1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor/monitor.h" 28 #include "block/block_int.h" 29 #include "block/blockjob.h" 30 #include "qemu/module.h" 31 #include "qapi/qmp/qjson.h" 32 #include "sysemu/sysemu.h" 33 #include "qemu/notify.h" 34 #include "block/coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu/timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* The device to use for VM snapshots */ 103 static BlockDriverState *bs_snapshots; 104 105 /* If non-zero, use only whitelisted block drivers */ 106 static int use_bdrv_whitelist; 107 108 #ifdef _WIN32 109 static int is_windows_drive_prefix(const char *filename) 110 { 111 return (((filename[0] >= 'a' && filename[0] <= 'z') || 112 (filename[0] >= 'A' && filename[0] <= 'Z')) && 113 filename[1] == ':'); 114 } 115 116 int is_windows_drive(const char *filename) 117 { 118 if (is_windows_drive_prefix(filename) && 119 filename[2] == '\0') 120 return 1; 121 if (strstart(filename, "\\\\.\\", NULL) || 122 strstart(filename, "//./", NULL)) 123 return 1; 124 return 0; 125 } 126 #endif 127 128 /* throttling disk I/O limits */ 129 void bdrv_io_limits_disable(BlockDriverState *bs) 130 { 131 bs->io_limits_enabled = false; 132 133 while (qemu_co_queue_next(&bs->throttled_reqs)); 134 135 if (bs->block_timer) { 136 qemu_del_timer(bs->block_timer); 137 qemu_free_timer(bs->block_timer); 138 bs->block_timer = NULL; 139 } 140 141 bs->slice_start = 0; 142 bs->slice_end = 0; 143 } 144 145 static void bdrv_block_timer(void *opaque) 146 { 147 BlockDriverState *bs = opaque; 148 149 qemu_co_queue_next(&bs->throttled_reqs); 150 } 151 152 void bdrv_io_limits_enable(BlockDriverState *bs) 153 { 154 qemu_co_queue_init(&bs->throttled_reqs); 155 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 156 bs->io_limits_enabled = true; 157 } 158 159 bool bdrv_io_limits_enabled(BlockDriverState *bs) 160 { 161 BlockIOLimit *io_limits = &bs->io_limits; 162 return io_limits->bps[BLOCK_IO_LIMIT_READ] 163 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 164 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 165 || io_limits->iops[BLOCK_IO_LIMIT_READ] 166 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 167 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 168 } 169 170 static void bdrv_io_limits_intercept(BlockDriverState *bs, 171 bool is_write, int nb_sectors) 172 { 173 int64_t wait_time = -1; 174 175 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 176 qemu_co_queue_wait(&bs->throttled_reqs); 177 } 178 179 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 180 * throttled requests will not be dequeued until the current request is 181 * allowed to be serviced. So if the current request still exceeds the 182 * limits, it will be inserted to the head. All requests followed it will 183 * be still in throttled_reqs queue. 184 */ 185 186 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 187 qemu_mod_timer(bs->block_timer, 188 wait_time + qemu_get_clock_ns(vm_clock)); 189 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 190 } 191 192 qemu_co_queue_next(&bs->throttled_reqs); 193 } 194 195 /* check if the path starts with "<protocol>:" */ 196 static int path_has_protocol(const char *path) 197 { 198 const char *p; 199 200 #ifdef _WIN32 201 if (is_windows_drive(path) || 202 is_windows_drive_prefix(path)) { 203 return 0; 204 } 205 p = path + strcspn(path, ":/\\"); 206 #else 207 p = path + strcspn(path, ":/"); 208 #endif 209 210 return *p == ':'; 211 } 212 213 int path_is_absolute(const char *path) 214 { 215 #ifdef _WIN32 216 /* specific case for names like: "\\.\d:" */ 217 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 218 return 1; 219 } 220 return (*path == '/' || *path == '\\'); 221 #else 222 return (*path == '/'); 223 #endif 224 } 225 226 /* if filename is absolute, just copy it to dest. Otherwise, build a 227 path to it by considering it is relative to base_path. URL are 228 supported. */ 229 void path_combine(char *dest, int dest_size, 230 const char *base_path, 231 const char *filename) 232 { 233 const char *p, *p1; 234 int len; 235 236 if (dest_size <= 0) 237 return; 238 if (path_is_absolute(filename)) { 239 pstrcpy(dest, dest_size, filename); 240 } else { 241 p = strchr(base_path, ':'); 242 if (p) 243 p++; 244 else 245 p = base_path; 246 p1 = strrchr(base_path, '/'); 247 #ifdef _WIN32 248 { 249 const char *p2; 250 p2 = strrchr(base_path, '\\'); 251 if (!p1 || p2 > p1) 252 p1 = p2; 253 } 254 #endif 255 if (p1) 256 p1++; 257 else 258 p1 = base_path; 259 if (p1 > p) 260 p = p1; 261 len = p - base_path; 262 if (len > dest_size - 1) 263 len = dest_size - 1; 264 memcpy(dest, base_path, len); 265 dest[len] = '\0'; 266 pstrcat(dest, dest_size, filename); 267 } 268 } 269 270 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 271 { 272 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 273 pstrcpy(dest, sz, bs->backing_file); 274 } else { 275 path_combine(dest, sz, bs->filename, bs->backing_file); 276 } 277 } 278 279 void bdrv_register(BlockDriver *bdrv) 280 { 281 /* Block drivers without coroutine functions need emulation */ 282 if (!bdrv->bdrv_co_readv) { 283 bdrv->bdrv_co_readv = bdrv_co_readv_em; 284 bdrv->bdrv_co_writev = bdrv_co_writev_em; 285 286 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 287 * the block driver lacks aio we need to emulate that too. 288 */ 289 if (!bdrv->bdrv_aio_readv) { 290 /* add AIO emulation layer */ 291 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 292 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 293 } 294 } 295 296 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 297 } 298 299 /* create a new block device (by default it is empty) */ 300 BlockDriverState *bdrv_new(const char *device_name) 301 { 302 BlockDriverState *bs; 303 304 bs = g_malloc0(sizeof(BlockDriverState)); 305 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 306 if (device_name[0] != '\0') { 307 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 308 } 309 bdrv_iostatus_disable(bs); 310 notifier_list_init(&bs->close_notifiers); 311 312 return bs; 313 } 314 315 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 316 { 317 notifier_list_add(&bs->close_notifiers, notify); 318 } 319 320 BlockDriver *bdrv_find_format(const char *format_name) 321 { 322 BlockDriver *drv1; 323 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 324 if (!strcmp(drv1->format_name, format_name)) { 325 return drv1; 326 } 327 } 328 return NULL; 329 } 330 331 static int bdrv_is_whitelisted(BlockDriver *drv) 332 { 333 static const char *whitelist[] = { 334 CONFIG_BDRV_WHITELIST 335 }; 336 const char **p; 337 338 if (!whitelist[0]) 339 return 1; /* no whitelist, anything goes */ 340 341 for (p = whitelist; *p; p++) { 342 if (!strcmp(drv->format_name, *p)) { 343 return 1; 344 } 345 } 346 return 0; 347 } 348 349 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 350 { 351 BlockDriver *drv = bdrv_find_format(format_name); 352 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 353 } 354 355 typedef struct CreateCo { 356 BlockDriver *drv; 357 char *filename; 358 QEMUOptionParameter *options; 359 int ret; 360 } CreateCo; 361 362 static void coroutine_fn bdrv_create_co_entry(void *opaque) 363 { 364 CreateCo *cco = opaque; 365 assert(cco->drv); 366 367 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 368 } 369 370 int bdrv_create(BlockDriver *drv, const char* filename, 371 QEMUOptionParameter *options) 372 { 373 int ret; 374 375 Coroutine *co; 376 CreateCo cco = { 377 .drv = drv, 378 .filename = g_strdup(filename), 379 .options = options, 380 .ret = NOT_DONE, 381 }; 382 383 if (!drv->bdrv_create) { 384 ret = -ENOTSUP; 385 goto out; 386 } 387 388 if (qemu_in_coroutine()) { 389 /* Fast-path if already in coroutine context */ 390 bdrv_create_co_entry(&cco); 391 } else { 392 co = qemu_coroutine_create(bdrv_create_co_entry); 393 qemu_coroutine_enter(co, &cco); 394 while (cco.ret == NOT_DONE) { 395 qemu_aio_wait(); 396 } 397 } 398 399 ret = cco.ret; 400 401 out: 402 g_free(cco.filename); 403 return ret; 404 } 405 406 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 407 { 408 BlockDriver *drv; 409 410 drv = bdrv_find_protocol(filename); 411 if (drv == NULL) { 412 return -ENOENT; 413 } 414 415 return bdrv_create(drv, filename, options); 416 } 417 418 /* 419 * Create a uniquely-named empty temporary file. 420 * Return 0 upon success, otherwise a negative errno value. 421 */ 422 int get_tmp_filename(char *filename, int size) 423 { 424 #ifdef _WIN32 425 char temp_dir[MAX_PATH]; 426 /* GetTempFileName requires that its output buffer (4th param) 427 have length MAX_PATH or greater. */ 428 assert(size >= MAX_PATH); 429 return (GetTempPath(MAX_PATH, temp_dir) 430 && GetTempFileName(temp_dir, "qem", 0, filename) 431 ? 0 : -GetLastError()); 432 #else 433 int fd; 434 const char *tmpdir; 435 tmpdir = getenv("TMPDIR"); 436 if (!tmpdir) 437 tmpdir = "/tmp"; 438 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 439 return -EOVERFLOW; 440 } 441 fd = mkstemp(filename); 442 if (fd < 0) { 443 return -errno; 444 } 445 if (close(fd) != 0) { 446 unlink(filename); 447 return -errno; 448 } 449 return 0; 450 #endif 451 } 452 453 /* 454 * Detect host devices. By convention, /dev/cdrom[N] is always 455 * recognized as a host CDROM. 456 */ 457 static BlockDriver *find_hdev_driver(const char *filename) 458 { 459 int score_max = 0, score; 460 BlockDriver *drv = NULL, *d; 461 462 QLIST_FOREACH(d, &bdrv_drivers, list) { 463 if (d->bdrv_probe_device) { 464 score = d->bdrv_probe_device(filename); 465 if (score > score_max) { 466 score_max = score; 467 drv = d; 468 } 469 } 470 } 471 472 return drv; 473 } 474 475 BlockDriver *bdrv_find_protocol(const char *filename) 476 { 477 BlockDriver *drv1; 478 char protocol[128]; 479 int len; 480 const char *p; 481 482 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 483 484 /* 485 * XXX(hch): we really should not let host device detection 486 * override an explicit protocol specification, but moving this 487 * later breaks access to device names with colons in them. 488 * Thanks to the brain-dead persistent naming schemes on udev- 489 * based Linux systems those actually are quite common. 490 */ 491 drv1 = find_hdev_driver(filename); 492 if (drv1) { 493 return drv1; 494 } 495 496 if (!path_has_protocol(filename)) { 497 return bdrv_find_format("file"); 498 } 499 p = strchr(filename, ':'); 500 assert(p != NULL); 501 len = p - filename; 502 if (len > sizeof(protocol) - 1) 503 len = sizeof(protocol) - 1; 504 memcpy(protocol, filename, len); 505 protocol[len] = '\0'; 506 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 507 if (drv1->protocol_name && 508 !strcmp(drv1->protocol_name, protocol)) { 509 return drv1; 510 } 511 } 512 return NULL; 513 } 514 515 static int find_image_format(BlockDriverState *bs, const char *filename, 516 BlockDriver **pdrv) 517 { 518 int score, score_max; 519 BlockDriver *drv1, *drv; 520 uint8_t buf[2048]; 521 int ret = 0; 522 523 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 524 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) { 525 drv = bdrv_find_format("raw"); 526 if (!drv) { 527 ret = -ENOENT; 528 } 529 *pdrv = drv; 530 return ret; 531 } 532 533 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 534 if (ret < 0) { 535 *pdrv = NULL; 536 return ret; 537 } 538 539 score_max = 0; 540 drv = NULL; 541 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 542 if (drv1->bdrv_probe) { 543 score = drv1->bdrv_probe(buf, ret, filename); 544 if (score > score_max) { 545 score_max = score; 546 drv = drv1; 547 } 548 } 549 } 550 if (!drv) { 551 ret = -ENOENT; 552 } 553 *pdrv = drv; 554 return ret; 555 } 556 557 /** 558 * Set the current 'total_sectors' value 559 */ 560 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 561 { 562 BlockDriver *drv = bs->drv; 563 564 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 565 if (bs->sg) 566 return 0; 567 568 /* query actual device if possible, otherwise just trust the hint */ 569 if (drv->bdrv_getlength) { 570 int64_t length = drv->bdrv_getlength(bs); 571 if (length < 0) { 572 return length; 573 } 574 hint = length >> BDRV_SECTOR_BITS; 575 } 576 577 bs->total_sectors = hint; 578 return 0; 579 } 580 581 /** 582 * Set open flags for a given discard mode 583 * 584 * Return 0 on success, -1 if the discard mode was invalid. 585 */ 586 int bdrv_parse_discard_flags(const char *mode, int *flags) 587 { 588 *flags &= ~BDRV_O_UNMAP; 589 590 if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) { 591 /* do nothing */ 592 } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) { 593 *flags |= BDRV_O_UNMAP; 594 } else { 595 return -1; 596 } 597 598 return 0; 599 } 600 601 /** 602 * Set open flags for a given cache mode 603 * 604 * Return 0 on success, -1 if the cache mode was invalid. 605 */ 606 int bdrv_parse_cache_flags(const char *mode, int *flags) 607 { 608 *flags &= ~BDRV_O_CACHE_MASK; 609 610 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 611 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 612 } else if (!strcmp(mode, "directsync")) { 613 *flags |= BDRV_O_NOCACHE; 614 } else if (!strcmp(mode, "writeback")) { 615 *flags |= BDRV_O_CACHE_WB; 616 } else if (!strcmp(mode, "unsafe")) { 617 *flags |= BDRV_O_CACHE_WB; 618 *flags |= BDRV_O_NO_FLUSH; 619 } else if (!strcmp(mode, "writethrough")) { 620 /* this is the default */ 621 } else { 622 return -1; 623 } 624 625 return 0; 626 } 627 628 /** 629 * The copy-on-read flag is actually a reference count so multiple users may 630 * use the feature without worrying about clobbering its previous state. 631 * Copy-on-read stays enabled until all users have called to disable it. 632 */ 633 void bdrv_enable_copy_on_read(BlockDriverState *bs) 634 { 635 bs->copy_on_read++; 636 } 637 638 void bdrv_disable_copy_on_read(BlockDriverState *bs) 639 { 640 assert(bs->copy_on_read > 0); 641 bs->copy_on_read--; 642 } 643 644 static int bdrv_open_flags(BlockDriverState *bs, int flags) 645 { 646 int open_flags = flags | BDRV_O_CACHE_WB; 647 648 /* 649 * Clear flags that are internal to the block layer before opening the 650 * image. 651 */ 652 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 653 654 /* 655 * Snapshots should be writable. 656 */ 657 if (bs->is_temporary) { 658 open_flags |= BDRV_O_RDWR; 659 } 660 661 return open_flags; 662 } 663 664 /* 665 * Common part for opening disk images and files 666 * 667 * Removes all processed options from *options. 668 */ 669 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file, 670 const char *filename, QDict *options, 671 int flags, BlockDriver *drv) 672 { 673 int ret, open_flags; 674 675 assert(drv != NULL); 676 assert(bs->file == NULL); 677 assert(options != NULL && bs->options != options); 678 679 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 680 681 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 682 return -ENOTSUP; 683 } 684 685 /* bdrv_open() with directly using a protocol as drv. This layer is already 686 * opened, so assign it to bs (while file becomes a closed BlockDriverState) 687 * and return immediately. */ 688 if (file != NULL && drv->bdrv_file_open) { 689 bdrv_swap(file, bs); 690 return 0; 691 } 692 693 bs->open_flags = flags; 694 bs->buffer_alignment = 512; 695 696 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 697 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 698 bdrv_enable_copy_on_read(bs); 699 } 700 701 if (filename != NULL) { 702 pstrcpy(bs->filename, sizeof(bs->filename), filename); 703 } else { 704 bs->filename[0] = '\0'; 705 } 706 707 bs->drv = drv; 708 bs->opaque = g_malloc0(drv->instance_size); 709 710 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 711 open_flags = bdrv_open_flags(bs, flags); 712 713 bs->read_only = !