1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor.h" 28 #include "block_int.h" 29 #include "blockjob.h" 30 #include "module.h" 31 #include "qjson.h" 32 #include "sysemu.h" 33 #include "notify.h" 34 #include "qemu-coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu-timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* The device to use for VM snapshots */ 103 static BlockDriverState *bs_snapshots; 104 105 /* If non-zero, use only whitelisted block drivers */ 106 static int use_bdrv_whitelist; 107 108 #ifdef _WIN32 109 static int is_windows_drive_prefix(const char *filename) 110 { 111 return (((filename[0] >= 'a' && filename[0] <= 'z') || 112 (filename[0] >= 'A' && filename[0] <= 'Z')) && 113 filename[1] == ':'); 114 } 115 116 int is_windows_drive(const char *filename) 117 { 118 if (is_windows_drive_prefix(filename) && 119 filename[2] == '\0') 120 return 1; 121 if (strstart(filename, "\\\\.\\", NULL) || 122 strstart(filename, "//./", NULL)) 123 return 1; 124 return 0; 125 } 126 #endif 127 128 /* throttling disk I/O limits */ 129 void bdrv_io_limits_disable(BlockDriverState *bs) 130 { 131 bs->io_limits_enabled = false; 132 133 while (qemu_co_queue_next(&bs->throttled_reqs)); 134 135 if (bs->block_timer) { 136 qemu_del_timer(bs->block_timer); 137 qemu_free_timer(bs->block_timer); 138 bs->block_timer = NULL; 139 } 140 141 bs->slice_start = 0; 142 bs->slice_end = 0; 143 bs->slice_time = 0; 144 memset(&bs->io_base, 0, sizeof(bs->io_base)); 145 } 146 147 static void bdrv_block_timer(void *opaque) 148 { 149 BlockDriverState *bs = opaque; 150 151 qemu_co_queue_next(&bs->throttled_reqs); 152 } 153 154 void bdrv_io_limits_enable(BlockDriverState *bs) 155 { 156 qemu_co_queue_init(&bs->throttled_reqs); 157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 158 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 159 bs->slice_start = qemu_get_clock_ns(vm_clock); 160 bs->slice_end = bs->slice_start + bs->slice_time; 161 memset(&bs->io_base, 0, sizeof(bs->io_base)); 162 bs->io_limits_enabled = true; 163 } 164 165 bool bdrv_io_limits_enabled(BlockDriverState *bs) 166 { 167 BlockIOLimit *io_limits = &bs->io_limits; 168 return io_limits->bps[BLOCK_IO_LIMIT_READ] 169 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 170 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 171 || io_limits->iops[BLOCK_IO_LIMIT_READ] 172 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 173 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 174 } 175 176 static void bdrv_io_limits_intercept(BlockDriverState *bs, 177 bool is_write, int nb_sectors) 178 { 179 int64_t wait_time = -1; 180 181 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 182 qemu_co_queue_wait(&bs->throttled_reqs); 183 } 184 185 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 186 * throttled requests will not be dequeued until the current request is 187 * allowed to be serviced. So if the current request still exceeds the 188 * limits, it will be inserted to the head. All requests followed it will 189 * be still in throttled_reqs queue. 190 */ 191 192 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 193 qemu_mod_timer(bs->block_timer, 194 wait_time + qemu_get_clock_ns(vm_clock)); 195 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 196 } 197 198 qemu_co_queue_next(&bs->throttled_reqs); 199 } 200 201 /* check if the path starts with "<protocol>:" */ 202 static int path_has_protocol(const char *path) 203 { 204 const char *p; 205 206 #ifdef _WIN32 207 if (is_windows_drive(path) || 208 is_windows_drive_prefix(path)) { 209 return 0; 210 } 211 p = path + strcspn(path, ":/\\"); 212 #else 213 p = path + strcspn(path, ":/"); 214 #endif 215 216 return *p == ':'; 217 } 218 219 int path_is_absolute(const char *path) 220 { 221 #ifdef _WIN32 222 /* specific case for names like: "\\.\d:" */ 223 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 224 return 1; 225 } 226 return (*path == '/' || *path == '\\'); 227 #else 228 return (*path == '/'); 229 #endif 230 } 231 232 /* if filename is absolute, just copy it to dest. Otherwise, build a 233 path to it by considering it is relative to base_path. URL are 234 supported. */ 235 void path_combine(char *dest, int dest_size, 236 const char *base_path, 237 const char *filename) 238 { 239 const char *p, *p1; 240 int len; 241 242 if (dest_size <= 0) 243 return; 244 if (path_is_absolute(filename)) { 245 pstrcpy(dest, dest_size, filename); 246 } else { 247 p = strchr(base_path, ':'); 248 if (p) 249 p++; 250 else 251 p = base_path; 252 p1 = strrchr(base_path, '/'); 253 #ifdef _WIN32 254 { 255 const char *p2; 256 p2 = strrchr(base_path, '\\'); 257 if (!p1 || p2 > p1) 258 p1 = p2; 259 } 260 #endif 261 if (p1) 262 p1++; 263 else 264 p1 = base_path; 265 if (p1 > p) 266 p = p1; 267 len = p - base_path; 268 if (len > dest_size - 1) 269 len = dest_size - 1; 270 memcpy(dest, base_path, len); 271 dest[len] = '\0'; 272 pstrcat(dest, dest_size, filename); 273 } 274 } 275 276 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 277 { 278 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 279 pstrcpy(dest, sz, bs->backing_file); 280 } else { 281 path_combine(dest, sz, bs->filename, bs->backing_file); 282 } 283 } 284 285 void bdrv_register(BlockDriver *bdrv) 286 { 287 /* Block drivers without coroutine functions need emulation */ 288 if (!bdrv->bdrv_co_readv) { 289 bdrv->bdrv_co_readv = bdrv_co_readv_em; 290 bdrv->bdrv_co_writev = bdrv_co_writev_em; 291 292 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 293 * the block driver lacks aio we need to emulate that too. 294 */ 295 if (!bdrv->bdrv_aio_readv) { 296 /* add AIO emulation layer */ 297 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 298 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 299 } 300 } 301 302 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 303 } 304 305 /* create a new block device (by default it is empty) */ 306 BlockDriverState *bdrv_new(const char *device_name) 307 { 308 BlockDriverState *bs; 309 310 bs = g_malloc0(sizeof(BlockDriverState)); 311 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 312 if (device_name[0] != '\0') { 313 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 314 } 315 bdrv_iostatus_disable(bs); 316 notifier_list_init(&bs->close_notifiers); 317 318 return bs; 319 } 320 321 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 322 { 323 notifier_list_add(&bs->close_notifiers, notify); 324 } 325 326 BlockDriver *bdrv_find_format(const char *format_name) 327 { 328 BlockDriver *drv1; 329 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 330 if (!strcmp(drv1->format_name, format_name)) { 331 return drv1; 332 } 333 } 334 return NULL; 335 } 336 337 static int bdrv_is_whitelisted(BlockDriver *drv) 338 { 339 static const char *whitelist[] = { 340 CONFIG_BDRV_WHITELIST 341 }; 342 const char **p; 343 344 if (!whitelist[0]) 345 return 1; /* no whitelist, anything goes */ 346 347 for (p = whitelist; *p; p++) { 348 if (!strcmp(drv->format_name, *p)) { 349 return 1; 350 } 351 } 352 return 0; 353 } 354 355 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 356 { 357 BlockDriver *drv = bdrv_find_format(format_name); 358 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 359 } 360 361 typedef struct CreateCo { 362 BlockDriver *drv; 363 char *filename; 364 QEMUOptionParameter *options; 365 int ret; 366 } CreateCo; 367 368 static void coroutine_fn bdrv_create_co_entry(void *opaque) 369 { 370 CreateCo *cco = opaque; 371 assert(cco->drv); 372 373 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 374 } 375 376 int bdrv_create(BlockDriver *drv, const char* filename, 377 QEMUOptionParameter *options) 378 { 379 int ret; 380 381 Coroutine *co; 382 CreateCo cco = { 383 .drv = drv, 384 .filename = g_strdup(filename), 385 .options = options, 386 .ret = NOT_DONE, 387 }; 388 389 if (!drv->bdrv_create) { 390 ret = -ENOTSUP; 391 goto out; 392 } 393 394 if (qemu_in_coroutine()) { 395 /* Fast-path if already in coroutine context */ 396 bdrv_create_co_entry(&cco); 397 } else { 398 co = qemu_coroutine_create(bdrv_create_co_entry); 399 qemu_coroutine_enter(co, &cco); 400 while (cco.ret == NOT_DONE) { 401 qemu_aio_wait(); 402 } 403 } 404 405 ret = cco.ret; 406 407 out: 408 g_free(cco.filename); 409 return ret; 410 } 411 412 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 413 { 414 BlockDriver *drv; 415 416 drv = bdrv_find_protocol(filename); 417 if (drv == NULL) { 418 return -ENOENT; 419 } 420 421 return bdrv_create(drv, filename, options); 422 } 423 424 /* 425 * Create a uniquely-named empty temporary file. 426 * Return 0 upon success, otherwise a negative errno value. 427 */ 428 int get_tmp_filename(char *filename, int size) 429 { 430 #ifdef _WIN32 431 char temp_dir[MAX_PATH]; 432 /* GetTempFileName requires that its output buffer (4th param) 433 have length MAX_PATH or greater. */ 434 assert(size >= MAX_PATH); 435 return (GetTempPath(MAX_PATH, temp_dir) 436 && GetTempFileName(temp_dir, "qem", 0, filename) 437 ? 0 : -GetLastError()); 438 #else 439 int fd; 440 const char *tmpdir; 441 tmpdir = getenv("TMPDIR"); 442 if (!tmpdir) 443 tmpdir = "/tmp"; 444 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 445 return -EOVERFLOW; 446 } 447 fd = mkstemp(filename); 448 if (fd < 0) { 449 return -errno; 450 } 451 if (close(fd) != 0) { 452 unlink(filename); 453 return -errno; 454 } 455 return 0; 456 #endif 457 } 458 459 /* 460 * Detect host devices. By convention, /dev/cdrom[N] is always 461 * recognized as a host CDROM. 462 */ 463 static BlockDriver *find_hdev_driver(const char *filename) 464 { 465 int score_max = 0, score; 466 BlockDriver *drv = NULL, *d; 467 468 QLIST_FOREACH(d, &bdrv_drivers, list) { 469 if (d->bdrv_probe_device) { 470 score = d->bdrv_probe_device(filename); 471 if (score > score_max) { 472 score_max = score; 473 drv = d; 474 } 475 } 476 } 477 478 return drv; 479 } 480 481 BlockDriver *bdrv_find_protocol(const char *filename) 482 { 483 BlockDriver *drv1; 484 char protocol[128]; 485 int len; 486 const char *p; 487 488 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 489 490 /* 491 * XXX(hch): we really should not let host device detection 492 * override an explicit protocol specification, but moving this 493 * later breaks access to device names with colons in them. 494 * Thanks to the brain-dead persistent naming schemes on udev- 495 * based Linux systems those actually are quite common. 496 */ 497 drv1 = find_hdev_driver(filename); 498 if (drv1) { 499 return drv1; 500 } 501 502 if (!path_has_protocol(filename)) { 503 return bdrv_find_format("file"); 504 } 505 p = strchr(filename, ':'); 506 assert(p != NULL); 507 len = p - filename; 508 if (len > sizeof(protocol) - 1) 509 len = sizeof(protocol) - 1; 510 memcpy(protocol, filename, len); 511 protocol[len] = '\0'; 512 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 513 if (drv1->protocol_name && 514 !strcmp(drv1->protocol_name, protocol)) { 515 return drv1; 516 } 517 } 518 return NULL; 519 } 520 521 static int find_image_format(const char *filename, BlockDriver **pdrv) 522 { 523 int ret, score, score_max; 524 BlockDriver *drv1, *drv; 525 uint8_t buf[2048]; 526 BlockDriverState *bs; 527 528 ret = bdrv_file_open(&bs, filename, 0); 529 if (ret < 0) { 530 *pdrv = NULL; 531 return ret; 532 } 533 534 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 535 if (bs->sg || !bdrv_is_inserted(bs)) { 536 bdrv_delete(bs); 537 drv = bdrv_find_format("raw"); 538 if (!drv) { 539 ret = -ENOENT; 540 } 541 *pdrv = drv; 542 return ret; 543 } 544 545 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 546 bdrv_delete(bs); 547 if (ret < 0) { 548 *pdrv = NULL; 549 return ret; 550 } 551 552 score_max = 0; 553 drv = NULL; 554 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 555 if (drv1->bdrv_probe) { 556 score = drv1->bdrv_probe(buf, ret, filename); 557 if (score > score_max) { 558 score_max = score; 559 drv = drv1; 560 } 561 } 562 } 563 if (!drv) { 564 ret = -ENOENT; 565 } 566 *pdrv = drv; 567 return ret; 568 } 569 570 /** 571 * Set the current 'total_sectors' value 572 */ 573 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 574 { 575 BlockDriver *drv = bs->drv; 576 577 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 578 if (bs->sg) 579 return 0; 580 581 /* query actual device if possible, otherwise just trust the hint */ 582 if (drv->bdrv_getlength) { 583 int64_t length = drv->bdrv_getlength(bs); 584 if (length < 0) { 585 return length; 586 } 587 hint = length >> BDRV_SECTOR_BITS; 588 } 589 590 bs->total_sectors = hint; 591 return 0; 592 } 593 594 /** 595 * Set open flags for a given cache mode 596 * 597 * Return 0 on success, -1 if the cache mode was invalid. 598 */ 599 int bdrv_parse_cache_flags(const char *mode, int *flags) 600 { 601 *flags &= ~BDRV_O_CACHE_MASK; 602 603 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 604 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 605 } else if (!strcmp(mode, "directsync")) { 606 *flags |= BDRV_O_NOCACHE; 607 } else if (!strcmp(mode, "writeback")) { 608 *flags |= BDRV_O_CACHE_WB; 609 } else if (!strcmp(mode, "unsafe")) { 610 *flags |= BDRV_O_CACHE_WB; 611 *flags |= BDRV_O_NO_FLUSH; 612 } else if (!strcmp(mode, "writethrough")) { 613 /* this is the default */ 614 } else { 615 return -1; 616 } 617 618 return 0; 619 } 620 621 /** 622 * The copy-on-read flag is actually a reference count so multiple users may 623 * use the feature without worrying about clobbering its previous state. 624 * Copy-on-read stays enabled until all users have called to disable it. 625 */ 626 void bdrv_enable_copy_on_read(BlockDriverState *bs) 627 { 628 bs->copy_on_read++; 629 } 630 631 void bdrv_disable_copy_on_read(BlockDriverState *bs) 632 { 633 assert(bs->copy_on_read > 0); 634 bs->copy_on_read--; 635 } 636 637 /* 638 * Common part for opening disk images and files 639 */ 640 static int bdrv_open_common(BlockDriverState *bs, const char *filename, 641 int flags, BlockDriver *drv) 642 { 643 int ret, open_flags; 644 645 assert(drv != NULL); 646 assert(bs->file == NULL); 647 648 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 649 650 bs->open_flags = flags; 651 bs->buffer_alignment = 512; 652 653 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 654 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 655 bdrv_enable_copy_on_read(bs); 656 } 657 658 pstrcpy(bs->filename, sizeof(bs->filename), filename); 659 660 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 661 return -ENOTSUP; 662 } 663 664 bs->drv = drv; 665 bs->opaque = g_malloc0(drv->instance_size); 666 667 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 668 open_flags = flags | BDRV_O_CACHE_WB; 669 670 /* 671 * Clear flags that are internal to the block layer before opening the 672 * image. 673 */ 674 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 675 676 /* 677 * Snapshots should be writable. 678 */ 679 if (bs->is_temporary) { 680 open_flags |= BDRV_O_RDWR; 681 } 682 683 bs->read_only = !