed_time, uint64_t *wait) 3573 { 3574 uint64_t bps_limit = 0; 3575 double bytes_limit, bytes_base, bytes_res; 3576 double slice_time, wait_time; 3577 3578 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3579 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3580 } else if (bs->io_limits.bps[is_write]) { 3581 bps_limit = bs->io_limits.bps[is_write]; 3582 } else { 3583 if (wait) { 3584 *wait = 0; 3585 } 3586 3587 return false; 3588 } 3589 3590 slice_time = bs->slice_end - bs->slice_start; 3591 slice_time /= (NANOSECONDS_PER_SECOND); 3592 bytes_limit = bps_limit * slice_time; 3593 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3594 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3595 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3596 } 3597 3598 /* bytes_base: the bytes of data which have been read/written; and 3599 * it is obtained from the history statistic info. 3600 * bytes_res: the remaining bytes of data which need to be read/written. 3601 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3602 * the total time for completing reading/writting all data. 3603 */ 3604 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3605 3606 if (bytes_base + bytes_res <= bytes_limit) { 3607 if (wait) { 3608 *wait = 0; 3609 } 3610 3611 return false; 3612 } 3613 3614 /* Calc approx time to dispatch */ 3615 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3616 3617 /* When the I/O rate at runtime exceeds the limits, 3618 * bs->slice_end need to be extended in order that the current statistic 3619 * info can be kept until the timer fire, so it is increased and tuned 3620 * based on the result of experiment. 3621 */ 3622 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3623 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3624 if (wait) { 3625 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3626 } 3627 3628 return true; 3629 } 3630 3631 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3632 double elapsed_time, uint64_t *wait) 3633 { 3634 uint64_t iops_limit = 0; 3635 double ios_limit, ios_base; 3636 double slice_time, wait_time; 3637 3638 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3639 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3640 } else if (bs->io_limits.iops[is_write]) { 3641 iops_limit = bs->io_limits.iops[is_write]; 3642 } else { 3643 if (wait) { 3644 *wait = 0; 3645 } 3646 3647 return false; 3648 } 3649 3650 slice_time = bs->slice_end - bs->slice_start; 3651 slice_time /= (NANOSECONDS_PER_SECOND); 3652 ios_limit = iops_limit * slice_time; 3653 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3654 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3655 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3656 } 3657 3658 if (ios_base + 1 <= ios_limit) { 3659 if (wait) { 3660 *wait = 0; 3661 } 3662 3663 return false; 3664 } 3665 3666 /* Calc approx time to dispatch */ 3667 wait_time = (ios_base + 1) / iops_limit; 3668 if (wait_time > elapsed_time) { 3669 wait_time = wait_time - elapsed_time; 3670 } else { 3671 wait_time = 0; 3672 } 3673 3674 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3675 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3676 if (wait) { 3677 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3678 } 3679 3680 return true; 3681 } 3682 3683 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3684 bool is_write, int64_t *wait) 3685 { 3686 int64_t now, max_wait; 3687 uint64_t bps_wait = 0, iops_wait = 0; 3688 double elapsed_time; 3689 int bps_ret, iops_ret; 3690 3691 now = qemu_get_clock_ns(vm_clock); 3692 if ((bs->slice_start < now) 3693 && (bs->slice_end > now)) { 3694 bs->slice_end = now + bs->slice_time; 3695 } else { 3696 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3697 bs->slice_start = now; 3698 bs->slice_end = now + bs->slice_time; 3699 3700 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3701 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3702 3703 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3704 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3705 } 3706 3707 elapsed_time = now - bs->slice_start; 3708 elapsed_time /= (NANOSECONDS_PER_SECOND); 3709 3710 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3711 is_write, elapsed_time, &bps_wait); 3712 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3713 elapsed_time, &iops_wait); 3714 if (bps_ret || iops_ret) { 3715 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3716 if (wait) { 3717 *wait = max_wait; 3718 } 3719 3720 now = qemu_get_clock_ns(vm_clock); 3721 if (bs->slice_end < now + max_wait) { 3722 bs->slice_end = now + max_wait; 3723 } 3724 3725 return true; 3726 } 3727 3728 if (wait) { 3729 *wait = 0; 3730 } 3731 3732 return false; 3733 } 3734 3735 /**************************************************************/ 3736 /* async block device emulation */ 3737 3738 typedef struct BlockDriverAIOCBSync { 3739 BlockDriverAIOCB common; 3740 QEMUBH *bh; 3741 int ret; 3742 /* vector translation state */ 3743 QEMUIOVector *qiov; 3744 uint8_t *bounce; 3745 int is_write; 3746 } BlockDriverAIOCBSync; 3747 3748 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3749 { 3750 BlockDriverAIOCBSync *acb = 3751 container_of(blockacb, BlockDriverAIOCBSync, common); 3752 qemu_bh_delete(acb->bh); 3753 acb->bh = NULL; 3754 qemu_aio_release(acb); 3755 } 3756 3757 static const AIOCBInfo bdrv_em_aiocb_info = { 3758 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3759 .cancel = bdrv_aio_cancel_em, 3760 }; 3761 3762 static void bdrv_aio_bh_cb(void *opaque) 3763 { 3764 BlockDriverAIOCBSync *acb = opaque; 3765 3766 if (!acb->is_write) 3767 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3768 qemu_vfree(acb->bounce); 3769 acb->common.cb(acb->common.opaque, acb->ret); 3770 qemu_bh_delete(acb->bh); 3771 acb->bh = NULL; 3772 qemu_aio_release(acb); 3773 } 3774 3775 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3776 int64_t sector_num, 3777 QEMUIOVector *qiov, 3778 int nb_sectors, 3779 BlockDriverCompletionFunc *cb, 3780 void *opaque, 3781 int is_write) 3782 3783 { 3784 BlockDriverAIOCBSync *acb; 3785 3786 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 3787 acb->is_write = is_write; 3788 acb->qiov = qiov; 3789 acb->bounce = qemu_blockalign(bs, qiov->size); 3790 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3791 3792 if (is_write) { 3793 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3794 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3795 } else { 3796 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3797 } 3798 3799 qemu_bh_schedule(acb->bh); 3800 3801 return &acb->common; 3802 } 3803 3804 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3805 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3806 BlockDriverCompletionFunc *cb, void *opaque) 3807 { 3808 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3809 } 3810 3811 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3812 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3813 BlockDriverCompletionFunc *cb, void *opaque) 3814 { 3815 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3816 } 3817 3818 3819 typedef struct BlockDriverAIOCBCoroutine { 3820 BlockDriverAIOCB common; 3821 BlockRequest req; 3822 bool is_write; 3823 bool *done; 3824 QEMUBH* bh; 3825 } BlockDriverAIOCBCoroutine; 3826 3827 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3828 { 3829 BlockDriverAIOCBCoroutine *acb = 3830 container_of(blockacb, BlockDriverAIOCBCoroutine, common); 3831 bool done = false; 3832 3833 acb->done = &done; 3834 while (!done) { 3835 qemu_aio_wait(); 3836 } 3837 } 3838 3839 static const AIOCBInfo bdrv_em_co_aiocb_info = { 3840 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3841 .cancel = bdrv_aio_co_cancel_em, 3842 }; 3843 3844 static void bdrv_co_em_bh(void *opaque) 3845 { 3846 BlockDriverAIOCBCoroutine *acb = opaque; 3847 3848 acb->common.cb(acb->common.opaque, acb->req.error); 3849 3850 if (acb->done) { 3851 *acb->done = true; 3852 } 3853 3854 qemu_bh_delete(acb->bh); 3855 qemu_aio_release(acb); 3856 } 3857 3858 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3859 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3860 { 3861 BlockDriverAIOCBCoroutine *acb = opaque; 3862 BlockDriverState *bs = acb->common.bs; 3863 3864 if (!acb->is_write) { 3865 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3866 acb->req.nb_sectors, acb->req.qiov, 0); 3867 } else { 3868 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3869 acb->req.nb_sectors, acb->req.qiov, 0); 3870 } 3871 3872 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3873 qemu_bh_schedule(acb->bh); 3874 } 3875 3876 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3877 int64_t sector_num, 3878 QEMUIOVector *qiov, 3879 int nb_sectors, 3880 BlockDriverCompletionFunc *cb, 3881 void *opaque, 3882 bool is_write) 3883 { 3884 Coroutine *co; 3885 BlockDriverAIOCBCoroutine *acb; 3886 3887 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3888 acb->req.sector = sector_num; 3889 acb->req.nb_sectors = nb_sectors; 3890 acb->req.qiov = qiov; 3891 acb->is_write = is_write; 3892 acb->done = NULL; 3893 3894 co = qemu_coroutine_create(bdrv_co_do_rw); 3895 qemu_coroutine_enter(co, acb); 3896 3897 return &acb->common; 3898 } 3899 3900 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3901 { 3902 BlockDriverAIOCBCoroutine *acb = opaque; 3903 BlockDriverState *bs = acb->common.bs; 3904 3905 acb->req.error = bdrv_co_flush(bs); 3906 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3907 qemu_bh_schedule(acb->bh); 3908 } 3909 3910 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3911 BlockDriverCompletionFunc *cb, void *opaque) 3912 { 3913 trace_bdrv_aio_flush(bs, opaque); 3914 3915 Coroutine *co; 3916 BlockDriverAIOCBCoroutine *acb; 3917 3918 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3919 acb->done = NULL; 3920 3921 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3922 qemu_coroutine_enter(co, acb); 3923 3924 return &acb->common; 3925 } 3926 3927 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3928 { 3929 BlockDriverAIOCBCoroutine *acb = opaque; 3930 BlockDriverState *bs = acb->common.bs; 3931 3932 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3933 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3934 qemu_bh_schedule(acb->bh); 3935 } 3936 3937 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3938 int64_t sector_num, int nb_sectors, 3939 BlockDriverCompletionFunc *cb, void *opaque) 3940 { 3941 Coroutine *co; 3942 BlockDriverAIOCBCoroutine *acb; 3943 3944 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3945 3946 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3947 acb->req.sector = sector_num; 3948 acb->req.nb_sectors = nb_sectors; 3949 acb->done = NULL; 3950 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3951 qemu_coroutine_enter(co, acb); 3952 3953 return &acb->common; 3954 } 3955 3956 void bdrv_init(void) 3957 { 3958 module_call_init(MODULE_INIT_BLOCK); 3959 } 3960 3961 void bdrv_init_with_whitelist(void) 3962 { 3963 use_bdrv_whitelist = 1; 3964 bdrv_init(); 3965 } 3966 3967 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 3968 BlockDriverCompletionFunc *cb, void *opaque) 3969 { 3970 BlockDriverAIOCB *acb; 3971 3972 acb = g_slice_alloc(aiocb_info->aiocb_size); 3973 acb->aiocb_info = aiocb_info; 3974 acb->bs = bs; 3975 acb->cb = cb; 3976 acb->opaque = opaque; 3977 return acb; 3978 } 3979 3980 void qemu_aio_release(void *p) 3981 { 3982 BlockDriverAIOCB *acb = p; 3983 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 3984 } 3985 3986 /**************************************************************/ 3987 /* Coroutine block device emulation */ 3988 3989 typedef struct CoroutineIOCompletion { 3990 Coroutine *coroutine; 3991 int ret; 3992 } CoroutineIOCompletion; 3993 3994 static void bdrv_co_io_em_complete(void *opaque, int ret) 3995 { 3996 CoroutineIOCompletion *co = opaque; 3997 3998 co->ret = ret; 3999 qemu_coroutine_enter(co->coroutine, NULL); 4000 } 4001 4002 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 4003 int nb_sectors, QEMUIOVector *iov, 4004 bool is_write) 4005 { 4006 CoroutineIOCompletion co = { 4007 .coroutine = qemu_coroutine_self(), 4008 }; 4009 BlockDriverAIOCB *acb; 4010 4011 if (is_write) { 4012 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 