(open_flags & BDRV_O_RDWR); 714 715 /* Open the image, either directly or using a protocol */ 716 if (drv->bdrv_file_open) { 717 assert(file == NULL); 718 assert(drv->bdrv_parse_filename || filename != NULL); 719 ret = drv->bdrv_file_open(bs, filename, options, open_flags); 720 } else { 721 assert(file != NULL); 722 bs->file = file; 723 ret = drv->bdrv_open(bs, options, open_flags); 724 } 725 726 if (ret < 0) { 727 goto free_and_fail; 728 } 729 730 ret = refresh_total_sectors(bs, bs->total_sectors); 731 if (ret < 0) { 732 goto free_and_fail; 733 } 734 735 #ifndef _WIN32 736 if (bs->is_temporary) { 737 assert(filename != NULL); 738 unlink(filename); 739 } 740 #endif 741 return 0; 742 743 free_and_fail: 744 bs->file = NULL; 745 g_free(bs->opaque); 746 bs->opaque = NULL; 747 bs->drv = NULL; 748 return ret; 749 } 750 751 /* 752 * Opens a file using a protocol (file, host_device, nbd, ...) 753 * 754 * options is a QDict of options to pass to the block drivers, or NULL for an 755 * empty set of options. The reference to the QDict belongs to the block layer 756 * after the call (even on failure), so if the caller intends to reuse the 757 * dictionary, it needs to use QINCREF() before calling bdrv_file_open. 758 */ 759 int bdrv_file_open(BlockDriverState **pbs, const char *filename, 760 QDict *options, int flags) 761 { 762 BlockDriverState *bs; 763 BlockDriver *drv; 764 const char *drvname; 765 int ret; 766 767 /* NULL means an empty set of options */ 768 if (options == NULL) { 769 options = qdict_new(); 770 } 771 772 bs = bdrv_new(""); 773 bs->options = options; 774 options = qdict_clone_shallow(options); 775 776 /* Find the right block driver */ 777 drvname = qdict_get_try_str(options, "driver"); 778 if (drvname) { 779 drv = bdrv_find_whitelisted_format(drvname); 780 qdict_del(options, "driver"); 781 } else if (filename) { 782 drv = bdrv_find_protocol(filename); 783 } else { 784 qerror_report(ERROR_CLASS_GENERIC_ERROR, 785 "Must specify either driver or file"); 786 drv = NULL; 787 } 788 789 if (!drv) { 790 ret = -ENOENT; 791 goto fail; 792 } 793 794 /* Parse the filename and open it */ 795 if (drv->bdrv_parse_filename && filename) { 796 Error *local_err = NULL; 797 drv->bdrv_parse_filename(filename, options, &local_err); 798 if (error_is_set(&local_err)) { 799 qerror_report_err(local_err); 800 error_free(local_err); 801 ret = -EINVAL; 802 goto fail; 803 } 804 } else if (!drv->bdrv_parse_filename && !filename) { 805 qerror_report(ERROR_CLASS_GENERIC_ERROR, 806 "The '%s' block driver requires a file name", 807 drv->format_name); 808 ret = -EINVAL; 809 goto fail; 810 } 811 812 ret = bdrv_open_common(bs, NULL, filename, options, flags, drv); 813 if (ret < 0) { 814 goto fail; 815 } 816 817 /* Check if any unknown options were used */ 818 if (qdict_size(options) != 0) { 819 const QDictEntry *entry = qdict_first(options); 820 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block protocol '%s' doesn't " 821 "support the option '%s'", 822 drv->format_name, entry->key); 823 ret = -EINVAL; 824 goto fail; 825 } 826 QDECREF(options); 827 828 bs->growable = 1; 829 *pbs = bs; 830 return 0; 831 832 fail: 833 QDECREF(options); 834 if (!bs->drv) { 835 QDECREF(bs->options); 836 } 837 bdrv_delete(bs); 838 return ret; 839 } 840 841 int bdrv_open_backing_file(BlockDriverState *bs) 842 { 843 char backing_filename[PATH_MAX]; 844 int back_flags, ret; 845 BlockDriver *back_drv = NULL; 846 847 if (bs->backing_hd != NULL) { 848 return 0; 849 } 850 851 bs->open_flags &= ~BDRV_O_NO_BACKING; 852 if (bs->backing_file[0] == '\0') { 853 return 0; 854 } 855 856 bs->backing_hd = bdrv_new(""); 857 bdrv_get_full_backing_filename(bs, backing_filename, 858 sizeof(backing_filename)); 859 860 if (bs->backing_format[0] != '\0') { 861 back_drv = bdrv_find_format(bs->backing_format); 862 } 863 864 /* backing files always opened read-only */ 865 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 866 867 ret = bdrv_open(bs->backing_hd, backing_filename, NULL, 868 back_flags, back_drv); 869 if (ret < 0) { 870 bdrv_delete(bs->backing_hd); 871 bs->backing_hd = NULL; 872 bs->open_flags |= BDRV_O_NO_BACKING; 873 return ret; 874 } 875 return 0; 876 } 877 878 static void extract_subqdict(QDict *src, QDict **dst, const char *start) 879 { 880 const QDictEntry *entry, *next; 881 const char *p; 882 883 *dst = qdict_new(); 884 entry = qdict_first(src); 885 886 while (entry != NULL) { 887 next = qdict_next(src, entry); 888 if (strstart(entry->key, start, &p)) { 889 qobject_incref(entry->value); 890 qdict_put_obj(*dst, p, entry->value); 891 qdict_del(src, entry->key); 892 } 893 entry = next; 894 } 895 } 896 897 /* 898 * Opens a disk image (raw, qcow2, vmdk, ...) 899 * 900 * options is a QDict of options to pass to the block drivers, or NULL for an 901 * empty set of options. The reference to the QDict belongs to the block layer 902 * after the call (even on failure), so if the caller intends to reuse the 903 * dictionary, it needs to use QINCREF() before calling bdrv_open. 904 */ 905 int bdrv_open(BlockDriverState *bs, const char *filename, QDict *options, 906 int flags, BlockDriver *drv) 907 { 908 int ret; 909 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ 910 char tmp_filename[PATH_MAX + 1]; 911 BlockDriverState *file = NULL; 912 QDict *file_options = NULL; 913 914 /* NULL means an empty set of options */ 915 if (options == NULL) { 916 options = qdict_new(); 917 } 918 919 bs->options = options; 920 options = qdict_clone_shallow(options); 921 922 /* For snapshot=on, create a temporary qcow2 overlay */ 923 if (flags & BDRV_O_SNAPSHOT) { 924 BlockDriverState *bs1; 925 int64_t total_size; 926 BlockDriver *bdrv_qcow2; 927 QEMUOptionParameter *create_options; 928 char backing_filename[PATH_MAX]; 929 930 if (qdict_size(options) != 0) { 931 error_report("Can't use snapshot=on with driver-specific options"); 932 ret = -EINVAL; 933 goto fail; 934 } 935 assert(filename != NULL); 936 937 /* if snapshot, we create a temporary backing file and open it 938 instead of opening 'filename' directly */ 939 940 /* if there is a backing file, use it */ 941 bs1 = bdrv_new(""); 942 ret = bdrv_open(bs1, filename, NULL, 0, drv); 943 if (ret < 0) { 944 bdrv_delete(bs1); 945 goto fail; 946 } 947 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 948 949 bdrv_delete(bs1); 950 951 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 952 if (ret < 0) { 953 goto fail; 954 } 955 956 /* Real path is meaningless for protocols */ 957 if (path_has_protocol(filename)) { 958 snprintf(backing_filename, sizeof(backing_filename), 959 "%s", filename); 960 } else if (!realpath(filename, backing_filename)) { 961 ret = -errno; 962 goto fail; 963 } 964 965 bdrv_qcow2 = bdrv_find_format("qcow2"); 966 create_options = parse_option_parameters("", bdrv_qcow2->create_options, 967 NULL); 968 969 set_option_parameter_int(create_options, BLOCK_OPT_SIZE, total_size); 970 set_option_parameter(create_options, BLOCK_OPT_BACKING_FILE, 971 backing_filename); 972 if (drv) { 973 set_option_parameter(create_options, BLOCK_OPT_BACKING_FMT, 974 drv->format_name); 975 } 976 977 ret = bdrv_create(bdrv_qcow2, tmp_filename, create_options); 978 free_option_parameters(create_options); 979 if (ret < 0) { 980 goto fail; 981 } 982 983 filename = tmp_filename; 984 drv = bdrv_qcow2; 985 bs->is_temporary = 1; 986 } 987 988 /* Open image file without format layer */ 989 if (flags & BDRV_O_RDWR) { 990 flags |= BDRV_O_ALLOW_RDWR; 991 } 992 993 extract_subqdict(options, &file_options, "file."); 994 995 ret = bdrv_file_open(&file, filename, file_options, 996 bdrv_open_flags(bs, flags)); 997 if (ret < 0) { 998 goto fail; 999 } 1000 1001 /* Find the right image format driver */ 1002 if (!drv) { 1003 ret = find_image_format(file, filename, &drv); 1004 } 1005 1006 if (!drv) { 1007 goto unlink_and_fail; 1008 } 1009 1010 /* Open the image */ 1011 ret = bdrv_open_common(bs, file, filename, options, flags, drv); 1012 if (ret < 0) { 1013 goto unlink_and_fail; 1014 } 1015 1016 if (bs->file != file) { 1017 bdrv_delete(file); 1018 file = NULL; 1019 } 1020 1021 /* If there is a backing file, use it */ 1022 if ((flags & BDRV_O_NO_BACKING) == 0) { 1023 ret = bdrv_open_backing_file(bs); 1024 if (ret < 0) { 1025 goto close_and_fail; 1026 } 1027 } 1028 1029 /* Check if any unknown options were used */ 1030 if (qdict_size(options) != 0) { 1031 const QDictEntry *entry = qdict_first(options); 1032 qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block format '%s' used by " 1033 "device '%s' doesn't support the option '%s'", 1034 drv->format_name, bs->device_name, entry->key); 1035 1036 ret = -EINVAL; 1037 goto close_and_fail; 1038 } 1039 QDECREF(options); 1040 1041 if (!bdrv_key_required(bs)) { 1042 bdrv_dev_change_media_cb(bs, true); 1043 } 1044 1045 /* throttling disk I/O limits */ 1046 if (bs->io_limits_enabled) { 1047 bdrv_io_limits_enable(bs); 1048 } 1049 1050 return 0; 1051 1052 unlink_and_fail: 1053 if (file != NULL) { 1054 bdrv_delete(file); 1055 } 1056 if (bs->is_temporary) { 1057 unlink(filename); 1058 } 1059 fail: 1060 QDECREF(bs->options); 1061 QDECREF(options); 1062 bs->options = NULL; 1063 return ret; 1064 1065 close_and_fail: 1066 bdrv_close(bs); 1067 QDECREF(options); 1068 return ret; 1069 } 1070 1071 typedef struct BlockReopenQueueEntry { 1072 bool prepared; 1073 BDRVReopenState state; 1074 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 1075 } BlockReopenQueueEntry; 1076 1077 /* 1078 * Adds a BlockDriverState to a simple queue for an atomic, transactional 1079 * reopen of multiple devices. 1080 * 1081 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 1082 * already performed, or alternatively may be NULL a new BlockReopenQueue will 1083 * be created and initialized. This newly created BlockReopenQueue should be 1084 * passed back in for subsequent calls that are intended to be of the same 1085 * atomic 'set'. 1086 * 1087 * bs is the BlockDriverState to add to the reopen queue. 1088 * 1089 * flags contains the open flags for the associated bs 1090 * 1091 * returns a pointer to bs_queue, which is either the newly allocated 1092 * bs_queue, or the existing bs_queue being used. 1093 * 1094 */ 1095 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 1096 BlockDriverState *bs, int flags) 1097 { 1098 assert(bs != NULL); 1099 1100 BlockReopenQueueEntry *bs_entry; 1101 if (bs_queue == NULL) { 1102 bs_queue = g_new0(BlockReopenQueue, 1); 1103 QSIMPLEQ_INIT(bs_queue); 1104 } 1105 1106 if (bs->file) { 1107 bdrv_reopen_queue(bs_queue, bs->file, flags); 1108 } 1109 1110 bs_entry = g_new0(BlockReopenQueueEntry, 1); 1111 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 1112 1113 bs_entry->state.bs = bs; 1114 bs_entry->state.flags = flags; 1115 1116 return bs_queue; 1117 } 1118 1119 /* 1120 * Reopen multiple BlockDriverStates atomically & transactionally. 1121 * 1122 * The queue passed in (bs_queue) must have been built up previous 1123 * via bdrv_reopen_queue(). 1124 * 1125 * Reopens all BDS specified in the queue, with the appropriate 1126 * flags. All devices are prepared for reopen, and failure of any 1127 * device will cause all device changes to be abandonded, and intermediate 1128 * data cleaned up. 1129 * 1130 * If all devices prepare successfully, then the changes are committed 1131 * to all devices. 1132 * 1133 */ 1134 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 1135 { 1136 int ret = -1; 1137 BlockReopenQueueEntry *bs_entry, *next; 1138 Error *local_err = NULL; 1139 1140 assert(bs_queue != NULL); 1141 1142 bdrv_drain_all(); 1143 1144 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1145 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 1146 error_propagate(errp, local_err); 1147 goto cleanup; 1148 } 1149 bs_entry->prepared = true; 1150 } 1151 1152 /* If we reach this point, we have success and just need to apply the 1153 * changes 1154 */ 1155 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1156 bdrv_reopen_commit(&bs_entry->state); 1157 } 1158 1159 ret = 0; 1160 1161 cleanup: 1162 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 1163 if (ret && bs_entry->prepared) { 1164 bdrv_reopen_abort(&bs_entry->state); 1165 } 1166 g_free(bs_entry); 1167 } 1168 g_free(bs_queue); 1169 return ret; 1170 } 1171 1172 1173 /* Reopen a single BlockDriverState with the specified flags. */ 1174 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1175 { 1176 int ret = -1; 1177 Error *local_err = NULL; 1178 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1179 1180 ret = bdrv_reopen_multiple(queue, &local_err); 1181 if (local_err != NULL) { 1182 error_propagate(errp, local_err); 1183 } 1184 return ret; 1185 } 1186 1187 1188 /* 1189 * Prepares a BlockDriverState for reopen. All changes are staged in the 1190 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1191 * the block driver layer .bdrv_reopen_prepare() 1192 * 1193 * bs is the BlockDriverState to reopen 1194 * flags are the new open flags 1195 * queue is the reopen queue 1196 * 1197 * Returns 0 on success, non-zero on error. On error errp will be set 1198 * as well. 1199 * 1200 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1201 * It is the responsibility of the caller to then call the abort() or 1202 * commit() for any other BDS that have been left in a prepare() state 1203 * 1204 */ 1205 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1206 Error **errp) 1207 { 1208 int ret = -1; 1209 Error *local_err = NULL; 1210 BlockDriver *drv; 1211 1212 assert(reopen_state != NULL); 1213 assert(reopen_state->bs->drv != NULL); 1214 drv = reopen_state->bs->drv; 1215 1216 /* if we are to stay read-only, do not allow permission change 1217 * to r/w */ 1218 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1219 reopen_state->flags & BDRV_O_RDWR) { 1220 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1221 reopen_state->bs->device_name); 1222 goto error; 1223 } 1224 1225 1226 ret = bdrv_flush(reopen_state->bs); 1227 if (ret) { 1228 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1229 strerror(-ret)); 1230 goto error; 1231 } 1232 1233 if (drv->bdrv_reopen_prepare) { 1234 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1235 if (ret) { 1236 if (local_err != NULL) { 1237 error_propagate(errp, local_err); 1238 } else { 1239 error_set(errp, QERR_OPEN_FILE_FAILED, 1240 reopen_state->bs->filename); 1241 } 1242 goto error; 1243 } 1244 } else { 1245 /* It is currently mandatory to have a bdrv_reopen_prepare() 1246 * handler for each supported drv. */ 1247 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1248 drv->format_name, reopen_state->bs->device_name, 1249 "reopening of file"); 1250 ret = -1; 1251 goto error; 1252 } 1253 1254 ret = 0; 1255 1256 error: 1257 return ret; 1258 } 1259 1260 /* 1261 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1262 * makes them final by swapping the staging BlockDriverState contents into 1263 * the active BlockDriverState contents. 