(open_flags & BDRV_O_RDWR); 684 685 /* Open the image, either directly or using a protocol */ 686 if (drv->bdrv_file_open) { 687 ret = drv->bdrv_file_open(bs, filename, open_flags); 688 } else { 689 ret = bdrv_file_open(&bs->file, filename, open_flags); 690 if (ret >= 0) { 691 ret = drv->bdrv_open(bs, open_flags); 692 } 693 } 694 695 if (ret < 0) { 696 goto free_and_fail; 697 } 698 699 ret = refresh_total_sectors(bs, bs->total_sectors); 700 if (ret < 0) { 701 goto free_and_fail; 702 } 703 704 #ifndef _WIN32 705 if (bs->is_temporary) { 706 unlink(filename); 707 } 708 #endif 709 return 0; 710 711 free_and_fail: 712 if (bs->file) { 713 bdrv_delete(bs->file); 714 bs->file = NULL; 715 } 716 g_free(bs->opaque); 717 bs->opaque = NULL; 718 bs->drv = NULL; 719 return ret; 720 } 721 722 /* 723 * Opens a file using a protocol (file, host_device, nbd, ...) 724 */ 725 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 726 { 727 BlockDriverState *bs; 728 BlockDriver *drv; 729 int ret; 730 731 drv = bdrv_find_protocol(filename); 732 if (!drv) { 733 return -ENOENT; 734 } 735 736 bs = bdrv_new(""); 737 ret = bdrv_open_common(bs, filename, flags, drv); 738 if (ret < 0) { 739 bdrv_delete(bs); 740 return ret; 741 } 742 bs->growable = 1; 743 *pbs = bs; 744 return 0; 745 } 746 747 int bdrv_open_backing_file(BlockDriverState *bs) 748 { 749 char backing_filename[PATH_MAX]; 750 int back_flags, ret; 751 BlockDriver *back_drv = NULL; 752 753 if (bs->backing_hd != NULL) { 754 return 0; 755 } 756 757 bs->open_flags &= ~BDRV_O_NO_BACKING; 758 if (bs->backing_file[0] == '\0') { 759 return 0; 760 } 761 762 bs->backing_hd = bdrv_new(""); 763 bdrv_get_full_backing_filename(bs, backing_filename, 764 sizeof(backing_filename)); 765 766 if (bs->backing_format[0] != '\0') { 767 back_drv = bdrv_find_format(bs->backing_format); 768 } 769 770 /* backing files always opened read-only */ 771 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 772 773 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 774 if (ret < 0) { 775 bdrv_delete(bs->backing_hd); 776 bs->backing_hd = NULL; 777 bs->open_flags |= BDRV_O_NO_BACKING; 778 return ret; 779 } 780 return 0; 781 } 782 783 /* 784 * Opens a disk image (raw, qcow2, vmdk, ...) 785 */ 786 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 787 BlockDriver *drv) 788 { 789 int ret; 790 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ 791 char tmp_filename[PATH_MAX + 1]; 792 793 if (flags & BDRV_O_SNAPSHOT) { 794 BlockDriverState *bs1; 795 int64_t total_size; 796 int is_protocol = 0; 797 BlockDriver *bdrv_qcow2; 798 QEMUOptionParameter *options; 799 char backing_filename[PATH_MAX]; 800 801 /* if snapshot, we create a temporary backing file and open it 802 instead of opening 'filename' directly */ 803 804 /* if there is a backing file, use it */ 805 bs1 = bdrv_new(""); 806 ret = bdrv_open(bs1, filename, 0, drv); 807 if (ret < 0) { 808 bdrv_delete(bs1); 809 return ret; 810 } 811 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 812 813 if (bs1->drv && bs1->drv->protocol_name) 814 is_protocol = 1; 815 816 bdrv_delete(bs1); 817 818 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 819 if (ret < 0) { 820 return ret; 821 } 822 823 /* Real path is meaningless for protocols */ 824 if (is_protocol) 825 snprintf(backing_filename, sizeof(backing_filename), 826 "%s", filename); 827 else if (!realpath(filename, backing_filename)) 828 return -errno; 829 830 bdrv_qcow2 = bdrv_find_format("qcow2"); 831 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 832 833 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 834 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 835 if (drv) { 836 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 837 drv->format_name); 838 } 839 840 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 841 free_option_parameters(options); 842 if (ret < 0) { 843 return ret; 844 } 845 846 filename = tmp_filename; 847 drv = bdrv_qcow2; 848 bs->is_temporary = 1; 849 } 850 851 /* Find the right image format driver */ 852 if (!drv) { 853 ret = find_image_format(filename, &drv); 854 } 855 856 if (!drv) { 857 goto unlink_and_fail; 858 } 859 860 if (flags & BDRV_O_RDWR) { 861 flags |= BDRV_O_ALLOW_RDWR; 862 } 863 864 /* Open the image */ 865 ret = bdrv_open_common(bs, filename, flags, drv); 866 if (ret < 0) { 867 goto unlink_and_fail; 868 } 869 870 /* If there is a backing file, use it */ 871 if ((flags & BDRV_O_NO_BACKING) == 0) { 872 ret = bdrv_open_backing_file(bs); 873 if (ret < 0) { 874 bdrv_close(bs); 875 return ret; 876 } 877 } 878 879 if (!bdrv_key_required(bs)) { 880 bdrv_dev_change_media_cb(bs, true); 881 } 882 883 /* throttling disk I/O limits */ 884 if (bs->io_limits_enabled) { 885 bdrv_io_limits_enable(bs); 886 } 887 888 return 0; 889 890 unlink_and_fail: 891 if (bs->is_temporary) { 892 unlink(filename); 893 } 894 return ret; 895 } 896 897 typedef struct BlockReopenQueueEntry { 898 bool prepared; 899 BDRVReopenState state; 900 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 901 } BlockReopenQueueEntry; 902 903 /* 904 * Adds a BlockDriverState to a simple queue for an atomic, transactional 905 * reopen of multiple devices. 906 * 907 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 908 * already performed, or alternatively may be NULL a new BlockReopenQueue will 909 * be created and initialized. This newly created BlockReopenQueue should be 910 * passed back in for subsequent calls that are intended to be of the same 911 * atomic 'set'. 912 * 913 * bs is the BlockDriverState to add to the reopen queue. 914 * 915 * flags contains the open flags for the associated bs 916 * 917 * returns a pointer to bs_queue, which is either the newly allocated 918 * bs_queue, or the existing bs_queue being used. 919 * 920 */ 921 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 922 BlockDriverState *bs, int flags) 923 { 924 assert(bs != NULL); 925 926 BlockReopenQueueEntry *bs_entry; 927 if (bs_queue == NULL) { 928 bs_queue = g_new0(BlockReopenQueue, 1); 929 QSIMPLEQ_INIT(bs_queue); 930 } 931 932 if (bs->file) { 933 bdrv_reopen_queue(bs_queue, bs->file, flags); 934 } 935 936 bs_entry = g_new0(BlockReopenQueueEntry, 1); 937 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 938 939 bs_entry->state.bs = bs; 940 bs_entry->state.flags = flags; 941 942 return bs_queue; 943 } 944 945 /* 946 * Reopen multiple BlockDriverStates atomically & transactionally. 947 * 948 * The queue passed in (bs_queue) must have been built up previous 949 * via bdrv_reopen_queue(). 950 * 951 * Reopens all BDS specified in the queue, with the appropriate 952 * flags. All devices are prepared for reopen, and failure of any 953 * device will cause all device changes to be abandonded, and intermediate 954 * data cleaned up. 955 * 956 * If all devices prepare successfully, then the changes are committed 957 * to all devices. 958 * 959 */ 960 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 961 { 962 int ret = -1; 963 BlockReopenQueueEntry *bs_entry, *next; 964 Error *local_err = NULL; 965 966 assert(bs_queue != NULL); 967 968 bdrv_drain_all(); 969 970 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 971 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 972 error_propagate(errp, local_err); 973 goto cleanup; 974 } 975 bs_entry->prepared = true; 976 } 977 978 /* If we reach this point, we have success and just need to apply the 979 * changes 980 */ 981 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 982 bdrv_reopen_commit(&bs_entry->state); 983 } 984 985 ret = 0; 986 987 cleanup: 988 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 989 if (ret && bs_entry->prepared) { 990 bdrv_reopen_abort(&bs_entry->state); 991 } 992 g_free(bs_entry); 993 } 994 g_free(bs_queue); 995 return ret; 996 } 997 998 999 /* Reopen a single BlockDriverState with the specified flags. */ 1000 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1001 { 1002 int ret = -1; 1003 Error *local_err = NULL; 1004 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1005 1006 ret = bdrv_reopen_multiple(queue, &local_err); 1007 if (local_err != NULL) { 1008 error_propagate(errp, local_err); 1009 } 1010 return ret; 1011 } 1012 1013 1014 /* 1015 * Prepares a BlockDriverState for reopen. All changes are staged in the 1016 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1017 * the block driver layer .bdrv_reopen_prepare() 1018 * 1019 * bs is the BlockDriverState to reopen 1020 * flags are the new open flags 1021 * queue is the reopen queue 1022 * 1023 * Returns 0 on success, non-zero on error. On error errp will be set 1024 * as well. 1025 * 1026 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1027 * It is the responsibility of the caller to then call the abort() or 1028 * commit() for any other BDS that have been left in a prepare() state 1029 * 1030 */ 1031 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1032 Error **errp) 1033 { 1034 int ret = -1; 1035 Error *local_err = NULL; 1036 BlockDriver *drv; 1037 1038 assert(reopen_state != NULL); 1039 assert(reopen_state->bs->drv != NULL); 1040 drv = reopen_state->bs->drv; 1041 1042 /* if we are to stay read-only, do not allow permission change 1043 * to r/w */ 1044 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1045 reopen_state->flags & BDRV_O_RDWR) { 1046 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1047 reopen_state->bs->device_name); 1048 goto error; 1049 } 1050 1051 1052 ret = bdrv_flush(reopen_state->bs); 1053 if (ret) { 1054 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1055 strerror(-ret)); 1056 goto error; 1057 } 1058 1059 if (drv->bdrv_reopen_prepare) { 1060 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1061 if (ret) { 1062 if (local_err != NULL) { 1063 error_propagate(errp, local_err); 1064 } else { 1065 error_set(errp, QERR_OPEN_FILE_FAILED, 1066 reopen_state->bs->filename); 1067 } 1068 goto error; 1069 } 1070 } else { 1071 /* It is currently mandatory to have a bdrv_reopen_prepare() 1072 * handler for each supported drv. */ 1073 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1074 drv->format_name, reopen_state->bs->device_name, 1075 "reopening of file"); 1076 ret = -1; 1077 goto error; 1078 } 1079 1080 ret = 0; 1081 1082 error: 1083 return ret; 1084 } 1085 1086 /* 1087 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1088 * makes them final by swapping the staging BlockDriverState contents into 1089 * the active BlockDriverState contents. 1090 */ 1091 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1092 { 1093 BlockDriver *drv; 1094 1095 assert(reopen_state != NULL); 1096 drv = reopen_state->bs->drv; 1097 assert(drv != NULL); 1098 1099 /* If there are any driver level actions to take */ 1100 if (drv->bdrv_reopen_commit) { 1101 drv->bdrv_reopen_commit(reopen_state); 1102 } 1103 1104 /* set BDS specific flags now */ 1105 reopen_state->bs->open_flags = reopen_state->flags; 1106 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1107 BDRV_O_CACHE_WB); 1108 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1109 } 1110 1111 /* 1112 * Abort the reopen, and delete and free the staged changes in 1113 * reopen_state 1114 */ 1115 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1116 { 1117 BlockDriver *drv; 1118 1119 assert(reopen_state != NULL); 1120 drv = reopen_state->bs->drv; 1121 assert(drv != NULL); 1122 1123 if (drv->bdrv_reopen_abort) { 1124 drv->bdrv_reopen_abort(reopen_state); 1125 } 1126 } 1127 1128 1129 void bdrv_close(BlockDriverState *bs) 1130 { 1131 bdrv_flush(bs); 1132 if (bs->job) { 1133 block_job_cancel_sync(bs->job); 1134 } 1135 bdrv_drain_all(); 1136 notifier_list_notify(&bs->close_notifiers, bs); 1137 1138 if (bs->drv) { 1139 if (bs == bs_snapshots) { 1140 bs_snapshots = NULL; 1141 } 1142 if (bs->backing_hd) { 1143 bdrv_delete(bs->backing_hd); 1144 bs->backing_hd = NULL; 1145 } 1146 bs->drv->bdrv_close(bs); 1147 g_free(bs->opaque); 1148 #ifdef _WIN32 1149 if (bs->is_temporary) { 1150 unlink(bs->filename); 1151 } 1152 #endif 1153 bs->opaque = NULL; 1154 bs->drv = NULL; 1155 bs->copy_on_read = 0; 1156 bs->backing_file[0] = '\0'; 1157 bs->backing_format[0] = '\0'; 1158 bs->total_sectors = 0; 1159 bs->encrypted = 0; 1160 bs->valid_key = 0; 1161 bs->sg = 0; 1162 bs->growable = 0; 1163 1164 if (bs->file != NULL) { 1165 bdrv_delete(bs->file); 1166 bs->file = NULL; 1167 } 1168 } 1169 1170 bdrv_dev_change_media_cb(bs, false); 1171 1172 /*throttling disk I/O limits*/ 1173 if (bs->io_limits_enabled) { 1174 bdrv_io_limits_disable(bs); 1175 } 1176 } 1177 1178 void bdrv_close_all(void) 1179 { 1180 BlockDriverState *bs; 1181 1182 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1183 bdrv_close(bs); 1184 } 1185 } 1186 1187 /* 1188 * Wait for pending requests to complete across all BlockDriverStates 1189 * 1190 * This function does not flush data to disk, use bdrv_flush_all() for that 1191 * after calling this function. 1192 * 1193 * Note that completion of an asynchronous I/O operation can trigger any 1194 * number of other I/O operations on other devices---for example a coroutine 1195 * can be arbitrarily complex and a constant flow of I/O can come until the 1196 * coroutine is complete. Because of this, it is not possible to have a 1197 * function to drain a single device's I/O queue. 1198 */ 1199 void bdrv_drain_all(void) 1200 { 1201 BlockDriverState *bs; 1202 bool busy; 1203 1204 do { 1205 busy = qemu_aio_wait(); 1206 1207 /* FIXME: We do not have timer support here, so this is effectively 1208 * a busy wait. 1209 */ 1210 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1211 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1212 qemu_co_queue_restart_all(&bs->throttled_reqs); 1213 busy = true; 1214 } 1215 } 1216 } while (busy); 1217 1218 /* If requests are still pending there is a bug somewhere */ 1219 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1220 assert(QLIST_EMPTY(&bs->tracked_requests)); 1221 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1222 } 1223 } 1224 1225 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1226 Also, NULL terminate the device_name to prevent double remove */ 1227 void bdrv_make_anon(BlockDriverState *bs) 1228 { 1229 if (bs->device_name[0] != '\0') { 1230 QTAILQ_REMOVE(&bdrv_states, bs, list); 1231 } 1232 bs->device_name[0] = '\0'; 1233 } 1234 1235 static void bdrv_rebind(BlockDriverState *bs) 1236 { 1237 if (bs->drv && bs->drv->bdrv_rebind) { 1238 bs->drv->bdrv_rebind(bs); 1239 } 1240 } 1241 1242 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1243 BlockDriverState *bs_src) 1244 { 1245 /* move some fields that need to stay attached to the device */ 1246 bs_dest->open_flags = bs_src->open_flags; 1247 1248 /* dev info */ 1249 bs_dest->dev_ops = bs_src->dev_ops; 1250 bs_dest->dev_opaque = bs_src->dev_opaque; 1251 bs_dest->dev = bs_src->dev; 1252 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1253 bs_dest->copy_on_read = bs_src->copy_on_read; 1254 1255 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1256 1257 /* i/o timing parameters */ 1258 bs_dest->slice_time = bs_src->slice_time; 1259 bs_dest->slice_start = bs_src->slice_start; 1260 bs_dest->slice_end = bs_src->slice_end; 1261 bs_dest->io_limits = bs_src->io_limits; 1262 bs_dest->io_base = bs_src->io_base; 1263 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1264 bs_dest->block_timer = bs_src->block_timer; 1265 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1266 1267 /* r/w error */ 1268 bs_dest->on_read_error = bs_src->on_read_error; 1269 bs_dest->on_write_error = bs_src->on_write_error; 1270 1271 /* i/o status */ 1272 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1273 bs_dest->iostatus = bs_src->iostatus; 1274 1275 /* dirty bitmap */ 1276 bs_dest->dirty_count = bs_src->dirty_count; 1277 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1278 1279 /* job */ 1280 bs_dest->in_use = bs_src->in_use; 1281 bs_dest->job = bs_src->job; 1282 1283 /* keep the same entry in bdrv_states */ 1284 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1285 bs_src->device_name); 1286 bs_dest->list = bs_src->list; 1287 } 1288 1289 /* 1290 * Swap bs contents for two image chains while they are live, 1291 * while keeping required fields on the BlockDriverState that is 1292 * actually attached to a device. 