4013 bdrv_co_io_em_complete, &co); 4014 } else { 4015 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 4016 bdrv_co_io_em_complete, &co); 4017 } 4018 4019 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 4020 if (!acb) { 4021 return -EIO; 4022 } 4023 qemu_coroutine_yield(); 4024 4025 return co.ret; 4026 } 4027 4028 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 4029 int64_t sector_num, int nb_sectors, 4030 QEMUIOVector *iov) 4031 { 4032 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 4033 } 4034 4035 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 4036 int64_t sector_num, int nb_sectors, 4037 QEMUIOVector *iov) 4038 { 4039 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 4040 } 4041 4042 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 4043 { 4044 RwCo *rwco = opaque; 4045 4046 rwco->ret = bdrv_co_flush(rwco->bs); 4047 } 4048 4049 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 4050 { 4051 int ret; 4052 4053 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 4054 return 0; 4055 } 4056 4057 /* Write back cached data to the OS even with cache=unsafe */ 4058 if (bs->drv->bdrv_co_flush_to_os) { 4059 ret = bs->drv->bdrv_co_flush_to_os(bs); 4060 if (ret < 0) { 4061 return ret; 4062 } 4063 } 4064 4065 /* But don't actually force it to the disk with cache=unsafe */ 4066 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4067 goto flush_parent; 4068 } 4069 4070 if (bs->drv->bdrv_co_flush_to_disk) { 4071 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4072 } else if (bs->drv->bdrv_aio_flush) { 4073 BlockDriverAIOCB *acb; 4074 CoroutineIOCompletion co = { 4075 .coroutine = qemu_coroutine_self(), 4076 }; 4077 4078 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4079 if (acb == NULL) { 4080 ret = -EIO; 4081 } else { 4082 qemu_coroutine_yield(); 4083 ret = co.ret; 4084 } 4085 } else { 4086 /* 4087 * Some block drivers always operate in either writethrough or unsafe 4088 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4089 * know how the server works (because the behaviour is hardcoded or 4090 * depends on server-side configuration), so we can't ensure that 4091 * everything is safe on disk. Returning an error doesn't work because 4092 * that would break guests even if the server operates in writethrough 4093 * mode. 4094 * 4095 * Let's hope the user knows what he's doing. 4096 */ 4097 ret = 0; 4098 } 4099 if (ret < 0) { 4100 return ret; 4101 } 4102 4103 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4104 * in the case of cache=unsafe, so there are no useless flushes. 4105 */ 4106 flush_parent: 4107 return bdrv_co_flush(bs->file); 4108 } 4109 4110 void bdrv_invalidate_cache(BlockDriverState *bs) 4111 { 4112 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4113 bs->drv->bdrv_invalidate_cache(bs); 4114 } 4115 } 4116 4117 void bdrv_invalidate_cache_all(void) 4118 { 4119 BlockDriverState *bs; 4120 4121 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4122 bdrv_invalidate_cache(bs); 4123 } 4124 } 4125 4126 void bdrv_clear_incoming_migration_all(void) 4127 { 4128 BlockDriverState *bs; 4129 4130 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4131 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4132 } 4133 } 4134 4135 int bdrv_flush(BlockDriverState *bs) 4136 { 4137 Coroutine *co; 4138 RwCo rwco = { 4139 .bs = bs, 4140 .ret = NOT_DONE, 4141 }; 4142 4143 if (qemu_in_coroutine()) { 4144 /* Fast-path if already in coroutine context */ 4145 bdrv_flush_co_entry(&rwco); 4146 } else { 4147 co = qemu_coroutine_create(bdrv_flush_co_entry); 4148 qemu_coroutine_enter(co, &rwco); 4149 while (rwco.ret == NOT_DONE) { 4150 qemu_aio_wait(); 4151 } 4152 } 4153 4154 return rwco.ret; 4155 } 4156 4157 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4158 { 4159 RwCo *rwco = opaque; 4160 4161 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4162 } 4163 4164 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4165 int nb_sectors) 4166 { 4167 if (!bs->drv) { 4168 return -ENOMEDIUM; 4169 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4170 