1264 */ 1265 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1266 { 1267 BlockDriver *drv; 1268 1269 assert(reopen_state != NULL); 1270 drv = reopen_state->bs->drv; 1271 assert(drv != NULL); 1272 1273 /* If there are any driver level actions to take */ 1274 if (drv->bdrv_reopen_commit) { 1275 drv->bdrv_reopen_commit(reopen_state); 1276 } 1277 1278 /* set BDS specific flags now */ 1279 reopen_state->bs->open_flags = reopen_state->flags; 1280 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1281 BDRV_O_CACHE_WB); 1282 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1283 } 1284 1285 /* 1286 * Abort the reopen, and delete and free the staged changes in 1287 * reopen_state 1288 */ 1289 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1290 { 1291 BlockDriver *drv; 1292 1293 assert(reopen_state != NULL); 1294 drv = reopen_state->bs->drv; 1295 assert(drv != NULL); 1296 1297 if (drv->bdrv_reopen_abort) { 1298 drv->bdrv_reopen_abort(reopen_state); 1299 } 1300 } 1301 1302 1303 void bdrv_close(BlockDriverState *bs) 1304 { 1305 bdrv_flush(bs); 1306 if (bs->job) { 1307 block_job_cancel_sync(bs->job); 1308 } 1309 bdrv_drain_all(); 1310 notifier_list_notify(&bs->close_notifiers, bs); 1311 1312 if (bs->drv) { 1313 if (bs == bs_snapshots) { 1314 bs_snapshots = NULL; 1315 } 1316 if (bs->backing_hd) { 1317 bdrv_delete(bs->backing_hd); 1318 bs->backing_hd = NULL; 1319 } 1320 bs->drv->bdrv_close(bs); 1321 g_free(bs->opaque); 1322 #ifdef _WIN32 1323 if (bs->is_temporary) { 1324 unlink(bs->filename); 1325 } 1326 #endif 1327 bs->opaque = NULL; 1328 bs->drv = NULL; 1329 bs->copy_on_read = 0; 1330 bs->backing_file[0] = '\0'; 1331 bs->backing_format[0] = '\0'; 1332 bs->total_sectors = 0; 1333 bs->encrypted = 0; 1334 bs->valid_key = 0; 1335 bs->sg = 0; 1336 bs->growable = 0; 1337 QDECREF(bs->options); 1338 bs->options = NULL; 1339 1340 if (bs->file != NULL) { 1341 bdrv_delete(bs->file); 1342 bs->file = NULL; 1343 } 1344 } 1345 1346 bdrv_dev_change_media_cb(bs, false); 1347 1348 /*throttling disk I/O limits*/ 1349 if (bs->io_limits_enabled) { 1350 bdrv_io_limits_disable(bs); 1351 } 1352 } 1353 1354 void bdrv_close_all(void) 1355 { 1356 BlockDriverState *bs; 1357 1358 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1359 bdrv_close(bs); 1360 } 1361 } 1362 1363 /* 1364 * Wait for pending requests to complete across all BlockDriverStates 1365 * 1366 * This function does not flush data to disk, use bdrv_flush_all() for that 1367 * after calling this function. 1368 * 1369 * Note that completion of an asynchronous I/O operation can trigger any 1370 * number of other I/O operations on other devices---for example a coroutine 1371 * can be arbitrarily complex and a constant flow of I/O can come until the 1372 * coroutine is complete. Because of this, it is not possible to have a 1373 * function to drain a single device's I/O queue. 1374 */ 1375 void bdrv_drain_all(void) 1376 { 1377 BlockDriverState *bs; 1378 bool busy; 1379 1380 do { 1381 busy = qemu_aio_wait(); 1382 1383 /* FIXME: We do not have timer support here, so this is effectively 1384 * a busy wait. 1385 */ 1386 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1387 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1388 qemu_co_queue_restart_all(&bs->throttled_reqs); 1389 busy = true; 1390 } 1391 } 1392 } while (busy); 1393 1394 /* If requests are still pending there is a bug somewhere */ 1395 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1396 assert(QLIST_EMPTY(&bs->tracked_requests)); 1397 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1398 } 1399 } 1400 1401 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1402 Also, NULL terminate the device_name to prevent double remove */ 1403 void bdrv_make_anon(BlockDriverState *bs) 1404 { 1405 if (bs->device_name[0] != '\0') { 1406 QTAILQ_REMOVE(&bdrv_states, bs, list); 1407 } 1408 bs->device_name[0] = '\0'; 1409 } 1410 1411 static void bdrv_rebind(BlockDriverState *bs) 1412 { 1413 if (bs->drv && bs->drv->bdrv_rebind) { 1414 bs->drv->bdrv_rebind(bs); 1415 } 1416 } 1417 1418 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1419 BlockDriverState *bs_src) 1420 { 1421 /* move some fields that need to stay attached to the device */ 1422 bs_dest->open_flags = bs_src->open_flags; 1423 1424 /* dev info */ 1425 bs_dest->dev_ops = bs_src->dev_ops; 1426 bs_dest->dev_opaque = bs_src->dev_opaque; 1427 bs_dest->dev = bs_src->dev; 1428 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1429 bs_dest->copy_on_read = bs_src->copy_on_read; 1430 1431 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1432 1433 /* i/o timing parameters */ 1434 bs_dest->slice_start = bs_src->slice_start; 1435 bs_dest->slice_end = bs_src->slice_end; 1436 bs_dest->slice_submitted = bs_src->slice_submitted; 1437 bs_dest->io_limits = bs_src->io_limits; 1438 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1439 bs_dest->block_timer = bs_src->block_timer; 1440 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1441 1442 /* r/w error */ 1443 bs_dest->on_read_error = bs_src->on_read_error; 1444 bs_dest->on_write_error = bs_src->on_write_error; 1445 1446 /* i/o status */ 1447 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1448 bs_dest->iostatus = bs_src->iostatus; 1449 1450 /* dirty bitmap */ 1451 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1452 1453 /* job */ 1454 bs_dest->in_use = bs_src->in_use; 1455 bs_dest->job = bs_src->job; 1456 1457 /* keep the same entry in bdrv_states */ 1458 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1459 bs_src->device_name); 1460 bs_dest->list = bs_src->list; 1461 } 1462 1463 /* 1464 * Swap bs contents for two image chains while they are live, 1465 * while keeping required fields on the BlockDriverState that is 1466 * actually attached to a device. 1467 * 1468 * This will modify the BlockDriverState fields, and swap contents 1469 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1470 * 1471 * bs_new is required to be anonymous. 1472 * 1473 * This function does not create any image files. 1474 */ 1475 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1476 { 1477 BlockDriverState tmp; 1478 1479 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1480 assert(bs_new->device_name[0] == '\0'); 1481 assert(bs_new->dirty_bitmap == NULL); 1482 assert(bs_new->job == NULL); 1483 assert(bs_new->dev == NULL); 1484 assert(bs_new->in_use == 0); 1485 assert(bs_new->io_limits_enabled == false); 1486 assert(bs_new->block_timer == NULL); 1487 1488 tmp = *bs_new; 1489 *bs_new = *bs_old; 1490 *bs_old = tmp; 1491 1492 /* there are some fields that should not be swapped, move them back */ 1493 bdrv_move_feature_fields(&tmp, bs_old); 1494 bdrv_move_feature_fields(bs_old, bs_new); 1495 bdrv_move_feature_fields(bs_new, &tmp); 1496 1497 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1498 assert(bs_new->device_name[0] == '\0'); 1499 1500 /* Check a few fields that should remain attached to the device */ 1501 assert(bs_new->dev == NULL); 1502 assert(bs_new->job == NULL); 1503 assert(bs_new->in_use == 0); 1504 assert(bs_new->io_limits_enabled == false); 1505 assert(bs_new->block_timer == NULL); 1506 1507 bdrv_rebind(bs_new); 1508 bdrv_rebind(bs_old); 1509 } 1510 1511 /* 1512 * Add new bs contents at the top of an image chain while the chain is 1513 * live, while keeping required fields on the top layer. 1514 * 1515 * This will modify the BlockDriverState fields, and swap contents 1516 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1517 * 1518 * bs_new is required to be anonymous. 1519 * 1520 * This function does not create any image files. 1521 */ 1522 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1523 { 1524 bdrv_swap(bs_new, bs_top); 1525 1526 /* The contents of 'tmp' will become bs_top, as we are 1527 * swapping bs_new and bs_top contents. */ 1528 bs_top->backing_hd = bs_new; 1529 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1530 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1531 bs_new->filename); 1532 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1533 bs_new->drv ? bs_new->drv->format_name : ""); 1534 } 1535 1536 void bdrv_delete(BlockDriverState *bs) 1537 { 1538 assert(!bs->dev); 1539 assert(!bs->job); 1540 assert(!bs->in_use); 1541 1542 /* remove from list, if necessary */ 1543 bdrv_make_anon(bs); 1544 1545 bdrv_close(bs); 1546 1547 assert(bs != bs_snapshots); 1548 g_free(bs); 1549 } 1550 1551 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1552 /* TODO change to DeviceState *dev when all users are qdevified */ 1553 { 1554 if (bs->dev) { 1555 return -EBUSY; 1556 } 1557 bs->dev = dev; 1558 bdrv_iostatus_reset(bs); 1559 return 0; 1560 } 1561 1562 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1563 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1564 { 1565 if (bdrv_attach_dev(bs, dev) < 0) { 1566 abort(); 1567 } 1568 } 1569 1570 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1571 /* TODO change to DeviceState *dev when all users are qdevified */ 1572 { 1573 assert(bs->dev == dev); 1574 bs->dev = NULL; 1575 bs->dev_ops = NULL; 1576 bs->dev_opaque = NULL; 1577 bs->buffer_alignment = 512; 1578 } 1579 1580 /* TODO change to return DeviceState * when all users are qdevified */ 1581 void *bdrv_get_attached_dev(BlockDriverState *bs) 1582 { 1583 return bs->dev; 1584 } 1585 1586 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1587 void *opaque) 1588 { 1589 bs->dev_ops = ops; 1590 bs->dev_opaque = opaque; 1591 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1592 bs_snapshots = NULL; 1593 } 1594 } 1595 1596 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1597 enum MonitorEvent ev, 1598 BlockErrorAction action, bool is_read) 1599 { 1600 QObject *data; 1601 const char *action_str; 1602 1603 switch (action) { 1604 case BDRV_ACTION_REPORT: 1605 action_str = "report"; 1606 break; 1607 case BDRV_ACTION_IGNORE: 1608 action_str = "ignore"; 1609 break; 1610 case BDRV_ACTION_STOP: 1611 action_str = "stop"; 1612 break; 1613 default: 1614 abort(); 1615 } 1616 1617 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1618 bdrv->device_name, 1619 action_str, 1620 is_read ? "read" : "write"); 1621 monitor_protocol_event(ev, data); 1622 1623 qobject_decref(data); 1624 } 1625 1626 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1627 { 1628 QObject *data; 1629 1630 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1631 bdrv_get_device_name(bs), ejected); 1632 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1633 1634 qobject_decref(data); 1635 } 1636 1637 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1638 { 1639 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1640 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1641 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1642 if (tray_was_closed) { 1643 /* tray open */ 1644 bdrv_emit_qmp_eject_event(bs, true); 1645 } 1646 if (load) { 1647 /* tray close */ 1648 bdrv_emit_qmp_eject_event(bs, false); 1649 } 1650 } 1651 } 1652 1653 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1654 { 1655 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1656 } 1657 1658 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1659 { 1660 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1661 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1662 } 1663 } 1664 1665 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1666 { 1667 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1668 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1669 } 1670 return false; 1671 } 1672 1673 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1674 { 1675 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1676 bs->dev_ops->resize_cb(bs->dev_opaque); 1677 } 1678 } 1679 1680 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1681 { 1682 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1683 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1684 } 1685 return false; 1686 } 1687 1688 /* 1689 * Run consistency checks on an image 1690 * 1691 * Returns 0 if the check could be completed (it doesn't mean that the image is 1692 * free of errors) or -errno when an internal error occurred. The results of the 1693 * check are stored in res. 1694 */ 1695 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1696 { 1697 if (bs->drv->bdrv_check == NULL) { 1698 return -ENOTSUP; 1699 } 1700 1701 memset(res, 0, sizeof(*res)); 1702 return bs->drv->bdrv_check(bs, res, fix); 1703 } 1704 1705 #define COMMIT_BUF_SECTORS 2048 1706 1707 /* commit COW file into the raw image */ 1708 int bdrv_commit(BlockDriverState *bs) 1709 { 1710 BlockDriver *drv = bs->drv; 1711 int64_t sector, total_sectors; 1712 int n, ro, open_flags; 1713 int ret = 0; 1714 uint8_t *buf; 1715 char filename[PATH_MAX]; 1716 1717 if (!drv) 1718 return -ENOMEDIUM; 1719 1720 if (!bs->backing_hd) { 1721 return -ENOTSUP; 1722 } 1723 1724 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1725 return -EBUSY; 1726 } 1727 1728 ro = bs->backing_hd->read_only; 1729 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1730 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1731 open_flags = bs->backing_hd->open_flags; 1732 1733 if (ro) { 1734 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1735 return -EACCES; 1736 } 1737 } 1738 1739 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1740 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1741 1742 for (sector = 0; sector < total_sectors; sector += n) { 1743 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1744 1745 if (bdrv_read(bs, sector, buf, n) != 0) { 1746 ret = -EIO; 1747 goto ro_cleanup; 1748 } 1749 1750 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1751 ret = -EIO; 1752 goto ro_cleanup; 1753 } 1754 } 1755 } 1756 1757 if (drv->bdrv_make_empty) { 1758 ret = drv->bdrv_make_empty(bs); 1759 bdrv_flush(bs); 1760 } 1761 1762 /* 1763 * Make sure all data we wrote to the backing device is actually 1764 * stable on disk. 1765 */ 1766 if (bs->backing_hd) 1767 bdrv_flush(bs->backing_hd); 1768 1769 ro_cleanup: 1770 g_free(buf); 1771 1772 if (ro) { 1773 /* ignoring error return here */ 1774 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1775 } 1776 1777 return ret; 1778 } 1779 1780 int bdrv_commit_all(void) 1781 { 1782 BlockDriverState *bs; 1783 1784 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1785 if (bs->drv && bs->backing_hd) { 1786 int ret = bdrv_commit(bs); 1787 if (ret < 0) { 1788 return ret; 1789 } 1790 } 1791 } 1792 return 0; 1793 } 1794 1795 struct BdrvTrackedRequest { 1796 BlockDriverState *bs; 1797 int64_t sector_num; 1798 int nb_sectors; 1799 bool is_write; 1800 QLIST_ENTRY(BdrvTrackedRequest) list; 1801 Coroutine *co; /* owner, used for deadlock detection */ 1802 CoQueue wait_queue; /* coroutines blocked on this request */ 1803 }; 1804 1805 /** 1806 * Remove an active request from the tracked requests list 1807 * 1808 * This function should be called when a tracked request is completing. 1809 */ 1810 static void tracked_request_end(BdrvTrackedRequest *req) 1811 { 1812 QLIST_REMOVE(req, list); 1813 qemu_co_queue_restart_all(&req->wait_queue); 1814 } 1815 1816 /** 1817 * Add an active request to the tracked requests list 1818 */ 1819 static void tracked_request_begin(BdrvTrackedRequest *req, 1820 BlockDriverState *bs, 1821 int64_t sector_num, 1822 int nb_sectors, bool is_write) 1823 { 1824 *req = (BdrvTrackedRequest){ 1825 .bs = bs, 1826 .sector_num = sector_num, 1827 .nb_sectors = nb_sectors, 1828 .is_write = is_write, 1829 .co = qemu_coroutine_self(), 1830 }; 1831 1832 qemu_co_queue_init(&req->wait_queue); 1833 1834 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1835 } 1836 1837 /** 1838 * Round a region to cluster boundaries 1839 */ 1840 void bdrv_round_to_clusters(BlockDriverState *bs, 1841 int64_t sector_num, int nb_sectors, 1842 int64_t *cluster_sector_num, 1843 int *cluster_nb_sectors) 1844 { 1845 BlockDriverInfo bdi; 1846 1847 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1848 *cluster_sector_num = sector_num; 1849 *cluster_nb_sectors = nb_sectors; 1850 } else { 1851 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1852 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1853 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1854 nb_sectors, c); 1855 } 1856 } 1857 1858 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1859 int64_t sector_num, int nb_sectors) { 1860 /* aaaa bbbb */ 1861 if (sector_num >= req->sector_num + req->nb_sectors) { 1862 return false; 1863 } 1864 /* bbbb aaaa */ 1865 if (req->sector_num >= sector_num + nb_sectors) { 1866 return false; 1867 } 1868 return true; 1869 } 1870 1871 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1872 int64_t sector_num, int nb_sectors) 1873 { 1874 BdrvTrackedRequest *req; 1875 int64_t cluster_sector_num; 1876 int cluster_nb_sectors; 1877 bool retry; 1878 1879 /* If we touch the same cluster it counts as an overlap. This guarantees 1880 * that allocating writes will be serialized and not race with each other 1881 * for the same cluster. For example, in copy-on-read it ensures that the 1882 * CoR read and write operations are atomic and guest writes cannot 1883 * interleave between them. 1884 */ 1885 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 1886 &cluster_sector_num, &cluster_nb_sectors); 1887 1888 do { 1889 retry = false; 1890 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1891 if (tracked_request_overlaps(req, cluster_sector_num, 1892 cluster_nb_sectors)) { 1893 /* Hitting this means there was a reentrant request, for 1894 * example, a block driver issuing nested requests. This must 1895 * never happen since it means deadlock. 