1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor.h" 28 #include "block_int.h" 29 #include "blockjob.h" 30 #include "module.h" 31 #include "qjson.h" 32 #include "sysemu.h" 33 #include "notify.h" 34 #include "qemu-coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu-timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* The device to use for VM snapshots */ 103 static BlockDriverState *bs_snapshots; 104 105 /* If non-zero, use only whitelisted block drivers */ 106 static int use_bdrv_whitelist; 107 108 #ifdef _WIN32 109 static int is_windows_drive_prefix(const char *filename) 110 { 111 return (((filename[0] >= 'a' && filename[0] <= 'z') || 112 (filename[0] >= 'A' && filename[0] <= 'Z')) && 113 filename[1] == ':'); 114 } 115 116 int is_windows_drive(const char *filename) 117 { 118 if (is_windows_drive_prefix(filename) && 119 filename[2] == '\0') 120 return 1; 121 if (strstart(filename, "\\\\.\\", NULL) || 122 strstart(filename, "//./", NULL)) 123 return 1; 124 return 0; 125 } 126 #endif 127 128 /* throttling disk I/O limits */ 129 void bdrv_io_limits_disable(BlockDriverState *bs) 130 { 131 bs->io_limits_enabled = false; 132 133 while (qemu_co_queue_next(&bs->throttled_reqs)); 134 135 if (bs->block_timer) { 136 qemu_del_timer(bs->block_timer); 137 qemu_free_timer(bs->block_timer); 138 bs->block_timer = NULL; 139 } 140 141 bs->slice_start = 0; 142 bs->slice_end = 0; 143 bs->slice_time = 0; 144 memset(&bs->io_base, 0, sizeof(bs->io_base)); 145 } 146 147 static void bdrv_block_timer(void *opaque) 148 { 149 BlockDriverState *bs = opaque; 150 151 qemu_co_queue_next(&bs->throttled_reqs); 152 } 153 154 void bdrv_io_limits_enable(BlockDriverState *bs) 155 { 156 qemu_co_queue_init(&bs->throttled_reqs); 157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 158 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 159 bs->slice_start = qemu_get_clock_ns(vm_clock); 160 bs->slice_end = bs->slice_start + bs->slice_time; 161 memset(&bs->io_base, 0, sizeof(bs->io_base)); 162 bs->io_limits_enabled = true; 163 } 164 165 bool bdrv_io_limits_enabled(BlockDriverState *bs) 166 { 167 BlockIOLimit *io_limits = &bs->io_limits; 168 return io_limits->bps[BLOCK_IO_LIMIT_READ] 169 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 170 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 171 || io_limits->iops[BLOCK_IO_LIMIT_READ] 172 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 173 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 174 } 175 176 static void bdrv_io_limits_intercept(BlockDriverState *bs, 177 bool is_write, int nb_sectors) 178 { 179 int64_t wait_time = -1; 180 181 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 182 qemu_co_queue_wait(&bs->throttled_reqs); 183 } 184 185 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 186 * throttled requests will not be dequeued until the current request is 187 * allowed to be serviced. So if the current request still exceeds the 188 * limits, it will be inserted to the head. All requests followed it will 189 * be still in throttled_reqs queue. 190 */ 191 192 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 193 qemu_mod_timer(bs->block_timer, 194 wait_time + qemu_get_clock_ns(vm_clock)); 195 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 196 } 197 198 qemu_co_queue_next(&bs->throttled_reqs); 199 } 200 201 /* check if the path starts with "<protocol>:" */ 202 static int path_has_protocol(const char *path) 203 { 204 const char *p; 205 206 #ifdef _WIN32 207 if (is_windows_drive(path) || 208 is_windows_drive_prefix(path)) { 209 return 0; 210 } 211 p = path + strcspn(path, ":/\\"); 212 #else 213 p = path + strcspn(path, ":/"); 214 #endif 215 216 return *p == ':'; 217 } 218 219 int path_is_absolute(const char *path) 220 { 221 #ifdef _WIN32 222 /* specific case for names like: "\\.\d:" */ 223 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 224 return 1; 225 } 226 return (*path == '/' || *path == '\\'); 227 #else 228 return (*path == '/'); 229 #endif 230 } 231 232 /* if filename is absolute, just copy it to dest. Otherwise, build a 233 path to it by considering it is relative to base_path. URL are 234 supported. */ 235 void path_combine(char *dest, int dest_size, 236 const char *base_path, 237 const char *filename) 238 { 239 const char *p, *p1; 240 int len; 241 242 if (dest_size <= 0) 243 return; 244 if (path_is_absolute(filename)) { 245 pstrcpy(dest, dest_size, filename); 246 } else { 247 p = strchr(base_path, ':'); 248 if (p) 249 p++; 250 else 251 p = base_path; 252 p1 = strrchr(base_path, '/'); 253 #ifdef _WIN32 254 { 255 const char *p2; 256 p2 = strrchr(base_path, '\\'); 257 if (!p1 || p2 > p1) 258 p1 = p2; 259 } 260 #endif 261 if (p1) 262 p1++; 263 else 264 p1 = base_path; 265 if (p1 > p) 266 p = p1; 267 len = p - base_path; 268 if (len > dest_size - 1) 269 len = dest_size - 1; 270 memcpy(dest, base_path, len); 271 dest[len] = '\0'; 272 pstrcat(dest, dest_size, filename); 273 } 274 } 275 276 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 277 { 278 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 279 pstrcpy(dest, sz, bs->backing_file); 280 } else { 281 path_combine(dest, sz, bs->filename, bs->backing_file); 282 } 283 } 284 285 void bdrv_register(BlockDriver *bdrv) 286 { 287 /* Block drivers without coroutine functions need emulation */ 288 if (!bdrv->bdrv_co_readv) { 289 bdrv->bdrv_co_readv = bdrv_co_readv_em; 290 bdrv->bdrv_co_writev = bdrv_co_writev_em; 291 292 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 293 * the block driver lacks aio we need to emulate that too. 294 */ 295 if (!bdrv->bdrv_aio_readv) { 296 /* add AIO emulation layer */ 297 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 298 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 299 } 300 } 301 302 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 303 } 304 305 /* create a new block device (by default it is empty) */ 306 BlockDriverState *bdrv_new(const char *device_name) 307 { 308 BlockDriverState *bs; 309 310 bs = g_malloc0(sizeof(BlockDriverState)); 311 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 312 if (device_name[0] != '\0') { 313 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 314 } 315 bdrv_iostatus_disable(bs); 316 notifier_list_init(&bs->close_notifiers); 317 318 return bs; 319 } 320 321 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 322 { 323 notifier_list_add(&bs->close_notifiers, notify); 324 } 325 326 BlockDriver *bdrv_find_format(const char *format_name) 327 { 328 BlockDriver *drv1; 329 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 330 if (!strcmp(drv1->format_name, format_name)) { 331 return drv1; 332 } 333 } 334 return NULL; 335 } 336 337 static int bdrv_is_whitelisted(BlockDriver *drv) 338 { 339 static const char *whitelist[] = { 340 CONFIG_BDRV_WHITELIST 341 }; 342 const char **p; 343 344 if (!whitelist[0]) 345 return 1; /* no whitelist, anything goes */ 346 347 for (p = whitelist; *p; p++) { 348 if (!strcmp(drv->format_name, *p)) { 349 return 1; 350 } 351 } 352 return 0; 353 } 354 355 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 356 { 357 BlockDriver *drv = bdrv_find_format(format_name); 358 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 359 } 360 361 typedef struct CreateCo { 362 BlockDriver *drv; 363 char *filename; 364 QEMUOptionParameter *options; 365 int ret; 366 } CreateCo; 367 368 static void coroutine_fn bdrv_create_co_entry(void *opaque) 369 { 370 CreateCo *cco = opaque; 371 assert(cco->drv); 372 373 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 374 } 375 376 int bdrv_create(BlockDriver *drv, const char* filename, 377 QEMUOptionParameter *options) 378 { 379 int ret; 380 381 Coroutine *co; 382 CreateCo cco = { 383 .drv = drv, 384 .filename = g_strdup(filename), 385 .options = options, 386 .ret = NOT_DONE, 387 }; 388 389 if (!drv->bdrv_create) { 390 ret = -ENOTSUP; 391 goto out; 392 } 393 394 if (qemu_in_coroutine()) { 395 /* Fast-path if already in coroutine context */ 396 bdrv_create_co_entry(&cco); 397 } else { 398 co = qemu_coroutine_create(bdrv_create_co_entry); 399 qemu_coroutine_enter(co, &cco); 400 while (cco.ret == NOT_DONE) { 401 qemu_aio_wait(); 402 } 403 } 404 405 ret = cco.ret; 406 407 out: 408 g_free(cco.filename); 409 return ret; 410 } 411 412 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 413 { 414 BlockDriver *drv; 415 416 drv = bdrv_find_protocol(filename); 417 if (drv == NULL) { 418 return -ENOENT; 419 } 420 421 return bdrv_create(drv, filename, options); 422 } 423 424 /* 425 * Create a uniquely-named empty temporary file. 426 * Return 0 upon success, otherwise a negative errno value. 427 */ 428 int get_tmp_filename(char *filename, int size) 429 { 430 #ifdef _WIN32 431 char temp_dir[MAX_PATH]; 432 /* GetTempFileName requires that its output buffer (4th param) 433 have length MAX_PATH or greater. */ 434 assert(size >= MAX_PATH); 435 return (GetTempPath(MAX_PATH, temp_dir) 436 && GetTempFileName(temp_dir, "qem", 0, filename) 437 ? 0 : -GetLastError()); 438 #else 439 int fd; 440 const char *tmpdir; 441 tmpdir = getenv("TMPDIR"); 442 if (!tmpdir) 443 tmpdir = "/tmp"; 444 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 445 return -EOVERFLOW; 446 } 447 fd = mkstemp(filename); 448 if (fd < 0) { 449 return -errno; 450 } 451 if (close(fd) != 0) { 452 unlink(filename); 453 return -errno; 454 } 455 return 0; 456 #endif 457 } 458 459 /* 460 * Detect host devices. By convention, /dev/cdrom[N] is always 461 * recognized as a host CDROM. 462 */ 463 static BlockDriver *find_hdev_driver(const char *filename) 464 { 465 int score_max = 0, score; 466 BlockDriver *drv = NULL, *d; 467 468 QLIST_FOREACH(d, &bdrv_drivers, list) { 469 if (d->bdrv_probe_device) { 470 score = d->bdrv_probe_device(filename); 471 if (score > score_max) { 472 score_max = score; 473 drv = d; 474 } 475 } 476 } 477 478 return drv; 479 } 480 481 BlockDriver *bdrv_find_protocol(const char *filename) 482 { 483 BlockDriver *drv1; 484 char protocol[128]; 485 int len; 486 const char *p; 487 488 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 489 490 /* 491 * XXX(hch): we really should not let host device detection 492 * override an explicit protocol specification, but moving this 493 * later breaks access to device names with colons in them. 494 * Thanks to the brain-dead persistent naming schemes on udev- 495 * based Linux systems those actually are quite common. 496 */ 497 drv1 = find_hdev_driver(filename); 498 if (drv1) { 499 return drv1; 500 } 501 502 if (!path_has_protocol(filename)) { 503 return bdrv_find_format("file"); 504 } 505 p = strchr(filename, ':'); 506 assert(p != NULL); 507 len = p - filename; 508 if (len > sizeof(protocol) - 1) 509 len = sizeof(protocol) - 1; 510 memcpy(protocol, filename, len); 511 protocol[len] = '\0'; 512 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 513 if (drv1->protocol_name && 514 !strcmp(drv1->protocol_name, protocol)) { 515 return drv1; 516 } 517 } 518 return NULL; 519 } 520 521 static int find_image_format(BlockDriverState *bs, const char *filename, 522 BlockDriver **pdrv) 523 { 524 int score, score_max; 525 BlockDriver *drv1, *drv; 526 uint8_t buf[2048]; 527 int ret = 0; 528 529 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 530 if (bs->sg || !bdrv_is_inserted(bs)) { 531 drv = bdrv_find_format("raw"); 532 if (!drv) { 533 ret = -ENOENT; 534 } 535 *pdrv = drv; 536 return ret; 537 } 538 539 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 540 if (ret < 0) { 541 *pdrv = NULL; 542 return ret; 543 } 544 545 score_max = 0; 546 drv = NULL; 547 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 548 if (drv1->bdrv_probe) { 549 score = drv1->bdrv_probe(buf, ret, filename); 550 if (score > score_max) { 551 score_max = score; 552 drv = drv1; 553 } 554 } 555 } 556 if (!drv) { 557 ret = -ENOENT; 558 } 559 *pdrv = drv; 560 return ret; 561 } 562 563 /** 564 * Set the current 'total_sectors' value 565 */ 566 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 567 { 568 BlockDriver *drv = bs->drv; 569 570 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 571 if (bs->sg) 572 return 0; 573 574 /* query actual device if possible, otherwise just trust the hint */ 575 if (drv->bdrv_getlength) { 576 int64_t length = drv->bdrv_getlength(bs); 577 if (length < 0) { 578 return length; 579 } 580 hint = length >> BDRV_SECTOR_BITS; 581 } 582 583 bs->total_sectors = hint; 584 return 0; 585 } 586 587 /** 588 * Set open flags for a given cache mode 589 * 590 * Return 0 on success, -1 if the cache mode was invalid. 