1293 * 1294 * This will modify the BlockDriverState fields, and swap contents 1295 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1296 * 1297 * bs_new is required to be anonymous. 1298 * 1299 * This function does not create any image files. 1300 */ 1301 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1302 { 1303 BlockDriverState tmp; 1304 1305 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1306 assert(bs_new->device_name[0] == '\0'); 1307 assert(bs_new->dirty_bitmap == NULL); 1308 assert(bs_new->job == NULL); 1309 assert(bs_new->dev == NULL); 1310 assert(bs_new->in_use == 0); 1311 assert(bs_new->io_limits_enabled == false); 1312 assert(bs_new->block_timer == NULL); 1313 1314 tmp = *bs_new; 1315 *bs_new = *bs_old; 1316 *bs_old = tmp; 1317 1318 /* there are some fields that should not be swapped, move them back */ 1319 bdrv_move_feature_fields(&tmp, bs_old); 1320 bdrv_move_feature_fields(bs_old, bs_new); 1321 bdrv_move_feature_fields(bs_new, &tmp); 1322 1323 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1324 assert(bs_new->device_name[0] == '\0'); 1325 1326 /* Check a few fields that should remain attached to the device */ 1327 assert(bs_new->dev == NULL); 1328 assert(bs_new->job == NULL); 1329 assert(bs_new->in_use == 0); 1330 assert(bs_new->io_limits_enabled == false); 1331 assert(bs_new->block_timer == NULL); 1332 1333 bdrv_rebind(bs_new); 1334 bdrv_rebind(bs_old); 1335 } 1336 1337 /* 1338 * Add new bs contents at the top of an image chain while the chain is 1339 * live, while keeping required fields on the top layer. 1340 * 1341 * This will modify the BlockDriverState fields, and swap contents 1342 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1343 * 1344 * bs_new is required to be anonymous. 1345 * 1346 * This function does not create any image files. 1347 */ 1348 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1349 { 1350 bdrv_swap(bs_new, bs_top); 1351 1352 /* The contents of 'tmp' will become bs_top, as we are 1353 * swapping bs_new and bs_top contents. */ 1354 bs_top->backing_hd = bs_new; 1355 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1356 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1357 bs_new->filename); 1358 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1359 bs_new->drv ? bs_new->drv->format_name : ""); 1360 } 1361 1362 void bdrv_delete(BlockDriverState *bs) 1363 { 1364 assert(!bs->dev); 1365 assert(!bs->job); 1366 assert(!bs->in_use); 1367 1368 /* remove from list, if necessary */ 1369 bdrv_make_anon(bs); 1370 1371 bdrv_close(bs); 1372 1373 assert(bs != bs_snapshots); 1374 g_free(bs); 1375 } 1376 1377 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1378 /* TODO change to DeviceState *dev when all users are qdevified */ 1379 { 1380 if (bs->dev) { 1381 return -EBUSY; 1382 } 1383 bs->dev = dev; 1384 bdrv_iostatus_reset(bs); 1385 return 0; 1386 } 1387 1388 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1389 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1390 { 1391 if (bdrv_attach_dev(bs, dev) < 0) { 1392 abort(); 1393 } 1394 } 1395 1396 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1397 /* TODO change to DeviceState *dev when all users are qdevified */ 1398 { 1399 assert(bs->dev == dev); 1400 bs->dev = NULL; 1401 bs->dev_ops = NULL; 1402 bs->dev_opaque = NULL; 1403 bs->buffer_alignment = 512; 1404 } 1405 1406 /* TODO change to return DeviceState * when all users are qdevified */ 1407 void *bdrv_get_attached_dev(BlockDriverState *bs) 1408 { 1409 return bs->dev; 1410 } 1411 1412 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1413 void *opaque) 1414 { 1415 bs->dev_ops = ops; 1416 bs->dev_opaque = opaque; 1417 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1418 bs_snapshots = NULL; 1419 } 1420 } 1421 1422 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1423 enum MonitorEvent ev, 1424 BlockErrorAction action, bool is_read) 1425 { 1426 QObject *data; 1427 const char *action_str; 1428 1429 switch (action) { 1430 case BDRV_ACTION_REPORT: 1431 action_str = "report"; 1432 break; 1433 case BDRV_ACTION_IGNORE: 1434 action_str = "ignore"; 1435 break; 1436 case BDRV_ACTION_STOP: 1437 action_str = "stop"; 1438 break; 1439 default: 1440 abort(); 1441 } 1442 1443 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1444 bdrv->device_name, 1445 action_str, 1446 is_read ? "read" : "write"); 1447 monitor_protocol_event(ev, data); 1448 1449 qobject_decref(data); 1450 } 1451 1452 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1453 { 1454 QObject *data; 1455 1456 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1457 bdrv_get_device_name(bs), ejected); 1458 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1459 1460 qobject_decref(data); 1461 } 1462 1463 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1464 { 1465 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1466 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1467 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1468 if (tray_was_closed) { 1469 /* tray open */ 1470 bdrv_emit_qmp_eject_event(bs, true); 1471 } 1472 if (load) { 1473 /* tray close */ 1474 bdrv_emit_qmp_eject_event(bs, false); 1475 } 1476 } 1477 } 1478 1479 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1480 { 1481 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1482 } 1483 1484 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1485 { 1486 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1487 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1488 } 1489 } 1490 1491 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1492 { 1493 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1494 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1495 } 1496 return false; 1497 } 1498 1499 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1500 { 1501 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1502 bs->dev_ops->resize_cb(bs->dev_opaque); 1503 } 1504 } 1505 1506 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1507 { 1508 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1509 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1510 } 1511 return false; 1512 } 1513 1514 /* 1515 * Run consistency checks on an image 1516 * 1517 * Returns 0 if the check could be completed (it doesn't mean that the image is 1518 * free of errors) or -errno when an internal error occurred. The results of the 1519 * check are stored in res. 1520 */ 1521 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1522 { 1523 if (bs->drv->bdrv_check == NULL) { 1524 return -ENOTSUP; 1525 } 1526 1527 memset(res, 0, sizeof(*res)); 1528 return bs->drv->bdrv_check(bs, res, fix); 1529 } 1530 1531 #define COMMIT_BUF_SECTORS 2048 1532 1533 /* commit COW file into the raw image */ 1534 int bdrv_commit(BlockDriverState *bs) 1535 { 1536 BlockDriver *drv = bs->drv; 1537 int64_t sector, total_sectors; 1538 int n, ro, open_flags; 1539 int ret = 0; 1540 uint8_t *buf; 1541 char filename[PATH_MAX]; 1542 1543 if (!drv) 1544 return -ENOMEDIUM; 1545 1546 if (!bs->backing_hd) { 1547 return -ENOTSUP; 1548 } 1549 1550 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1551 return -EBUSY; 1552 } 1553 1554 ro = bs->backing_hd->read_only; 1555 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1556 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1557 open_flags = bs->backing_hd->open_flags; 1558 1559 if (ro) { 1560 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1561 return -EACCES; 1562 } 1563 } 1564 1565 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1566 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1567 1568 for (sector = 0; sector < total_sectors; sector += n) { 1569 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1570 1571 if (bdrv_read(bs, sector, buf, n) != 0) { 1572 ret = -EIO; 1573 goto ro_cleanup; 1574 } 1575 1576 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1577 ret = -EIO; 1578 goto ro_cleanup; 1579 } 1580 } 1581 } 1582 1583 if (drv->bdrv_make_empty) { 1584 ret = drv->bdrv_make_empty(bs); 1585 bdrv_flush(bs); 1586 } 1587 1588 /* 1589 * Make sure all data we wrote to the backing device is actually 1590 * stable on disk. 1591 */ 1592 if (bs->backing_hd) 1593 bdrv_flush(bs->backing_hd); 1594 1595 ro_cleanup: 1596 g_free(buf); 1597 1598 if (ro) { 1599 /* ignoring error return here */ 1600 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1601 } 1602 1603 return ret; 1604 } 1605 1606 int bdrv_commit_all(void) 1607 { 1608 BlockDriverState *bs; 1609 1610 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1611 int ret = bdrv_commit(bs); 1612 if (ret < 0) { 1613 return ret; 1614 } 1615 } 1616 return 0; 1617 } 1618 1619 struct BdrvTrackedRequest { 1620 BlockDriverState *bs; 1621 int64_t sector_num; 1622 int nb_sectors; 1623 bool is_write; 1624 QLIST_ENTRY(BdrvTrackedRequest) list; 1625 Coroutine *co; /* owner, used for deadlock detection */ 1626 CoQueue wait_queue; /* coroutines blocked on this request */ 1627 }; 1628 1629 /** 1630 * Remove an active request from the tracked requests list 1631 * 1632 * This function should be called when a tracked request is completing. 1633 */ 1634 static void tracked_request_end(BdrvTrackedRequest *req) 1635 { 1636 QLIST_REMOVE(req, list); 1637 qemu_co_queue_restart_all(&req->wait_queue); 1638 } 1639 1640 /** 1641 * Add an active request to the tracked requests list 1642 */ 1643 static void tracked_request_begin(BdrvTrackedRequest *req, 1644 BlockDriverState *bs, 1645 int64_t sector_num, 1646 int nb_sectors, bool is_write) 1647 { 1648 *req = (BdrvTrackedRequest){ 1649 .bs = bs, 1650 .sector_num = sector_num, 1651 .nb_sectors = nb_sectors, 1652 .is_write = is_write, 1653 .co = qemu_coroutine_self(), 1654 }; 1655 1656 qemu_co_queue_init(&req->wait_queue); 1657 1658 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1659 } 1660 1661 /** 1662 * Round a region to cluster boundaries 1663 */ 1664 static void round_to_clusters(BlockDriverState *bs, 1665 int64_t sector_num, int nb_sectors, 1666 int64_t *cluster_sector_num, 1667 int *cluster_nb_sectors) 1668 { 1669 BlockDriverInfo bdi; 1670 1671 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1672 *cluster_sector_num = sector_num; 1673 *cluster_nb_sectors = nb_sectors; 1674 } else { 1675 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1676 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1677 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1678 nb_sectors, c); 1679 } 1680 } 1681 1682 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1683 int64_t sector_num, int nb_sectors) { 1684 /* aaaa bbbb */ 1685 if (sector_num >= req->sector_num + req->nb_sectors) { 1686 return false; 1687 } 1688 /* bbbb aaaa */ 1689 if (req->sector_num >= sector_num + nb_sectors) { 1690 return false; 1691 } 1692 return true; 1693 } 1694 1695 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1696 int64_t sector_num, int nb_sectors) 1697 { 1698 BdrvTrackedRequest *req; 1699 int64_t cluster_sector_num; 1700 int cluster_nb_sectors; 1701 bool retry; 1702 1703 /* If we touch the same cluster it counts as an overlap. This guarantees 1704 * that allocating writes will be serialized and not race with each other 1705 * for the same cluster. For example, in copy-on-read it ensures that the 1706 * CoR read and write operations are atomic and guest writes cannot 1707 * interleave between them. 1708 */ 1709 round_to_clusters(bs, sector_num, nb_sectors, 1710 &cluster_sector_num, &cluster_nb_sectors); 1711 1712 do { 1713 retry = false; 1714 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1715 if (tracked_request_overlaps(req, cluster_sector_num, 1716 cluster_nb_sectors)) { 1717 /* Hitting this means there was a reentrant request, for 1718 * example, a block driver issuing nested requests. This must 1719 * never happen since it means deadlock. 1720 */ 1721 assert(qemu_coroutine_self() != req->co); 1722 1723 qemu_co_queue_wait(&req->wait_queue); 1724 retry = true; 1725 break; 1726 } 1727 } 1728 } while (retry); 1729 } 1730 1731 /* 1732 * Return values: 1733 * 0 - success 1734 * -EINVAL - backing format specified, but no file 1735 * -ENOSPC - can't update the backing file because no space is left in the 1736 * image file header 1737 * -ENOTSUP - format driver doesn't support changing the backing file 1738 */ 1739 int bdrv_change_backing_file(BlockDriverState *bs, 1740 const char *backing_file, const char *backing_fmt) 1741 { 1742 BlockDriver *drv = bs->drv; 1743 int ret; 1744 1745 /* Backing file format doesn't make sense without a backing file */ 1746 if (backing_fmt && !backing_file) { 1747 return -EINVAL; 1748 } 1749 1750 if (drv->bdrv_change_backing_file != NULL) { 1751 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1752 } else { 1753 ret = -ENOTSUP; 1754 } 1755 1756 if (ret == 0) { 1757 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1758 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1759 } 1760 return ret; 1761 } 1762 1763 /* 1764 * Finds the image layer in the chain that has 'bs' as its backing file. 1765 * 1766 * active is the current topmost image. 1767 * 1768 * Returns NULL if bs is not found in active's image chain, 1769 * or if active == bs. 1770 */ 1771 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1772 BlockDriverState *bs) 1773 { 1774 BlockDriverState *overlay = NULL; 1775 BlockDriverState *intermediate; 1776 1777 assert(active != NULL); 1778 assert(bs != NULL); 1779 1780 /* if bs is the same as active, then by definition it has no overlay 1781 */ 1782 if (active == bs) { 1783 return NULL; 1784 } 1785 1786 intermediate = active; 1787 while (intermediate->backing_hd) { 1788 if (intermediate->backing_hd == bs) { 1789 overlay = intermediate; 1790 break; 1791 } 1792 intermediate = intermediate->backing_hd; 1793 } 1794 1795 return overlay; 1796 } 1797 1798 typedef struct BlkIntermediateStates { 1799 BlockDriverState *bs; 1800 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 1801 } BlkIntermediateStates; 1802 1803 1804 /* 1805 * Drops images above 'base' up to and including 'top', and sets the image 1806 * above 'top' to have base as its backing file. 1807 * 1808 * Requires that the overlay to 'top' is opened r/w, so that the backing file 1809 * information in 'bs' can be properly updated. 