1896 */ 1897 assert(qemu_coroutine_self() != req->co); 1898 1899 qemu_co_queue_wait(&req->wait_queue); 1900 retry = true; 1901 break; 1902 } 1903 } 1904 } while (retry); 1905 } 1906 1907 /* 1908 * Return values: 1909 * 0 - success 1910 * -EINVAL - backing format specified, but no file 1911 * -ENOSPC - can't update the backing file because no space is left in the 1912 * image file header 1913 * -ENOTSUP - format driver doesn't support changing the backing file 1914 */ 1915 int bdrv_change_backing_file(BlockDriverState *bs, 1916 const char *backing_file, const char *backing_fmt) 1917 { 1918 BlockDriver *drv = bs->drv; 1919 int ret; 1920 1921 /* Backing file format doesn't make sense without a backing file */ 1922 if (backing_fmt && !backing_file) { 1923 return -EINVAL; 1924 } 1925 1926 if (drv->bdrv_change_backing_file != NULL) { 1927 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1928 } else { 1929 ret = -ENOTSUP; 1930 } 1931 1932 if (ret == 0) { 1933 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1934 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1935 } 1936 return ret; 1937 } 1938 1939 /* 1940 * Finds the image layer in the chain that has 'bs' as its backing file. 1941 * 1942 * active is the current topmost image. 1943 * 1944 * Returns NULL if bs is not found in active's image chain, 1945 * or if active == bs. 1946 */ 1947 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1948 BlockDriverState *bs) 1949 { 1950 BlockDriverState *overlay = NULL; 1951 BlockDriverState *intermediate; 1952 1953 assert(active != NULL); 1954 assert(bs != NULL); 1955 1956 /* if bs is the same as active, then by definition it has no overlay 1957 */ 1958 if (active == bs) { 1959 return NULL; 1960 } 1961 1962 intermediate = active; 1963 while (intermediate->backing_hd) { 1964 if (intermediate->backing_hd == bs) { 1965 overlay = intermediate; 1966 break; 1967 } 1968 intermediate = intermediate->backing_hd; 1969 } 1970 1971 return overlay; 1972 } 1973 1974 typedef struct BlkIntermediateStates { 1975 BlockDriverState *bs; 1976 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 1977 } BlkIntermediateStates; 1978 1979 1980 /* 1981 * Drops images above 'base' up to and including 'top', and sets the image 1982 * above 'top' to have base as its backing file. 1983 * 1984 * Requires that the overlay to 'top' is opened r/w, so that the backing file 1985 * information in 'bs' can be properly updated. 1986 * 1987 * E.g., this will convert the following chain: 1988 * bottom <- base <- intermediate <- top <- active 1989 * 1990 * to 1991 * 1992 * bottom <- base <- active 1993 * 1994 * It is allowed for bottom==base, in which case it converts: 1995 * 1996 * base <- intermediate <- top <- active 1997 * 1998 * to 1999 * 2000 * base <- active 2001 * 2002 * Error conditions: 2003 * if active == top, that is considered an error 2004 * 2005 */ 2006 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 2007 BlockDriverState *base) 2008 { 2009 BlockDriverState *intermediate; 2010 BlockDriverState *base_bs = NULL; 2011 BlockDriverState *new_top_bs = NULL; 2012 BlkIntermediateStates *intermediate_state, *next; 2013 int ret = -EIO; 2014 2015 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 2016 QSIMPLEQ_INIT(&states_to_delete); 2017 2018 if (!top->drv || !base->drv) { 2019 goto exit; 2020 } 2021 2022 new_top_bs = bdrv_find_overlay(active, top); 2023 2024 if (new_top_bs == NULL) { 2025 /* we could not find the image above 'top', this is an error */ 2026 goto exit; 2027 } 2028 2029 /* special case of new_top_bs->backing_hd already pointing to base - nothing 2030 * to do, no intermediate images */ 2031 if (new_top_bs->backing_hd == base) { 2032 ret = 0; 2033 goto exit; 2034 } 2035 2036 intermediate = top; 2037 2038 /* now we will go down through the list, and add each BDS we find 2039 * into our deletion queue, until we hit the 'base' 2040 */ 2041 while (intermediate) { 2042 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 2043 intermediate_state->bs = intermediate; 2044 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 2045 2046 if (intermediate->backing_hd == base) { 2047 base_bs = intermediate->backing_hd; 2048 break; 2049 } 2050 intermediate = intermediate->backing_hd; 2051 } 2052 if (base_bs == NULL) { 2053 /* something went wrong, we did not end at the base. safely 2054 * unravel everything, and exit with error */ 2055 goto exit; 2056 } 2057 2058 /* success - we can delete the intermediate states, and link top->base */ 2059 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 2060 base_bs->drv ? base_bs->drv->format_name : ""); 2061 if (ret) { 2062 goto exit; 2063 } 2064 new_top_bs->backing_hd = base_bs; 2065 2066 2067 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 2068 /* so that bdrv_close() does not recursively close the chain */ 2069 intermediate_state->bs->backing_hd = NULL; 2070 bdrv_delete(intermediate_state->bs); 2071 } 2072 ret = 0; 2073 2074 exit: 2075 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 2076 g_free(intermediate_state); 2077 } 2078 return ret; 2079 } 2080 2081 2082 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 2083 size_t size) 2084 { 2085 int64_t len; 2086 2087 if (!bdrv_is_inserted(bs)) 2088 return -ENOMEDIUM; 2089 2090 if (bs->growable) 2091 return 0; 2092 2093 len = bdrv_getlength(bs); 2094 2095 if (offset < 0) 2096 return -EIO; 2097 2098 if ((offset > len) || (len - offset < size)) 2099 return -EIO; 2100 2101 return 0; 2102 } 2103 2104 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 2105 int nb_sectors) 2106 { 2107 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 2108 nb_sectors * BDRV_SECTOR_SIZE); 2109 } 2110 2111 typedef struct RwCo { 2112 BlockDriverState *bs; 2113 int64_t sector_num; 2114 int nb_sectors; 2115 QEMUIOVector *qiov; 2116 bool is_write; 2117 int ret; 2118 } RwCo; 2119 2120 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 2121 { 2122 RwCo *rwco = opaque; 2123 2124 if (!rwco->is_write) { 2125 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 2126 rwco->nb_sectors, rwco->qiov, 0); 2127 } else { 2128 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 2129 rwco->nb_sectors, rwco->qiov, 0); 2130 } 2131 } 2132 2133 /* 2134 * Process a synchronous request using coroutines 2135 */ 2136 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 2137 int nb_sectors, bool is_write) 2138 { 2139 QEMUIOVector qiov; 2140 struct iovec iov = { 2141 .iov_base = (void *)buf, 2142 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 2143 }; 2144 Coroutine *co; 2145 RwCo rwco = { 2146 .bs = bs, 2147 .sector_num = sector_num, 2148 .nb_sectors = nb_sectors, 2149 .qiov = &qiov, 2150 .is_write = is_write, 2151 .ret = NOT_DONE, 2152 }; 2153 2154 qemu_iovec_init_external(&qiov, &iov, 1); 2155 2156 /** 2157 * In sync call context, when the vcpu is blocked, this throttling timer 2158 * will not fire; so the I/O throttling function has to be disabled here 2159 * if it has been enabled. 2160 */ 2161 if (bs->io_limits_enabled) { 2162 fprintf(stderr, "Disabling I/O throttling on '%s' due " 2163 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 2164 bdrv_io_limits_disable(bs); 2165 } 2166 2167 if (qemu_in_coroutine()) { 2168 /* Fast-path if already in coroutine context */ 2169 bdrv_rw_co_entry(&rwco); 2170 } else { 2171 co = qemu_coroutine_create(bdrv_rw_co_entry); 2172 qemu_coroutine_enter(co, &rwco); 2173 while (rwco.ret == NOT_DONE) { 2174 qemu_aio_wait(); 2175 } 2176 } 2177 return rwco.ret; 2178 } 2179 2180 /* return < 0 if error. See bdrv_write() for the return codes */ 2181 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2182 uint8_t *buf, int nb_sectors) 2183 { 2184 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 2185 } 2186 2187 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2188 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2189 uint8_t *buf, int nb_sectors) 2190 { 2191 bool enabled; 2192 int ret; 2193 2194 enabled = bs->io_limits_enabled; 2195 bs->io_limits_enabled = false; 2196 ret = bdrv_read(bs, 0, buf, 1); 2197 bs->io_limits_enabled = enabled; 2198 return ret; 2199 } 2200 2201 /* Return < 0 if error. Important errors are: 2202 -EIO generic I/O error (may happen for all errors) 2203 -ENOMEDIUM No media inserted. 2204 -EINVAL Invalid sector number or nb_sectors 2205 -EACCES Trying to write a read-only device 2206 */ 2207 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2208 const uint8_t *buf, int nb_sectors) 2209 { 2210 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2211 } 2212 2213 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2214 void *buf, int count1) 2215 { 2216 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2217 int len, nb_sectors, count; 2218 int64_t sector_num; 2219 int ret; 2220 2221 count = count1; 2222 /* first read to align to sector start */ 2223 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2224 if (len > count) 2225 len = count; 2226 sector_num = offset >> BDRV_SECTOR_BITS; 2227 if (len > 0) { 2228 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2229 return ret; 2230 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2231 count -= len; 2232 if (count == 0) 2233 return count1; 2234 sector_num++; 2235 buf += len; 2236 } 2237 2238 /* read the sectors "in place" */ 2239 nb_sectors = count >> BDRV_SECTOR_BITS; 2240 if (nb_sectors > 0) { 2241 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2242 return ret; 2243 sector_num += nb_sectors; 2244 len = nb_sectors << BDRV_SECTOR_BITS; 2245 buf += len; 2246 count -= len; 2247 } 2248 2249 /* add data from the last sector */ 2250 if (count > 0) { 2251 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2252 return ret; 2253 memcpy(buf, tmp_buf, count); 2254 } 2255 return count1; 2256 } 2257 2258 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2259 const void *buf, int count1) 2260 { 2261 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2262 int len, nb_sectors, count; 2263 int64_t sector_num; 2264 int ret; 2265 2266 count = count1; 2267 /* first write to align to sector start */ 2268 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2269 if (len > count) 2270 len = count; 2271 sector_num = offset >> BDRV_SECTOR_BITS; 2272 if (len > 0) { 2273 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2274 return ret; 2275 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 2276 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2277 return ret; 2278 count -= len; 2279 if (count == 0) 2280 return count1; 2281 sector_num++; 2282 buf += len; 2283 } 2284 2285 /* write the sectors "in place" */ 2286 nb_sectors = count >> BDRV_SECTOR_BITS; 2287 if (nb_sectors > 0) { 2288 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 2289 return ret; 2290 sector_num += nb_sectors; 2291 len = nb_sectors << BDRV_SECTOR_BITS; 2292 buf += len; 2293 count -= len; 2294 } 2295 2296 /* add data from the last sector */ 2297 if (count > 0) { 2298 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2299 return ret; 2300 memcpy(tmp_buf, buf, count); 2301 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2302 return ret; 2303 } 2304 return count1; 2305 } 2306 2307 /* 2308 * Writes to the file and ensures that no writes are reordered across this 2309 * request (acts as a barrier) 2310 * 2311 * Returns 0 on success, -errno in error cases. 2312 */ 2313 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2314 const void *buf, int count) 2315 { 2316 int ret; 2317 2318 ret = bdrv_pwrite(bs, offset, buf, count); 2319 if (ret < 0) { 2320 return ret; 2321 } 2322 2323 /* No flush needed for cache modes that already do it */ 2324 if (bs->enable_write_cache) { 2325 bdrv_flush(bs); 2326 } 2327 2328 return 0; 2329 } 2330 2331 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2332 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2333 { 2334 /* Perform I/O through a temporary buffer so that users who scribble over 2335 * their read buffer while the operation is in progress do not end up 2336 * modifying the image file. This is critical for zero-copy guest I/O 2337 * where anything might happen inside guest memory. 2338 */ 2339 void *bounce_buffer; 2340 2341 BlockDriver *drv = bs->drv; 2342 struct iovec iov; 2343 QEMUIOVector bounce_qiov; 2344 int64_t cluster_sector_num; 2345 int cluster_nb_sectors; 2346 size_t skip_bytes; 2347 int ret; 2348 2349 /* Cover entire cluster so no additional backing file I/O is required when 2350 * allocating cluster in the image file. 2351 */ 2352 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 2353 &cluster_sector_num, &cluster_nb_sectors); 2354 2355 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2356 cluster_sector_num, cluster_nb_sectors); 2357 2358 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2359 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2360 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2361 2362 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2363 &bounce_qiov); 2364 if (ret < 0) { 2365 goto err; 2366 } 2367 2368 if (drv->bdrv_co_write_zeroes && 2369 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2370 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2371 cluster_nb_sectors); 2372 } else { 2373 /* This does not change the data on the disk, it is not necessary 2374 * to flush even in cache=writethrough mode. 2375 */ 2376 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2377 &bounce_qiov); 2378 } 2379 2380 if (ret < 0) { 2381 /* It might be okay to ignore write errors for guest requests. If this 2382 * is a deliberate copy-on-read then we don't want to ignore the error. 2383 * Simply report it in all cases. 