591 */ 592 int bdrv_parse_cache_flags(const char *mode, int *flags) 593 { 594 *flags &= ~BDRV_O_CACHE_MASK; 595 596 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 597 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 598 } else if (!strcmp(mode, "directsync")) { 599 *flags |= BDRV_O_NOCACHE; 600 } else if (!strcmp(mode, "writeback")) { 601 *flags |= BDRV_O_CACHE_WB; 602 } else if (!strcmp(mode, "unsafe")) { 603 *flags |= BDRV_O_CACHE_WB; 604 *flags |= BDRV_O_NO_FLUSH; 605 } else if (!strcmp(mode, "writethrough")) { 606 /* this is the default */ 607 } else { 608 return -1; 609 } 610 611 return 0; 612 } 613 614 /** 615 * The copy-on-read flag is actually a reference count so multiple users may 616 * use the feature without worrying about clobbering its previous state. 617 * Copy-on-read stays enabled until all users have called to disable it. 618 */ 619 void bdrv_enable_copy_on_read(BlockDriverState *bs) 620 { 621 bs->copy_on_read++; 622 } 623 624 void bdrv_disable_copy_on_read(BlockDriverState *bs) 625 { 626 assert(bs->copy_on_read > 0); 627 bs->copy_on_read--; 628 } 629 630 static int bdrv_open_flags(BlockDriverState *bs, int flags) 631 { 632 int open_flags = flags | BDRV_O_CACHE_WB; 633 634 /* 635 * Clear flags that are internal to the block layer before opening the 636 * image. 637 */ 638 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 639 640 /* 641 * Snapshots should be writable. 642 */ 643 if (bs->is_temporary) { 644 open_flags |= BDRV_O_RDWR; 645 } 646 647 return open_flags; 648 } 649 650 /* 651 * Common part for opening disk images and files 652 */ 653 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file, 654 const char *filename, 655 int flags, BlockDriver *drv) 656 { 657 int ret, open_flags; 658 659 assert(drv != NULL); 660 assert(bs->file == NULL); 661 662 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 663 664 bs->open_flags = flags; 665 bs->buffer_alignment = 512; 666 667 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 668 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 669 bdrv_enable_copy_on_read(bs); 670 } 671 672 pstrcpy(bs->filename, sizeof(bs->filename), filename); 673 674 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 675 return -ENOTSUP; 676 } 677 678 bs->drv = drv; 679 bs->opaque = g_malloc0(drv->instance_size); 680 681 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 682 open_flags = bdrv_open_flags(bs, flags); 683 684 bs->read_only = !(open_flags & BDRV_O_RDWR); 685 686 /* Open the image, either directly or using a protocol */ 687 if (drv->bdrv_file_open) { 688 if (file != NULL) { 689 bdrv_swap(file, bs); 690 ret = 0; 691 } else { 692 ret = drv->bdrv_file_open(bs, filename, open_flags); 693 } 694 } else { 695 assert(file != NULL); 696 bs->file = file; 697 ret = drv->bdrv_open(bs, open_flags); 698 } 699 700 if (ret < 0) { 701 goto free_and_fail; 702 } 703 704 ret = refresh_total_sectors(bs, bs->total_sectors); 705 if (ret < 0) { 706 goto free_and_fail; 707 } 708 709 #ifndef _WIN32 710 if (bs->is_temporary) { 711 unlink(filename); 712 } 713 #endif 714 return 0; 715 716 free_and_fail: 717 bs->file = NULL; 718 g_free(bs->opaque); 719 bs->opaque = NULL; 720 bs->drv = NULL; 721 return ret; 722 } 723 724 /* 725 * Opens a file using a protocol (file, host_device, nbd, ...) 726 */ 727 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 728 { 729 BlockDriverState *bs; 730 BlockDriver *drv; 731 int ret; 732 733 drv = bdrv_find_protocol(filename); 734 if (!drv) { 735 return -ENOENT; 736 } 737 738 bs = bdrv_new(""); 739 ret = bdrv_open_common(bs, NULL, filename, flags, drv); 740 if (ret < 0) { 741 bdrv_delete(bs); 742 return ret; 743 } 744 bs->growable = 1; 745 *pbs = bs; 746 return 0; 747 } 748 749 int bdrv_open_backing_file(BlockDriverState *bs) 750 { 751 char backing_filename[PATH_MAX]; 752 int back_flags, ret; 753 BlockDriver *back_drv = NULL; 754 755 if (bs->backing_hd != NULL) { 756 return 0; 757 } 758 759 bs->open_flags &= ~BDRV_O_NO_BACKING; 760 if (bs->backing_file[0] == '\0') { 761 return 0; 762 } 763 764 bs->backing_hd = bdrv_new(""); 765 bdrv_get_full_backing_filename(bs, backing_filename, 766 sizeof(backing_filename)); 767 768 if (bs->backing_format[0] != '\0') { 769 back_drv = bdrv_find_format(bs->backing_format); 770 } 771 772 /* backing files always opened read-only */ 773 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 774 775 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 776 if (ret < 0) { 777 bdrv_delete(bs->backing_hd); 778 bs->backing_hd = NULL; 779 bs->open_flags |= BDRV_O_NO_BACKING; 780 return ret; 781 } 782 return 0; 783 } 784 785 /* 786 * Opens a disk image (raw, qcow2, vmdk, ...) 787 */ 788 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 789 BlockDriver *drv) 790 { 791 int ret; 792 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ 793 char tmp_filename[PATH_MAX + 1]; 794 BlockDriverState *file = NULL; 795 796 if (flags & BDRV_O_SNAPSHOT) { 797 BlockDriverState *bs1; 798 int64_t total_size; 799 int is_protocol = 0; 800 BlockDriver *bdrv_qcow2; 801 QEMUOptionParameter *options; 802 char backing_filename[PATH_MAX]; 803 804 /* if snapshot, we create a temporary backing file and open it 805 instead of opening 'filename' directly */ 806 807 /* if there is a backing file, use it */ 808 bs1 = bdrv_new(""); 809 ret = bdrv_open(bs1, filename, 0, drv); 810 if (ret < 0) { 811 bdrv_delete(bs1); 812 return ret; 813 } 814 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 815 816 if (bs1->drv && bs1->drv->protocol_name) 817 is_protocol = 1; 818 819 bdrv_delete(bs1); 820 821 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 822 if (ret < 0) { 823 return ret; 824 } 825 826 /* Real path is meaningless for protocols */ 827 if (is_protocol) 828 snprintf(backing_filename, sizeof(backing_filename), 829 "%s", filename); 830 else if (!realpath(filename, backing_filename)) 831 return -errno; 832 833 bdrv_qcow2 = bdrv_find_format("qcow2"); 834 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 835 836 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 837 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 838 if (drv) { 839 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 840 drv->format_name); 841 } 842 843 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 844 free_option_parameters(options); 845 if (ret < 0) { 846 return ret; 847 } 848 849 filename = tmp_filename; 850 drv = bdrv_qcow2; 851 bs->is_temporary = 1; 852 } 853 854 /* Open image file without format layer */ 855 if (flags & BDRV_O_RDWR) { 856 flags |= BDRV_O_ALLOW_RDWR; 857 } 858 859 ret = bdrv_file_open(&file, filename, bdrv_open_flags(bs, flags)); 860 if (ret < 0) { 861 return ret; 862 } 863 864 /* Find the right image format driver */ 865 if (!drv) { 866 ret = find_image_format(file, filename, &drv); 867 } 868 869 if (!drv) { 870 goto unlink_and_fail; 871 } 872 873 /* Open the image */ 874 ret = bdrv_open_common(bs, file, filename, flags, drv); 875 if (ret < 0) { 876 goto unlink_and_fail; 877 } 878 879 if (bs->file != file) { 880 bdrv_delete(file); 881 file = NULL; 882 } 883 884 /* If there is a backing file, use it */ 885 if ((flags & BDRV_O_NO_BACKING) == 0) { 886 ret = bdrv_open_backing_file(bs); 887 if (ret < 0) { 888 bdrv_close(bs); 889 return ret; 890 } 891 } 892 893 if (!bdrv_key_required(bs)) { 894 bdrv_dev_change_media_cb(bs, true); 895 } 896 897 /* throttling disk I/O limits */ 898 if (bs->io_limits_enabled) { 899 bdrv_io_limits_enable(bs); 900 } 901 902 return 0; 903 904 unlink_and_fail: 905 if (file != NULL) { 906 bdrv_delete(file); 907 } 908 if (bs->is_temporary) { 909 unlink(filename); 910 } 911 return ret; 912 } 913 914 typedef struct BlockReopenQueueEntry { 915 bool prepared; 916 BDRVReopenState state; 917 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 918 } BlockReopenQueueEntry; 919 920 /* 921 * Adds a BlockDriverState to a simple queue for an atomic, transactional 922 * reopen of multiple devices. 923 * 924 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 925 * already performed, or alternatively may be NULL a new BlockReopenQueue will 926 * be created and initialized. This newly created BlockReopenQueue should be 927 * passed back in for subsequent calls that are intended to be of the same 928 * atomic 'set'. 929 * 930 * bs is the BlockDriverState to add to the reopen queue. 931 * 932 * flags contains the open flags for the associated bs 933 * 934 * returns a pointer to bs_queue, which is either the newly allocated 935 * bs_queue, or the existing bs_queue being used. 936 * 937 */ 938 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 939 BlockDriverState *bs, int flags) 940 { 941 assert(bs != NULL); 942 943 BlockReopenQueueEntry *bs_entry; 944 if (bs_queue == NULL) { 945 bs_queue = g_new0(BlockReopenQueue, 1); 946 QSIMPLEQ_INIT(bs_queue); 947 } 948 949 if (bs->file) { 950 bdrv_reopen_queue(bs_queue, bs->file, flags); 951 } 952 953 bs_entry = g_new0(BlockReopenQueueEntry, 1); 954 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 955 956 bs_entry->state.bs = bs; 957 bs_entry->state.flags = flags; 958 959 return bs_queue; 960 } 961 962 /* 963 * Reopen multiple BlockDriverStates atomically & transactionally. 964 * 965 * The queue passed in (bs_queue) must have been built up previous 966 * via bdrv_reopen_queue(). 967 * 968 * Reopens all BDS specified in the queue, with the appropriate 969 * flags. All devices are prepared for reopen, and failure of any 970 * device will cause all device changes to be abandonded, and intermediate 971 * data cleaned up. 972 * 973 * If all devices prepare successfully, then the changes are committed 974 * to all devices. 975 * 976 */ 977 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 978 { 979 int ret = -1; 980 BlockReopenQueueEntry *bs_entry, *next; 981 Error *local_err = NULL; 982 983 assert(bs_queue != NULL); 984 985 bdrv_drain_all(); 986 987 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 988 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 989 error_propagate(errp, local_err); 990 goto cleanup; 991 } 992 bs_entry->prepared = true; 993 } 994 995 /* If we reach this point, we have success and just need to apply the 996 * changes 997 */ 998 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 999 bdrv_reopen_commit(&bs_entry->state); 1000 } 1001 1002 ret = 0; 1003 1004 cleanup: 1005 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 1006 if (ret && bs_entry->prepared) { 1007 bdrv_reopen_abort(&bs_entry->state); 1008 } 1009 g_free(bs_entry); 1010 } 1011 g_free(bs_queue); 1012 return ret; 1013 } 1014 1015 1016 /* Reopen a single BlockDriverState with the specified flags. */ 1017 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1018 { 1019 int ret = -1; 1020 Error *local_err = NULL; 1021 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1022 1023 ret = bdrv_reopen_multiple(queue, &local_err); 1024 if (local_err != NULL) { 1025 error_propagate(errp, local_err); 1026 } 1027 return ret; 1028 } 1029 1030 1031 /* 1032 * Prepares a BlockDriverState for reopen. All changes are staged in the 1033 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1034 * the block driver layer .bdrv_reopen_prepare() 1035 * 1036 * bs is the BlockDriverState to reopen 1037 * flags are the new open flags 1038 * queue is the reopen queue 1039 * 1040 * Returns 0 on success, non-zero on error. On error errp will be set 1041 * as well. 1042 * 1043 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1044 * It is the responsibility of the caller to then call the abort() or 1045 * commit() for any other BDS that have been left in a prepare() state 1046 * 1047 */ 1048 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1049 Error **errp) 1050 { 1051 int ret = -1; 1052 Error *local_err = NULL; 1053 BlockDriver *drv; 1054 1055 assert(reopen_state != NULL); 1056 assert(reopen_state->bs->drv != NULL); 1057 drv = reopen_state->bs->drv; 1058 1059 /* if we are to stay read-only, do not allow permission change 1060 * to r/w */ 1061 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1062 reopen_state->flags & BDRV_O_RDWR) { 1063 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1064 reopen_state->bs->device_name); 1065 goto error; 1066 } 1067 1068 1069 ret = bdrv_flush(reopen_state->bs); 1070 if (ret) { 1071 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1072 strerror(-ret)); 1073 goto error; 1074 } 1075 1076 if (drv->bdrv_reopen_prepare) { 1077 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1078 if (ret) { 1079 if (local_err != NULL) { 1080 error_propagate(errp, local_err); 1081 } else { 1082 error_set(errp, QERR_OPEN_FILE_FAILED, 1083 reopen_state->bs->filename); 1084 } 1085 goto error; 1086 } 1087 } else { 1088 /* It is currently mandatory to have a bdrv_reopen_prepare() 1089 * handler for each supported drv. */ 1090 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1091 drv->format_name, reopen_state->bs->device_name, 1092 "reopening of file"); 1093 ret = -1; 1094 goto error; 1095 } 1096 1097 ret = 0; 1098 1099 error: 1100 return ret; 1101 } 1102 1103 /* 1104 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1105 * makes them final by swapping the staging BlockDriverState contents into 1106 * the active BlockDriverState contents. 