return -EIO; 4171 } else if (bs->read_only) { 4172 return -EROFS; 4173 } 4174 4175 if (bs->dirty_bitmap) { 4176 set_dirty_bitmap(bs, sector_num, nb_sectors, 0); 4177 } 4178 4179 if (bs->drv->bdrv_co_discard) { 4180 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4181 } else if (bs->drv->bdrv_aio_discard) { 4182 BlockDriverAIOCB *acb; 4183 CoroutineIOCompletion co = { 4184 .coroutine = qemu_coroutine_self(), 4185 }; 4186 4187 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4188 bdrv_co_io_em_complete, &co); 4189 if (acb == NULL) { 4190 return -EIO; 4191 } else { 4192 qemu_coroutine_yield(); 4193 return co.ret; 4194 } 4195 } else { 4196 return 0; 4197 } 4198 } 4199 4200 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4201 { 4202 Coroutine *co; 4203 RwCo rwco = { 4204 .bs = bs, 4205 .sector_num = sector_num, 4206 .nb_sectors = nb_sectors, 4207 .ret = NOT_DONE, 4208 }; 4209 4210 if (qemu_in_coroutine()) { 4211 /* Fast-path if already in coroutine context */ 4212 bdrv_discard_co_entry(&rwco); 4213 } else { 4214 co = qemu_coroutine_create(bdrv_discard_co_entry); 4215 qemu_coroutine_enter(co, &rwco); 4216 while (rwco.ret == NOT_DONE) { 4217 qemu_aio_wait(); 4218 } 4219 } 4220 4221 return rwco.ret; 4222 } 4223 4224 /**************************************************************/ 4225 /* removable device support */ 4226 4227 /** 4228 * Return TRUE if the media is present 4229 */ 4230 int bdrv_is_inserted(BlockDriverState *bs) 4231 { 4232 BlockDriver *drv = bs->drv; 4233 4234 if (!drv) 4235 return 0; 4236 if (!drv->bdrv_is_inserted) 4237 return 1; 4238 return drv->bdrv_is_inserted(bs); 4239 } 4240 4241 /** 4242 * Return whether the media changed since the last call to this 4243 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4244 */ 4245 int bdrv_media_changed(BlockDriverState *bs) 4246 { 4247 BlockDriver *drv = bs->drv; 4248 4249 if (drv && drv->bdrv_media_changed) { 4250 return drv->bdrv_media_changed(bs); 4251 } 4252 return -ENOTSUP; 4253 } 4254 4255 /** 4256 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4257 */ 4258 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4259 { 4260 BlockDriver *drv = bs->drv; 4261 4262 if (drv && drv->bdrv_eject) { 4263 drv->bdrv_eject(bs, eject_flag); 4264 } 4265 4266 if (bs->device_name[0] != '\0') { 4267 bdrv_emit_qmp_eject_event(bs, eject_flag); 4268 } 4269 } 4270 4271 /** 4272 * Lock or unlock the media (if it is locked, the user won't be able 4273 * to eject it manually). 4274 */ 4275 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4276 { 4277 BlockDriver *drv = bs->drv; 4278 4279 trace_bdrv_lock_medium(bs, locked); 4280 4281 if (drv && drv->bdrv_lock_medium) { 4282 drv->bdrv_lock_medium(bs, locked); 4283 } 4284 } 4285 4286 /* needed for generic scsi interface */ 4287 4288 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4289 { 4290 BlockDriver *drv = bs->drv; 4291 4292 if (drv && drv->bdrv_ioctl) 4293 return drv->bdrv_ioctl(bs, req, buf); 4294 return -ENOTSUP; 4295 } 4296 4297 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4298 unsigned long int req, void *buf, 4299 BlockDriverCompletionFunc *cb, void *opaque) 4300 { 4301 BlockDriver *drv = bs->drv; 4302 4303 if (drv && drv->bdrv_aio_ioctl) 4304 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4305 return NULL; 4306 } 4307 4308 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4309 { 4310 bs->buffer_alignment = align; 4311 } 4312 4313 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4314 { 4315 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4316 } 4317 4318 /* 4319 * Check if all memory in this vector is sector aligned. 