2384 */ 2385 goto err; 2386 } 2387 2388 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2389 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2390 nb_sectors * BDRV_SECTOR_SIZE); 2391 2392 err: 2393 qemu_vfree(bounce_buffer); 2394 return ret; 2395 } 2396 2397 /* 2398 * Handle a read request in coroutine context 2399 */ 2400 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2401 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2402 BdrvRequestFlags flags) 2403 { 2404 BlockDriver *drv = bs->drv; 2405 BdrvTrackedRequest req; 2406 int ret; 2407 2408 if (!drv) { 2409 return -ENOMEDIUM; 2410 } 2411 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2412 return -EIO; 2413 } 2414 2415 /* throttling disk read I/O */ 2416 if (bs->io_limits_enabled) { 2417 bdrv_io_limits_intercept(bs, false, nb_sectors); 2418 } 2419 2420 if (bs->copy_on_read) { 2421 flags |= BDRV_REQ_COPY_ON_READ; 2422 } 2423 if (flags & BDRV_REQ_COPY_ON_READ) { 2424 bs->copy_on_read_in_flight++; 2425 } 2426 2427 if (bs->copy_on_read_in_flight) { 2428 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2429 } 2430 2431 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2432 2433 if (flags & BDRV_REQ_COPY_ON_READ) { 2434 int pnum; 2435 2436 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2437 if (ret < 0) { 2438 goto out; 2439 } 2440 2441 if (!ret || pnum != nb_sectors) { 2442 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2443 goto out; 2444 } 2445 } 2446 2447 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2448 2449 out: 2450 tracked_request_end(&req); 2451 2452 if (flags & BDRV_REQ_COPY_ON_READ) { 2453 bs->copy_on_read_in_flight--; 2454 } 2455 2456 return ret; 2457 } 2458 2459 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2460 int nb_sectors, QEMUIOVector *qiov) 2461 { 2462 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2463 2464 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2465 } 2466 2467 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2468 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2469 { 2470 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2471 2472 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2473 BDRV_REQ_COPY_ON_READ); 2474 } 2475 2476 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2477 int64_t sector_num, int nb_sectors) 2478 { 2479 BlockDriver *drv = bs->drv; 2480 QEMUIOVector qiov; 2481 struct iovec iov; 2482 int ret; 2483 2484 /* TODO Emulate only part of misaligned requests instead of letting block 2485 * drivers return -ENOTSUP and emulate everything */ 2486 2487 /* First try the efficient write zeroes operation */ 2488 if (drv->bdrv_co_write_zeroes) { 2489 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2490 if (ret != -ENOTSUP) { 2491 return ret; 2492 } 2493 } 2494 2495 /* Fall back to bounce buffer if write zeroes is unsupported */ 2496 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2497 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2498 memset(iov.iov_base, 0, iov.iov_len); 2499 qemu_iovec_init_external(&qiov, &iov, 1); 2500 2501 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2502 2503 qemu_vfree(iov.iov_base); 2504 return ret; 2505 } 2506 2507 /* 2508 * Handle a write request in coroutine context 2509 */ 2510 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2511 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2512 BdrvRequestFlags flags) 2513 { 2514 BlockDriver *drv = bs->drv; 2515 BdrvTrackedRequest req; 2516 int ret; 2517 2518 if (!bs->drv) { 2519 return -ENOMEDIUM; 2520 } 2521 if (bs->read_only) { 2522 return -EACCES; 2523 } 2524 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2525 return -EIO; 2526 } 2527 2528 /* throttling disk write I/O */ 2529 if (bs->io_limits_enabled) { 2530 bdrv_io_limits_intercept(bs, true, nb_sectors); 2531 } 2532 2533 if (bs->copy_on_read_in_flight) { 2534 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2535 } 2536 2537 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2538 2539 if (flags & BDRV_REQ_ZERO_WRITE) { 2540 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2541 } else { 2542 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2543 } 2544 2545 if (ret == 0 && !bs->enable_write_cache) { 2546 ret = bdrv_co_flush(bs); 2547 } 2548 2549 if (bs->dirty_bitmap) { 2550 bdrv_set_dirty(bs, sector_num, nb_sectors); 2551 } 2552 2553 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2554 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2555 } 2556 2557 tracked_request_end(&req); 2558 2559 return ret; 2560 } 2561 2562 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2563 int nb_sectors, QEMUIOVector *qiov) 2564 { 2565 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2566 2567 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2568 } 2569 2570 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2571 int64_t sector_num, int nb_sectors) 2572 { 2573 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2574 2575 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2576 BDRV_REQ_ZERO_WRITE); 2577 } 2578 2579 /** 2580 * Truncate file to 'offset' bytes (needed only for file protocols) 2581 */ 2582 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2583 { 2584 BlockDriver *drv = bs->drv; 2585 int ret; 2586 if (!drv) 2587 return -ENOMEDIUM; 2588 if (!drv->bdrv_truncate) 2589 return -ENOTSUP; 2590 if (bs->read_only) 2591 return -EACCES; 2592 if (bdrv_in_use(bs)) 2593 return -EBUSY; 2594 ret = drv->bdrv_truncate(bs, offset); 2595 if (ret == 0) { 2596 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2597 bdrv_dev_resize_cb(bs); 2598 } 2599 return ret; 2600 } 2601 2602 /** 2603 * Length of a allocated file in bytes. Sparse files are counted by actual 2604 * allocated space. Return < 0 if error or unknown. 2605 */ 2606 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2607 { 2608 BlockDriver *drv = bs->drv; 2609 if (!drv) { 2610 return -ENOMEDIUM; 2611 } 2612 if (drv->bdrv_get_allocated_file_size) { 2613 return drv->bdrv_get_allocated_file_size(bs); 2614 } 2615 if (bs->file) { 2616 return bdrv_get_allocated_file_size(bs->file); 2617 } 2618 return -ENOTSUP; 2619 } 2620 2621 /** 2622 * Length of a file in bytes. Return < 0 if error or unknown. 2623 */ 2624 int64_t bdrv_getlength(BlockDriverState *bs) 2625 { 2626 BlockDriver *drv = bs->drv; 2627 if (!drv) 2628 return -ENOMEDIUM; 2629 2630 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2631 if (drv->bdrv_getlength) { 2632 return drv->bdrv_getlength(bs); 2633 } 2634 } 2635 return bs->total_sectors * BDRV_SECTOR_SIZE; 2636 } 2637 2638 /* return 0 as number of sectors if no device present or error */ 2639 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2640 { 2641 int64_t length; 2642 length = bdrv_getlength(bs); 2643 if (length < 0) 2644 length = 0; 2645 else 2646 length = length >> BDRV_SECTOR_BITS; 2647 *nb_sectors_ptr = length; 2648 } 2649 2650 /* throttling disk io limits */ 2651 void bdrv_set_io_limits(BlockDriverState *bs, 2652 BlockIOLimit *io_limits) 2653 { 2654 bs->io_limits = *io_limits; 2655 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2656 } 2657 2658 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2659 BlockdevOnError on_write_error) 2660 { 2661 bs->on_read_error = on_read_error; 2662 bs->on_write_error = on_write_error; 2663 } 2664 2665 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2666 { 2667 return is_read ? bs->on_read_error : bs->on_write_error; 2668 } 2669 2670 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2671 { 2672 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2673 2674 switch (on_err) { 2675 case BLOCKDEV_ON_ERROR_ENOSPC: 2676 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2677 case BLOCKDEV_ON_ERROR_STOP: 2678 return BDRV_ACTION_STOP; 2679 case BLOCKDEV_ON_ERROR_REPORT: 2680 return BDRV_ACTION_REPORT; 2681 case BLOCKDEV_ON_ERROR_IGNORE: 2682 return BDRV_ACTION_IGNORE; 2683 default: 2684 abort(); 2685 } 2686 } 2687 2688 /* This is done by device models because, while the block layer knows 2689 * about the error, it does not know whether an operation comes from 2690 * the device or the block layer (from a job, for example). 2691 */ 2692 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2693 bool is_read, int error) 2694 { 2695 assert(error >= 0); 2696 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2697 if (action == BDRV_ACTION_STOP) { 2698 vm_stop(RUN_STATE_IO_ERROR); 2699 bdrv_iostatus_set_err(bs, error); 2700 } 2701 } 2702 2703 int bdrv_is_read_only(BlockDriverState *bs) 2704 { 2705 return bs->read_only; 2706 } 2707 2708 int bdrv_is_sg(BlockDriverState *bs) 2709 { 2710 return bs->sg; 2711 } 2712 2713 int bdrv_enable_write_cache(BlockDriverState *bs) 2714 { 2715 return bs->enable_write_cache; 2716 } 2717 2718 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2719 { 2720 bs->enable_write_cache = wce; 2721 2722 /* so a reopen() will preserve wce */ 2723 if (wce) { 2724 bs->open_flags |= BDRV_O_CACHE_WB; 2725 } else { 2726 bs->open_flags &= ~BDRV_O_CACHE_WB; 2727 } 2728 } 2729 2730 int bdrv_is_encrypted(BlockDriverState *bs) 2731 { 2732 if (bs->backing_hd && bs->backing_hd->encrypted) 2733 return 1; 2734 return bs->encrypted; 2735 } 2736 2737 int bdrv_key_required(BlockDriverState *bs) 2738 { 2739 BlockDriverState *backing_hd = bs->backing_hd; 2740 2741 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2742 return 1; 2743 return (bs->encrypted && !bs->valid_key); 2744 } 2745 2746 int bdrv_set_key(BlockDriverState *bs, const char *key) 2747 { 2748 int ret; 2749 if (bs->backing_hd && bs->backing_hd->encrypted) { 2750 ret = bdrv_set_key(bs->backing_hd, key); 2751 if (ret < 0) 2752 return ret; 2753 if (!bs->encrypted) 2754 return 0; 2755 } 2756 if (!bs->encrypted) { 2757 return -EINVAL; 2758 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2759 return -ENOMEDIUM; 2760 } 2761 ret = bs->drv->bdrv_set_key(bs, key); 2762 if (ret < 0) { 2763 bs->valid_key = 0; 2764 } else if (!bs->valid_key) { 2765 bs->valid_key = 1; 2766 /* call the change callback now, we skipped it on open */ 2767 bdrv_dev_change_media_cb(bs, true); 2768 } 2769 return ret; 2770 } 2771 2772 const char *bdrv_get_format_name(BlockDriverState *bs) 2773 { 2774 return bs->drv ? bs->drv->format_name : NULL; 2775 } 2776 2777 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2778 void *opaque) 2779 { 2780 BlockDriver *drv; 2781 2782 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2783 it(opaque, drv->format_name); 2784 } 2785 } 2786 2787 BlockDriverState *bdrv_find(const char *name) 2788 { 2789 BlockDriverState *bs; 2790 2791 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2792 if (!strcmp(name, bs->device_name)) { 2793 return bs; 2794 } 2795 } 2796 return NULL; 2797 } 2798 2799 BlockDriverState *bdrv_next(BlockDriverState *bs) 2800 { 2801 if (!bs) { 2802 return QTAILQ_FIRST(&bdrv_states); 2803 } 2804 return QTAILQ_NEXT(bs, list); 2805 } 2806 2807 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2808 { 2809 BlockDriverState *bs; 2810 2811 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2812 it(opaque, bs); 2813 } 2814 } 2815 2816 const char *bdrv_get_device_name(BlockDriverState *bs) 2817 { 2818 return bs->device_name; 2819 } 2820 2821 int bdrv_get_flags(BlockDriverState *bs) 2822 { 2823 return bs->open_flags; 2824 } 2825 2826 void bdrv_flush_all(void) 2827 { 2828 BlockDriverState *bs; 2829 2830 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2831 bdrv_flush(bs); 2832 } 2833 } 2834 2835 int bdrv_has_zero_init(BlockDriverState *bs) 2836 { 2837 assert(bs->drv); 2838 2839 if (bs->drv->bdrv_has_zero_init) { 2840 return bs->drv->bdrv_has_zero_init(bs); 2841 } 2842 2843 return 1; 2844 } 2845 2846 typedef struct BdrvCoIsAllocatedData { 2847 BlockDriverState *bs; 2848 BlockDriverState *base; 2849 int64_t sector_num; 2850 int nb_sectors; 2851 int *pnum; 2852 int ret; 2853 bool done; 2854 } BdrvCoIsAllocatedData; 2855 2856 /* 2857 * Returns true iff the specified sector is present in the disk image. Drivers 2858 * not implementing the functionality are assumed to not support backing files, 2859 * hence all their sectors are reported as allocated. 2860 * 2861 * If 'sector_num' is beyond the end of the disk image the return value is 0 2862 * and 'pnum' is set to 0. 2863 * 2864 * 'pnum' is set to the number of sectors (including and immediately following 2865 * the specified sector) that are known to be in the same 2866 * allocated/unallocated state. 2867 * 2868 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2869 * beyond the end of the disk image it will be clamped. 2870 */ 2871 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2872 int nb_sectors, int *pnum) 2873 { 2874 int64_t n; 2875 2876 if (sector_num >= bs->total_sectors) { 2877 *pnum = 0; 2878 return 0; 2879 } 2880 2881 n = bs->total_sectors - sector_num; 2882 if (n < nb_sectors) { 2883 nb_sectors = n; 2884 } 2885 2886 if (!bs->drv->bdrv_co_is_allocated) { 2887 *pnum = nb_sectors; 2888 return 1; 2889 } 2890 2891 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2892 } 2893 2894 /* Coroutine wrapper for bdrv_is_allocated() */ 2895 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2896 { 2897 BdrvCoIsAllocatedData *data = opaque; 2898 BlockDriverState *bs = data->bs; 2899 2900 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2901 data->pnum); 2902 data->done = true; 2903 } 2904 2905 /* 2906 * Synchronous wrapper around bdrv_co_is_allocated(). 2907 * 2908 * See bdrv_co_is_allocated() for details. 2909 */ 2910 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2911 int *pnum) 2912 { 2913 Coroutine *co; 2914 BdrvCoIsAllocatedData data = { 2915 .bs = bs, 2916 .sector_num = sector_num, 2917 .nb_sectors = nb_sectors, 2918 .pnum = pnum, 2919 .done = false, 2920 }; 2921 2922 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2923 qemu_coroutine_enter(co, &data); 2924 while (!data.done) { 2925 qemu_aio_wait(); 2926 } 2927 return data.ret; 2928 } 2929 2930 /* 2931 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2932 * 2933 * Return true if the given sector is allocated in any image between 2934 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2935 * sector is allocated in any image of the chain. Return false otherwise. 2936 * 2937 * 'pnum' is set to the number of sectors (including and immediately following 2938 * the specified sector) that are known to be in the same 2939 * allocated/unallocated state. 2940 * 2941 */ 2942 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2943 BlockDriverState *base, 2944 int64_t sector_num, 2945 int nb_sectors, int *pnum) 2946 { 2947 BlockDriverState *intermediate; 2948 int ret, n = nb_sectors; 2949 2950 intermediate = top; 2951 while (intermediate && intermediate != base) { 2952 int pnum_inter; 2953 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2954 &pnum_inter); 2955 if (ret < 0) { 2956 return ret; 2957 } else if (ret) { 2958 *pnum = pnum_inter; 2959 return 1; 2960 } 2961 2962 /* 2963 * [sector_num, nb_sectors] is unallocated on top but intermediate 2964 * might have 2965 * 2966 * [sector_num+x, nr_sectors] allocated. 2967 */ 2968 if (n > pnum_inter && 2969 (intermediate == top || 2970 sector_num + pnum_inter < intermediate->total_sectors)) { 2971 n = pnum_inter; 2972 } 2973 2974 intermediate = intermediate->backing_hd; 2975 } 2976 2977 *pnum = n; 2978 return 0; 2979 } 2980 2981 /* Coroutine wrapper for bdrv_is_allocated_above() */ 2982 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque) 2983 { 2984 BdrvCoIsAllocatedData *data = opaque; 2985 BlockDriverState *top = data->bs; 2986 BlockDriverState *base = data->base; 2987 2988 data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num, 2989 data->nb_sectors, data->pnum); 2990 data->done = true; 2991 } 2992 2993 /* 2994 * Synchronous wrapper around bdrv_co_is_allocated_above(). 2995 * 2996 * See bdrv_co_is_allocated_above() for details. 