1107 */ 1108 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1109 { 1110 BlockDriver *drv; 1111 1112 assert(reopen_state != NULL); 1113 drv = reopen_state->bs->drv; 1114 assert(drv != NULL); 1115 1116 /* If there are any driver level actions to take */ 1117 if (drv->bdrv_reopen_commit) { 1118 drv->bdrv_reopen_commit(reopen_state); 1119 } 1120 1121 /* set BDS specific flags now */ 1122 reopen_state->bs->open_flags = reopen_state->flags; 1123 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1124 BDRV_O_CACHE_WB); 1125 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1126 } 1127 1128 /* 1129 * Abort the reopen, and delete and free the staged changes in 1130 * reopen_state 1131 */ 1132 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1133 { 1134 BlockDriver *drv; 1135 1136 assert(reopen_state != NULL); 1137 drv = reopen_state->bs->drv; 1138 assert(drv != NULL); 1139 1140 if (drv->bdrv_reopen_abort) { 1141 drv->bdrv_reopen_abort(reopen_state); 1142 } 1143 } 1144 1145 1146 void bdrv_close(BlockDriverState *bs) 1147 { 1148 bdrv_flush(bs); 1149 if (bs->job) { 1150 block_job_cancel_sync(bs->job); 1151 } 1152 bdrv_drain_all(); 1153 notifier_list_notify(&bs->close_notifiers, bs); 1154 1155 if (bs->drv) { 1156 if (bs == bs_snapshots) { 1157 bs_snapshots = NULL; 1158 } 1159 if (bs->backing_hd) { 1160 bdrv_delete(bs->backing_hd); 1161 bs->backing_hd = NULL; 1162 } 1163 bs->drv->bdrv_close(bs); 1164 g_free(bs->opaque); 1165 #ifdef _WIN32 1166 if (bs->is_temporary) { 1167 unlink(bs->filename); 1168 } 1169 #endif 1170 bs->opaque = NULL; 1171 bs->drv = NULL; 1172 bs->copy_on_read = 0; 1173 bs->backing_file[0] = '\0'; 1174 bs->backing_format[0] = '\0'; 1175 bs->total_sectors = 0; 1176 bs->encrypted = 0; 1177 bs->valid_key = 0; 1178 bs->sg = 0; 1179 bs->growable = 0; 1180 1181 if (bs->file != NULL) { 1182 bdrv_delete(bs->file); 1183 bs->file = NULL; 1184 } 1185 } 1186 1187 bdrv_dev_change_media_cb(bs, false); 1188 1189 /*throttling disk I/O limits*/ 1190 if (bs->io_limits_enabled) { 1191 bdrv_io_limits_disable(bs); 1192 } 1193 } 1194 1195 void bdrv_close_all(void) 1196 { 1197 BlockDriverState *bs; 1198 1199 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1200 bdrv_close(bs); 1201 } 1202 } 1203 1204 /* 1205 * Wait for pending requests to complete across all BlockDriverStates 1206 * 1207 * This function does not flush data to disk, use bdrv_flush_all() for that 1208 * after calling this function. 1209 * 1210 * Note that completion of an asynchronous I/O operation can trigger any 1211 * number of other I/O operations on other devices---for example a coroutine 1212 * can be arbitrarily complex and a constant flow of I/O can come until the 1213 * coroutine is complete. Because of this, it is not possible to have a 1214 * function to drain a single device's I/O queue. 1215 */ 1216 void bdrv_drain_all(void) 1217 { 1218 BlockDriverState *bs; 1219 bool busy; 1220 1221 do { 1222 busy = qemu_aio_wait(); 1223 1224 /* FIXME: We do not have timer support here, so this is effectively 1225 * a busy wait. 1226 */ 1227 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1228 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1229 qemu_co_queue_restart_all(&bs->throttled_reqs); 1230 busy = true; 1231 } 1232 } 1233 } while (busy); 1234 1235 /* If requests are still pending there is a bug somewhere */ 1236 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1237 assert(QLIST_EMPTY(&bs->tracked_requests)); 1238 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1239 } 1240 } 1241 1242 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1243 Also, NULL terminate the device_name to prevent double remove */ 1244 void bdrv_make_anon(BlockDriverState *bs) 1245 { 1246 if (bs->device_name[0] != '\0') { 1247 QTAILQ_REMOVE(&bdrv_states, bs, list); 1248 } 1249 bs->device_name[0] = '\0'; 1250 } 1251 1252 static void bdrv_rebind(BlockDriverState *bs) 1253 { 1254 if (bs->drv && bs->drv->bdrv_rebind) { 1255 bs->drv->bdrv_rebind(bs); 1256 } 1257 } 1258 1259 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1260 BlockDriverState *bs_src) 1261 { 1262 /* move some fields that need to stay attached to the device */ 1263 bs_dest->open_flags = bs_src->open_flags; 1264 1265 /* dev info */ 1266 bs_dest->dev_ops = bs_src->dev_ops; 1267 bs_dest->dev_opaque = bs_src->dev_opaque; 1268 bs_dest->dev = bs_src->dev; 1269 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1270 bs_dest->copy_on_read = bs_src->copy_on_read; 1271 1272 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1273 1274 /* i/o timing parameters */ 1275 bs_dest->slice_time = bs_src->slice_time; 1276 bs_dest->slice_start = bs_src->slice_start; 1277 bs_dest->slice_end = bs_src->slice_end; 1278 bs_dest->io_limits = bs_src->io_limits; 1279 bs_dest->io_base = bs_src->io_base; 1280 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1281 bs_dest->block_timer = bs_src->block_timer; 1282 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1283 1284 /* r/w error */ 1285 bs_dest->on_read_error = bs_src->on_read_error; 1286 bs_dest->on_write_error = bs_src->on_write_error; 1287 1288 /* i/o status */ 1289 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1290 bs_dest->iostatus = bs_src->iostatus; 1291 1292 /* dirty bitmap */ 1293 bs_dest->dirty_count = bs_src->dirty_count; 1294 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1295 1296 /* job */ 1297 bs_dest->in_use = bs_src->in_use; 1298 bs_dest->job = bs_src->job; 1299 1300 /* keep the same entry in bdrv_states */ 1301 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1302 bs_src->device_name); 1303 bs_dest->list = bs_src->list; 1304 } 1305 1306 /* 1307 * Swap bs contents for two image chains while they are live, 1308 * while keeping required fields on the BlockDriverState that is 1309 * actually attached to a device. 1310 * 1311 * This will modify the BlockDriverState fields, and swap contents 1312 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1313 * 1314 * bs_new is required to be anonymous. 1315 * 1316 * This function does not create any image files. 1317 */ 1318 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1319 { 1320 BlockDriverState tmp; 1321 1322 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1323 assert(bs_new->device_name[0] == '\0'); 1324 assert(bs_new->dirty_bitmap == NULL); 1325 assert(bs_new->job == NULL); 1326 assert(bs_new->dev == NULL); 1327 assert(bs_new->in_use == 0); 1328 assert(bs_new->io_limits_enabled == false); 1329 assert(bs_new->block_timer == NULL); 1330 1331 tmp = *bs_new; 1332 *bs_new = *bs_old; 1333 *bs_old = tmp; 1334 1335 /* there are some fields that should not be swapped, move them back */ 1336 bdrv_move_feature_fields(&tmp, bs_old); 1337 bdrv_move_feature_fields(bs_old, bs_new); 1338 bdrv_move_feature_fields(bs_new, &tmp); 1339 1340 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1341 assert(bs_new->device_name[0] == '\0'); 1342 1343 /* Check a few fields that should remain attached to the device */ 1344 assert(bs_new->dev == NULL); 1345 assert(bs_new->job == NULL); 1346 assert(bs_new->in_use == 0); 1347 assert(bs_new->io_limits_enabled == false); 1348 assert(bs_new->block_timer == NULL); 1349 1350 bdrv_rebind(bs_new); 1351 bdrv_rebind(bs_old); 1352 } 1353 1354 /* 1355 * Add new bs contents at the top of an image chain while the chain is 1356 * live, while keeping required fields on the top layer. 1357 * 1358 * This will modify the BlockDriverState fields, and swap contents 1359 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1360 * 1361 * bs_new is required to be anonymous. 1362 * 1363 * This function does not create any image files. 1364 */ 1365 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1366 { 1367 bdrv_swap(bs_new, bs_top); 1368 1369 /* The contents of 'tmp' will become bs_top, as we are 1370 * swapping bs_new and bs_top contents. */ 1371 bs_top->backing_hd = bs_new; 1372 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1373 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1374 bs_new->filename); 1375 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1376 bs_new->drv ? bs_new->drv->format_name : ""); 1377 } 1378 1379 void bdrv_delete(BlockDriverState *bs) 1380 { 1381 assert(!bs->dev); 1382 assert(!bs->job); 1383 assert(!bs->in_use); 1384 1385 /* remove from list, if necessary */ 1386 bdrv_make_anon(bs); 1387 1388 bdrv_close(bs); 1389 1390 assert(bs != bs_snapshots); 1391 g_free(bs); 1392 } 1393 1394 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1395 /* TODO change to DeviceState *dev when all users are qdevified */ 1396 { 1397 if (bs->dev) { 1398 return -EBUSY; 1399 } 1400 bs->dev = dev; 1401 bdrv_iostatus_reset(bs); 1402 return 0; 1403 } 1404 1405 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1406 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1407 { 1408 if (bdrv_attach_dev(bs, dev) < 0) { 1409 abort(); 1410 } 1411 } 1412 1413 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1414 /* TODO change to DeviceState *dev when all users are qdevified */ 1415 { 1416 assert(bs->dev == dev); 1417 bs->dev = NULL; 1418 bs->dev_ops = NULL; 1419 bs->dev_opaque = NULL; 1420 bs->buffer_alignment = 512; 1421 } 1422 1423 /* TODO change to return DeviceState * when all users are qdevified */ 1424 void *bdrv_get_attached_dev(BlockDriverState *bs) 1425 { 1426 return bs->dev; 1427 } 1428 1429 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1430 void *opaque) 1431 { 1432 bs->dev_ops = ops; 1433 bs->dev_opaque = opaque; 1434 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1435 bs_snapshots = NULL; 1436 } 1437 } 1438 1439 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1440 enum MonitorEvent ev, 1441 BlockErrorAction action, bool is_read) 1442 { 1443 QObject *data; 1444 const char *action_str; 1445 1446 switch (action) { 1447 case BDRV_ACTION_REPORT: 1448 action_str = "report"; 1449 break; 1450 case BDRV_ACTION_IGNORE: 1451 action_str = "ignore"; 1452 break; 1453 case BDRV_ACTION_STOP: 1454 action_str = "stop"; 1455 break; 1456 default: 1457 abort(); 1458 } 1459 1460 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1461 bdrv->device_name, 1462 action_str, 1463 is_read ? "read" : "write"); 1464 monitor_protocol_event(ev, data); 1465 1466 qobject_decref(data); 1467 } 1468 1469 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1470 { 1471 QObject *data; 1472 1473 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1474 bdrv_get_device_name(bs), ejected); 1475 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1476 1477 qobject_decref(data); 1478 } 1479 1480 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1481 { 1482 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1483 