1810 * 1811 * E.g., this will convert the following chain: 1812 * bottom <- base <- intermediate <- top <- active 1813 * 1814 * to 1815 * 1816 * bottom <- base <- active 1817 * 1818 * It is allowed for bottom==base, in which case it converts: 1819 * 1820 * base <- intermediate <- top <- active 1821 * 1822 * to 1823 * 1824 * base <- active 1825 * 1826 * Error conditions: 1827 * if active == top, that is considered an error 1828 * 1829 */ 1830 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 1831 BlockDriverState *base) 1832 { 1833 BlockDriverState *intermediate; 1834 BlockDriverState *base_bs = NULL; 1835 BlockDriverState *new_top_bs = NULL; 1836 BlkIntermediateStates *intermediate_state, *next; 1837 int ret = -EIO; 1838 1839 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 1840 QSIMPLEQ_INIT(&states_to_delete); 1841 1842 if (!top->drv || !base->drv) { 1843 goto exit; 1844 } 1845 1846 new_top_bs = bdrv_find_overlay(active, top); 1847 1848 if (new_top_bs == NULL) { 1849 /* we could not find the image above 'top', this is an error */ 1850 goto exit; 1851 } 1852 1853 /* special case of new_top_bs->backing_hd already pointing to base - nothing 1854 * to do, no intermediate images */ 1855 if (new_top_bs->backing_hd == base) { 1856 ret = 0; 1857 goto exit; 1858 } 1859 1860 intermediate = top; 1861 1862 /* now we will go down through the list, and add each BDS we find 1863 * into our deletion queue, until we hit the 'base' 1864 */ 1865 while (intermediate) { 1866 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 1867 intermediate_state->bs = intermediate; 1868 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 1869 1870 if (intermediate->backing_hd == base) { 1871 base_bs = intermediate->backing_hd; 1872 break; 1873 } 1874 intermediate = intermediate->backing_hd; 1875 } 1876 if (base_bs == NULL) { 1877 /* something went wrong, we did not end at the base. safely 1878 * unravel everything, and exit with error */ 1879 goto exit; 1880 } 1881 1882 /* success - we can delete the intermediate states, and link top->base */ 1883 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 1884 base_bs->drv ? base_bs->drv->format_name : ""); 1885 if (ret) { 1886 goto exit; 1887 } 1888 new_top_bs->backing_hd = base_bs; 1889 1890 1891 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1892 /* so that bdrv_close() does not recursively close the chain */ 1893 intermediate_state->bs->backing_hd = NULL; 1894 bdrv_delete(intermediate_state->bs); 1895 } 1896 ret = 0; 1897 1898 exit: 1899 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1900 g_free(intermediate_state); 1901 } 1902 return ret; 1903 } 1904 1905 1906 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1907 size_t size) 1908 { 1909 int64_t len; 1910 1911 if (!bdrv_is_inserted(bs)) 1912 return -ENOMEDIUM; 1913 1914 if (bs->growable) 1915 return 0; 1916 1917 len = bdrv_getlength(bs); 1918 1919 if (offset < 0) 1920 return -EIO; 1921 1922 if ((offset > len) || (len - offset < size)) 1923 return -EIO; 1924 1925 return 0; 1926 } 1927 1928 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1929 int nb_sectors) 1930 { 1931 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1932 nb_sectors * BDRV_SECTOR_SIZE); 1933 } 1934 1935 typedef struct RwCo { 1936 BlockDriverState *bs; 1937 int64_t sector_num; 1938 int nb_sectors; 1939 QEMUIOVector *qiov; 1940 bool is_write; 1941 int ret; 1942 } RwCo; 1943 1944 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1945 { 1946 RwCo *rwco = opaque; 1947 1948 if (!rwco->is_write) { 1949 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1950 rwco->nb_sectors, rwco->qiov, 0); 1951 } else { 1952 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1953 rwco->nb_sectors, rwco->qiov, 0); 1954 } 1955 } 1956 1957 /* 1958 * Process a synchronous request using coroutines 1959 */ 1960 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1961 int nb_sectors, bool is_write) 1962 { 1963 QEMUIOVector qiov; 1964 struct iovec iov = { 1965 .iov_base = (void *)buf, 1966 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1967 }; 1968 Coroutine *co; 1969 RwCo rwco = { 1970 .bs = bs, 1971 .sector_num = sector_num, 1972 .nb_sectors = nb_sectors, 1973 .qiov = &qiov, 1974 .is_write = is_write, 1975 .ret = NOT_DONE, 1976 }; 1977 1978 qemu_iovec_init_external(&qiov, &iov, 1); 1979 1980 /** 1981 * In sync call context, when the vcpu is blocked, this throttling timer 1982 * will not fire; so the I/O throttling function has to be disabled here 1983 * if it has been enabled. 1984 */ 1985 if (bs->io_limits_enabled) { 1986 fprintf(stderr, "Disabling I/O throttling on '%s' due " 1987 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 1988 bdrv_io_limits_disable(bs); 1989 } 1990 1991 if (qemu_in_coroutine()) { 1992 /* Fast-path if already in coroutine context */ 1993 bdrv_rw_co_entry(&rwco); 1994 } else { 1995 co = qemu_coroutine_create(bdrv_rw_co_entry); 1996 qemu_coroutine_enter(co, &rwco); 1997 while (rwco.ret == NOT_DONE) { 1998 qemu_aio_wait(); 1999 } 2000 } 2001 return rwco.ret; 2002 } 2003 2004 /* return < 0 if error. See bdrv_write() for the return codes */ 2005 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2006 uint8_t *buf, int nb_sectors) 2007 { 2008 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 2009 } 2010 2011 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2012 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2013 uint8_t *buf, int nb_sectors) 2014 { 2015 bool enabled; 2016 int ret; 2017 2018 enabled = bs->io_limits_enabled; 2019 bs->io_limits_enabled = false; 2020 ret = bdrv_read(bs, 0, buf, 1); 2021 bs->io_limits_enabled = enabled; 2022 return ret; 2023 } 2024 2025 #define BITS_PER_LONG (sizeof(unsigned long) * 8) 2026 2027 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num, 2028 int nb_sectors, int dirty) 2029 { 2030 int64_t start, end; 2031 unsigned long val, idx, bit; 2032 2033 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK; 2034 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK; 2035 2036 for (; start <= end; start++) { 2037 idx = start / BITS_PER_LONG; 2038 bit = start % BITS_PER_LONG; 2039 val = bs->dirty_bitmap[idx]; 2040 if (dirty) { 2041 if (!(val & (1UL << bit))) { 2042 bs->dirty_count++; 2043 val |= 1UL << bit; 2044 } 2045 } else { 2046 if (val & (1UL << bit)) { 2047 bs->dirty_count--; 2048 val &= ~(1UL << bit); 2049 } 2050 } 2051 bs->dirty_bitmap[idx] = val; 2052 } 2053 } 2054 2055 /* Return < 0 if error. Important errors are: 2056 -EIO generic I/O error (may happen for all errors) 2057 -ENOMEDIUM No media inserted. 2058 -EINVAL Invalid sector number or nb_sectors 2059 -EACCES Trying to write a read-only device 2060 */ 2061 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2062 const uint8_t *buf, int nb_sectors) 2063 { 2064 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2065 } 2066 2067 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2068 void *buf, int count1) 2069 { 2070 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2071 int len, nb_sectors, count; 2072 int64_t sector_num; 2073 int ret; 2074 2075 count = count1; 2076 /* first read to align to sector start */ 2077 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2078 if (len > count) 2079 len = count; 2080 sector_num = offset >> BDRV_SECTOR_BITS; 2081 if (len > 0) { 2082 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2083 return ret; 2084 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2085 count -= len; 2086 if (count == 0) 2087 return count1; 2088 sector_num++; 2089 buf += len; 2090 } 2091 2092 /* read the sectors "in place" */ 2093 nb_sectors = count >> BDRV_SECTOR_BITS; 2094 if (nb_sectors > 0) { 2095 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2096 return ret; 2097 sector_num += nb_sectors; 2098 len = nb_sectors << BDRV_SECTOR_BITS; 2099 buf += len; 2100 count -= len; 2101 } 2102 2103 /* add data from the last sector */ 2104 if (count > 0) { 2105 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2106 return ret; 2107 memcpy(buf, tmp_buf, count); 2108 } 2109 return count1; 2110 } 2111 2112 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2113 const void *buf, int count1) 2114 { 2115 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2116 int len, nb_sectors, count; 2117 int64_t sector_num; 2118 int ret; 2119 2120 count = count1; 2121 /* first write to align to sector start */ 2122 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2123 if (len > count) 2124 len = count; 2125 sector_num = offset >> BDRV_SECTOR_BITS; 2126 if (len > 0) { 2127 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2128 return ret; 2129 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 2130 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2131 return ret; 2132 count -= len; 2133 if (count == 0) 2134 return count1; 2135 sector_num++; 2136 buf += len; 2137 } 2138 2139 /* write the sectors "in place" */ 2140 nb_sectors = count >> BDRV_SECTOR_BITS; 2141 if (nb_sectors > 0) { 2142 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 2143 return ret; 2144 sector_num += nb_sectors; 2145 len = nb_sectors << BDRV_SECTOR_BITS; 2146 buf += len; 2147 count -= len; 2148 } 2149 2150 /* add data from the last sector */ 2151 if (count > 0) { 2152 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2153 return ret; 2154 memcpy(tmp_buf, buf, count); 2155 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2156 return ret; 2157 } 2158 return count1; 2159 } 2160 2161 /* 2162 * Writes to the file and ensures that no writes are reordered across this 2163 * request (acts as a barrier) 2164 * 2165 * Returns 0 on success, -errno in error cases. 2166 */ 2167 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2168 const void *buf, int count) 2169 { 2170 int ret; 2171 2172 ret = bdrv_pwrite(bs, offset, buf, count); 2173 if (ret < 0) { 2174 return ret; 2175 } 2176 2177 /* No flush needed for cache modes that already do it */ 2178 if (bs->enable_write_cache) { 2179 bdrv_flush(bs); 2180 } 2181 2182 return 0; 2183 } 2184 2185 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2186 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2187 { 2188 /* Perform I/O through a temporary buffer so that users who scribble over 2189 * their read buffer while the operation is in progress do not end up 2190 * modifying the image file. This is critical for zero-copy guest I/O 2191 * where anything might happen inside guest memory. 2192 */ 2193 void *bounce_buffer; 2194 2195 BlockDriver *drv = bs->drv; 2196 struct iovec iov; 2197 QEMUIOVector bounce_qiov; 2198 int64_t cluster_sector_num; 2199 int cluster_nb_sectors; 2200 size_t skip_bytes; 2201 int ret; 2202 2203 /* Cover entire cluster so no additional backing file I/O is required when 2204 * allocating cluster in the image file. 2205 */ 2206 round_to_clusters(bs, sector_num, nb_sectors, 2207 &cluster_sector_num, &cluster_nb_sectors); 2208 2209 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2210 cluster_sector_num, cluster_nb_sectors); 2211 2212 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2213 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2214 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2215 2216 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2217 &bounce_qiov); 2218 if (ret < 0) { 2219 goto err; 2220 } 2221 2222 if (drv->bdrv_co_write_zeroes && 2223 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2224 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2225 cluster_nb_sectors); 2226 } else { 2227 /* This does not change the data on the disk, it is not necessary 2228 * to flush even in cache=writethrough mode. 2229 */ 2230 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2231 &bounce_qiov); 2232 } 2233 2234 if (ret < 0) { 2235 /* It might be okay to ignore write errors for guest requests. If this 2236 * is a deliberate copy-on-read then we don't want to ignore the error. 2237 * Simply report it in all cases. 2238 */ 2239 goto err; 2240 } 2241 2242 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2243 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2244 nb_sectors * BDRV_SECTOR_SIZE); 2245 2246 err: 2247 qemu_vfree(bounce_buffer); 2248 return ret; 2249 } 2250 2251 /* 2252 * Handle a read request in coroutine context 2253 */ 2254 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2255 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2256 BdrvRequestFlags flags) 2257 { 2258 BlockDriver *drv = bs->drv; 2259 BdrvTrackedRequest req; 2260 int ret; 2261 2262 if (!drv) { 2263 return -ENOMEDIUM; 2264 } 2265 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2266 return -EIO; 2267 } 2268 2269 /* throttling disk read I/O */ 2270 if (bs->io_limits_enabled) { 2271 bdrv_io_limits_intercept(bs, false, nb_sectors); 2272 } 2273 2274 if (bs->copy_on_read) { 2275 flags |= BDRV_REQ_COPY_ON_READ; 2276 } 2277 if (flags & BDRV_REQ_COPY_ON_READ) { 2278 bs->copy_on_read_in_flight++; 2279 } 2280 2281 if (bs->copy_on_read_in_flight) { 2282 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2283 } 2284 2285 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2286 2287 if (flags & BDRV_REQ_COPY_ON_READ) { 2288 int pnum; 2289 2290 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2291 if (ret < 0) { 2292 goto out; 2293 } 2294 2295 if (!ret || pnum != nb_sectors) { 2296 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2297 goto out; 2298 } 2299 } 2300 2301 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2302 2303 out: 2304 tracked_request_end(&req); 2305 2306 if (flags & BDRV_REQ_COPY_ON_READ) { 2307 bs->copy_on_read_in_flight--; 2308 } 2309 2310 return ret; 2311 } 2312 2313 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2314 int nb_sectors, QEMUIOVector *qiov) 2315 { 2316 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2317 2318 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2319 } 2320 2321 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2322 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2323 { 2324 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2325 2326 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2327 BDRV_REQ_COPY_ON_READ); 2328 } 2329 2330 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2331 int64_t sector_num, int nb_sectors) 2332 { 2333 BlockDriver *drv = bs->drv; 2334 QEMUIOVector qiov; 2335 struct iovec iov; 2336 int ret; 2337 2338 /* TODO Emulate only part of misaligned requests instead of letting block 2339 * drivers return -ENOTSUP and emulate everything */ 2340 2341 /* First