2997 */ 2998 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base, 2999 int64_t sector_num, int nb_sectors, int *pnum) 3000 { 3001 Coroutine *co; 3002 BdrvCoIsAllocatedData data = { 3003 .bs = top, 3004 .base = base, 3005 .sector_num = sector_num, 3006 .nb_sectors = nb_sectors, 3007 .pnum = pnum, 3008 .done = false, 3009 }; 3010 3011 co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry); 3012 qemu_coroutine_enter(co, &data); 3013 while (!data.done) { 3014 qemu_aio_wait(); 3015 } 3016 return data.ret; 3017 } 3018 3019 BlockInfo *bdrv_query_info(BlockDriverState *bs) 3020 { 3021 BlockInfo *info = g_malloc0(sizeof(*info)); 3022 info->device = g_strdup(bs->device_name); 3023 info->type = g_strdup("unknown"); 3024 info->locked = bdrv_dev_is_medium_locked(bs); 3025 info->removable = bdrv_dev_has_removable_media(bs); 3026 3027 if (bdrv_dev_has_removable_media(bs)) { 3028 info->has_tray_open = true; 3029 info->tray_open = bdrv_dev_is_tray_open(bs); 3030 } 3031 3032 if (bdrv_iostatus_is_enabled(bs)) { 3033 info->has_io_status = true; 3034 info->io_status = bs->iostatus; 3035 } 3036 3037 if (bs->dirty_bitmap) { 3038 info->has_dirty = true; 3039 info->dirty = g_malloc0(sizeof(*info->dirty)); 3040 info->dirty->count = bdrv_get_dirty_count(bs) * BDRV_SECTOR_SIZE; 3041 info->dirty->granularity = 3042 ((int64_t) BDRV_SECTOR_SIZE << hbitmap_granularity(bs->dirty_bitmap)); 3043 } 3044 3045 if (bs->drv) { 3046 info->has_inserted = true; 3047 info->inserted = g_malloc0(sizeof(*info->inserted)); 3048 info->inserted->file = g_strdup(bs->filename); 3049 info->inserted->ro = bs->read_only; 3050 info->inserted->drv = g_strdup(bs->drv->format_name); 3051 info->inserted->encrypted = bs->encrypted; 3052 info->inserted->encryption_key_missing = bdrv_key_required(bs); 3053 3054 if (bs->backing_file[0]) { 3055 info->inserted->has_backing_file = true; 3056 info->inserted->backing_file = g_strdup(bs->backing_file); 3057 } 3058 3059 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs); 3060 3061 if (bs->io_limits_enabled) { 3062 info->inserted->bps = 3063 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3064 info->inserted->bps_rd = 3065 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 3066 info->inserted->bps_wr = 3067 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 3068 info->inserted->iops = 3069 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3070 info->inserted->iops_rd = 3071 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 3072 info->inserted->iops_wr = 3073 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 3074 } 3075 } 3076 return info; 3077 } 3078 3079 BlockInfoList *qmp_query_block(Error **errp) 3080 { 3081 BlockInfoList *head = NULL, **p_next = &head; 3082 BlockDriverState *bs; 3083 3084 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3085 BlockInfoList *info = g_malloc0(sizeof(*info)); 3086 info->value = bdrv_query_info(bs); 3087 3088 *p_next = info; 3089 p_next = &info->next; 3090 } 3091 3092 return head; 3093 } 3094 3095 BlockStats *bdrv_query_stats(const BlockDriverState *bs) 3096 { 3097 BlockStats *s; 3098 3099 s = g_malloc0(sizeof(*s)); 3100 3101 if (bs->device_name[0]) { 3102 s->has_device = true; 3103 s->device = g_strdup(bs->device_name); 3104 } 3105 3106 s->stats = g_malloc0(sizeof(*s->stats)); 3107 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 3108 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 3109 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 3110 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 3111 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 3112 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 3113 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 3114 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 3115 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 3116 3117 if (bs->file) { 3118 s->has_parent = true; 3119 s->parent = bdrv_query_stats(bs->file); 3120 } 3121 3122 return s; 3123 } 3124 3125 BlockStatsList *qmp_query_blockstats(Error **errp) 3126 { 3127 BlockStatsList *head = NULL, **p_next = &head; 3128 BlockDriverState *bs; 3129 3130 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3131 BlockStatsList *info = g_malloc0(sizeof(*info)); 3132 info->value = bdrv_query_stats(bs); 3133 3134 *p_next = info; 3135 p_next = &info->next; 3136 } 3137 3138 return head; 3139 } 3140 3141 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 3142 { 3143 if (bs->backing_hd && bs->backing_hd->encrypted) 3144 return bs->backing_file; 3145 else if (bs->encrypted) 3146 return bs->filename; 3147 else 3148 return NULL; 3149 } 3150 3151 void bdrv_get_backing_filename(BlockDriverState *bs, 3152 char *filename, int filename_size) 3153 { 3154 pstrcpy(filename, filename_size, bs->backing_file); 3155 } 3156 3157 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 3158 const uint8_t *buf, int nb_sectors) 3159 { 3160 BlockDriver *drv = bs->drv; 3161 if (!drv) 3162 return -ENOMEDIUM; 3163 if (!drv->bdrv_write_compressed) 3164 return -ENOTSUP; 3165 if (bdrv_check_request(bs, sector_num, nb_sectors)) 3166 return -EIO; 3167 3168 assert(!bs->dirty_bitmap); 3169 3170 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 3171 } 3172 3173 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 3174 { 3175 BlockDriver *drv = bs->drv; 3176 if (!drv) 3177 return -ENOMEDIUM; 3178 if (!drv->bdrv_get_info) 3179 return -ENOTSUP; 3180 memset(bdi, 0, sizeof(*bdi)); 3181 return drv->bdrv_get_info(bs, bdi); 3182 } 3183 3184 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 3185 int64_t pos, int size) 3186 { 3187 BlockDriver *drv = bs->drv; 3188 if (!drv) 3189 return -ENOMEDIUM; 3190 if (drv->bdrv_save_vmstate) 3191 return drv->bdrv_save_vmstate(bs, buf, pos, size); 3192 if (bs->file) 3193 return bdrv_save_vmstate(bs->file, buf, pos, size); 3194 return -ENOTSUP; 3195 } 3196 3197 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3198 int64_t pos, int size) 3199 { 3200 BlockDriver *drv = bs->drv; 3201 if (!drv) 3202 return -ENOMEDIUM; 3203 if (drv->bdrv_load_vmstate) 3204 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3205 if (bs->file) 3206 return bdrv_load_vmstate(bs->file, buf, pos, size); 3207 return -ENOTSUP; 3208 } 3209 3210 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3211 { 3212 BlockDriver *drv = bs->drv; 3213 3214 if (!drv || !drv->bdrv_debug_event) { 3215 return; 3216 } 3217 3218 drv->bdrv_debug_event(bs, event); 3219 } 3220 3221 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event, 3222 const char *tag) 3223 { 3224 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) { 3225 bs = bs->file; 3226 } 3227 3228 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) { 3229 return bs->drv->bdrv_debug_breakpoint(bs, event, tag); 3230 } 3231 3232 return -ENOTSUP; 3233 } 3234 3235 int bdrv_debug_resume(BlockDriverState *bs, const char *tag) 3236 { 3237 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) { 3238 bs = bs->file; 3239 } 3240 3241 if (bs && bs->drv && bs->drv->bdrv_debug_resume) { 3242 return bs->drv->bdrv_debug_resume(bs, tag); 3243 } 3244 3245 return -ENOTSUP; 3246 } 3247 3248 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag) 3249 { 3250 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) { 3251 bs = bs->file; 3252 } 3253 3254 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) { 3255 return bs->drv->bdrv_debug_is_suspended(bs, tag); 3256 } 3257 3258 return false; 3259 } 3260 3261 /**************************************************************/ 3262 /* handling of snapshots */ 3263 3264 int bdrv_can_snapshot(BlockDriverState *bs) 3265 { 3266 BlockDriver *drv = bs->drv; 3267 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3268 return 0; 3269 } 3270 3271 if (!drv->bdrv_snapshot_create) { 3272 if (bs->file != NULL) { 3273 return bdrv_can_snapshot(bs->file); 3274 } 3275 return 0; 3276 } 3277 3278 return 1; 3279 } 3280 3281 int bdrv_is_snapshot(BlockDriverState *bs) 3282 { 3283 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3284 } 3285 3286 BlockDriverState *bdrv_snapshots(void) 3287 { 3288 BlockDriverState *bs; 3289 3290 if (bs_snapshots) { 3291 return bs_snapshots; 3292 } 3293 3294 bs = NULL; 3295 while ((bs = bdrv_next(bs))) { 3296 if (bdrv_can_snapshot(bs)) { 3297 bs_snapshots = bs; 3298 return bs; 3299 } 3300 } 3301 return NULL; 3302 } 3303 3304 int bdrv_snapshot_create(BlockDriverState *bs, 3305 QEMUSnapshotInfo *sn_info) 3306 { 3307 BlockDriver *drv = bs->drv; 3308 if (!drv) 3309 return -ENOMEDIUM; 3310 if (drv->bdrv_snapshot_create) 3311 return drv->bdrv_snapshot_create(bs, sn_info); 3312 if (bs->file) 3313 return bdrv_snapshot_create(bs->file, sn_info); 3314 return -ENOTSUP; 3315 } 3316 3317 int bdrv_snapshot_goto(BlockDriverState *bs, 3318 const char *snapshot_id) 3319 { 3320 BlockDriver *drv = bs->drv; 3321 int ret, open_ret; 3322 3323 if (!drv) 3324 return -ENOMEDIUM; 3325 if (drv->bdrv_snapshot_goto) 3326 return drv->bdrv_snapshot_goto(bs, snapshot_id); 3327 3328 if (bs->file) { 3329 drv->bdrv_close(bs); 3330 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 3331 open_ret = drv->bdrv_open(bs, NULL, bs->open_flags); 3332 if (open_ret < 0) { 3333 bdrv_delete(bs->file); 3334 bs->drv = NULL; 3335 return open_ret; 3336 } 3337 return ret; 3338 } 3339 3340 return -ENOTSUP; 3341 } 3342 3343 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 3344 { 3345 BlockDriver *drv = bs->drv; 3346 if (!drv) 3347 return -ENOMEDIUM; 3348 if (drv->bdrv_snapshot_delete) 3349 return drv->bdrv_snapshot_delete(bs, snapshot_id); 3350 if (bs->file) 3351 return bdrv_snapshot_delete(bs->file, snapshot_id); 3352 return -ENOTSUP; 3353 } 3354 3355 int bdrv_snapshot_list(BlockDriverState *bs, 3356 QEMUSnapshotInfo **psn_info) 3357 { 3358 BlockDriver *drv = bs->drv; 3359 if (!drv) 3360 return -ENOMEDIUM; 3361 if (drv->bdrv_snapshot_list) 3362 return drv->bdrv_snapshot_list(bs, psn_info); 3363 if (bs->file) 3364 return bdrv_snapshot_list(bs->file, psn_info); 3365 return -ENOTSUP; 3366 } 3367 3368 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 3369 const char *snapshot_name) 3370 { 3371 BlockDriver *drv = bs->drv; 3372 if (!drv) { 3373 return -ENOMEDIUM; 3374 } 3375 if (!bs->read_only) { 3376 return -EINVAL; 3377 } 3378 if (drv->bdrv_snapshot_load_tmp) { 3379 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 3380 } 3381 return -ENOTSUP; 3382 } 3383 3384 /* backing_file can either be relative, or absolute, or a protocol. If it is 3385 * relative, it must be relative to the chain. So, passing in bs->filename 3386 * from a BDS as backing_file should not be done, as that may be relative to 3387 * the CWD rather than the chain. */ 3388 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3389 const char *backing_file) 3390 { 3391 char *filename_full = NULL; 3392 char *backing_file_full = NULL; 3393 char *filename_tmp = NULL; 3394 int is_protocol = 0; 3395 BlockDriverState *curr_bs = NULL; 3396 BlockDriverState *retval = NULL; 3397 3398 if (!bs || !bs->drv || !backing_file) { 3399 return NULL; 3400 } 3401 3402 filename_full = g_malloc(PATH_MAX); 3403 backing_file_full = g_malloc(PATH_MAX); 3404 filename_tmp = g_malloc(PATH_MAX); 3405 3406 is_protocol = path_has_protocol(backing_file); 3407 3408 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3409 3410 /* If either of the filename paths is actually a protocol, then 3411 * compare unmodified paths; otherwise make paths relative */ 3412 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3413 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3414 retval = curr_bs->backing_hd; 3415 break; 3416 } 3417 } else { 3418 /* If not an absolute filename path, make it relative to the current 3419 * image's filename path */ 3420 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3421 backing_file); 3422 3423 /* We are going to compare absolute pathnames */ 3424 if (!realpath(filename_tmp, filename_full)) { 3425 continue; 3426 } 3427 3428 /* We need to make sure the backing filename we are comparing against 3429 * is relative to the current image filename (or absolute) */ 3430 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3431 curr_bs->backing_file); 3432 3433 if (!realpath(filename_tmp, backing_file_full)) { 3434 continue; 3435 } 3436 3437 if (strcmp(backing_file_full, filename_full) == 0) { 3438 retval = curr_bs->backing_hd; 3439 break; 3440 } 3441 } 3442 } 3443 3444 g_free(filename_full); 3445 g_free(backing_file_full); 3446 g_free(filename_tmp); 3447 return retval; 3448 } 3449 3450 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3451 { 3452 if (!bs->drv) { 3453 return 0; 3454 } 3455 3456 if (!bs->backing_hd) { 3457 return 0; 3458 } 3459 3460 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3461 } 3462 3463 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3464 { 3465 BlockDriverState *curr_bs = NULL; 3466 3467 if (!bs) { 3468 return NULL; 3469 } 3470 3471 curr_bs = bs; 3472 3473 while (curr_bs->backing_hd) { 3474 curr_bs = curr_bs->backing_hd; 3475 } 3476 return curr_bs; 3477 } 3478 3479 #define NB_SUFFIXES 4 3480 3481 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 3482 { 3483 static const char suffixes[NB_SUFFIXES] = "KMGT"; 3484 int64_t base; 3485 int i; 3486 3487 if (size <= 999) { 3488 snprintf(buf, buf_size, "%" PRId64, size); 3489 } else { 3490 base = 1024; 3491 for(i = 0; i < NB_SUFFIXES; i++) { 3492 if (size < (10 * base)) { 3493 snprintf(buf, buf_size, "%0.1f%c", 3494 (double)size / base, 3495 suffixes[i]); 3496 break; 3497 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3498 snprintf(buf, buf_size, "%" PRId64 "%c", 3499 ((size + (base >> 1)) / base), 3500 suffixes[i]); 3501 break; 3502 } 3503 base = base * 1024; 3504 } 3505 } 3506 return buf; 3507 } 3508 3509 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3510 { 3511 char buf1[128], date_buf[128], clock_buf[128]; 3512 struct tm tm; 3513 time_t ti; 3514 int64_t secs; 3515 3516 if (!sn) { 3517 snprintf(buf, buf_size, 3518 "%-10s%-20s%7s%20s%15s", 3519 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3520 } else { 3521 ti = sn->date_sec; 3522 localtime_r(&ti, &tm); 3523 strftime(date_buf, sizeof(date_buf), 3524 "%Y-%m-%d %H:%M:%S", &tm); 3525 secs = sn->vm_clock_nsec / 1000000000; 3526 snprintf(clock_buf, sizeof(clock_buf), 3527 "%02d:%02d:%02d.%03d", 3528 (int)(secs / 3600), 3529 (int)((secs / 60) % 60), 3530 (int)(secs % 60), 3531 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3532 snprintf(buf, buf_size, 3533 "%-10s%-20s%7s%20s%15s", 3534 sn->id_str, sn->name, 3535 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3536 date_buf, 3537 clock_buf); 3538 } 3539 return buf; 3540 } 3541 3542 /**************************************************************/ 3543 /* async I/Os */ 3544 3545 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3546 QEMUIOVector *qiov, int nb_sectors, 3547 BlockDriverCompletionFunc *cb, void *opaque) 3548 { 3549 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3550 3551 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3552 cb, opaque, false); 3553 } 3554 3555 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3556 QEMUIOVector *qiov, int nb_sectors, 3557 BlockDriverCompletionFunc *cb, void *opaque) 3558 { 3559 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3560 3561 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3562 cb, opaque, true); 3563 } 3564 3565 3566 typedef struct MultiwriteCB { 3567 int error; 3568 int num_requests; 3569 int num_callbacks; 3570 struct { 3571 BlockDriverCompletionFunc *cb; 3572 void *opaque; 3573 QEMUIOVector *free_qiov; 3574 } callbacks[]; 3575 } MultiwriteCB; 3576 3577 static void multiwrite_user_cb(MultiwriteCB *mcb) 3578 { 3579 int i; 3580 3581 for (i = 0; i < mcb->num_callbacks; i++) { 3582 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3583 if (mcb->callbacks[i].free_qiov) { 3584 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3585 } 3586 g_free(mcb->callbacks[i].free_qiov); 3587 } 3588 } 3589 3590 static void multiwrite_cb(void *opaque, int ret) 3591 { 3592 MultiwriteCB *mcb = opaque; 3593 3594 trace_multiwrite_cb(mcb, ret); 3595 3596 if (ret < 0 && !mcb->error) { 3597 mcb->error = ret; 3598 } 3599 3600 mcb->num_requests--; 3601 if (mcb->num_requests == 0) { 3602 multiwrite_user_cb(mcb); 3603 g_free(mcb); 3604 } 3605 } 3606 3607 static int multiwrite_req_compare(const void *a, const void *b) 3608 { 3609 const BlockRequest *req1 = a, *req2 = b; 3610 3611 /* 3612 * Note that we can't simply subtract req2->sector from req1->sector 3613 * here as that could overflow the return value. 3614 */ 3615 if (req1->sector > req2->sector) { 3616 return 1; 3617 } else if (req1->sector < req2->sector) { 3618 return -1; 3619 } else { 3620 return 0; 3621 } 3622 } 3623 3624 /* 3625 * Takes a bunch of requests and tries to merge them. Returns the number of 3626 * requests that remain after merging. 3627 */ 3628 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3629 int num_reqs, MultiwriteCB *mcb) 3630 { 3631 int i, outidx; 3632 3633 // Sort requests by start sector 3634 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3635 3636 // Check if adjacent requests touch the same clusters. If so, combine them, 3637 // filling up gaps with zero sectors. 