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1484 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1485 if (tray_was_closed) { 1486 /* tray open */ 1487 bdrv_emit_qmp_eject_event(bs, true); 1488 } 1489 if (load) { 1490 /* tray close */ 1491 bdrv_emit_qmp_eject_event(bs, false); 1492 } 1493 } 1494 } 1495 1496 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1497 { 1498 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1499 } 1500 1501 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1502 { 1503 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1504 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1505 } 1506 } 1507 1508 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1509 { 1510 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1511 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1512 } 1513 return false; 1514 } 1515 1516 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1517 { 1518 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1519 bs->dev_ops->resize_cb(bs->dev_opaque); 1520 } 1521 } 1522 1523 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1524 { 1525 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1526 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1527 } 1528 return false; 1529 } 1530 1531 /* 1532 * Run consistency checks on an image 1533 * 1534 * Returns 0 if the check could be completed (it doesn't mean that the image is 1535 * free of errors) or -errno when an internal error occurred. The results of the 1536 * check are stored in res. 1537 */ 1538 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1539 { 1540 if (bs->drv->bdrv_check == NULL) { 1541 return -ENOTSUP; 1542 } 1543 1544 memset(res, 0, sizeof(*res)); 1545 return bs->drv->bdrv_check(bs, res, fix); 1546 } 1547 1548 #define COMMIT_BUF_SECTORS 2048 1549 1550 /* commit COW file into the raw image */ 1551 int bdrv_commit(BlockDriverState *bs) 1552 { 1553 BlockDriver *drv = bs->drv; 1554 int64_t sector, total_sectors; 1555 int n, ro, open_flags; 1556 int ret = 0; 1557 uint8_t *buf; 1558 char filename[PATH_MAX]; 1559 1560 if (!drv) 1561 return -ENOMEDIUM; 1562 1563 if (!bs->backing_hd) { 1564 return -ENOTSUP; 1565 } 1566 1567 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1568 return -EBUSY; 1569 } 1570 1571 ro = bs->backing_hd->read_only; 1572 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1573 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1574 open_flags = bs->backing_hd->open_flags; 1575 1576 if (ro) { 1577 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1578 return -EACCES; 1579 } 1580 } 1581 1582 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1583 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1584 1585 for (sector = 0; sector < total_sectors; sector += n) { 1586 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1587 1588 if (bdrv_read(bs, sector, buf, n) != 0) { 1589 ret = -EIO; 1590 goto ro_cleanup; 1591 } 1592 1593 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1594 ret = -EIO; 1595 goto ro_cleanup; 1596 } 1597 } 1598 } 1599 1600 if (drv->bdrv_make_empty) { 1601 ret = drv->bdrv_make_empty(bs); 1602 bdrv_flush(bs); 1603 } 1604 1605 /* 1606 * Make sure all data we wrote to the backing device is actually 1607 * stable on disk. 1608 */ 1609 if (bs->backing_hd) 1610 bdrv_flush(bs->backing_hd); 1611 1612 ro_cleanup: 1613 g_free(buf); 1614 1615 if (ro) { 1616 /* ignoring error return here */ 1617 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1618 } 1619 1620 return ret; 1621 } 1622 1623 int bdrv_commit_all(void) 1624 { 1625 BlockDriverState *bs; 1626 1627 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1628 int ret = bdrv_commit(bs); 1629 if (ret < 0) { 1630 return ret; 1631 } 1632 } 1633 return 0; 1634 } 1635 1636 struct BdrvTrackedRequest { 1637 BlockDriverState *bs; 1638 int64_t sector_num; 1639 int nb_sectors; 1640 bool is_write; 1641 QLIST_ENTRY(BdrvTrackedRequest) list; 1642 Coroutine *co; /* owner, used for deadlock detection */ 1643 CoQueue wait_queue; /* coroutines blocked on this request */ 1644 }; 1645 1646 /** 1647 * Remove an active request from the tracked requests list 1648 * 1649 * This function should be called when a tracked request is completing. 1650 */ 1651 static void tracked_request_end(BdrvTrackedRequest *req) 1652 { 1653 QLIST_REMOVE(req, list); 1654 qemu_co_queue_restart_all(&req->wait_queue); 1655 } 1656 1657 /** 1658 * Add an active request to the tracked requests list 1659 */ 1660 static void tracked_request_begin(BdrvTrackedRequest *req, 1661 BlockDriverState *bs, 1662 int64_t sector_num, 1663 int nb_sectors, bool is_write) 1664 { 1665 *req = (BdrvTrackedRequest){ 1666 .bs = bs, 1667 .sector_num = sector_num, 1668 .nb_sectors = nb_sectors, 1669 .is_write = is_write, 1670 .co = qemu_coroutine_self(), 1671 }; 1672 1673 qemu_co_queue_init(&req->wait_queue); 1674 1675 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1676 } 1677 1678 /** 1679 * Round a region to cluster boundaries 1680 */ 1681 static void round_to_clusters(BlockDriverState *bs, 1682 int64_t sector_num, int nb_sectors, 1683 int64_t *cluster_sector_num, 1684 int *cluster_nb_sectors) 1685 { 1686 BlockDriverInfo bdi; 1687 1688 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1689 *cluster_sector_num = sector_num; 1690 *cluster_nb_sectors = nb_sectors; 1691 } else { 1692 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1693 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1694 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1695 nb_sectors, c); 1696 } 1697 } 1698 1699 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1700 int64_t sector_num, int nb_sectors) { 1701 /* aaaa bbbb */ 1702 if (sector_num >= req->sector_num + req->nb_sectors) { 1703 return false; 1704 } 1705 /* bbbb aaaa */ 1706 if (req->sector_num >= sector_num + nb_sectors) { 1707 return false; 1708 } 1709 return true; 1710 } 1711 1712 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1713 int64_t sector_num, int nb_sectors) 1714 { 1715 BdrvTrackedRequest *req; 1716 int64_t cluster_sector_num; 1717 int cluster_nb_sectors; 1718 bool retry; 1719 1720 /* If we touch the same cluster it counts as an overlap. This guarantees 1721 * that allocating writes will be serialized and not race with each other 1722 * for the same cluster. For example, in copy-on-read it ensures that the 1723 * CoR read and write operations are atomic and guest writes cannot 1724 * interleave between them. 1725 */ 1726 round_to_clusters(bs, sector_num, nb_sectors, 1727 &cluster_sector_num, &cluster_nb_sectors); 1728 1729 do { 1730 retry = false; 1731 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1732 if (tracked_request_overlaps(req, cluster_sector_num, 1733 cluster_nb_sectors)) { 1734 /* Hitting this means there was a reentrant request, for 1735 * example, a block driver issuing nested requests. This must 1736 * never happen since it means deadlock. 1737 */ 1738 assert(qemu_coroutine_self() != req->co); 1739 1740 qemu_co_queue_wait(&req->wait_queue); 1741 retry = true; 1742 break; 1743 } 1744 } 1745 } while (retry); 1746 } 1747 1748 /* 1749 * Return values: 1750 * 0 - success 1751 * -EINVAL - backing format specified, but no file 1752 * -ENOSPC - can't update the backing file because no space is left in the 1753 * image file header 1754 * -ENOTSUP - format driver doesn't support changing the backing file 1755 */ 1756 int bdrv_change_backing_file(BlockDriverState *bs, 1757 const char *backing_file, const char *backing_fmt) 1758 { 1759 BlockDriver *drv = bs->drv; 1760 int ret; 1761 1762 /* Backing file format doesn't make sense without a backing file */ 1763 if (backing_fmt && !backing_file) { 1764 return -EINVAL; 1765 } 1766 1767 if (drv->bdrv_change_backing_file != NULL) { 1768 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1769 } else { 1770 ret = -ENOTSUP; 1771 } 1772 1773 if (ret == 0) { 1774 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1775 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1776 } 1777 return ret; 1778 } 1779 1780 /* 1781 * Finds the image layer in the chain that has 'bs' as its backing file. 1782 * 1783 * active is the current topmost image. 1784 * 1785 * Returns NULL if bs is not found in active's image chain, 1786 * or if active == bs. 1787 */ 1788 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1789 BlockDriverState *bs) 1790 { 1791 BlockDriverState *overlay = NULL; 1792 BlockDriverState *intermediate; 1793 1794 assert(active != NULL); 1795 assert(bs != NULL); 1796 1797 /* if bs is the same as active, then by definition it has no overlay 1798 */ 1799 if (active == bs) { 1800 return NULL; 1801 } 1802 1803 intermediate = active; 1804 while (intermediate->backing_hd) { 1805 if (intermediate->backing_hd == bs) { 1806 overlay = intermediate; 1807 break; 1808 } 1809 intermediate = intermediate->backing_hd; 1810 } 1811 1812 return overlay; 1813 } 1814 1815 typedef struct BlkIntermediateStates { 1816 BlockDriverState *bs; 1817 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 1818 } BlkIntermediateStates; 1819 1820 1821 /* 1822 * Drops images above 'base' up to and including 'top', and sets the image 1823 * above 'top' to have base as its backing file. 1824 * 1825 * Requires that the overlay to 'top' is opened r/w, so that the backing file 1826 * information in 'bs' can be properly updated. 1827 * 1828 * E.g., this will convert the following chain: 1829 * bottom <- base <- intermediate <- top <- active 1830 * 1831 * to 1832 * 1833 * bottom <- base <- active 1834 * 1835 * It is allowed for bottom==base, in which case it converts: 1836 * 1837 * base <- intermediate <- top <- active 1838 * 1839 * to 1840 * 1841 * base <- active 1842 * 1843 * Error conditions: 1844 * if active == top, that is considered an error 1845 * 1846 */ 1847 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 1848 BlockDriverState *base) 1849 { 1850 BlockDriverState *intermediate; 1851 BlockDriverState *base_bs = NULL; 1852 BlockDriverState *new_top_bs = NULL; 1853 BlkIntermediateStates *intermediate_state, *next; 1854 int ret = -EIO; 1855 1856 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 1857 QSIMPLEQ_INIT(&states_to_delete); 1858 1859 if (!top->drv || !base->drv) { 1860 goto exit; 1861 } 1862 1863 new_top_bs = bdrv_find_overlay(active, top); 1864 1865 if (new_top_bs == NULL) { 1866 /* we could not find the image above 'top', this is an error */ 1867 goto exit; 1868 } 1869 1870 /* special case of new_top_bs->backing_hd already pointing to base - nothing 1871 * to do, no intermediate images */ 1872 if (new_top_bs->backing_hd == base) { 1873 ret = 0; 1874 goto exit; 1875 } 1876 1877 intermediate = top; 1878 1879 /* now we will go down through the list, and add each BDS we find 1880 * into our deletion queue, until we hit the 'base' 1881 */ 1882 while (intermediate) { 1883 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 1884 intermediate_state->bs = intermediate; 1885 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 1886 1887 if (intermediate->backing_hd == base) { 1888 base_bs = intermediate->backing_hd; 1889 break; 1890 } 1891 intermediate = intermediate->backing_hd; 1892 } 1893 if (base_bs == NULL) { 1894 /* something went wrong, we did not end at the base. safely 1895 * unravel everything, and exit with error */ 1896 goto exit; 1897 } 1898 1899 /* success - we can delete the intermediate states, and link top->base */ 1900 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 1901 base_bs->drv ? base_bs->drv->format_name : ""); 1902 if (ret) { 1903 goto exit; 1904 } 1905 new_top_bs->backing_hd = base_bs; 1906 1907 1908 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1909 /* so that bdrv_close() does not recursively close the chain */ 1910 intermediate_state->bs->backing_hd = NULL; 1911 bdrv_delete(intermediate_state->bs); 1912 } 1913 ret = 0; 1914 1915 exit: 1916 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1917 g_free(intermediate_state); 1918 } 1919 return ret; 1920 } 1921 1922 1923 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1924 size_t size) 1925 { 1926 int64_t len; 1927 1928 if (!bdrv_is_inserted(bs)) 1929 return -ENOMEDIUM; 1930 1931 if (bs->growable) 1932 return 0; 1933 1934 len = bdrv_getlength(bs); 1935 1936 if (offset < 0) 1937 return -EIO; 1938 1939 if ((offset > len) || (len - offset < size)) 1940 return -EIO; 1941 1942 return 0; 1943 } 1944 1945 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1946 int nb_sectors) 1947 { 1948 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1949 nb_sectors * BDRV_SECTOR_SIZE); 1950 } 1951 1952 typedef struct RwCo { 1953 BlockDriverState *bs; 1954 int64_t sector_num; 1955 int nb_sectors; 1956 QEMUIOVector *qiov; 1957 bool is_write; 1958 int ret; 1959 } RwCo; 1960 1961 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1962 { 1963 RwCo *rwco = opaque; 1964 1965 if (!rwco->is_write) { 1966 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1967 rwco->nb_sectors, rwco->qiov, 0); 1968 } else { 1969 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1970 rwco->nb_sectors, rwco->qiov, 0); 1971 } 1972 } 1973 1974 /* 1975 * Process a synchronous request using coroutines 1976 */ 1977 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1978 int nb_sectors, bool is_write) 1979 { 1980 QEMUIOVector qiov; 1981 struct iovec iov = { 1982 .iov_base = (void *)buf, 1983 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1984 }; 1985 Coroutine *co; 1986 RwCo rwco = { 1987 .bs = bs, 1988 .sector_num = sector_num, 1989 .nb_sectors = nb_sectors, 1990 .qiov = &qiov, 1991 .is_write = is_write, 1992 .ret = NOT_DONE, 1993 }; 1994 1995 qemu_iovec_init_external(&qiov, &iov, 1); 1996 1997 /** 1998 * In sync call context, when the vcpu is blocked, this throttling timer 1999 * will not fire; so the I/O throttling function has to be disabled here 2000 * if it has been enabled. 