try the efficient write zeroes operation */ 2342 if (drv->bdrv_co_write_zeroes) { 2343 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2344 if (ret != -ENOTSUP) { 2345 return ret; 2346 } 2347 } 2348 2349 /* Fall back to bounce buffer if write zeroes is unsupported */ 2350 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2351 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2352 memset(iov.iov_base, 0, iov.iov_len); 2353 qemu_iovec_init_external(&qiov, &iov, 1); 2354 2355 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2356 2357 qemu_vfree(iov.iov_base); 2358 return ret; 2359 } 2360 2361 /* 2362 * Handle a write request in coroutine context 2363 */ 2364 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2365 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2366 BdrvRequestFlags flags) 2367 { 2368 BlockDriver *drv = bs->drv; 2369 BdrvTrackedRequest req; 2370 int ret; 2371 2372 if (!bs->drv) { 2373 return -ENOMEDIUM; 2374 } 2375 if (bs->read_only) { 2376 return -EACCES; 2377 } 2378 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2379 return -EIO; 2380 } 2381 2382 /* throttling disk write I/O */ 2383 if (bs->io_limits_enabled) { 2384 bdrv_io_limits_intercept(bs, true, nb_sectors); 2385 } 2386 2387 if (bs->copy_on_read_in_flight) { 2388 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2389 } 2390 2391 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2392 2393 if (flags & BDRV_REQ_ZERO_WRITE) { 2394 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2395 } else { 2396 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2397 } 2398 2399 if (ret == 0 && !bs->enable_write_cache) { 2400 ret = bdrv_co_flush(bs); 2401 } 2402 2403 if (bs->dirty_bitmap) { 2404 bdrv_set_dirty(bs, sector_num, nb_sectors); 2405 } 2406 2407 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2408 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2409 } 2410 2411 tracked_request_end(&req); 2412 2413 return ret; 2414 } 2415 2416 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2417 int nb_sectors, QEMUIOVector *qiov) 2418 { 2419 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2420 2421 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2422 } 2423 2424 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2425 int64_t sector_num, int nb_sectors) 2426 { 2427 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2428 2429 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2430 BDRV_REQ_ZERO_WRITE); 2431 } 2432 2433 /** 2434 * Truncate file to 'offset' bytes (needed only for file protocols) 2435 */ 2436 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2437 { 2438 BlockDriver *drv = bs->drv; 2439 int ret; 2440 if (!drv) 2441 return -ENOMEDIUM; 2442 if (!drv->bdrv_truncate) 2443 return -ENOTSUP; 2444 if (bs->read_only) 2445 return -EACCES; 2446 if (bdrv_in_use(bs)) 2447 return -EBUSY; 2448 ret = drv->bdrv_truncate(bs, offset); 2449 if (ret == 0) { 2450 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2451 bdrv_dev_resize_cb(bs); 2452 } 2453 return ret; 2454 } 2455 2456 /** 2457 * Length of a allocated file in bytes. Sparse files are counted by actual 2458 * allocated space. Return < 0 if error or unknown. 2459 */ 2460 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2461 { 2462 BlockDriver *drv = bs->drv; 2463 if (!drv) { 2464 return -ENOMEDIUM; 2465 } 2466 if (drv->bdrv_get_allocated_file_size) { 2467 return drv->bdrv_get_allocated_file_size(bs); 2468 } 2469 if (bs->file) { 2470 return bdrv_get_allocated_file_size(bs->file); 2471 } 2472 return -ENOTSUP; 2473 } 2474 2475 /** 2476 * Length of a file in bytes. Return < 0 if error or unknown. 2477 */ 2478 int64_t bdrv_getlength(BlockDriverState *bs) 2479 { 2480 BlockDriver *drv = bs->drv; 2481 if (!drv) 2482 return -ENOMEDIUM; 2483 2484 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2485 if (drv->bdrv_getlength) { 2486 return drv->bdrv_getlength(bs); 2487 } 2488 } 2489 return bs->total_sectors * BDRV_SECTOR_SIZE; 2490 } 2491 2492 /* return 0 as number of sectors if no device present or error */ 2493 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2494 { 2495 int64_t length; 2496 length = bdrv_getlength(bs); 2497 if (length < 0) 2498 length = 0; 2499 else 2500 length = length >> BDRV_SECTOR_BITS; 2501 *nb_sectors_ptr = length; 2502 } 2503 2504 /* throttling disk io limits */ 2505 void bdrv_set_io_limits(BlockDriverState *bs, 2506 BlockIOLimit *io_limits) 2507 { 2508 bs->io_limits = *io_limits; 2509 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2510 } 2511 2512 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2513 BlockdevOnError on_write_error) 2514 { 2515 bs->on_read_error = on_read_error; 2516 bs->on_write_error = on_write_error; 2517 } 2518 2519 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2520 { 2521 return is_read ? bs->on_read_error : bs->on_write_error; 2522 } 2523 2524 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2525 { 2526 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2527 2528 switch (on_err) { 2529 case BLOCKDEV_ON_ERROR_ENOSPC: 2530 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2531 case BLOCKDEV_ON_ERROR_STOP: 2532 return BDRV_ACTION_STOP; 2533 case BLOCKDEV_ON_ERROR_REPORT: 2534 return BDRV_ACTION_REPORT; 2535 case BLOCKDEV_ON_ERROR_IGNORE: 2536 return BDRV_ACTION_IGNORE; 2537 default: 2538 abort(); 2539 } 2540 } 2541 2542 /* This is done by device models because, while the block layer knows 2543 * about the error, it does not know whether an operation comes from 2544 * the device or the block layer (from a job, for example). 2545 */ 2546 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2547 bool is_read, int error) 2548 { 2549 assert(error >= 0); 2550 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2551 if (action == BDRV_ACTION_STOP) { 2552 vm_stop(RUN_STATE_IO_ERROR); 2553 bdrv_iostatus_set_err(bs, error); 2554 } 2555 } 2556 2557 int bdrv_is_read_only(BlockDriverState *bs) 2558 { 2559 return bs->read_only; 2560 } 2561 2562 int bdrv_is_sg(BlockDriverState *bs) 2563 { 2564 return bs->sg; 2565 } 2566 2567 int bdrv_enable_write_cache(BlockDriverState *bs) 2568 { 2569 return bs->enable_write_cache; 2570 } 2571 2572 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2573 { 2574 bs->enable_write_cache = wce; 2575 2576 /* so a reopen() will preserve wce */ 2577 if (wce) { 2578 bs->open_flags |= BDRV_O_CACHE_WB; 2579 } else { 2580 bs->open_flags &= ~BDRV_O_CACHE_WB; 2581 } 2582 } 2583 2584 int bdrv_is_encrypted(BlockDriverState *bs) 2585 { 2586 if (bs->backing_hd && bs->backing_hd->encrypted) 2587 return 1; 2588 return bs->encrypted; 2589 } 2590 2591 int bdrv_key_required(BlockDriverState *bs) 2592 { 2593 BlockDriverState *backing_hd = bs->backing_hd; 2594 2595 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2596 return 1; 2597 return (bs->encrypted && !bs->valid_key); 2598 } 2599 2600 int bdrv_set_key(BlockDriverState *bs, const char *key) 2601 { 2602 int ret; 2603 if (bs->backing_hd && bs->backing_hd->encrypted) { 2604 ret = bdrv_set_key(bs->backing_hd, key); 2605 if (ret < 0) 2606 return ret; 2607 if (!bs->encrypted) 2608 return 0; 2609 } 2610 if (!bs->encrypted) { 2611 return -EINVAL; 2612 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2613 return -ENOMEDIUM; 2614 } 2615 ret = bs->drv->bdrv_set_key(bs, key); 2616 if (ret < 0) { 2617 bs->valid_key = 0; 2618 } else if (!bs->valid_key) { 2619 bs->valid_key = 1; 2620 /* call the change callback now, we skipped it on open */ 2621 bdrv_dev_change_media_cb(bs, true); 2622 } 2623 return ret; 2624 } 2625 2626 const char *bdrv_get_format_name(BlockDriverState *bs) 2627 { 2628 return bs->drv ? bs->drv->format_name : NULL; 2629 } 2630 2631 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2632 void *opaque) 2633 { 2634 BlockDriver *drv; 2635 2636 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2637 it(opaque, drv->format_name); 2638 } 2639 } 2640 2641 BlockDriverState *bdrv_find(const char *name) 2642 { 2643 BlockDriverState *bs; 2644 2645 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2646 if (!strcmp(name, bs->device_name)) { 2647 return bs; 2648 } 2649 } 2650 return NULL; 2651 } 2652 2653 BlockDriverState *bdrv_next(BlockDriverState *bs) 2654 { 2655 if (!bs) { 2656 return QTAILQ_FIRST(&bdrv_states); 2657 } 2658 return QTAILQ_NEXT(bs, list); 2659 } 2660 2661 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2662 { 2663 BlockDriverState *bs; 2664 2665 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2666 it(opaque, bs); 2667 } 2668 } 2669 2670 const char *bdrv_get_device_name(BlockDriverState *bs) 2671 { 2672 return bs->device_name; 2673 } 2674 2675 int bdrv_get_flags(BlockDriverState *bs) 2676 { 2677 return bs->open_flags; 2678 } 2679 2680 void bdrv_flush_all(void) 2681 { 2682 BlockDriverState *bs; 2683 2684 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2685 bdrv_flush(bs); 2686 } 2687 } 2688 2689 int bdrv_has_zero_init(BlockDriverState *bs) 2690 { 2691 assert(bs->drv); 2692 2693 if (bs->drv->bdrv_has_zero_init) { 2694 return bs->drv->bdrv_has_zero_init(bs); 2695 } 2696 2697 return 1; 2698 } 2699 2700 typedef struct BdrvCoIsAllocatedData { 2701 BlockDriverState *bs; 2702 int64_t sector_num; 2703 int nb_sectors; 2704 int *pnum; 2705 int ret; 2706 bool done; 2707 } BdrvCoIsAllocatedData; 2708 2709 /* 2710 * Returns true iff the specified sector is present in the disk image. Drivers 2711 * not implementing the functionality are assumed to not support backing files, 2712 * hence all their sectors are reported as allocated. 2713 * 2714 * If 'sector_num' is beyond the end of the disk image the return value is 0 2715 * and 'pnum' is set to 0. 2716 * 2717 * 'pnum' is set to the number of sectors (including and immediately following 2718 * the specified sector) that are known to be in the same 2719 * allocated/unallocated state. 2720 * 2721 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2722 * beyond the end of the disk image it will be clamped. 2723 */ 2724 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2725 int nb_sectors, int *pnum) 2726 { 2727 int64_t n; 2728 2729 if (sector_num >= bs->total_sectors) { 2730 *pnum = 0; 2731 return 0; 2732 } 2733 2734 n = bs->total_sectors - sector_num; 2735 if (n < nb_sectors) { 2736 nb_sectors = n; 2737 } 2738 2739 if (!bs->drv->bdrv_co_is_allocated) { 2740 *pnum = nb_sectors; 2741 return 1; 2742 } 2743 2744 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2745 } 2746 2747 /* Coroutine wrapper for bdrv_is_allocated() */ 2748 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2749 { 2750 BdrvCoIsAllocatedData *data = opaque; 2751 BlockDriverState *bs = data->bs; 2752 2753 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2754 data->pnum); 2755 data->done = true; 2756 } 2757 2758 /* 2759 * Synchronous wrapper around bdrv_co_is_allocated(). 2760 * 2761 * See bdrv_co_is_allocated() for details. 2762 */ 2763 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2764 int *pnum) 2765 { 2766 Coroutine *co; 2767 BdrvCoIsAllocatedData data = { 2768 .bs = bs, 2769 .sector_num = sector_num, 2770 .nb_sectors = nb_sectors, 2771 .pnum = pnum, 2772 .done = false, 2773 }; 2774 2775 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2776 qemu_coroutine_enter(co, &data); 2777 while (!data.done) { 2778 qemu_aio_wait(); 2779 } 2780 return data.ret; 2781 } 2782 2783 /* 2784 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2785 * 2786 * Return true if the given sector is allocated in any image between 2787 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2788 * sector is allocated in any image of the chain. Return false otherwise. 2789 * 2790 * 'pnum' is set to the number of sectors (including and immediately following 2791 * the specified sector) that are known to be in the same 2792 * allocated/unallocated state. 2793 * 2794 */ 2795 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2796 BlockDriverState *base, 2797 int64_t sector_num, 2798 int nb_sectors, int *pnum) 2799 { 2800 BlockDriverState *intermediate; 2801 int ret, n = nb_sectors; 2802 2803 intermediate = top; 2804 while (intermediate && intermediate != base) { 2805 int pnum_inter; 2806 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2807 &pnum_inter); 2808 if (ret < 0) { 2809 return ret; 2810 } else if (ret) { 2811 *pnum = pnum_inter; 2812 return 1; 2813 } 2814 2815 /* 2816 * [sector_num, nb_sectors] is unallocated on top but intermediate 2817 * might have 2818 * 2819 * [sector_num+x, nr_sectors] allocated. 2820 */ 2821 if (n > pnum_inter) { 2822 n = pnum_inter; 2823 } 2824 2825 intermediate = intermediate->backing_hd; 2826 } 2827 2828 *pnum = n; 2829 return 0; 2830 } 2831 2832 BlockInfo *bdrv_query_info(BlockDriverState *bs) 2833 { 2834 BlockInfo *info = g_malloc0(sizeof(*info)); 2835 info->device = g_strdup(bs->device_name); 2836 info->type = g_strdup("unknown"); 2837 info->locked = bdrv_dev_is_medium_locked(bs); 2838 info->removable = bdrv_dev_has_removable_media(bs); 2839 2840 if (bdrv_dev_has_removable_media(bs)) { 2841 info->has_tray_open = true; 2842 info->tray_open = bdrv_dev_is_tray_open(bs); 2843 } 2844 2845 if (bdrv_iostatus_is_enabled(bs)) { 2846 info->has_io_status = true; 2847 info->io_status = bs->iostatus; 2848 } 2849 2850 if (bs->dirty_bitmap) { 2851 info->has_dirty = true; 2852 info->dirty = g_malloc0(sizeof(*info->dirty)); 2853 info->dirty->count = bdrv_get_dirty_count(bs) * 2854 BDRV_SECTORS_PER_DIRTY_CHUNK * BDRV_SECTOR_SIZE; 2855 } 2856 2857 if (bs->drv) { 2858 info->has_inserted = true; 2859 info->inserted = g_malloc0(sizeof(*info->inserted)); 2860 info->inserted->file = g_strdup(bs->filename); 2861 info->inserted->ro = bs->read_only; 2862 info->inserted->drv = g_strdup(bs->drv->format_name); 2863 info->inserted->encrypted = bs->encrypted; 2864 info->inserted->encryption_key_missing = bdrv_key_required(bs); 2865 2866 if (bs->backing_file[0]) { 2867 info->inserted->has_backing_file = true; 2868 info->inserted->backing_file = g_strdup(bs->backing_file); 2869 } 2870 2871 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs); 2872 2873 if (bs->io_limits_enabled) { 2874 info->inserted->bps = 2875 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2876 info->inserted->bps_rd = 2877 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2878 info->inserted->bps_wr = 2879 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2880 info->inserted->iops = 2881 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2882 info->inserted->iops_rd = 2883 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2884 info->inserted->iops_wr = 2885 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2886 } 2887 } 2888 return info; 2889 } 2890 2891 BlockInfoList *qmp_query_block(Error **errp) 2892 { 2893 BlockInfoList *head = NULL, **p_next = &head; 2894 BlockDriverState *bs; 2895 2896 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2897 BlockInfoList *info = g_malloc0(sizeof(*info)); 2898 info->value = bdrv_query_info(bs); 2899 2900 *p_next = info; 2901 