4320 */ 4321 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 4322 { 4323 int i; 4324 4325 for (i = 0; i < qiov->niov; i++) { 4326 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) { 4327 return false; 4328 } 4329 } 4330 4331 return true; 4332 } 4333 4334 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable) 4335 { 4336 int64_t bitmap_size; 4337 4338 bs->dirty_count = 0; 4339 if (enable) { 4340 if (!bs->dirty_bitmap) { 4341 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) + 4342 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1; 4343 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 4344 4345 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size); 4346 } 4347 } else { 4348 if (bs->dirty_bitmap) { 4349 g_free(bs->dirty_bitmap); 4350 bs->dirty_bitmap = NULL; 4351 } 4352 } 4353 } 4354 4355 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4356 { 4357 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4358 4359 if (bs->dirty_bitmap && 4360 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) { 4361 return !!(bs->dirty_bitmap[chunk / BITS_PER_LONG] & 4362 (1UL << (chunk % BITS_PER_LONG))); 4363 } else { 4364 return 0; 4365 } 4366 } 4367 4368 int64_t bdrv_get_next_dirty(BlockDriverState *bs, int64_t sector) 4369 { 4370 int64_t chunk; 4371 int bit, elem; 4372 4373 /* Avoid an infinite loop. */ 4374 assert(bs->dirty_count > 0); 4375 4376 sector = (sector | (BDRV_SECTORS_PER_DIRTY_CHUNK - 1)) + 1; 4377 chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4378 4379 QEMU_BUILD_BUG_ON(sizeof(bs->dirty_bitmap[0]) * 8 != BITS_PER_LONG); 4380 elem = chunk / BITS_PER_LONG; 4381 bit = chunk % BITS_PER_LONG; 4382 for (;;) { 4383 if (sector >= bs->total_sectors) { 4384 sector = 0; 4385 bit = elem = 0; 4386 } 4387 if (bit == 0 && bs->dirty_bitmap[elem] == 0) { 4388 sector += BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 4389 elem++; 4390 } else { 4391 if (bs->dirty_bitmap[elem] & (1UL << bit)) { 4392 return sector; 4393 } 4394 sector += BDRV_SECTORS_PER_DIRTY_CHUNK; 4395 if (++bit == BITS_PER_LONG) { 4396 bit = 0; 4397 elem++; 4398 } 4399 } 4400 } 4401 } 4402 4403 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4404 int nr_sectors) 4405 { 4406 set_dirty_bitmap(bs, cur_sector, nr_sectors, 1); 4407 } 4408 4409 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4410 int nr_sectors) 4411 { 4412 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0); 4413 } 4414 4415 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4416 { 4417 return bs->dirty_count; 4418 } 4419 4420 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4421 { 4422 assert(bs->in_use != in_use); 4423 bs->in_use = in_use; 4424 } 4425 4426 int bdrv_in_use(BlockDriverState *bs) 4427 { 4428 return bs->in_use; 4429 } 4430 4431 void bdrv_iostatus_enable(BlockDriverState *bs) 4432 { 4433 bs->iostatus_enabled = true; 4434 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4435 } 4436 4437 /* The I/O status is only enabled if the drive explicitly 4438 * enables it _and_ the VM is configured to stop on errors */ 4439 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4440 { 4441 return (bs->iostatus_enabled && 4442 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4443 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4444 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4445 } 4446 4447 void bdrv_iostatus_disable(BlockDriverState *bs) 4448 { 4449 bs->iostatus_enabled = false; 4450 } 4451 4452 void bdrv_iostatus_reset(BlockDriverState *bs) 4453 { 4454 if (bdrv_iostatus_is_enabled(bs)) { 4455 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4456 if (bs->job) { 4457 block_job_iostatus_reset(bs->job); 4458 } 4459 } 4460 } 4461 4462 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4463 { 4464 assert(bdrv_iostatus_is_enabled(bs)); 4465 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4466 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4467 BLOCK_DEVICE_IO_STATUS_FAILED; 4468 } 4469 } 4470 4471 void 4472 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4473 enum BlockAcctType type) 4474 { 4475 assert(type < BDRV_MAX_IOTYPE); 4476 4477 cookie->bytes = bytes; 4478 cookie->start_time_ns = get_clock(); 4479 cookie->type = type; 4480 } 4481 4482 void 4483 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4484 { 4485 assert(cookie->type < BDRV_MAX_IOTYPE); 4486 4487 bs->nr_bytes[cookie->type] += cookie->bytes; 4488 bs->nr_ops[cookie->type]++; 4489 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4490 } 4491 4492 void bdrv_img_create(const char *filename, const