2001 */ 2002 if (bs->io_limits_enabled) { 2003 fprintf(stderr, "Disabling I/O throttling on '%s' due " 2004 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 2005 bdrv_io_limits_disable(bs); 2006 } 2007 2008 if (qemu_in_coroutine()) { 2009 /* Fast-path if already in coroutine context */ 2010 bdrv_rw_co_entry(&rwco); 2011 } else { 2012 co = qemu_coroutine_create(bdrv_rw_co_entry); 2013 qemu_coroutine_enter(co, &rwco); 2014 while (rwco.ret == NOT_DONE) { 2015 qemu_aio_wait(); 2016 } 2017 } 2018 return rwco.ret; 2019 } 2020 2021 /* return < 0 if error. See bdrv_write() for the return codes */ 2022 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2023 uint8_t *buf, int nb_sectors) 2024 { 2025 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 2026 } 2027 2028 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2029 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2030 uint8_t *buf, int nb_sectors) 2031 { 2032 bool enabled; 2033 int ret; 2034 2035 enabled = bs->io_limits_enabled; 2036 bs->io_limits_enabled = false; 2037 ret = bdrv_read(bs, 0, buf, 1); 2038 bs->io_limits_enabled = enabled; 2039 return ret; 2040 } 2041 2042 #define BITS_PER_LONG (sizeof(unsigned long) * 8) 2043 2044 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num, 2045 int nb_sectors, int dirty) 2046 { 2047 int64_t start, end; 2048 unsigned long val, idx, bit; 2049 2050 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK; 2051 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK; 2052 2053 for (; start <= end; start++) { 2054 idx = start / BITS_PER_LONG; 2055 bit = start % BITS_PER_LONG; 2056 val = bs->dirty_bitmap[idx]; 2057 if (dirty) { 2058 if (!(val & (1UL << bit))) { 2059 bs->dirty_count++; 2060 val |= 1UL << bit; 2061 } 2062 } else { 2063 if (val & (1UL << bit)) { 2064 bs->dirty_count--; 2065 val &= ~(1UL << bit); 2066 } 2067 } 2068 bs->dirty_bitmap[idx] = val; 2069 } 2070 } 2071 2072 /* Return < 0 if error. Important errors are: 2073 -EIO generic I/O error (may happen for all errors) 2074 -ENOMEDIUM No media inserted. 2075 -EINVAL Invalid sector number or nb_sectors 2076 -EACCES Trying to write a read-only device 2077 */ 2078 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2079 const uint8_t *buf, int nb_sectors) 2080 { 2081 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2082 } 2083 2084 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2085 void *buf, int count1) 2086 { 2087 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2088 int len, nb_sectors, count; 2089 int64_t sector_num; 2090 int ret; 2091 2092 count = count1; 2093 /* first read to align to sector start */ 2094 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2095 if (len > count) 2096 len = count; 2097 sector_num = offset >> BDRV_SECTOR_BITS; 2098 if (len > 0) { 2099 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2100 return ret; 2101 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2102 count -= len; 2103 if (count == 0) 2104 return count1; 2105 sector_num++; 2106 buf += len; 2107 } 2108 2109 /* read the sectors "in place" */ 2110 nb_sectors = count >> BDRV_SECTOR_BITS; 2111 if (nb_sectors > 0) { 2112 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2113 return ret; 2114 sector_num += nb_sectors; 2115 len = nb_sectors << BDRV_SECTOR_BITS; 2116 buf += len; 2117 count -= len; 2118 } 2119 2120 /* add data from the last sector */ 2121 if (count > 0) { 2122 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2123 return ret; 2124 memcpy(buf, tmp_buf, count); 2125 } 2126 return count1; 2127 } 2128 2129 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2130 const void *buf, int count1) 2131 { 2132 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2133 int len, nb_sectors, count; 2134 int64_t sector_num; 2135 int ret; 2136 2137 count = count1; 2138 /* first write to align to sector start */ 2139 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2140 if (len > count) 2141 len = count; 2142 sector_num = offset >> BDRV_SECTOR_BITS; 2143 if (len > 0) { 2144 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2145 return ret; 2146 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 2147 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2148 return ret; 2149 count -= len; 2150 if (count == 0) 2151 return count1; 2152 sector_num++; 2153 buf += len; 2154 } 2155 2156 /* write the sectors "in place" */ 2157 nb_sectors = count >> BDRV_SECTOR_BITS; 2158 if (nb_sectors > 0) { 2159 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 2160 return ret; 2161 sector_num += nb_sectors; 2162 len = nb_sectors << BDRV_SECTOR_BITS; 2163 buf += len; 2164 count -= len; 2165 } 2166 2167 /* add data from the last sector */ 2168 if (count > 0) { 2169 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2170 return ret; 2171 memcpy(tmp_buf, buf, count); 2172 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2173 return ret; 2174 } 2175 return count1; 2176 } 2177 2178 /* 2179 * Writes to the file and ensures that no writes are reordered across this 2180 * request (acts as a barrier) 2181 * 2182 * Returns 0 on success, -errno in error cases. 2183 */ 2184 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2185 const void *buf, int count) 2186 { 2187 int ret; 2188 2189 ret = bdrv_pwrite(bs, offset, buf, count); 2190 if (ret < 0) { 2191 return ret; 2192 } 2193 2194 /* No flush needed for cache modes that already do it */ 2195 if (bs->enable_write_cache) { 2196 bdrv_flush(bs); 2197 } 2198 2199 return 0; 2200 } 2201 2202 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2203 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2204 { 2205 /* Perform I/O through a temporary buffer so that users who scribble over 2206 * their read buffer while the operation is in progress do not end up 2207 * modifying the image file. This is critical for zero-copy guest I/O 2208 * where anything might happen inside guest memory. 2209 */ 2210 void *bounce_buffer; 2211 2212 BlockDriver *drv = bs->drv; 2213 struct iovec iov; 2214 QEMUIOVector bounce_qiov; 2215 int64_t cluster_sector_num; 2216 int cluster_nb_sectors; 2217 size_t skip_bytes; 2218 int ret; 2219 2220 /* Cover entire cluster so no additional backing file I/O is required when 2221 * allocating cluster in the image file. 2222 */ 2223 round_to_clusters(bs, sector_num, nb_sectors, 2224 &cluster_sector_num, &cluster_nb_sectors); 2225 2226 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2227 cluster_sector_num, cluster_nb_sectors); 2228 2229 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2230 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2231 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2232 2233 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2234 &bounce_qiov); 2235 if (ret < 0) { 2236 goto err; 2237 } 2238 2239 if (drv->bdrv_co_write_zeroes && 2240 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2241 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2242 cluster_nb_sectors); 2243 } else { 2244 /* This does not change the data on the disk, it is not necessary 2245 * to flush even in cache=writethrough mode. 2246 */ 2247 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2248 &bounce_qiov); 2249 } 2250 2251 if (ret < 0) { 2252 /* It might be okay to ignore write errors for guest requests. If this 2253 * is a deliberate copy-on-read then we don't want to ignore the error. 2254 * Simply report it in all cases. 2255 */ 2256 goto err; 2257 } 2258 2259 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2260 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2261 nb_sectors * BDRV_SECTOR_SIZE); 2262 2263 err: 2264 qemu_vfree(bounce_buffer); 2265 return ret; 2266 } 2267 2268 /* 2269 * Handle a read request in coroutine context 2270 */ 2271 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2272 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2273 BdrvRequestFlags flags) 2274 { 2275 BlockDriver *drv = bs->drv; 2276 BdrvTrackedRequest req; 2277 int ret; 2278 2279 if (!drv) { 2280 return -ENOMEDIUM; 2281 } 2282 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2283 return -EIO; 2284 } 2285 2286 /* throttling disk read I/O */ 2287 if (bs->io_limits_enabled) { 2288 bdrv_io_limits_intercept(bs, false, nb_sectors); 2289 } 2290 2291 if (bs->copy_on_read) { 2292 flags |= BDRV_REQ_COPY_ON_READ; 2293 } 2294 if (flags & BDRV_REQ_COPY_ON_READ) { 2295 bs->copy_on_read_in_flight++; 2296 } 2297 2298 if (bs->copy_on_read_in_flight) { 2299 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2300 } 2301 2302 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2303 2304 if (flags & BDRV_REQ_COPY_ON_READ) { 2305 int pnum; 2306 2307 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2308 if (ret < 0) { 2309 goto out; 2310 } 2311 2312 if (!ret || pnum != nb_sectors) { 2313 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2314 goto out; 2315 } 2316 } 2317 2318 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2319 2320 out: 2321 tracked_request_end(&req); 2322 2323 if (flags & BDRV_REQ_COPY_ON_READ) { 2324 bs->copy_on_read_in_flight--; 2325 } 2326 2327 return ret; 2328 } 2329 2330 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2331 int nb_sectors, QEMUIOVector *qiov) 2332 { 2333 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2334 2335 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2336 } 2337 2338 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2339 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2340 { 2341 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2342 2343 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2344 BDRV_REQ_COPY_ON_READ); 2345 } 2346 2347 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2348 int64_t sector_num, int nb_sectors) 2349 { 2350 BlockDriver *drv = bs->drv; 2351 QEMUIOVector qiov; 2352 struct iovec iov; 2353 int ret; 2354 2355 /* TODO Emulate only part of misaligned requests instead of letting block 2356 * drivers return -ENOTSUP and emulate everything */ 2357 2358 /* First try the efficient write zeroes operation */ 2359 if (drv->bdrv_co_write_zeroes) { 2360 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2361 if (ret != -ENOTSUP) { 2362 return ret; 2363 } 2364 } 2365 2366 /* Fall back to bounce buffer if write zeroes is unsupported */ 2367 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2368 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2369 memset(iov.iov_base, 