3638 outidx = 0; 3639 for (i = 1; i < num_reqs; i++) { 3640 int merge = 0; 3641 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3642 3643 // Handle exactly sequential writes and overlapping writes. 3644 if (reqs[i].sector <= oldreq_last) { 3645 merge = 1; 3646 } 3647 3648 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3649 merge = 0; 3650 } 3651 3652 if (merge) { 3653 size_t size; 3654 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3655 qemu_iovec_init(qiov, 3656 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3657 3658 // Add the first request to the merged one. If the requests are 3659 // overlapping, drop the last sectors of the first request. 3660 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3661 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3662 3663 // We should need to add any zeros between the two requests 3664 assert (reqs[i].sector <= oldreq_last); 3665 3666 // Add the second request 3667 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3668 3669 reqs[outidx].nb_sectors = qiov->size >> 9; 3670 reqs[outidx].qiov = qiov; 3671 3672 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3673 } else { 3674 outidx++; 3675 reqs[outidx].sector = reqs[i].sector; 3676 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3677 reqs[outidx].qiov = reqs[i].qiov; 3678 } 3679 } 3680 3681 return outidx + 1; 3682 } 3683 3684 /* 3685 * Submit multiple AIO write requests at once. 3686 * 3687 * On success, the function returns 0 and all requests in the reqs array have 3688 * been submitted. In error case this function returns -1, and any of the 3689 * requests may or may not be submitted yet. In particular, this means that the 3690 * callback will be called for some of the requests, for others it won't. The 3691 * caller must check the error field of the BlockRequest to wait for the right 3692 * callbacks (if error != 0, no callback will be called). 3693 * 3694 * The implementation may modify the contents of the reqs array, e.g. to merge 3695 * requests. However, the fields opaque and error are left unmodified as they 3696 * are used to signal failure for a single request to the caller. 3697 */ 3698 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3699 { 3700 MultiwriteCB *mcb; 3701 int i; 3702 3703 /* don't submit writes if we don't have a medium */ 3704 if (bs->drv == NULL) { 3705 for (i = 0; i < num_reqs; i++) { 3706 reqs[i].error = -ENOMEDIUM; 3707 } 3708 return -1; 3709 } 3710 3711 if (num_reqs == 0) { 3712 return 0; 3713 } 3714 3715 // Create MultiwriteCB structure 3716 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3717 mcb->num_requests = 0; 3718 mcb->num_callbacks = num_reqs; 3719 3720 for (i = 0; i < num_reqs; i++) { 3721 mcb->callbacks[i].cb = reqs[i].cb; 3722 mcb->callbacks[i].opaque = reqs[i].opaque; 3723 } 3724 3725 // Check for mergable requests 3726 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3727 3728 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3729 3730 /* Run the aio requests. */ 3731 mcb->num_requests = num_reqs; 3732 for (i = 0; i < num_reqs; i++) { 3733 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3734 reqs[i].nb_sectors, multiwrite_cb, mcb); 3735 } 3736 3737 return 0; 3738 } 3739 3740 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3741 { 3742 acb->aiocb_info->cancel(acb); 3743 } 3744 3745 /* block I/O throttling */ 3746 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3747 bool is_write, double elapsed_time, uint64_t *wait) 3748 { 3749 uint64_t bps_limit = 0; 3750 uint64_t extension; 3751 double bytes_limit, bytes_base, bytes_res; 3752 double slice_time, wait_time; 3753 3754 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3755 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3756 } else if (bs->io_limits.bps[is_write]) { 3757 bps_limit = bs->io_limits.bps[is_write]; 3758 } else { 3759 if (wait) { 3760 *wait = 0; 3761 } 3762 3763 return false; 3764 } 3765 3766 slice_time = bs->slice_end - bs->slice_start; 3767 slice_time /= (NANOSECONDS_PER_SECOND); 3768 bytes_limit = bps_limit * slice_time; 3769 bytes_base = bs->slice_submitted.bytes[is_write]; 3770 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3771 bytes_base += bs->slice_submitted.bytes[!is_write]; 3772 } 3773 3774 /* bytes_base: the bytes of data which have been read/written; and 3775 * it is obtained from the history statistic info. 3776 * bytes_res: the remaining bytes of data which need to be read/written. 3777 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3778 * the total time for completing reading/writting all data. 3779 */ 3780 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3781 3782 if (bytes_base + bytes_res <= bytes_limit) { 3783 if (wait) { 3784 *wait = 0; 3785 } 3786 3787 return false; 3788 } 3789 3790 /* Calc approx time to dispatch */ 3791 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3792 3793 /* When the I/O rate at runtime exceeds the limits, 3794 * bs->slice_end need to be extended in order that the current statistic 3795 * info can be kept until the timer fire, so it is increased and tuned 3796 * based on the result of experiment. 3797 */ 3798 extension = wait_time * NANOSECONDS_PER_SECOND; 3799 extension = DIV_ROUND_UP(extension, BLOCK_IO_SLICE_TIME) * 3800 BLOCK_IO_SLICE_TIME; 3801 bs->slice_end += extension; 3802 if (wait) { 3803 *wait = wait_time * NANOSECONDS_PER_SECOND; 3804 } 3805 3806 return true; 3807 } 3808 3809 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3810 double elapsed_time, uint64_t *wait) 3811 { 3812 uint64_t iops_limit = 0; 3813 double ios_limit, ios_base; 3814 double slice_time, wait_time; 3815 3816 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3817 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3818 } else if (bs->io_limits.iops[is_write]) { 3819 iops_limit = bs->io_limits.iops[is_write]; 3820 } else { 3821 if (wait) { 3822 *wait = 0; 3823 } 3824 3825 return false; 3826 } 3827 3828 slice_time = bs->slice_end - bs->slice_start; 3829 slice_time /= (NANOSECONDS_PER_SECOND); 3830 ios_limit = iops_limit * slice_time; 3831 ios_base = bs->slice_submitted.ios[is_write]; 3832 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3833 ios_base += bs->slice_submitted.ios[!is_write]; 3834 } 3835 3836 if (ios_base + 1 <= ios_limit) { 3837 if (wait) { 3838 *wait = 0; 3839 } 3840 3841 return false; 3842 } 3843 3844 /* Calc approx time to dispatch, in seconds */ 3845 wait_time = (ios_base + 1) / iops_limit; 3846 if (wait_time > elapsed_time) { 3847 wait_time = wait_time - elapsed_time; 3848 } else { 3849 wait_time = 0; 3850 } 3851 3852 /* Exceeded current slice, extend it by another slice time */ 3853 bs->slice_end += BLOCK_IO_SLICE_TIME; 3854 if (wait) { 3855 *wait = wait_time * NANOSECONDS_PER_SECOND; 3856 } 3857 3858 return true; 3859 } 3860 3861 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3862 bool is_write, int64_t *wait) 3863 { 3864 int64_t now, max_wait; 3865 uint64_t bps_wait = 0, iops_wait = 0; 3866 double elapsed_time; 3867 int bps_ret, iops_ret; 3868 3869 now = qemu_get_clock_ns(vm_clock); 3870 if (now > bs->slice_end) { 3871 bs->slice_start = now; 3872 bs->slice_end = now + BLOCK_IO_SLICE_TIME; 3873 memset(&bs->slice_submitted, 0, sizeof(bs->slice_submitted)); 3874 } 3875 3876 elapsed_time = now - bs->slice_start; 3877 elapsed_time /= (NANOSECONDS_PER_SECOND); 3878 3879 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3880 is_write, elapsed_time, &bps_wait); 3881 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3882 elapsed_time, &iops_wait); 3883 if (bps_ret || iops_ret) { 3884 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3885 if (wait) { 3886 *wait = max_wait; 3887 } 3888 3889 now = qemu_get_clock_ns(vm_clock); 3890 if (bs->slice_end < now + max_wait) { 3891 bs->slice_end = now + max_wait; 3892 } 3893 3894 return true; 3895 } 3896 3897 if (wait) { 3898 *wait = 0; 3899 } 3900 3901 bs->slice_submitted.bytes[is_write] += (int64_t)nb_sectors * 3902 BDRV_SECTOR_SIZE; 3903 bs->slice_submitted.ios[is_write]++; 3904 3905 return false; 3906 } 3907 3908 /**************************************************************/ 3909 /* async block device emulation */ 3910 3911 typedef struct BlockDriverAIOCBSync { 3912 BlockDriverAIOCB common; 3913 QEMUBH *bh; 3914 int ret; 3915 /* vector translation state */ 3916 QEMUIOVector *qiov; 3917 uint8_t *bounce; 3918 int is_write; 3919 } BlockDriverAIOCBSync; 3920 3921 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3922 { 3923 BlockDriverAIOCBSync *acb = 3924 container_of(blockacb, BlockDriverAIOCBSync, common); 3925 qemu_bh_delete(acb->bh); 3926 acb->bh = NULL; 3927 qemu_aio_release(acb); 3928 } 3929 3930 static const AIOCBInfo bdrv_em_aiocb_info = { 3931 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3932 .cancel = bdrv_aio_cancel_em, 3933 }; 3934 3935 static void bdrv_aio_bh_cb(void *opaque) 3936 { 3937 BlockDriverAIOCBSync *acb = opaque; 3938 3939 if (!acb->is_write) 3940 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3941 qemu_vfree(acb->bounce); 3942 acb->common.cb(acb->common.opaque, acb->ret); 3943 qemu_bh_delete(acb->bh); 3944 acb->bh = NULL; 3945 qemu_aio_release(acb); 3946 } 3947 3948 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3949 int64_t sector_num, 3950 QEMUIOVector *qiov, 3951 int nb_sectors, 3952 BlockDriverCompletionFunc *cb, 3953 void *opaque, 3954 int is_write) 3955 3956 { 3957 BlockDriverAIOCBSync *acb; 3958 3959 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 3960 acb->is_write = is_write; 3961 acb->qiov = qiov; 3962 acb->bounce = qemu_blockalign(bs, qiov->size); 3963 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3964 3965 if (is_write) { 3966 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3967 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3968 } else { 3969 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3970 } 3971 3972 qemu_bh_schedule(acb->bh); 3973 3974 return &acb->common; 3975 } 3976 3977 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3978 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3979 BlockDriverCompletionFunc *cb, void *opaque) 3980 { 3981 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3982 } 3983 3984 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3985 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3986 BlockDriverCompletionFunc *cb, void *opaque) 3987 { 3988 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3989 } 3990 3991 3992 typedef struct BlockDriverAIOCBCoroutine { 3993 BlockDriverAIOCB common; 3994 BlockRequest req; 3995 bool is_write; 3996 bool *done; 3997 QEMUBH* bh; 3998 } BlockDriverAIOCBCoroutine; 3999 4000 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 4001 { 4002 BlockDriverAIOCBCoroutine *acb = 4003 container_of(blockacb, BlockDriverAIOCBCoroutine, common); 4004 bool done = false; 4005 4006 acb->done = &done; 4007 while (!done) { 4008 qemu_aio_wait(); 4009 } 4010 } 4011 4012 static const AIOCBInfo bdrv_em_co_aiocb_info = { 4013 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 4014 .cancel = bdrv_aio_co_cancel_em, 4015 }; 4016 4017 static void bdrv_co_em_bh(void *opaque) 4018 { 4019 BlockDriverAIOCBCoroutine *acb = opaque; 4020 4021 acb->common.cb(acb->common.opaque, acb->req.error); 4022 4023 if (acb->done) { 4024 *acb->done = true; 4025 } 4026 4027 qemu_bh_delete(acb->bh); 4028 qemu_aio_release(acb); 4029 } 4030 4031 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 4032 static void coroutine_fn bdrv_co_do_rw(void *opaque) 4033 { 4034 BlockDriverAIOCBCoroutine *acb = opaque; 4035 BlockDriverState *bs = acb->common.bs; 4036 4037 if (!acb->is_write) { 4038 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 4039 acb->req.nb_sectors, acb->req.qiov, 0); 4040 } else { 4041 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 4042 acb->req.nb_sectors, acb->req.qiov, 0); 4043 } 4044 4045 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 4046 qemu_bh_schedule(acb->bh); 4047 } 4048 4049 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 4050 int64_t sector_num, 4051 QEMUIOVector *qiov, 4052 int nb_sectors, 4053 BlockDriverCompletionFunc *cb, 4054 void *opaque, 4055 bool is_write) 4056 { 4057 Coroutine *co; 4058 BlockDriverAIOCBCoroutine *acb; 4059 4060 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 4061 acb->req.sector = sector_num; 4062 acb->req.nb_sectors = nb_sectors; 4063 acb->req.qiov = qiov; 4064 acb->is_write = is_write; 4065 acb->done = NULL; 4066 4067 co = qemu_coroutine_create(bdrv_co_do_rw); 4068 qemu_coroutine_enter(co, acb); 4069 4070 return &acb->common; 4071 } 4072 4073 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 4074 { 4075 BlockDriverAIOCBCoroutine *acb = opaque; 4076 BlockDriverState *bs = acb->common.bs; 4077 4078 acb->req.error = bdrv_co_flush(bs); 4079 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 4080 qemu_bh_schedule(acb->bh); 4081 } 4082 4083 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 4084 BlockDriverCompletionFunc *cb, void *opaque) 4085 { 4086 trace_bdrv_aio_flush(bs, opaque); 4087 4088 Coroutine *co; 4089 BlockDriverAIOCBCoroutine *acb; 4090 4091 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 4092 acb->done = NULL; 4093 4094 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 4095 qemu_coroutine_enter(co, acb); 4096 4097 return &acb->common; 4098 } 4099 4100 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 4101 { 4102 BlockDriverAIOCBCoroutine *acb = opaque; 4103 BlockDriverState *bs = acb->common.bs; 4104 4105 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 4106 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 4107 qemu_bh_schedule(acb->bh); 4108 } 4109 4110 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 4111 int64_t sector_num, int nb_sectors, 4112 BlockDriverCompletionFunc *cb, void *opaque) 4113 { 4114 Coroutine *co; 4115 BlockDriverAIOCBCoroutine *acb; 4116 4117 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 4118 4119 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 4120 acb->req.sector = sector_num; 4121 acb->req.nb_sectors = nb_sectors; 4122 acb->done = NULL; 4123 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 4124 qemu_coroutine_enter(co, acb); 4125 4126 return &acb->common; 4127 } 4128 4129 void bdrv_init(void) 4130 { 4131 module_call_init(MODULE_INIT_BLOCK); 4132 } 4133 4134 void bdrv_init_with_whitelist(void) 4135 { 4136 use_bdrv_whitelist = 1; 4137 bdrv_init(); 4138 } 4139 4140 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 4141 BlockDriverCompletionFunc *cb, void *opaque) 4142 { 4143 BlockDriverAIOCB *acb; 4144 4145 acb = g_slice_alloc(aiocb_info->aiocb_size); 4146 acb->aiocb_info = aiocb_info; 4147 acb->bs = bs; 4148 acb->cb = cb; 4149 acb->opaque = opaque; 4150 return acb; 4151 } 4152 4153 void qemu_aio_release(void *p) 4154 { 4155 BlockDriverAIOCB *acb = p; 4156 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 4157 } 4158 4159 /**************************************************************/ 4160 /* Coroutine block device emulation */ 4161 4162 typedef struct CoroutineIOCompletion { 4163 Coroutine *coroutine; 4164 int ret; 4165 } CoroutineIOCompletion; 4166 4167 static void bdrv_co_io_em_complete(void *opaque, int ret) 4168 { 4169 CoroutineIOCompletion *co = opaque; 4170 4171 co->ret = ret; 4172 qemu_coroutine_enter(co->coroutine, NULL); 4173 } 4174 4175 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 4176 int nb_sectors, QEMUIOVector *iov, 4177 bool is_write) 4178 { 4179 CoroutineIOCompletion co = { 4180 .coroutine = qemu_coroutine_self(), 4181 }; 4182 BlockDriverAIOCB *acb; 4183 4184 if (is_write) { 4185 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 