p_next = &info->next; 2902 } 2903 2904 return head; 2905 } 2906 2907 BlockStats *bdrv_query_stats(const BlockDriverState *bs) 2908 { 2909 BlockStats *s; 2910 2911 s = g_malloc0(sizeof(*s)); 2912 2913 if (bs->device_name[0]) { 2914 s->has_device = true; 2915 s->device = g_strdup(bs->device_name); 2916 } 2917 2918 s->stats = g_malloc0(sizeof(*s->stats)); 2919 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2920 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2921 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2922 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2923 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2924 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2925 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2926 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2927 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2928 2929 if (bs->file) { 2930 s->has_parent = true; 2931 s->parent = bdrv_query_stats(bs->file); 2932 } 2933 2934 return s; 2935 } 2936 2937 BlockStatsList *qmp_query_blockstats(Error **errp) 2938 { 2939 BlockStatsList *head = NULL, **p_next = &head; 2940 BlockDriverState *bs; 2941 2942 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2943 BlockStatsList *info = g_malloc0(sizeof(*info)); 2944 info->value = bdrv_query_stats(bs); 2945 2946 *p_next = info; 2947 p_next = &info->next; 2948 } 2949 2950 return head; 2951 } 2952 2953 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 2954 { 2955 if (bs->backing_hd && bs->backing_hd->encrypted) 2956 return bs->backing_file; 2957 else if (bs->encrypted) 2958 return bs->filename; 2959 else 2960 return NULL; 2961 } 2962 2963 void bdrv_get_backing_filename(BlockDriverState *bs, 2964 char *filename, int filename_size) 2965 { 2966 pstrcpy(filename, filename_size, bs->backing_file); 2967 } 2968 2969 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 2970 const uint8_t *buf, int nb_sectors) 2971 { 2972 BlockDriver *drv = bs->drv; 2973 if (!drv) 2974 return -ENOMEDIUM; 2975 if (!drv->bdrv_write_compressed) 2976 return -ENOTSUP; 2977 if (bdrv_check_request(bs, sector_num, nb_sectors)) 2978 return -EIO; 2979 2980 assert(!bs->dirty_bitmap); 2981 2982 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 2983 } 2984 2985 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 2986 { 2987 BlockDriver *drv = bs->drv; 2988 if (!drv) 2989 return -ENOMEDIUM; 2990 if (!drv->bdrv_get_info) 2991 return -ENOTSUP; 2992 memset(bdi, 0, sizeof(*bdi)); 2993 return drv->bdrv_get_info(bs, bdi); 2994 } 2995 2996 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2997 int64_t pos, int size) 2998 { 2999 BlockDriver *drv = bs->drv; 3000 if (!drv) 3001 return -ENOMEDIUM; 3002 if (drv->bdrv_save_vmstate) 3003 return drv->bdrv_save_vmstate(bs, buf, pos, size); 3004 if (bs->file) 3005 return bdrv_save_vmstate(bs->file, buf, pos, size); 3006 return -ENOTSUP; 3007 } 3008 3009 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3010 int64_t pos, int size) 3011 { 3012 BlockDriver *drv = bs->drv; 3013 if (!drv) 3014 return -ENOMEDIUM; 3015 if (drv->bdrv_load_vmstate) 3016 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3017 if (bs->file) 3018 return bdrv_load_vmstate(bs->file, buf, pos, size); 3019 return -ENOTSUP; 3020 } 3021 3022 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3023 { 3024 BlockDriver *drv = bs->drv; 3025 3026 if (!drv || !drv->bdrv_debug_event) { 3027 return; 3028 } 3029 3030 drv->bdrv_debug_event(bs, event); 3031 3032 } 3033 3034 /**************************************************************/ 3035 /* handling of snapshots */ 3036 3037 int bdrv_can_snapshot(BlockDriverState *bs) 3038 { 3039 BlockDriver *drv = bs->drv; 3040 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3041 return 0; 3042 } 3043 3044 if (!drv->bdrv_snapshot_create) { 3045 if (bs->file != NULL) { 3046 return bdrv_can_snapshot(bs->file); 3047 } 3048 return 0; 3049 } 3050 3051 return 1; 3052 } 3053 3054 int bdrv_is_snapshot(BlockDriverState *bs) 3055 { 3056 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3057 } 3058 3059 BlockDriverState *bdrv_snapshots(void) 3060 { 3061 BlockDriverState *bs; 3062 3063 if (bs_snapshots) { 3064 return bs_snapshots; 3065 } 3066 3067 bs = NULL; 3068 while ((bs = bdrv_next(bs))) { 3069 if (bdrv_can_snapshot(bs)) { 3070 bs_snapshots = bs; 3071 return bs; 3072 } 3073 } 3074 return NULL; 3075 } 3076 3077 int bdrv_snapshot_create(BlockDriverState *bs, 3078 QEMUSnapshotInfo *sn_info) 3079 { 3080 BlockDriver *drv = bs->drv; 3081 if (!drv) 3082 return -ENOMEDIUM; 3083 if (drv->bdrv_snapshot_create) 3084 return drv->bdrv_snapshot_create(bs, sn_info); 3085 if (bs->file) 3086 return bdrv_snapshot_create(bs->file, sn_info); 3087 return -ENOTSUP; 3088 } 3089 3090 int bdrv_snapshot_goto(BlockDriverState *bs, 3091 const char *snapshot_id) 3092 { 3093 BlockDriver *drv = bs->drv; 3094 int ret, open_ret; 3095 3096 if (!drv) 3097 return -ENOMEDIUM; 3098 if (drv->bdrv_snapshot_goto) 3099 return drv->bdrv_snapshot_goto(bs, snapshot_id); 3100 3101 if (bs->file) { 3102 drv->bdrv_close(bs); 3103 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 3104 open_ret = drv->bdrv_open(bs, bs->open_flags); 3105 if (open_ret < 0) { 3106 bdrv_delete(bs->file); 3107 bs->drv = NULL; 3108 return open_ret; 3109 } 3110 return ret; 3111 } 3112 3113 return -ENOTSUP; 3114 } 3115 3116 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 3117 { 3118 BlockDriver *drv = bs->drv; 3119 if (!drv) 3120 return -ENOMEDIUM; 3121 if (drv->bdrv_snapshot_delete) 3122 return drv->bdrv_snapshot_delete(bs, snapshot_id); 3123 if (bs->file) 3124 return bdrv_snapshot_delete(bs->file, snapshot_id); 3125 return -ENOTSUP; 3126 } 3127 3128 int bdrv_snapshot_list(BlockDriverState *bs, 3129 QEMUSnapshotInfo **psn_info) 3130 { 3131 BlockDriver *drv = bs->drv; 3132 if (!drv) 3133 return -ENOMEDIUM; 3134 if (drv->bdrv_snapshot_list) 3135 return drv->bdrv_snapshot_list(bs, psn_info); 3136 if (bs->file) 3137 return bdrv_snapshot_list(bs->file, psn_info); 3138 return -ENOTSUP; 3139 } 3140 3141 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 3142 const char *snapshot_name) 3143 { 3144 BlockDriver *drv = bs->drv; 3145 if (!drv) { 3146 return -ENOMEDIUM; 3147 } 3148 if (!bs->read_only) { 3149 return -EINVAL; 3150 } 3151 if (drv->bdrv_snapshot_load_tmp) { 3152 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 3153 } 3154 return -ENOTSUP; 3155 } 3156 3157 /* backing_file can either be relative, or absolute, or a protocol. If it is 3158 * relative, it must be relative to the chain. So, passing in bs->filename 3159 * from a BDS as backing_file should not be done, as that may be relative to 3160 * the CWD rather than the chain. */ 3161 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3162 const char *backing_file) 3163 { 3164 char *filename_full = NULL; 3165 char *backing_file_full = NULL; 3166 char *filename_tmp = NULL; 3167 int is_protocol = 0; 3168 BlockDriverState *curr_bs = NULL; 3169 BlockDriverState *retval = NULL; 3170 3171 if (!bs || !bs->drv || !backing_file) { 3172 return NULL; 3173 } 3174 3175 filename_full = g_malloc(PATH_MAX); 3176 backing_file_full = g_malloc(PATH_MAX); 3177 filename_tmp = g_malloc(PATH_MAX); 3178 3179 is_protocol = path_has_protocol(backing_file); 3180 3181 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3182 3183 /* If either of the filename paths is actually a protocol, then 3184 * compare unmodified paths; otherwise make paths relative */ 3185 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3186 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3187 retval = curr_bs->backing_hd; 3188 break; 3189 } 3190 } else { 3191 /* If not an absolute filename path, make it relative to the current 3192 * image's filename path */ 3193 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3194 backing_file); 3195 3196 /* We are going to compare absolute pathnames */ 3197 if (!realpath(filename_tmp, filename_full)) { 3198 continue; 3199 } 3200 3201 /* We need to make sure the backing filename we are comparing against 3202 * is relative to the current image filename (or absolute) */ 3203 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3204 curr_bs->backing_file); 3205 3206 if (!realpath(filename_tmp, backing_file_full)) { 3207 continue; 3208 } 3209 3210 if (strcmp(backing_file_full, filename_full) == 0) { 3211 retval = curr_bs->backing_hd; 3212 break; 3213 } 3214 } 3215 } 3216 3217 g_free(filename_full); 3218 g_free(backing_file_full); 3219 g_free(filename_tmp); 3220 return retval; 3221 } 3222 3223 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3224 { 3225 if (!bs->drv) { 3226 return 0; 3227 } 3228 3229 if (!bs->backing_hd) { 3230 return 0; 3231 } 3232 3233 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3234 } 3235 3236 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3237 { 3238 BlockDriverState *curr_bs = NULL; 3239 3240 if (!bs) { 3241 return NULL; 3242 } 3243 3244 curr_bs = bs; 3245 3246 while (curr_bs->backing_hd) { 3247 curr_bs = curr_bs->backing_hd; 3248 } 3249 return curr_bs; 3250 } 3251 3252 #define NB_SUFFIXES 4 3253 3254 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 3255 { 3256 static const char suffixes[NB_SUFFIXES] = "KMGT"; 3257 int64_t base; 3258 int i; 3259 3260 if (size <= 999) { 3261 snprintf(buf, buf_size, "%" PRId64, size); 3262 } else { 3263 base = 1024; 3264 for(i = 0; i < NB_SUFFIXES; i++) { 3265 if (size < (10 * base)) { 3266 snprintf(buf, buf_size, "%0.1f%c", 3267 (double)size / base, 3268 suffixes[i]); 3269 break; 3270 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3271 snprintf(buf, buf_size, "%" PRId64 "%c", 3272 ((size + (base >> 1)) / base), 3273 suffixes[i]); 3274 break; 3275 } 3276 base = base * 1024; 3277 } 3278 } 3279 return buf; 3280 } 3281 3282 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3283 { 3284 char buf1[128], date_buf[128], clock_buf[128]; 3285 #ifdef _WIN32 3286 struct tm *ptm; 3287 #else 3288 struct tm tm; 3289 #endif 3290 time_t ti; 3291 int64_t secs; 3292 3293 if (!sn) { 3294 snprintf(buf, buf_size, 3295 "%-10s%-20s%7s%20s%15s", 3296 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3297 } else { 3298 ti = sn->date_sec; 3299 #ifdef _WIN32 3300 ptm = localtime(&ti); 3301 strftime(date_buf, sizeof(date_buf), 3302 "%Y-%m-%d %H:%M:%S", ptm); 3303 #else 3304 localtime_r(&ti, &tm); 3305 strftime(date_buf, sizeof(date_buf), 3306 "%Y-%m-%d %H:%M:%S", &tm); 3307 #endif 3308 secs = sn->vm_clock_nsec / 1000000000; 3309 snprintf(clock_buf, sizeof(clock_buf), 3310 "%02d:%02d:%02d.%03d", 3311 (int)(secs / 3600), 3312 (int)((secs / 60) % 60), 3313 (int)(secs % 60), 3314 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3315 snprintf(buf, buf_size, 3316 "%-10s%-20s%7s%20s%15s", 3317 sn->id_str, sn->name, 3318 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3319 date_buf, 3320 clock_buf); 3321 } 3322 return buf; 3323 } 3324 3325 /**************************************************************/ 3326 /* async I/Os */ 3327 3328 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3329 QEMUIOVector *qiov, int nb_sectors, 3330 BlockDriverCompletionFunc *cb, void *opaque) 3331 { 3332 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3333 3334 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3335 cb, opaque, false); 3336 } 3337 3338 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3339 QEMUIOVector *qiov, int nb_sectors, 3340 BlockDriverCompletionFunc *cb, void *opaque) 3341 { 3342 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3343 3344 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3345 cb, opaque, true); 3346 } 3347 3348 3349 typedef struct MultiwriteCB { 3350 int error; 3351 int num_requests; 3352 int num_callbacks; 3353 struct { 3354 BlockDriverCompletionFunc *cb; 3355 void *opaque; 3356 QEMUIOVector *free_qiov; 3357 } callbacks[]; 3358 } MultiwriteCB; 3359 3360 static void multiwrite_user_cb(MultiwriteCB *mcb) 3361 { 3362 int i; 3363 3364 for (i = 0; i < mcb->num_callbacks; i++) { 3365 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3366 if (mcb->callbacks[i].free_qiov) { 3367 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3368 } 3369 g_free(mcb->callbacks[i].free_qiov); 3370 } 3371 } 3372 3373 static void multiwrite_cb(void *opaque, int ret) 3374 { 3375 MultiwriteCB *mcb = opaque; 3376 3377 trace_multiwrite_cb(mcb, ret); 3378 3379 if (ret < 0 && !mcb->error) { 3380 mcb->error = ret; 3381 } 3382 3383 mcb->num_requests--; 3384 if (mcb->num_requests == 0) { 3385 multiwrite_user_cb(mcb); 3386 g_free(mcb); 3387 } 3388 } 3389 3390 static int multiwrite_req_compare(const void *a, const void *b) 3391 { 3392 const BlockRequest *req1 = a, *req2 = b; 3393 3394 /* 3395 * Note that we can't simply subtract req2->sector from req1->sector 3396 * here as that could overflow the return value. 3397 */ 3398 if (req1->sector > req2->sector) { 3399 return 1; 3400 } else if (req1->sector < req2->sector) { 3401 return -1; 3402 } else { 3403 return 0; 3404 } 3405 } 3406 3407 /* 3408 * Takes a bunch of requests and tries to merge them. Returns the number of 3409 * requests that remain after merging. 3410 */ 3411 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3412 int num_reqs, MultiwriteCB *mcb) 3413 { 3414 int i, outidx; 3415 3416 // Sort requests by start sector 3417 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3418 3419 // Check if adjacent requests touch the same clusters. If so, combine them, 3420 // filling up gaps with zero sectors. 3421 outidx = 0; 3422 for (i = 1; i < num_reqs; i++) { 3423 int merge = 0; 3424 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3425 3426 // Handle exactly sequential writes and overlapping writes. 3427 if (reqs[i].sector <= oldreq_last) { 3428 merge = 1; 3429 } 3430 3431 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3432 merge = 0; 3433 } 3434 3435 if (merge) { 3436 size_t size; 3437 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3438 qemu_iovec_init(qiov, 3439 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3440 3441 // Add the first request to the merged one. If the requests are 3442 // overlapping, drop the last sectors of the first request. 3443 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3444 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3445 3446 // We should need to add any zeros between the two requests 3447 assert (reqs[i].sector <= oldreq_last); 3448 3449 // Add the second request 3450 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3451 3452 reqs[outidx].nb_sectors = qiov->size >> 9; 3453 reqs[outidx].qiov = qiov; 3454 3455 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3456 } else { 3457 outidx++; 3458 reqs[outidx].sector = reqs[i].sector; 3459 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3460 reqs[outidx].qiov = reqs[i].qiov; 3461 } 3462 } 3463 3464 return outidx + 1; 3465 } 3466 3467 /* 3468 * Submit multiple AIO write requests at once. 3469 * 3470 * On success, the function returns 0 and all requests in the reqs array have 3471 * been submitted. In error case this function returns -1, and any of the 3472 * requests may or may not be submitted yet. In particular, this means that the 3473 * callback will be called for some of the requests, for others it won't. The 3474 * caller must check the error field of the BlockRequest to wait for the right 3475 * callbacks (if error != 0, no callback will be called). 