0, iov.iov_len); 2370 qemu_iovec_init_external(&qiov, &iov, 1); 2371 2372 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2373 2374 qemu_vfree(iov.iov_base); 2375 return ret; 2376 } 2377 2378 /* 2379 * Handle a write request in coroutine context 2380 */ 2381 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2382 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2383 BdrvRequestFlags flags) 2384 { 2385 BlockDriver *drv = bs->drv; 2386 BdrvTrackedRequest req; 2387 int ret; 2388 2389 if (!bs->drv) { 2390 return -ENOMEDIUM; 2391 } 2392 if (bs->read_only) { 2393 return -EACCES; 2394 } 2395 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2396 return -EIO; 2397 } 2398 2399 /* throttling disk write I/O */ 2400 if (bs->io_limits_enabled) { 2401 bdrv_io_limits_intercept(bs, true, nb_sectors); 2402 } 2403 2404 if (bs->copy_on_read_in_flight) { 2405 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2406 } 2407 2408 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2409 2410 if (flags & BDRV_REQ_ZERO_WRITE) { 2411 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2412 } else { 2413 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2414 } 2415 2416 if (ret == 0 && !bs->enable_write_cache) { 2417 ret = bdrv_co_flush(bs); 2418 } 2419 2420 if (bs->dirty_bitmap) { 2421 bdrv_set_dirty(bs, sector_num, nb_sectors); 2422 } 2423 2424 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2425 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2426 } 2427 2428 tracked_request_end(&req); 2429 2430 return ret; 2431 } 2432 2433 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2434 int nb_sectors, QEMUIOVector *qiov) 2435 { 2436 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2437 2438 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2439 } 2440 2441 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2442 int64_t sector_num, int nb_sectors) 2443 { 2444 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2445 2446 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2447 BDRV_REQ_ZERO_WRITE); 2448 } 2449 2450 /** 2451 * Truncate file to 'offset' bytes (needed only for file protocols) 2452 */ 2453 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2454 { 2455 BlockDriver *drv = bs->drv; 2456 int ret; 2457 if (!drv) 2458 return -ENOMEDIUM; 2459 if (!drv->bdrv_truncate) 2460 return -ENOTSUP; 2461 if (bs->read_only) 2462 return -EACCES; 2463 if (bdrv_in_use(bs)) 2464 return -EBUSY; 2465 ret = drv->bdrv_truncate(bs, offset); 2466 if (ret == 0) { 2467 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2468 bdrv_dev_resize_cb(bs); 2469 } 2470 return ret; 2471 } 2472 2473 /** 2474 * Length of a allocated file in bytes. Sparse files are counted by actual 2475 * allocated space. Return < 0 if error or unknown. 2476 */ 2477 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2478 { 2479 BlockDriver *drv = bs->drv; 2480 if (!drv) { 2481 return -ENOMEDIUM; 2482 } 2483 if (drv->bdrv_get_allocated_file_size) { 2484 return drv->bdrv_get_allocated_file_size(bs); 2485 } 2486 if (bs->file) { 2487 return bdrv_get_allocated_file_size(bs->file); 2488 } 2489 return -ENOTSUP; 2490 } 2491 2492 /** 2493 * Length of a file in bytes. Return < 0 if error or unknown. 2494 */ 2495 int64_t bdrv_getlength(BlockDriverState *bs) 2496 { 2497 BlockDriver *drv = bs->drv; 2498 if (!drv) 2499 return -ENOMEDIUM; 2500 2501 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2502 if (drv->bdrv_getlength) { 2503 return drv->bdrv_getlength(bs); 2504 } 2505 } 2506 return bs->total_sectors * BDRV_SECTOR_SIZE; 2507 } 2508 2509 /* return 0 as number of sectors if no device present or error */ 2510 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2511 { 2512 int64_t length; 2513 length = bdrv_getlength(bs); 2514 if (length < 0) 2515 length = 0; 2516 else 2517 length = length >> BDRV_SECTOR_BITS; 2518 *nb_sectors_ptr = length; 2519 } 2520 2521 /* throttling disk io limits */ 2522 void bdrv_set_io_limits(BlockDriverState *bs, 2523 BlockIOLimit *io_limits) 2524 { 2525 bs->io_limits = *io_limits; 2526 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2527 } 2528 2529 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2530 BlockdevOnError on_write_error) 2531 { 2532 bs->on_read_error = on_read_error; 2533 bs->on_write_error = on_write_error; 2534 } 2535 2536 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2537 { 2538 return is_read ? bs->on_read_error : bs->on_write_error; 2539 } 2540 2541 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2542 { 2543 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2544 2545 switch (on_err) { 2546 case BLOCKDEV_ON_ERROR_ENOSPC: 2547 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2548 case BLOCKDEV_ON_ERROR_STOP: 2549 return BDRV_ACTION_STOP; 2550 case BLOCKDEV_ON_ERROR_REPORT: 2551 return BDRV_ACTION_REPORT; 2552 case BLOCKDEV_ON_ERROR_IGNORE: 2553 return BDRV_ACTION_IGNORE; 2554 default: 2555 abort(); 2556 } 2557 } 2558 2559 /* This is done by device models because, while the block layer knows 2560 * about the error, it does not know whether an operation comes from 2561 * the device or the block layer (from a job, for example). 2562 */ 2563 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2564 bool is_read, int error) 2565 { 2566 assert(error >= 0); 2567 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2568 if (action == BDRV_ACTION_STOP) { 2569 vm_stop(RUN_STATE_IO_ERROR); 2570 bdrv_iostatus_set_err(bs, error); 2571 } 2572 } 2573 2574 int bdrv_is_read_only(BlockDriverState *bs) 2575 { 2576 return bs->read_only; 2577 } 2578 2579 int bdrv_is_sg(BlockDriverState *bs) 2580 { 2581 return bs->sg; 2582 } 2583 2584 int bdrv_enable_write_cache(BlockDriverState *bs) 2585 { 2586 return bs->enable_write_cache; 2587 } 2588 2589 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2590 { 2591 bs->enable_write_cache = wce; 2592 2593 /* so a reopen() will preserve wce */ 2594 if (wce) { 2595 bs->open_flags |= BDRV_O_CACHE_WB; 2596 } else { 2597 bs->open_flags &= ~BDRV_O_CACHE_WB; 2598 } 2599 } 2600 2601 int bdrv_is_encrypted(BlockDriverState *bs) 2602 { 2603 if (bs->backing_hd && bs->backing_hd->encrypted) 2604 return 1; 2605 return bs->encrypted; 2606 } 2607 2608 int bdrv_key_required(BlockDriverState *bs) 2609 { 2610 BlockDriverState *backing_hd = bs->backing_hd; 2611 2612 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2613 return 1; 2614 return (bs->encrypted && !bs->valid_key); 2615 } 2616 2617 int bdrv_set_key(BlockDriverState *bs, const char *key) 2618 { 2619 int ret; 2620 if (bs->backing_hd && bs->backing_hd->encrypted) { 2621 ret = bdrv_set_key(bs->backing_hd, key); 2622 if (ret < 0) 2623 return ret; 2624 if (!bs->encrypted) 2625 return 0; 2626 } 2627 if (!bs->encrypted) { 2628 return -EINVAL; 2629 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2630 return -ENOMEDIUM; 2631 } 2632 ret = bs->drv->bdrv_set_key(bs, key); 2633 if (ret < 0) { 2634 bs->valid_key = 0; 2635 } else if (!bs->valid_key) { 2636 bs->valid_key = 1; 2637 /* call the change callback now, we skipped it on open */ 2638 bdrv_dev_change_media_cb(bs, true); 2639 } 2640 return ret; 2641 } 2642 2643 const char *bdrv_get_format_name(BlockDriverState *bs) 2644 { 2645 return bs->drv ? bs->drv->format_name : NULL; 2646 } 2647 2648 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2649 void *opaque) 2650 { 2651 BlockDriver *drv; 2652 2653 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2654 it(opaque, drv->format_name); 2655 } 2656 } 2657 2658 BlockDriverState *bdrv_find(const char *name) 2659 { 2660 BlockDriverState *bs; 2661 2662 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2663 if (!strcmp(name, bs->device_name)) { 2664 return bs; 2665 } 2666 } 2667 return NULL; 2668 } 2669 2670 BlockDriverState *bdrv_next(BlockDriverState *bs) 2671 { 2672 if (!bs) { 2673 return QTAILQ_FIRST(&bdrv_states); 2674 } 2675 return QTAILQ_NEXT(bs, list); 2676 } 2677 2678 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2679 { 2680 BlockDriverState *bs; 2681 2682 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2683 it(opaque, bs); 2684 } 2685 } 2686 2687 const char *bdrv_get_device_name(BlockDriverState *bs) 2688 { 2689 return bs->device_name; 2690 } 2691 2692 int bdrv_get_flags(BlockDriverState *bs) 2693 { 2694 return bs->open_flags; 2695 } 2696 2697 void bdrv_flush_all(void) 2698 { 2699 BlockDriverState *bs; 2700 2701 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2702 bdrv_flush(bs); 2703 } 2704 } 2705 2706 int bdrv_has_zero_init(BlockDriverState *bs) 2707 { 2708 assert(bs->drv); 2709 2710 if (bs->drv->bdrv_has_zero_init) { 2711 return bs->drv->bdrv_has_zero_init(bs); 2712 } 2713 2714 return 1; 2715 } 2716 2717 typedef struct BdrvCoIsAllocatedData { 2718 BlockDriverState *bs; 2719 int64_t sector_num; 2720 int nb_sectors; 2721 int *pnum; 2722 int ret; 2723 bool done; 2724 } BdrvCoIsAllocatedData; 2725 2726 /* 2727 * Returns true iff the specified sector is present in the disk image. Drivers 2728 * not implementing the functionality are assumed to not support backing files, 2729 * hence all their sectors are reported as allocated. 2730 * 2731 * If 'sector_num' is beyond the end of the disk image the return value is 0 2732 * and 'pnum' is set to 0. 2733 * 2734 * 'pnum' is set to the number of sectors (including and immediately following 2735 * the specified sector) that are known to be in the same 2736 * allocated/unallocated state. 2737 * 2738 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2739 * beyond the end of the disk image it will be clamped. 2740 */ 2741 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2742 int nb_sectors, int *pnum) 2743 { 2744 int64_t n; 2745 2746 if (sector_num >= bs->total_sectors) { 2747 *pnum = 0; 2748 return 0; 2749 } 2750 2751 n = bs->total_sectors - sector_num; 2752 if (n < nb_sectors) { 2753 nb_sectors = n; 2754 } 2755 2756 if (!bs->drv->bdrv_co_is_allocated) { 2757 *pnum = nb_sectors; 2758 return 1; 2759 } 2760 2761 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2762 } 2763 2764 /* Coroutine wrapper for bdrv_is_allocated() */ 2765 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2766 { 2767 BdrvCoIsAllocatedData *data = opaque; 2768 BlockDriverState *bs = data->bs; 2769 2770 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2771 data->pnum); 2772 data->done = true; 2773 } 2774 2775 /* 2776 * Synchronous wrapper around bdrv_co_is_allocated(). 2777 * 2778 * See bdrv_co_is_allocated() for details. 2779 */ 2780 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2781 int *pnum) 2782 { 2783 Coroutine *co; 2784 BdrvCoIsAllocatedData data = { 2785 .bs = bs, 2786 .sector_num = sector_num, 2787 .nb_sectors = nb_sectors, 2788 .pnum = pnum, 2789 .done = false, 2790 }; 2791 2792 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2793 qemu_coroutine_enter(co, &data); 2794 while (!data.done) { 2795 qemu_aio_wait(); 2796 } 2797 return data.ret; 2798 } 2799 2800 /* 2801 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2802 * 2803 * Return true if the given sector is allocated in any image between 2804 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2805 * sector is allocated in any image of the chain. Return false otherwise. 2806 * 2807 * 'pnum' is set to the number of sectors (including and immediately following 2808 * the specified sector) that are known to be in the same 2809 * allocated/unallocated state. 2810 * 2811 */ 2812 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2813 BlockDriverState *base, 2814 int64_t sector_num, 2815 int nb_sectors, int *pnum) 2816 { 2817 BlockDriverState *intermediate; 2818 int ret, n = nb_sectors; 2819 2820 intermediate = top; 2821 while (intermediate && intermediate != base) { 2822 int pnum_inter; 2823 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2824 &pnum_inter); 2825 if (ret < 0) { 2826 return ret; 2827 } else if (ret) { 2828 *pnum = pnum_inter; 2829 return 1; 2830 } 2831 2832 /* 2833 * [sector_num, nb_sectors] is unallocated on top but intermediate 2834 * might have 2835 * 2836 * [sector_num+x, nr_sectors] allocated. 