4186 bdrv_co_io_em_complete, &co); 4187 } else { 4188 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 4189 bdrv_co_io_em_complete, &co); 4190 } 4191 4192 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 4193 if (!acb) { 4194 return -EIO; 4195 } 4196 qemu_coroutine_yield(); 4197 4198 return co.ret; 4199 } 4200 4201 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 4202 int64_t sector_num, int nb_sectors, 4203 QEMUIOVector *iov) 4204 { 4205 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 4206 } 4207 4208 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 4209 int64_t sector_num, int nb_sectors, 4210 QEMUIOVector *iov) 4211 { 4212 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 4213 } 4214 4215 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 4216 { 4217 RwCo *rwco = opaque; 4218 4219 rwco->ret = bdrv_co_flush(rwco->bs); 4220 } 4221 4222 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 4223 { 4224 int ret; 4225 4226 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 4227 return 0; 4228 } 4229 4230 /* Write back cached data to the OS even with cache=unsafe */ 4231 if (bs->drv->bdrv_co_flush_to_os) { 4232 ret = bs->drv->bdrv_co_flush_to_os(bs); 4233 if (ret < 0) { 4234 return ret; 4235 } 4236 } 4237 4238 /* But don't actually force it to the disk with cache=unsafe */ 4239 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4240 goto flush_parent; 4241 } 4242 4243 if (bs->drv->bdrv_co_flush_to_disk) { 4244 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4245 } else if (bs->drv->bdrv_aio_flush) { 4246 BlockDriverAIOCB *acb; 4247 CoroutineIOCompletion co = { 4248 .coroutine = qemu_coroutine_self(), 4249 }; 4250 4251 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4252 if (acb == NULL) { 4253 ret = -EIO; 4254 } else { 4255 qemu_coroutine_yield(); 4256 ret = co.ret; 4257 } 4258 } else { 4259 /* 4260 * Some block drivers always operate in either writethrough or unsafe 4261 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4262 * know how the server works (because the behaviour is hardcoded or 4263 * depends on server-side configuration), so we can't ensure that 4264 * everything is safe on disk. Returning an error doesn't work because 4265 * that would break guests even if the server operates in writethrough 4266 * mode. 4267 * 4268 * Let's hope the user knows what he's doing. 4269 */ 4270 ret = 0; 4271 } 4272 if (ret < 0) { 4273 return ret; 4274 } 4275 4276 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4277 * in the case of cache=unsafe, so there are no useless flushes. 4278 */ 4279 flush_parent: 4280 return bdrv_co_flush(bs->file); 4281 } 4282 4283 void bdrv_invalidate_cache(BlockDriverState *bs) 4284 { 4285 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4286 bs->drv->bdrv_invalidate_cache(bs); 4287 } 4288 } 4289 4290 void bdrv_invalidate_cache_all(void) 4291 { 4292 BlockDriverState *bs; 4293 4294 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4295 bdrv_invalidate_cache(bs); 4296 } 4297 } 4298 4299 void bdrv_clear_incoming_migration_all(void) 4300 { 4301 BlockDriverState *bs; 4302 4303 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4304 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4305 } 4306 } 4307 4308 int bdrv_flush(BlockDriverState *bs) 4309 { 4310 Coroutine *co; 4311 RwCo rwco = { 4312 .bs = bs, 4313 .ret = NOT_DONE, 4314 }; 4315 4316 if (qemu_in_coroutine()) { 4317 /* Fast-path if already in coroutine context */ 4318 bdrv_flush_co_entry(&rwco); 4319 } else { 4320 co = qemu_coroutine_create(bdrv_flush_co_entry); 4321 qemu_coroutine_enter(co, &rwco); 4322 while (rwco.ret == NOT_DONE) { 4323 qemu_aio_wait(); 4324 } 4325 } 4326 4327 return rwco.ret; 4328 } 4329 4330 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4331 { 4332 RwCo *rwco = opaque; 4333 4334 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4335 } 4336 4337 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4338 int nb_sectors) 4339 { 4340 if (!bs->drv) { 4341 return -ENOMEDIUM; 4342 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4343 return -EIO; 4344 } else if (bs->read_only) { 4345 return -EROFS; 4346 } 4347 4348 if (bs->dirty_bitmap) { 4349 bdrv_reset_dirty(bs, sector_num, nb_sectors); 4350 } 4351 4352 /* Do nothing if disabled. */ 4353 if (!(bs->open_flags & BDRV_O_UNMAP)) { 4354 return 0; 4355 } 4356 4357 if (bs->drv->bdrv_co_discard) { 4358 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4359 } else if (bs->drv->bdrv_aio_discard) { 4360 BlockDriverAIOCB *acb; 4361 CoroutineIOCompletion co = { 4362 .coroutine = qemu_coroutine_self(), 4363 }; 4364 4365 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4366 bdrv_co_io_em_complete, &co); 4367 if (acb == NULL) { 4368 return -EIO; 4369 } else { 4370 qemu_coroutine_yield(); 4371 return co.ret; 4372 } 4373 } else { 4374 return 0; 4375 } 4376 } 4377 4378 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4379 { 4380 Coroutine *co; 4381 RwCo rwco = { 4382 .bs = bs, 4383 .sector_num = sector_num, 4384 .nb_sectors = nb_sectors, 4385 .ret = NOT_DONE, 4386 }; 4387 4388 if (qemu_in_coroutine()) { 4389 /* Fast-path if already in coroutine context */ 4390 bdrv_discard_co_entry(&rwco); 4391 } else { 4392 co = qemu_coroutine_create(bdrv_discard_co_entry); 4393 qemu_coroutine_enter(co, &rwco); 4394 while (rwco.ret == NOT_DONE) { 4395 qemu_aio_wait(); 4396 } 4397 } 4398 4399 return rwco.ret; 4400 } 4401 4402 /**************************************************************/ 4403 /* removable device support */ 4404 4405 /** 4406 * Return TRUE if the media is present 4407 */ 4408 int bdrv_is_inserted(BlockDriverState *bs) 4409 { 4410 BlockDriver *drv = bs->drv; 4411 4412 if (!drv) 4413 return 0; 4414 if (!drv->bdrv_is_inserted) 4415 return 1; 4416 return drv->bdrv_is_inserted(bs); 4417 } 4418 4419 /** 4420 * Return whether the media changed since the last call to this 4421 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4422 */ 4423 int bdrv_media_changed(BlockDriverState *bs) 4424 { 4425 BlockDriver *drv = bs->drv; 4426 4427 if (drv && drv->bdrv_media_changed) { 4428 return drv->bdrv_media_changed(bs); 4429 } 4430 return -ENOTSUP; 4431 } 4432 4433 /** 4434 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4435 */ 4436 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4437 { 4438 BlockDriver *drv = bs->drv; 4439 4440 if (drv && drv->bdrv_eject) { 4441 drv->bdrv_eject(bs, eject_flag); 4442 } 4443 4444 if (bs->device_name[0] != '\0') { 4445 bdrv_emit_qmp_eject_event(bs, eject_flag); 4446 } 4447 } 4448 4449 /** 4450 * Lock or unlock the media (if it is locked, the user won't be able 4451 * to eject it manually). 4452 */ 4453 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4454 { 4455 BlockDriver *drv = bs->drv; 4456 4457 trace_bdrv_lock_medium(bs, locked); 4458 4459 if (drv && drv->bdrv_lock_medium) { 4460 drv->bdrv_lock_medium(bs, locked); 4461 } 4462 } 4463 4464 /* needed for generic scsi interface */ 4465 4466 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4467 { 4468 BlockDriver *drv = bs->drv; 4469 4470 if (drv && drv->bdrv_ioctl) 4471 return drv->bdrv_ioctl(bs, req, buf); 4472 return -ENOTSUP; 4473 } 4474 4475 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4476 unsigned long int req, void *buf, 4477 BlockDriverCompletionFunc *cb, void *opaque) 4478 { 4479 BlockDriver *drv = bs->drv; 4480 4481 if (drv && drv->bdrv_aio_ioctl) 4482 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4483 return NULL; 4484 } 4485 4486 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4487 { 4488 bs->buffer_alignment = align; 4489 } 4490 4491 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4492 { 4493 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4494 } 4495 4496 /* 4497 * Check if all memory in this vector is sector aligned. 4498 */ 4499 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 4500 { 4501 int i; 4502 4503 for (i = 0; i < qiov->niov; i++) { 4504 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) { 4505 return false; 4506 } 4507 } 4508 4509 return true; 4510 } 4511 4512 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity) 4513 { 4514 int64_t bitmap_size; 4515 4516 assert((granularity & (granularity - 1)) == 0); 4517 4518 if (granularity) { 4519 granularity >>= BDRV_SECTOR_BITS; 4520 assert(!bs->dirty_bitmap); 4521 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS); 4522 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1); 4523 } else { 4524 if (bs->dirty_bitmap) { 4525 hbitmap_free(bs->dirty_bitmap); 4526 bs->dirty_bitmap = NULL; 4527 } 4528 } 4529 } 4530 4531 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4532 { 4533 if (bs->dirty_bitmap) { 4534 return hbitmap_get(bs->dirty_bitmap, sector); 4535 } else { 4536 return 0; 4537 } 4538 } 4539 4540 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi) 4541 { 4542 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0); 4543 } 4544 4545 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4546 int nr_sectors) 4547 { 4548 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors); 4549 } 4550 4551 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4552 int nr_sectors) 4553 { 4554 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors); 4555 } 4556 4557 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4558 { 4559 if (bs->dirty_bitmap) { 4560 return hbitmap_count(bs->dirty_bitmap); 4561 } else { 4562 return 0; 4563 } 4564 } 4565 4566 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4567 { 4568 assert(bs->in_use != in_use); 4569 bs->in_use = in_use; 4570 } 4571 4572 int bdrv_in_use(BlockDriverState *bs) 4573 { 4574 return bs->in_use; 4575 } 4576 4577 void bdrv_iostatus_enable(BlockDriverState *bs) 4578 { 4579 bs->iostatus_enabled = true; 4580 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4581 } 4582 4583 /* The I/O status is only enabled if the drive explicitly 4584 * enables it _and_ the VM is configured to stop on errors */ 4585 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4586 { 4587 return (bs->iostatus_enabled && 4588 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4589 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4590 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4591 } 4592 4593 void bdrv_iostatus_disable(BlockDriverState *bs) 4594 { 4595 bs->iostatus_enabled = false; 4596 } 4597 4598 void bdrv_iostatus_reset(BlockDriverState *bs) 4599 { 4600 if (bdrv_iostatus_is_enabled(bs)) { 4601 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4602 if (bs->job) { 4603 block_job_iostatus_reset(bs->job); 4604 } 4605 } 4606 } 4607 4608 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4609 { 4610 assert(bdrv_iostatus_is_enabled(bs)); 4611 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4612 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4613 BLOCK_DEVICE_IO_STATUS_FAILED; 4614 } 4615 } 4616 4617 void 4618 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4619 enum BlockAcctType type) 4620 { 4621 assert(type < BDRV_MAX_IOTYPE); 4622 4623 cookie->bytes = bytes; 4624 cookie->start_time_ns = get_clock(); 4625 cookie->type = type; 4626 } 4627 4628 void 4629 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4630 { 4631 assert(cookie->type < BDRV_MAX_IOTYPE); 4632 4633 bs->nr_bytes[cookie->type] += cookie->bytes; 4634 bs->nr_ops[cookie->type]++; 4635 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4636 } 4637 4638 void bdrv_img_create(const char *filename, const char *fmt, 4639 const char *base_filename, const char *base_fmt, 4640 char *options, uint64_t img_size, int flags, 4641 Error **errp, bool quiet) 4642 { 4643 QEMUOptionParameter *param = NULL, *create_options = NULL; 4644 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4645 BlockDriverState *bs = NULL; 4646 BlockDriver *drv, *proto_drv; 4647 BlockDriver *backing_drv = NULL; 4648 int ret = 0; 4649 4650 /* Find driver and parse its options */ 4651 drv = bdrv_find_format(fmt); 4652 if (!drv) { 4653 error_setg(errp, "Unknown file format '%s'", fmt); 4654 return; 4655 } 4656 4657 proto_drv = bdrv_find_protocol(filename); 4658 if (!proto_drv) { 4659 error_setg(errp, "Unknown protocol '%s'", filename); 4660 return; 4661 } 4662 4663 create_options = append_option_parameters(create_options, 4664 drv->create_options); 4665 create_options = append_option_parameters(create_options, 4666 proto_drv->create_options); 4667 4668 /* Create parameter list with default values */ 4669 param = parse_option_parameters("", create_options, param); 4670 4671 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4672 4673 /* Parse -o options */ 4674 if (options) { 4675 param = parse_option_parameters(options, create_options, param); 4676 if (param == NULL) { 4677 error_setg(errp, "Invalid options for file format '%s'.", fmt); 4678 goto out; 4679 } 4680 } 4681 4682 if (base_filename) { 4683 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4684 base_filename)) { 4685 error_setg(errp, "Backing file not supported for file format '%s'", 4686 fmt); 4687 goto out; 4688 } 4689 } 4690 4691 if (base_fmt) { 4692 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4693 error_setg(errp, "Backing file format not supported for file " 4694 "format '%s'", fmt); 4695 goto out; 4696 } 4697 } 4698 4699 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4700 if (backing_file && backing_file->value.s) { 4701 if (!strcmp(filename, backing_file->value.s)) { 4702 error_setg(errp, "Error: Trying to create an image with the " 4703 "same filename as the backing file"); 4704 goto out; 4705 } 4706 } 4707 4708 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4709 if (backing_fmt && backing_fmt->value.s) { 4710 backing_drv = bdrv_find_format(backing_fmt->value.s); 4711 if (!backing_drv) { 4712 error_setg(errp, "Unknown backing file format '%s'", 4713 backing_fmt->value.s); 4714 goto out; 4715 } 4716 } 4717 4718 // The size for the image must always be specified, with one exception: 4719 // If we are using a backing file, we can obtain the size from there 4720 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4721 if (size && size->value.n == -1) { 4722 if (backing_file && backing_file->value.s) { 4723 uint64_t size; 4724 char buf[32]; 4725 int back_flags; 4726 4727 /* backing files always opened read-only */ 4728 back_flags = 4729 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4730 4731 bs = bdrv_new(""); 4732 4733 ret = bdrv_open(bs, backing_file->value.s, NULL, back_flags, 4734 backing_drv); 4735 if (ret < 0) { 4736 error_setg_errno(errp, -ret, "Could not open '%s'", 4737 backing_file->value.s); 4738 goto out; 4739 } 4740 bdrv_get_geometry(bs, &size); 4741 size *= 512; 4742 4743 snprintf(buf, sizeof(buf), "%" PRId64, size); 4744 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4745 } else { 4746 error_setg(errp, "Image creation needs a size parameter"); 4747 goto out; 4748 } 4749 } 4750 4751 if (!quiet) { 4752 printf("Formatting '%s', fmt=%s ", filename, fmt); 4753 print_option_parameters(param); 4754 puts(""); 4755 } 4756 ret = bdrv_create(drv, filename, param); 4757 if (ret < 0) { 4758 if (ret == -ENOTSUP) { 4759 error_setg(errp,"Formatting or formatting option not supported for " 4760 "file format '%s'", fmt); 4761 } else if (ret == -EFBIG) { 4762 error_setg(errp, "The image size is too large for file format '%s'", 4763 fmt); 4764 } else { 4765 error_setg(errp, "%s: error while creating %s: %s", filename, fmt, 4766 strerror(-ret)); 4767 } 4768 } 4769 4770 out: 4771 free_option_parameters(create_options); 4772 free_option_parameters(param); 4773 4774 if (bs) { 4775 bdrv_delete(bs); 4776 } 4777 } 4778 4779 AioContext *bdrv_get_aio_context(BlockDriverState *bs) 4780 { 4781 /* Currently BlockDriverState always uses the main loop AioContext */ 4782 return qemu_get_aio_context(); 4783 } 4784