3476 * 3477 * The implementation may modify the contents of the reqs array, e.g. to merge 3478 * requests. However, the fields opaque and error are left unmodified as they 3479 * are used to signal failure for a single request to the caller. 3480 */ 3481 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3482 { 3483 MultiwriteCB *mcb; 3484 int i; 3485 3486 /* don't submit writes if we don't have a medium */ 3487 if (bs->drv == NULL) { 3488 for (i = 0; i < num_reqs; i++) { 3489 reqs[i].error = -ENOMEDIUM; 3490 } 3491 return -1; 3492 } 3493 3494 if (num_reqs == 0) { 3495 return 0; 3496 } 3497 3498 // Create MultiwriteCB structure 3499 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3500 mcb->num_requests = 0; 3501 mcb->num_callbacks = num_reqs; 3502 3503 for (i = 0; i < num_reqs; i++) { 3504 mcb->callbacks[i].cb = reqs[i].cb; 3505 mcb->callbacks[i].opaque = reqs[i].opaque; 3506 } 3507 3508 // Check for mergable requests 3509 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3510 3511 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3512 3513 /* Run the aio requests. */ 3514 mcb->num_requests = num_reqs; 3515 for (i = 0; i < num_reqs; i++) { 3516 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3517 reqs[i].nb_sectors, multiwrite_cb, mcb); 3518 } 3519 3520 return 0; 3521 } 3522 3523 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3524 { 3525 acb->aiocb_info->cancel(acb); 3526 } 3527 3528 /* block I/O throttling */ 3529 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3530 bool is_write, double elapsed_time, uint64_t *wait) 3531 { 3532 uint64_t bps_limit = 0; 3533 double bytes_limit, bytes_base, bytes_res; 3534 double slice_time, wait_time; 3535 3536 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3537 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3538 } else if (bs->io_limits.bps[is_write]) { 3539 bps_limit = bs->io_limits.bps[is_write]; 3540 } else { 3541 if (wait) { 3542 *wait = 0; 3543 } 3544 3545 return false; 3546 } 3547 3548 slice_time = bs->slice_end - bs->slice_start; 3549 slice_time /= (NANOSECONDS_PER_SECOND); 3550 bytes_limit = bps_limit * slice_time; 3551 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3552 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3553 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3554 } 3555 3556 /* bytes_base: the bytes of data which have been read/written; and 3557 * it is obtained from the history statistic info. 3558 * bytes_res: the remaining bytes of data which need to be read/written. 3559 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3560 * the total time for completing reading/writting all data. 3561 */ 3562 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3563 3564 if (bytes_base + bytes_res <= bytes_limit) { 3565 if (wait) { 3566 *wait = 0; 3567 } 3568 3569 return false; 3570 } 3571 3572 /* Calc approx time to dispatch */ 3573 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3574 3575 /* When the I/O rate at runtime exceeds the limits, 3576 * bs->slice_end need to be extended in order that the current statistic 3577 * info can be kept until the timer fire, so it is increased and tuned 3578 * based on the result of experiment. 3579 */ 3580 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3581 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3582 if (wait) { 3583 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3584 } 3585 3586 return true; 3587 } 3588 3589 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3590 double elapsed_time, uint64_t *wait) 3591 { 3592 uint64_t iops_limit = 0; 3593 double ios_limit, ios_base; 3594 double slice_time, wait_time; 3595 3596 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3597 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3598 } else if (bs->io_limits.iops[is_write]) { 3599 iops_limit = bs->io_limits.iops[is_write]; 3600 } else { 3601 if (wait) { 3602 *wait = 0; 3603 } 3604 3605 return false; 3606 } 3607 3608 slice_time = bs->slice_end - bs->slice_start; 3609 slice_time /= (NANOSECONDS_PER_SECOND); 3610 ios_limit = iops_limit * slice_time; 3611 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3612 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3613 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3614 } 3615 3616 if (ios_base + 1 <= ios_limit) { 3617 if (wait) { 3618 *wait = 0; 3619 } 3620 3621 return false; 3622 } 3623 3624 /* Calc approx time to dispatch */ 3625 wait_time = (ios_base + 1) / iops_limit; 3626 if (wait_time > elapsed_time) { 3627 wait_time = wait_time - elapsed_time; 3628 } else { 3629 wait_time = 0; 3630 } 3631 3632 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3633 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3634 if (wait) { 3635 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3636 } 3637 3638 return true; 3639 } 3640 3641 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3642 bool is_write, int64_t *wait) 3643 { 3644 int64_t now, max_wait; 3645 uint64_t bps_wait = 0, iops_wait = 0; 3646 double elapsed_time; 3647 int bps_ret, iops_ret; 3648 3649 now = qemu_get_clock_ns(vm_clock); 3650 if ((bs->slice_start < now) 3651 && (bs->slice_end > now)) { 3652 bs->slice_end = now + bs->slice_time; 3653 } else { 3654 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3655 bs->slice_start = now; 3656 bs->slice_end = now + bs->slice_time; 3657 3658 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3659 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3660 3661 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3662 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3663 } 3664 3665 elapsed_time = now - bs->slice_start; 3666 elapsed_time /= (NANOSECONDS_PER_SECOND); 3667 3668 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3669 is_write, elapsed_time, &bps_wait); 3670 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3671 elapsed_time, &iops_wait); 3672 if (bps_ret || iops_ret) { 3673 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3674 if (wait) { 3675 *wait = max_wait; 3676 } 3677 3678 now = qemu_get_clock_ns(vm_clock); 3679 if (bs->slice_end < now + max_wait) { 3680 bs->slice_end = now + max_wait; 3681 } 3682 3683 return true; 3684 } 3685 3686 if (wait) { 3687 *wait = 0; 3688 } 3689 3690 return false; 3691 } 3692 3693 /**************************************************************/ 3694 /* async block device emulation */ 3695 3696 typedef struct BlockDriverAIOCBSync { 3697 BlockDriverAIOCB common; 3698 QEMUBH *bh; 3699 int ret; 3700 /* vector translation state */ 3701 QEMUIOVector *qiov; 3702 uint8_t *bounce; 3703 int is_write; 3704 } BlockDriverAIOCBSync; 3705 3706 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3707 { 3708 BlockDriverAIOCBSync *acb = 3709 container_of(blockacb, BlockDriverAIOCBSync, common); 3710 qemu_bh_delete(acb->bh); 3711 acb->bh = NULL; 3712 qemu_aio_release(acb); 3713 } 3714 3715 static const AIOCBInfo bdrv_em_aiocb_info = { 3716 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3717 .cancel = bdrv_aio_cancel_em, 3718 }; 3719 3720 static void bdrv_aio_bh_cb(void *opaque) 3721 { 3722 BlockDriverAIOCBSync *acb = opaque; 3723 3724 if (!acb->is_write) 3725 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3726 qemu_vfree(acb->bounce); 3727 acb->common.cb(acb->common.opaque, acb->ret); 3728 qemu_bh_delete(acb->bh); 3729 acb->bh = NULL; 3730 qemu_aio_release(acb); 3731 } 3732 3733 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3734 int64_t sector_num, 3735 QEMUIOVector *qiov, 3736 int nb_sectors, 3737 BlockDriverCompletionFunc *cb, 3738 void *opaque, 3739 int is_write) 3740 3741 { 3742 BlockDriverAIOCBSync *acb; 3743 3744 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 3745 acb->is_write = is_write; 3746 acb->qiov = qiov; 3747 acb->bounce = qemu_blockalign(bs, qiov->size); 3748 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3749 3750 if (is_write) { 3751 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3752 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3753 } else { 3754 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3755 } 3756 3757 qemu_bh_schedule(acb->bh); 3758 3759 return &acb->common; 3760 } 3761 3762 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3763 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3764 BlockDriverCompletionFunc *cb, void *opaque) 3765 { 3766 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3767 } 3768 3769 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3770 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3771 BlockDriverCompletionFunc *cb, void *opaque) 3772 { 3773 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3774 } 3775 3776 3777 typedef struct BlockDriverAIOCBCoroutine { 3778 BlockDriverAIOCB common; 3779 BlockRequest req; 3780 bool is_write; 3781 QEMUBH* bh; 3782 } BlockDriverAIOCBCoroutine; 3783 3784 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3785 { 3786 qemu_aio_flush(); 3787 } 3788 3789 static const AIOCBInfo bdrv_em_co_aiocb_info = { 3790 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3791 .cancel = bdrv_aio_co_cancel_em, 3792 }; 3793 3794 static void bdrv_co_em_bh(void *opaque) 3795 { 3796 BlockDriverAIOCBCoroutine *acb = opaque; 3797 3798 acb->common.cb(acb->common.opaque, acb->req.error); 3799 qemu_bh_delete(acb->bh); 3800 qemu_aio_release(acb); 3801 } 3802 3803 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3804 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3805 { 3806 BlockDriverAIOCBCoroutine *acb = opaque; 3807 BlockDriverState *bs = acb->common.bs; 3808 3809 if (!acb->is_write) { 3810 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3811 acb->req.nb_sectors, acb->req.qiov, 0); 3812 } else { 3813 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3814 acb->req.nb_sectors, acb->req.qiov, 0); 3815 } 3816 3817 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3818 qemu_bh_schedule(acb->bh); 3819 } 3820 3821 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3822 int64_t sector_num, 3823 QEMUIOVector *qiov, 3824 int nb_sectors, 3825 BlockDriverCompletionFunc *cb, 3826 void *opaque, 3827 bool is_write) 3828 { 3829 Coroutine *co; 3830 BlockDriverAIOCBCoroutine *acb; 3831 3832 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3833 acb->req.sector = sector_num; 3834 acb->req.nb_sectors = nb_sectors; 3835 acb->req.qiov = qiov; 3836 acb->is_write = is_write; 3837 3838 co = qemu_coroutine_create(bdrv_co_do_rw); 3839 qemu_coroutine_enter(co, acb); 3840 3841 return &acb->common; 3842 } 3843 3844 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3845 { 3846 BlockDriverAIOCBCoroutine *acb = opaque; 3847 BlockDriverState *bs = acb->common.bs; 3848 3849 acb->req.error = bdrv_co_flush(bs); 3850 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3851 qemu_bh_schedule(acb->bh); 3852 } 3853 3854 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3855 BlockDriverCompletionFunc *cb, void *opaque) 3856 { 3857 trace_bdrv_aio_flush(bs, opaque); 3858 3859 Coroutine *co; 3860 BlockDriverAIOCBCoroutine *acb; 3861 3862 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3863 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3864 qemu_coroutine_enter(co, acb); 3865 3866 return &acb->common; 3867 } 3868 3869 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3870 { 3871 BlockDriverAIOCBCoroutine *acb = opaque; 3872 BlockDriverState *bs = acb->common.bs; 3873 3874 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3875 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3876 qemu_bh_schedule(acb->bh); 3877 } 3878 3879 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3880 int64_t sector_num, int nb_sectors, 3881 BlockDriverCompletionFunc *cb, void *opaque) 3882 { 3883 Coroutine *co; 3884 BlockDriverAIOCBCoroutine *acb; 3885 3886 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3887 3888 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3889 acb->req.sector = sector_num; 3890 acb->req.nb_sectors = nb_sectors; 3891 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3892 qemu_coroutine_enter(co, acb); 3893 3894 return &acb->common; 3895 } 3896 3897 void bdrv_init(void) 3898 { 3899 module_call_init(MODULE_INIT_BLOCK); 3900 } 3901 3902 void bdrv_init_with_whitelist(void) 3903 { 3904 use_bdrv_whitelist = 1; 3905 bdrv_init(); 3906 } 3907 3908 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 3909 BlockDriverCompletionFunc *cb, void *opaque) 3910 { 3911 BlockDriverAIOCB *acb; 3912 3913 acb = g_slice_alloc(aiocb_info->aiocb_size); 3914 acb->aiocb_info = aiocb_info; 3915 acb->bs = bs; 3916 acb->cb = cb; 3917 acb->opaque = opaque; 3918 return acb; 3919 } 3920 3921 void qemu_aio_release(void *p) 3922 { 3923 BlockDriverAIOCB *acb = p; 3924 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 3925 } 3926 3927 /**************************************************************/ 3928 /* Coroutine block device emulation */ 3929 3930 typedef struct CoroutineIOCompletion { 3931 Coroutine *coroutine; 3932 int ret; 3933 } CoroutineIOCompletion; 3934 3935 static void bdrv_co_io_em_complete(void *opaque, int ret) 3936 { 3937 CoroutineIOCompletion *co = opaque; 3938 3939 co->ret = ret; 3940 qemu_coroutine_enter(co->coroutine, NULL); 3941 } 3942 3943 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 3944 int nb_sectors, QEMUIOVector *iov, 3945 bool is_write) 3946 { 3947 CoroutineIOCompletion co = { 3948 .coroutine = qemu_coroutine_self(), 3949 }; 3950 BlockDriverAIOCB *acb; 3951 3952 if (is_write) { 3953 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 3954 bdrv_co_io_em_complete, &co); 3955 } else { 3956 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 3957 bdrv_co_io_em_complete, &co); 3958 } 3959 3960 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 3961 if (!acb) { 3962 return -EIO; 3963 } 3964 qemu_coroutine_yield(); 3965 3966 return co.ret; 3967 } 3968 3969 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 3970 int64_t sector_num, int nb_sectors, 3971 QEMUIOVector *iov) 3972 { 3973 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 3974 } 3975 3976 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 3977 int64_t sector_num, int nb_sectors, 3978 QEMUIOVector *iov) 3979 { 3980 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 3981 } 3982 3983 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 3984 { 3985 RwCo *rwco = opaque; 3986 3987 rwco->ret = bdrv_co_flush(rwco->bs); 3988 } 3989 3990 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 3991 { 3992 int ret; 3993 3994 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3995 return 0; 3996 } 3997 3998 /* Write back cached data to the OS even with cache=unsafe */ 3999 if (bs->drv->bdrv_co_flush_to_os) { 4000 ret = bs->drv->bdrv_co_flush_to_os(bs); 4001 if (ret < 0) { 4002 return ret; 4003 } 4004 } 4005 4006 /* But don't actually force it to the disk with cache=unsafe */ 4007 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4008 goto flush_parent; 4009 } 4010 4011 if (bs->drv->bdrv_co_flush_to_disk) { 4012 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4013 } else if (bs->drv->bdrv_aio_flush) { 4014 BlockDriverAIOCB *acb; 4015 CoroutineIOCompletion co = { 4016 .coroutine = qemu_coroutine_self(), 4017 }; 4018 4019 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4020 if (acb == NULL) { 4021 ret = -EIO; 4022 } else { 4023 qemu_coroutine_yield(); 4024 ret = co.ret; 4025 } 4026 } else { 4027 /* 4028 * Some block drivers always operate in either writethrough or unsafe 4029 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4030 * know how the server works (because the behaviour is hardcoded or 4031 * depends on server-side configuration), so we can't ensure that 4032 * everything is safe on disk. Returning an error doesn't work because 4033 * that would break guests even if the server operates in writethrough 4034 * mode. 4035 * 4036 * Let's hope the user knows what he's doing. 