2837 */ 2838 if (n > pnum_inter) { 2839 n = pnum_inter; 2840 } 2841 2842 intermediate = intermediate->backing_hd; 2843 } 2844 2845 *pnum = n; 2846 return 0; 2847 } 2848 2849 BlockInfo *bdrv_query_info(BlockDriverState *bs) 2850 { 2851 BlockInfo *info = g_malloc0(sizeof(*info)); 2852 info->device = g_strdup(bs->device_name); 2853 info->type = g_strdup("unknown"); 2854 info->locked = bdrv_dev_is_medium_locked(bs); 2855 info->removable = bdrv_dev_has_removable_media(bs); 2856 2857 if (bdrv_dev_has_removable_media(bs)) { 2858 info->has_tray_open = true; 2859 info->tray_open = bdrv_dev_is_tray_open(bs); 2860 } 2861 2862 if (bdrv_iostatus_is_enabled(bs)) { 2863 info->has_io_status = true; 2864 info->io_status = bs->iostatus; 2865 } 2866 2867 if (bs->dirty_bitmap) { 2868 info->has_dirty = true; 2869 info->dirty = g_malloc0(sizeof(*info->dirty)); 2870 info->dirty->count = bdrv_get_dirty_count(bs) * 2871 BDRV_SECTORS_PER_DIRTY_CHUNK * BDRV_SECTOR_SIZE; 2872 } 2873 2874 if (bs->drv) { 2875 info->has_inserted = true; 2876 info->inserted = g_malloc0(sizeof(*info->inserted)); 2877 info->inserted->file = g_strdup(bs->filename); 2878 info->inserted->ro = bs->read_only; 2879 info->inserted->drv = g_strdup(bs->drv->format_name); 2880 info->inserted->encrypted = bs->encrypted; 2881 info->inserted->encryption_key_missing = bdrv_key_required(bs); 2882 2883 if (bs->backing_file[0]) { 2884 info->inserted->has_backing_file = true; 2885 info->inserted->backing_file = g_strdup(bs->backing_file); 2886 } 2887 2888 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs); 2889 2890 if (bs->io_limits_enabled) { 2891 info->inserted->bps = 2892 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2893 info->inserted->bps_rd = 2894 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2895 info->inserted->bps_wr = 2896 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2897 info->inserted->iops = 2898 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2899 info->inserted->iops_rd = 2900 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2901 info->inserted->iops_wr = 2902 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2903 } 2904 } 2905 return info; 2906 } 2907 2908 BlockInfoList *qmp_query_block(Error **errp) 2909 { 2910 BlockInfoList *head = NULL, **p_next = &head; 2911 BlockDriverState *bs; 2912 2913 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2914 BlockInfoList *info = g_malloc0(sizeof(*info)); 2915 info->value = bdrv_query_info(bs); 2916 2917 *p_next = info; 2918 p_next = &info->next; 2919 } 2920 2921 return head; 2922 } 2923 2924 BlockStats *bdrv_query_stats(const BlockDriverState *bs) 2925 { 2926 BlockStats *s; 2927 2928 s = g_malloc0(sizeof(*s)); 2929 2930 if (bs->device_name[0]) { 2931 s->has_device = true; 2932 s->device = g_strdup(bs->device_name); 2933 } 2934 2935 s->stats = g_malloc0(sizeof(*s->stats)); 2936 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2937 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2938 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2939 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2940 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2941 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2942 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2943 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2944 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2945 2946 if (bs->file) { 2947 s->has_parent = true; 2948 s->parent = bdrv_query_stats(bs->file); 2949 } 2950 2951 return s; 2952 } 2953 2954 BlockStatsList *qmp_query_blockstats(Error **errp) 2955 { 2956 BlockStatsList *head = NULL, **p_next = &head; 2957 BlockDriverState *bs; 2958 2959 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2960 BlockStatsList *info = g_malloc0(sizeof(*info)); 2961 info->value = bdrv_query_stats(bs); 2962 2963 *p_next = info; 2964 p_next = &info->next; 2965 } 2966 2967 return head; 2968 } 2969 2970 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 2971 { 2972 if (bs->backing_hd && bs->backing_hd->encrypted) 2973 return bs->backing_file; 2974 else if (bs->encrypted) 2975 return bs->filename; 2976 else 2977 return NULL; 2978 } 2979 2980 void bdrv_get_backing_filename(BlockDriverState *bs, 2981 char *filename, int filename_size) 2982 { 2983 pstrcpy(filename, filename_size, bs->backing_file); 2984 } 2985 2986 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 2987 const uint8_t *buf, int nb_sectors) 2988 { 2989 BlockDriver *drv = bs->drv; 2990 if (!drv) 2991 return -ENOMEDIUM; 2992 if (!drv->bdrv_write_compressed) 2993 return -ENOTSUP; 2994 if (bdrv_check_request(bs, sector_num, nb_sectors)) 2995 return -EIO; 2996 2997 assert(!bs->dirty_bitmap); 2998 2999 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 3000 } 3001 3002 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 3003 { 3004 BlockDriver *drv = bs->drv; 3005 if (!drv) 3006 return -ENOMEDIUM; 3007 if (!drv->bdrv_get_info) 3008 return -ENOTSUP; 3009 memset(bdi, 0, sizeof(*bdi)); 3010 return drv->bdrv_get_info(bs, bdi); 3011 } 3012 3013 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 3014 int64_t pos, int size) 3015 { 3016 BlockDriver *drv = bs->drv; 3017 if (!drv) 3018 return -ENOMEDIUM; 3019 if (drv->bdrv_save_vmstate) 3020 return drv->bdrv_save_vmstate(bs, buf, pos, size); 3021 if (bs->file) 3022 return bdrv_save_vmstate(bs->file, buf, pos, size); 3023 return -ENOTSUP; 3024 } 3025 3026 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3027 int64_t pos, int size) 3028 { 3029 BlockDriver *drv = bs->drv; 3030 if (!drv) 3031 return -ENOMEDIUM; 3032 if (drv->bdrv_load_vmstate) 3033 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3034 if (bs->file) 3035 return bdrv_load_vmstate(bs->file, buf, pos, size); 3036 return -ENOTSUP; 3037 } 3038 3039 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3040 { 3041 BlockDriver *drv = bs->drv; 3042 3043 if (!drv || !drv->bdrv_debug_event) { 3044 return; 3045 } 3046 3047 drv->bdrv_debug_event(bs, event); 3048 } 3049 3050 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event, 3051 const char *tag) 3052 { 3053 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) { 3054 bs = bs->file; 3055 } 3056 3057 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) { 3058 return bs->drv->bdrv_debug_breakpoint(bs, event, tag); 3059 } 3060 3061 return -ENOTSUP; 3062 } 3063 3064 int bdrv_debug_resume(BlockDriverState *bs, const char *tag) 3065 { 3066 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) { 3067 bs = bs->file; 3068 } 3069 3070 if (bs && bs->drv && bs->drv->bdrv_debug_resume) { 3071 return bs->drv->bdrv_debug_resume(bs, tag); 3072 } 3073 3074 return -ENOTSUP; 3075 } 3076 3077 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag) 3078 { 3079 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) { 3080 bs = bs->file; 3081 } 3082 3083 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) { 3084 return bs->drv->bdrv_debug_is_suspended(bs, tag); 3085 } 3086 3087 return false; 3088 } 3089 3090 /**************************************************************/ 3091 /* handling of snapshots */ 3092 3093 int bdrv_can_snapshot(BlockDriverState *bs) 3094 { 3095 BlockDriver *drv = bs->drv; 3096 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3097 return 0; 3098 } 3099 3100 if (!drv->bdrv_snapshot_create) { 3101 if (bs->file != NULL) { 3102 return bdrv_can_snapshot(bs->file); 3103 } 3104 return 0; 3105 } 3106 3107 return 1; 3108 } 3109 3110 int bdrv_is_snapshot(BlockDriverState *bs) 3111 { 3112 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3113 } 3114 3115 BlockDriverState *bdrv_snapshots(void) 3116 { 3117 BlockDriverState *bs; 3118 3119 if (bs_snapshots) { 3120 return bs_snapshots; 3121 } 3122 3123 bs = NULL; 3124 while ((bs = bdrv_next(bs))) { 3125 if (bdrv_can_snapshot(bs)) { 3126 bs_snapshots = bs; 3127 return bs; 3128 } 3129 } 3130 return NULL; 3131 } 3132 3133 int bdrv_snapshot_create(BlockDriverState *bs, 3134 QEMUSnapshotInfo *sn_info) 3135 { 3136 BlockDriver *drv = bs->drv; 3137 if (!drv) 3138 return -ENOMEDIUM; 3139 if (drv->bdrv_snapshot_create) 3140 return drv->bdrv_snapshot_create(bs, sn_info); 3141 if (bs->file) 3142 return bdrv_snapshot_create(bs->file, sn_info); 3143 return -ENOTSUP; 3144 } 3145 3146 int bdrv_snapshot_goto(BlockDriverState *bs, 3147 const char *snapshot_id) 3148 { 3149 BlockDriver *drv = bs->drv; 3150 int ret, open_ret; 3151 3152 if (!drv) 3153 return -ENOMEDIUM; 3154 if (drv->bdrv_snapshot_goto) 3155 return drv->bdrv_snapshot_goto(bs, snapshot_id); 3156 3157 if (bs->file) { 3158 drv->bdrv_close(bs); 3159 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 3160 open_ret = drv->bdrv_open(bs, bs->open_flags); 3161 if (open_ret < 0) { 3162 bdrv_delete(bs->file); 3163 bs->drv = NULL; 3164 return open_ret; 3165 } 3166 return ret; 3167 } 3168 3169 return -ENOTSUP; 3170 } 3171 3172 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 3173 { 3174 BlockDriver *drv = bs->drv; 3175 if (!drv) 3176 return -ENOMEDIUM; 3177 if (drv->bdrv_snapshot_delete) 3178 return drv->bdrv_snapshot_delete(bs, snapshot_id); 3179 if (bs->file) 3180 return bdrv_snapshot_delete(bs->file, snapshot_id); 3181 return -ENOTSUP; 3182 } 3183 3184 int bdrv_snapshot_list(BlockDriverState *bs, 3185 QEMUSnapshotInfo **psn_info) 3186 { 3187 BlockDriver *drv = bs->drv; 3188 if (!drv) 3189 return -ENOMEDIUM; 3190 if (drv->bdrv_snapshot_list) 3191 return drv->bdrv_snapshot_list(bs, psn_info); 3192 if (bs->file) 3193 return bdrv_snapshot_list(bs->file, psn_info); 3194 return -ENOTSUP; 3195 } 3196 3197 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 3198 const char *snapshot_name) 3199 { 3200 BlockDriver *drv = bs->drv; 3201 if (!drv) { 3202 return -ENOMEDIUM; 3203 } 3204 if (!bs->read_only) { 3205 return -EINVAL; 3206 } 3207 if (drv->bdrv_snapshot_load_tmp) { 3208 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 3209 } 3210 return -ENOTSUP; 3211 } 3212 3213 /* backing_file can either be relative, or absolute, or a protocol. If it is 3214 * relative, it must be relative to the chain. So, passing in bs->filename 3215 * from a BDS as backing_file should not be done, as that may be relative to 3216 * the CWD rather than the chain. */ 3217 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3218 const char *backing_file) 3219 { 3220 char *filename_full = NULL; 3221 char *backing_file_full = NULL; 3222 char *filename_tmp = NULL; 3223 int is_protocol = 0; 3224 BlockDriverState *curr_bs = NULL; 3225 BlockDriverState *retval = NULL; 3226 3227 if (!bs || !bs->drv || !backing_file) { 3228 return NULL; 3229 } 3230 3231 filename_full = g_malloc(PATH_MAX); 3232 backing_file_full = g_malloc(PATH_MAX); 3233 filename_tmp = g_malloc(PATH_MAX); 3234 3235 is_protocol = path_has_protocol(backing_file); 3236 3237 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3238 3239 /* If either of the filename paths is actually a protocol, then 3240 * compare unmodified paths; otherwise make paths relative */ 3241 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3242 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3243 retval = curr_bs->backing_hd; 3244 break; 3245 } 3246 } else { 3247 /* If not an absolute filename path, make it relative to the current 3248 * image's filename path */ 3249 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3250 backing_file); 3251 3252 /* We are going to compare absolute pathnames */ 3253 if (!realpath(filename_tmp, filename_full)) { 3254 continue; 3255 } 3256 3257 /* We need to make sure the backing filename we are comparing against 3258 * is relative to the current image filename (or absolute) */ 3259 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3260 curr_bs->backing_file); 3261 3262 if (!realpath(filename_tmp, backing_file_full)) { 3263 continue; 3264 } 3265 3266 if (strcmp(backing_file_full, filename_full) == 0) { 3267 retval = curr_bs->backing_hd; 3268 break; 3269 } 3270 } 3271 } 3272 3273 g_free(filename_full); 3274 g_free(backing_file_full); 3275 g_free(filename_tmp); 3276 return retval; 3277 } 3278 3279 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3280 { 3281 if (!bs->drv) { 3282 return 0; 3283 } 3284 3285 if (!bs->backing_hd) { 3286 return 0; 3287 } 3288 3289 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3290 } 3291 3292 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3293 { 3294 BlockDriverState *curr_bs = NULL; 3295 3296 if (!bs) { 3297 return NULL; 3298 } 3299 3300 curr_bs = bs; 3301 3302 while (curr_bs->backing_hd) { 3303 curr_bs = curr_bs->backing_hd; 3304 } 3305 return curr_bs; 3306 } 3307 3308 #define NB_SUFFIXES 4 3309 3310 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 3311 { 3312 static const char suffixes[NB_SUFFIXES] = "KMGT"; 3313 int64_t base; 3314 int i; 3315 3316 if (size <= 999) { 3317 snprintf(buf, buf_size, "%" PRId64, size); 3318 } else { 3319 base = 1024; 3320 for(i = 0; i < NB_SUFFIXES; i++) { 3321 if (size < (10 * base)) { 3322 snprintf(buf, buf_size, "%0.1f%c", 3323 (double)size / base, 3324 suffixes[i]); 3325 break; 3326 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3327 snprintf(buf, buf_size, "%" PRId64 "%c", 3328 ((size + (base >> 1)) / base), 3329 suffixes[i]); 3330 break; 3331 } 3332 base = base * 1024; 3333 } 3334 } 3335 return buf; 3336 } 3337 3338 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3339 { 3340 char buf1[128], date_buf[128], clock_buf[128]; 3341 #ifdef _WIN32 3342 struct tm *ptm; 3343 #else 3344 struct tm tm; 3345 #endif 3346 time_t ti; 3347 int64_t secs; 3348 3349 if (!sn) { 3350 snprintf(buf, buf_size, 3351 "%-10s%-20s%7s%20s%15s", 3352 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3353 } else { 3354 ti = sn->date_sec; 3355 #ifdef _WIN32 3356 ptm = localtime(&ti); 3357 strftime(date_buf, sizeof(date_buf), 3358 "%Y-%m-%d %H:%M:%S", ptm); 3359 #else 3360 localtime_r(&ti, &tm); 3361 strftime(date_buf, sizeof(date_buf), 3362 "%Y-%m-%d %H:%M:%S", &tm); 3363 #endif 3364 secs = sn->vm_clock_nsec / 1000000000; 3365 snprintf(clock_buf, sizeof(clock_buf), 3366 "%02d:%02d:%02d.