char *fmt, 4493 const char *base_filename, const char *base_fmt, 4494 char *options, uint64_t img_size, int flags, Error **errp) 4495 { 4496 QEMUOptionParameter *param = NULL, *create_options = NULL; 4497 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4498 BlockDriverState *bs = NULL; 4499 BlockDriver *drv, *proto_drv; 4500 BlockDriver *backing_drv = NULL; 4501 int ret = 0; 4502 4503 /* Find driver and parse its options */ 4504 drv = bdrv_find_format(fmt); 4505 if (!drv) { 4506 error_setg(errp, "Unknown file format '%s'", fmt); 4507 return; 4508 } 4509 4510 proto_drv = bdrv_find_protocol(filename); 4511 if (!proto_drv) { 4512 error_setg(errp, "Unknown protocol '%s'", filename); 4513 return; 4514 } 4515 4516 create_options = append_option_parameters(create_options, 4517 drv->create_options); 4518 create_options = append_option_parameters(create_options, 4519 proto_drv->create_options); 4520 4521 /* Create parameter list with default values */ 4522 param = parse_option_parameters("", create_options, param); 4523 4524 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4525 4526 /* Parse -o options */ 4527 if (options) { 4528 param = parse_option_parameters(options, create_options, param); 4529 if (param == NULL) { 4530 error_setg(errp, "Invalid options for file format '%s'.", fmt); 4531 goto out; 4532 } 4533 } 4534 4535 if (base_filename) { 4536 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4537 base_filename)) { 4538 error_setg(errp, "Backing file not supported for file format '%s'", 4539 fmt); 4540 goto out; 4541 } 4542 } 4543 4544 if (base_fmt) { 4545 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4546 error_setg(errp, "Backing file format not supported for file " 4547 "format '%s'", fmt); 4548 goto out; 4549 } 4550 } 4551 4552 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4553 if (backing_file && backing_file->value.s) { 4554 if (!strcmp(filename, backing_file->value.s)) { 4555 error_setg(errp, "Error: Trying to create an image with the " 4556 "same filename as the backing file"); 4557 goto out; 4558 } 4559 } 4560 4561 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4562 if (backing_fmt && backing_fmt->value.s) { 4563 backing_drv = bdrv_find_format(backing_fmt->value.s); 4564 if (!backing_drv) { 4565 error_setg(errp, "Unknown backing file format '%s'", 4566 backing_fmt->value.s); 4567 goto out; 4568 } 4569 } 4570 4571 // The size for the image must always be specified, with one exception: 4572 // If we are using a backing file, we can obtain the size from there 4573 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4574 if (size && size->value.n == -1) { 4575 if (backing_file && backing_file->value.s) { 4576 uint64_t size; 4577 char buf[32]; 4578 int back_flags; 4579 4580 /* backing files always opened read-only */ 4581 back_flags = 4582 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4583 4584 bs = bdrv_new(""); 4585 4586 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4587 if (ret < 0) { 4588 error_setg_errno(errp, -ret, "Could not open '%s'", 4589 backing_file->value.s); 4590 goto out; 4591 } 4592 bdrv_get_geometry(bs, &size); 4593 size *= 512; 4594 4595 snprintf(buf, sizeof(buf), "%" PRId64, size); 4596 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4597 } else { 4598 error_setg(errp, "Image creation needs a size parameter"); 4599 goto out; 4600 } 4601 } 4602 4603 printf("Formatting '%s', fmt=%s ", filename, fmt); 4604 print_option_parameters(param); 4605 puts(""); 4606 4607 ret = bdrv_create(drv, filename, param); 4608 if (ret < 0) { 4609 if (ret == -ENOTSUP) { 4610 error_setg(errp,"Formatting or formatting option not supported for " 4611 "file format '%s'", fmt); 4612 } else if (ret == -EFBIG) { 4613 error_setg(errp, "The image size is too large for file format '%s'", 4614 fmt); 4615 } else { 4616 error_setg(errp, "%s: error while creating %s: %s", filename, fmt, 4617 strerror(-ret)); 4618 } 4619 } 4620 4621 out: 4622 free_option_parameters(create_options); 4623 free_option_parameters(param); 4624 4625 if (bs) { 4626 bdrv_delete(bs); 4627 } 4628 } 4629