4037 */ 4038 ret = 0; 4039 } 4040 if (ret < 0) { 4041 return ret; 4042 } 4043 4044 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4045 * in the case of cache=unsafe, so there are no useless flushes. 4046 */ 4047 flush_parent: 4048 return bdrv_co_flush(bs->file); 4049 } 4050 4051 void bdrv_invalidate_cache(BlockDriverState *bs) 4052 { 4053 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4054 bs->drv->bdrv_invalidate_cache(bs); 4055 } 4056 } 4057 4058 void bdrv_invalidate_cache_all(void) 4059 { 4060 BlockDriverState *bs; 4061 4062 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4063 bdrv_invalidate_cache(bs); 4064 } 4065 } 4066 4067 void bdrv_clear_incoming_migration_all(void) 4068 { 4069 BlockDriverState *bs; 4070 4071 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4072 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4073 } 4074 } 4075 4076 int bdrv_flush(BlockDriverState *bs) 4077 { 4078 Coroutine *co; 4079 RwCo rwco = { 4080 .bs = bs, 4081 .ret = NOT_DONE, 4082 }; 4083 4084 if (qemu_in_coroutine()) { 4085 /* Fast-path if already in coroutine context */ 4086 bdrv_flush_co_entry(&rwco); 4087 } else { 4088 co = qemu_coroutine_create(bdrv_flush_co_entry); 4089 qemu_coroutine_enter(co, &rwco); 4090 while (rwco.ret == NOT_DONE) { 4091 qemu_aio_wait(); 4092 } 4093 } 4094 4095 return rwco.ret; 4096 } 4097 4098 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4099 { 4100 RwCo *rwco = opaque; 4101 4102 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4103 } 4104 4105 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4106 int nb_sectors) 4107 { 4108 if (!bs->drv) { 4109 return -ENOMEDIUM; 4110 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4111 return -EIO; 4112 } else if (bs->read_only) { 4113 return -EROFS; 4114 } else if (bs->drv->bdrv_co_discard) { 4115 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4116 } else if (bs->drv->bdrv_aio_discard) { 4117 BlockDriverAIOCB *acb; 4118 CoroutineIOCompletion co = { 4119 .coroutine = qemu_coroutine_self(), 4120 }; 4121 4122 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4123 bdrv_co_io_em_complete, &co); 4124 if (acb == NULL) { 4125 return -EIO; 4126 } else { 4127 qemu_coroutine_yield(); 4128 return co.ret; 4129 } 4130 } else { 4131 return 0; 4132 } 4133 } 4134 4135 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4136 { 4137 Coroutine *co; 4138 RwCo rwco = { 4139 .bs = bs, 4140 .sector_num = sector_num, 4141 .nb_sectors = nb_sectors, 4142 .ret = NOT_DONE, 4143 }; 4144 4145 if (qemu_in_coroutine()) { 4146 /* Fast-path if already in coroutine context */ 4147 bdrv_discard_co_entry(&rwco); 4148 } else { 4149 co = qemu_coroutine_create(bdrv_discard_co_entry); 4150 qemu_coroutine_enter(co, &rwco); 4151 while (rwco.ret == NOT_DONE) { 4152 qemu_aio_wait(); 4153 } 4154 } 4155 4156 return rwco.ret; 4157 } 4158 4159 /**************************************************************/ 4160 /* removable device support */ 4161 4162 /** 4163 * Return TRUE if the media is present 4164 */ 4165 int bdrv_is_inserted(BlockDriverState *bs) 4166 { 4167 BlockDriver *drv = bs->drv; 4168 4169 if (!drv) 4170 return 0; 4171 if (!drv->bdrv_is_inserted) 4172 return 1; 4173 return drv->bdrv_is_inserted(bs); 4174 } 4175 4176 /** 4177 * Return whether the media changed since the last call to this 4178 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4179 */ 4180 int bdrv_media_changed(BlockDriverState *bs) 4181 { 4182 BlockDriver *drv = bs->drv; 4183 4184 if (drv && drv->bdrv_media_changed) { 4185 return drv->bdrv_media_changed(bs); 4186 } 4187 return -ENOTSUP; 4188 } 4189 4190 /** 4191 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4192 */ 4193 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4194 { 4195 BlockDriver *drv = bs->drv; 4196 4197 if (drv && drv->bdrv_eject) { 4198 drv->bdrv_eject(bs, eject_flag); 4199 } 4200 4201 if (bs->device_name[0] != '\0') { 4202 bdrv_emit_qmp_eject_event(bs, eject_flag); 4203 } 4204 } 4205 4206 /** 4207 * Lock or unlock the media (if it is locked, the user won't be able 4208 * to eject it manually). 4209 */ 4210 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4211 { 4212 BlockDriver *drv = bs->drv; 4213 4214 trace_bdrv_lock_medium(bs, locked); 4215 4216 if (drv && drv->bdrv_lock_medium) { 4217 drv->bdrv_lock_medium(bs, locked); 4218 } 4219 } 4220 4221 /* needed for generic scsi interface */ 4222 4223 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4224 { 4225 BlockDriver *drv = bs->drv; 4226 4227 if (drv && drv->bdrv_ioctl) 4228 return drv->bdrv_ioctl(bs, req, buf); 4229 return -ENOTSUP; 4230 } 4231 4232 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4233 unsigned long int req, void *buf, 4234 BlockDriverCompletionFunc *cb, void *opaque) 4235 { 4236 BlockDriver *drv = bs->drv; 4237 4238 if (drv && drv->bdrv_aio_ioctl) 4239 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4240 return NULL; 4241 } 4242 4243 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4244 { 4245 bs->buffer_alignment = align; 4246 } 4247 4248 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4249 { 4250 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4251 } 4252 4253 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable) 4254 { 4255 int64_t bitmap_size; 4256 4257 bs->dirty_count = 0; 4258 if (enable) { 4259 if (!bs->dirty_bitmap) { 4260 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) + 4261 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1; 4262 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 4263 4264 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size); 4265 } 4266 } else { 4267 if (bs->dirty_bitmap) { 4268 g_free(bs->dirty_bitmap); 4269 bs->dirty_bitmap = NULL; 4270 } 4271 } 4272 } 4273 4274 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4275 { 4276 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4277 4278 if (bs->dirty_bitmap && 4279 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) { 4280 return !!(bs->dirty_bitmap[chunk / BITS_PER_LONG] & 4281 (1UL << (chunk % BITS_PER_LONG))); 4282 } else { 4283 return 0; 4284 } 4285 } 4286 4287 int64_t bdrv_get_next_dirty(BlockDriverState *bs, int64_t sector) 4288 { 4289 int64_t chunk; 4290 int bit, elem; 4291 4292 /* Avoid an infinite loop. */ 4293 assert(bs->dirty_count > 0); 4294 4295 sector = (sector | (BDRV_SECTORS_PER_DIRTY_CHUNK - 1)) + 1; 4296 chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4297 4298 QEMU_BUILD_BUG_ON(sizeof(bs->dirty_bitmap[0]) * 8 != BITS_PER_LONG); 4299 elem = chunk / BITS_PER_LONG; 4300 bit = chunk % BITS_PER_LONG; 4301 for (;;) { 4302 if (sector >= bs->total_sectors) { 4303 sector = 0; 4304 bit = elem = 0; 4305 } 4306 if (bit == 0 && bs->dirty_bitmap[elem] == 0) { 4307 sector += BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 4308 elem++; 4309 } else { 4310 if (bs->dirty_bitmap[elem] & (1UL << bit)) { 4311 return sector; 4312 } 4313 sector += BDRV_SECTORS_PER_DIRTY_CHUNK; 4314 if (++bit == BITS_PER_LONG) { 4315 bit = 0; 4316 elem++; 4317 } 4318 } 4319 } 4320 } 4321 4322 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4323 int nr_sectors) 4324 { 4325 set_dirty_bitmap(bs, cur_sector, nr_sectors, 1); 4326 } 4327 4328 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4329 int nr_sectors) 4330 { 4331 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0); 4332 } 4333 4334 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4335 { 4336 return bs->dirty_count; 4337 } 4338 4339 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4340 { 4341 assert(bs->in_use != in_use); 4342 bs->in_use = in_use; 4343 } 4344 4345 int bdrv_in_use(BlockDriverState *bs) 4346 { 4347 return bs->in_use; 4348 } 4349 4350 void bdrv_iostatus_enable(BlockDriverState *bs) 4351 { 4352 bs->iostatus_enabled = true; 4353 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4354 } 4355 4356 /* The I/O status is only enabled if the drive explicitly 4357 * enables it _and_ the VM is configured to stop on errors */ 4358 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4359 { 4360 return (bs->iostatus_enabled && 4361 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4362 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4363 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4364 } 4365 4366 void bdrv_iostatus_disable(BlockDriverState *bs) 4367 { 4368 bs->iostatus_enabled = false; 4369 } 4370 4371 void bdrv_iostatus_reset(BlockDriverState *bs) 4372 { 4373 if (bdrv_iostatus_is_enabled(bs)) { 4374 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4375 if (bs->job) { 4376 block_job_iostatus_reset(bs->job); 4377 } 4378 } 4379 } 4380 4381 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4382 { 4383 assert(bdrv_iostatus_is_enabled(bs)); 4384 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4385 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4386 BLOCK_DEVICE_IO_STATUS_FAILED; 4387 } 4388 } 4389 4390 void 4391 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4392 enum BlockAcctType type) 4393 { 4394 assert(type < BDRV_MAX_IOTYPE); 4395 4396 cookie->bytes = bytes; 4397 cookie->start_time_ns = get_clock(); 4398 cookie->type = type; 4399 } 4400 4401 void 4402 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4403 { 4404 assert(cookie->type < BDRV_MAX_IOTYPE); 4405 4406 bs->nr_bytes[cookie->type] += cookie->bytes; 4407 bs->nr_ops[cookie->type]++; 4408 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4409 } 4410 4411 int bdrv_img_create(const char *filename, const char *fmt, 4412 const char *base_filename, const char *base_fmt, 4413 char *options, uint64_t img_size, int flags) 4414 { 4415 QEMUOptionParameter *param = NULL, *create_options = NULL; 4416 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4417 BlockDriverState *bs = NULL; 4418 BlockDriver *drv, *proto_drv; 4419 BlockDriver *backing_drv = NULL; 4420 int ret = 0; 4421 4422 /* Find driver and parse its options */ 4423 drv = bdrv_find_format(fmt); 4424 if (!drv) { 4425 error_report("Unknown file format '%s'", fmt); 4426 ret = -EINVAL; 4427 goto out; 4428 } 4429 4430 proto_drv = bdrv_find_protocol(filename); 4431 if (!proto_drv) { 4432 error_report("Unknown protocol '%s'", filename); 4433 ret = -EINVAL; 4434 goto out; 4435 } 4436 4437 create_options = append_option_parameters(create_options, 4438 drv->create_options); 4439 create_options = append_option_parameters(create_options, 4440 proto_drv->create_options); 4441 4442 /* Create parameter list with default values */ 4443 param = parse_option_parameters("", create_options, param); 4444 4445 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4446 4447 /* Parse -o options */ 4448 if (options) { 4449 param = parse_option_parameters(options, create_options, param); 4450 if (param == NULL) { 4451 error_report("Invalid options for file format '%s'.", fmt); 4452 ret = -EINVAL; 4453 goto out; 4454 } 4455 } 4456 4457 if (base_filename) { 4458 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4459 base_filename)) { 4460 error_report("Backing file not supported for file format '%s'", 4461 fmt); 4462 ret = -EINVAL; 4463 goto out; 4464 } 4465 } 4466 4467 if (base_fmt) { 4468 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4469 error_report("Backing file format not supported for file " 4470 "format '%s'", fmt); 4471 ret = -EINVAL; 4472 goto out; 4473 } 4474 } 4475 4476 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4477 if (backing_file && backing_file->value.s) { 4478 if (!strcmp(filename, backing_file->value.s)) { 4479 error_report("Error: Trying to create an image with the " 4480 "same filename as the backing file"); 4481 ret = -EINVAL; 4482 goto out; 4483 } 4484 } 4485 4486 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4487 if (backing_fmt && backing_fmt->value.s) { 4488 backing_drv = bdrv_find_format(backing_fmt->value.s); 4489 if (!backing_drv) { 4490 error_report("Unknown backing file format '%s'", 4491 backing_fmt->value.s); 4492 ret = -EINVAL; 4493 goto out; 4494 } 4495 } 4496 4497 // The size for the image must always be specified, with one exception: 4498 // If we are using a backing file, we can obtain the size from there 4499 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4500 if (size && size->value.n == -1) { 4501 if (backing_file && backing_file->value.s) { 4502 uint64_t size; 4503 char buf[32]; 4504 int back_flags; 4505 4506 /* backing files always opened read-only */ 4507 back_flags = 4508 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4509 4510 bs = bdrv_new(""); 4511 4512 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4513 if (ret < 0) { 4514 error_report("Could not open '%s'", backing_file->value.s); 4515 goto out; 4516 } 4517 bdrv_get_geometry(bs, &size); 4518 size *= 512; 4519 4520 snprintf(buf, sizeof(buf), "%" PRId64, size); 4521 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4522 } else { 4523 error_report("Image creation needs a size parameter"); 4524 ret = -EINVAL; 4525 goto out; 4526 } 4527 } 4528 4529 printf("Formatting '%s', fmt=%s ", filename, fmt); 4530 print_option_parameters(param); 4531 puts(""); 4532 4533 ret = bdrv_create(drv, filename, param); 4534 4535 if (ret < 0) { 4536 if (ret == -ENOTSUP) { 4537 error_report("Formatting or formatting option not supported for " 4538 "file format '%s'", fmt); 4539 } else if (ret == -EFBIG) { 4540 error_report("The image size is too large for file format '%s'", 4541 fmt); 4542 } else { 4543 error_report("%s: error while creating %s: %s", filename, fmt, 4544 strerror(-ret)); 4545 } 4546 } 4547 4548 out: 4549 free_option_parameters(create_options); 4550 free_option_parameters(param); 4551 4552 if (bs) { 4553 bdrv_delete(bs); 4554 } 4555 4556 return ret; 4557 } 4558