%03d", 3367 (int)(secs / 3600), 3368 (int)((secs / 60) % 60), 3369 (int)(secs % 60), 3370 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3371 snprintf(buf, buf_size, 3372 "%-10s%-20s%7s%20s%15s", 3373 sn->id_str, sn->name, 3374 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3375 date_buf, 3376 clock_buf); 3377 } 3378 return buf; 3379 } 3380 3381 /**************************************************************/ 3382 /* async I/Os */ 3383 3384 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3385 QEMUIOVector *qiov, int nb_sectors, 3386 BlockDriverCompletionFunc *cb, void *opaque) 3387 { 3388 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3389 3390 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3391 cb, opaque, false); 3392 } 3393 3394 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3395 QEMUIOVector *qiov, int nb_sectors, 3396 BlockDriverCompletionFunc *cb, void *opaque) 3397 { 3398 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3399 3400 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3401 cb, opaque, true); 3402 } 3403 3404 3405 typedef struct MultiwriteCB { 3406 int error; 3407 int num_requests; 3408 int num_callbacks; 3409 struct { 3410 BlockDriverCompletionFunc *cb; 3411 void *opaque; 3412 QEMUIOVector *free_qiov; 3413 } callbacks[]; 3414 } MultiwriteCB; 3415 3416 static void multiwrite_user_cb(MultiwriteCB *mcb) 3417 { 3418 int i; 3419 3420 for (i = 0; i < mcb->num_callbacks; i++) { 3421 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3422 if (mcb->callbacks[i].free_qiov) { 3423 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3424 } 3425 g_free(mcb->callbacks[i].free_qiov); 3426 } 3427 } 3428 3429 static void multiwrite_cb(void *opaque, int ret) 3430 { 3431 MultiwriteCB *mcb = opaque; 3432 3433 trace_multiwrite_cb(mcb, ret); 3434 3435 if (ret < 0 && !mcb->error) { 3436 mcb->error = ret; 3437 } 3438 3439 mcb->num_requests--; 3440 if (mcb->num_requests == 0) { 3441 multiwrite_user_cb(mcb); 3442 g_free(mcb); 3443 } 3444 } 3445 3446 static int multiwrite_req_compare(const void *a, const void *b) 3447 { 3448 const BlockRequest *req1 = a, *req2 = b; 3449 3450 /* 3451 * Note that we can't simply subtract req2->sector from req1->sector 3452 * here as that could overflow the return value. 3453 */ 3454 if (req1->sector > req2->sector) { 3455 return 1; 3456 } else if (req1->sector < req2->sector) { 3457 return -1; 3458 } else { 3459 return 0; 3460 } 3461 } 3462 3463 /* 3464 * Takes a bunch of requests and tries to merge them. Returns the number of 3465 * requests that remain after merging. 3466 */ 3467 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3468 int num_reqs, MultiwriteCB *mcb) 3469 { 3470 int i, outidx; 3471 3472 // Sort requests by start sector 3473 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3474 3475 // Check if adjacent requests touch the same clusters. If so, combine them, 3476 // filling up gaps with zero sectors. 3477 outidx = 0; 3478 for (i = 1; i < num_reqs; i++) { 3479 int merge = 0; 3480 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3481 3482 // Handle exactly sequential writes and overlapping writes. 3483 if (reqs[i].sector <= oldreq_last) { 3484 merge = 1; 3485 } 3486 3487 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3488 merge = 0; 3489 } 3490 3491 if (merge) { 3492 size_t size; 3493 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3494 qemu_iovec_init(qiov, 3495 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3496 3497 // Add the first request to the merged one. If the requests are 3498 // overlapping, drop the last sectors of the first request. 3499 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3500 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3501 3502 // We should need to add any zeros between the two requests 3503 assert (reqs[i].sector <= oldreq_last); 3504 3505 // Add the second request 3506 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3507 3508 reqs[outidx].nb_sectors = qiov->size >> 9; 3509 reqs[outidx].qiov = qiov; 3510 3511 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3512 } else { 3513 outidx++; 3514 reqs[outidx].sector = reqs[i].sector; 3515 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3516 reqs[outidx].qiov = reqs[i].qiov; 3517 } 3518 } 3519 3520 return outidx + 1; 3521 } 3522 3523 /* 3524 * Submit multiple AIO write requests at once. 3525 * 3526 * On success, the function returns 0 and all requests in the reqs array have 3527 * been submitted. In error case this function returns -1, and any of the 3528 * requests may or may not be submitted yet. In particular, this means that the 3529 * callback will be called for some of the requests, for others it won't. The 3530 * caller must check the error field of the BlockRequest to wait for the right 3531 * callbacks (if error != 0, no callback will be called). 3532 * 3533 * The implementation may modify the contents of the reqs array, e.g. to merge 3534 * requests. However, the fields opaque and error are left unmodified as they 3535 * are used to signal failure for a single request to the caller. 3536 */ 3537 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3538 { 3539 MultiwriteCB *mcb; 3540 int i; 3541 3542 /* don't submit writes if we don't have a medium */ 3543 if (bs->drv == NULL) { 3544 for (i = 0; i < num_reqs; i++) { 3545 reqs[i].error = -ENOMEDIUM; 3546 } 3547 return -1; 3548 } 3549 3550 if (num_reqs == 0) { 3551 return 0; 3552 } 3553 3554 // Create MultiwriteCB structure 3555 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3556 mcb->num_requests = 0; 3557 mcb->num_callbacks = num_reqs; 3558 3559 for (i = 0; i < num_reqs; i++) { 3560 mcb->callbacks[i].cb = reqs[i].cb; 3561 mcb->callbacks[i].opaque = reqs[i].opaque; 3562 } 3563 3564 // Check for mergable requests 3565 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3566 3567 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3568 3569 /* Run the aio requests. */ 3570 mcb->num_requests = num_reqs; 3571 for (i = 0; i < num_reqs; i++) { 3572 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3573 reqs[i].nb_sectors, multiwrite_cb, mcb); 3574 } 3575 3576 return 0; 3577 } 3578 3579 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3580 { 3581 acb->aiocb_info->cancel(acb); 3582 } 3583 3584 /* block I/O throttling */ 3585 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3586 bool is_write, double elapsed_time, uint64_t *wait) 3587 { 3588 uint64_t bps_limit = 0; 3589 double bytes_limit, bytes_base, bytes_res; 3590 double slice_time, wait_time; 3591 3592 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3593 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3594 } else if (bs->io_limits.bps[is_write]) { 3595 bps_limit = bs->io_limits.bps[is_write]; 3596 } else { 3597 if (wait) { 3598 *wait = 0; 3599 } 3600 3601 return false; 3602 } 3603 3604 slice_time = bs->slice_end - bs->slice_start; 3605 slice_time /= (NANOSECONDS_PER_SECOND); 3606 bytes_limit = bps_limit * slice_time; 3607 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3608 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3609 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3610 } 3611 3612 /* bytes_base: the bytes of data which have been read/written; and 3613 * it is obtained from the history statistic info. 3614 * bytes_res: the remaining bytes of data which need to be read/written. 3615 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3616 * the total time for completing reading/writting all data. 3617 */ 3618 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3619 3620 if (bytes_base + bytes_res <= bytes_limit) { 3621 if (wait) { 3622 *wait = 0; 3623 } 3624 3625 return false; 3626 } 3627 3628 /* Calc approx time to dispatch */ 3629 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3630 3631 /* When the I/O rate at runtime exceeds the limits, 3632 * bs->slice_end need to be extended in order that the current statistic 3633 * info can be kept until the timer fire, so it is increased and tuned 3634 * based on the result of experiment. 3635 */ 3636 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3637 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3638 if (wait) { 3639 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3640 } 3641 3642 return true; 3643 } 3644 3645 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3646 double elapsed_time, uint64_t *wait) 3647 { 3648 uint64_t iops_limit = 0; 3649 double ios_limit, ios_base; 3650 double slice_time, wait_time; 3651 3652 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3653 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3654 } else if (bs->io_limits.iops[is_write]) { 3655 iops_limit = bs->io_limits.iops[is_write]; 3656 } else { 3657 if (wait) { 3658 *wait = 0; 3659 } 3660 3661 return false; 3662 } 3663 3664 slice_time = bs->slice_end - bs->slice_start; 3665 slice_time /= (NANOSECONDS_PER_SECOND); 3666 ios_limit = iops_limit * slice_time; 3667 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3668 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3669 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3670 } 3671 3672 if (ios_base + 1 <= ios_limit) { 3673 if (wait) { 3674 *wait = 0; 3675 } 3676 3677 return false; 3678 } 3679 3680 /* Calc approx time to dispatch */ 3681 wait_time = (ios_base + 1) / iops_limit; 3682 if (wait_time > elapsed_time) { 3683 wait_time = wait_time - elapsed_time; 3684 } else { 3685 wait_time = 0; 3686 } 3687 3688 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3689 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3690 if (wait) { 3691 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3692 } 3693 3694 return true; 3695 } 3696 3697 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3698 bool is_write, int64_t *wait) 3699 { 3700 int64_t now, max_wait; 3701 uint64_t bps_wait = 0, iops_wait = 0; 3702 double elapsed_time; 3703 int bps_ret, iops_ret; 3704 3705 now = qemu_get_clock_ns(vm_clock); 3706 if ((bs->slice_start < now) 3707 && (bs->slice_end > now)) { 3708 bs->slice_end = now + bs->slice_time; 3709 } else { 3710 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3711 bs->slice_start = now; 3712 bs->slice_end = now + bs->slice_time; 3713 3714 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3715 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3716 3717 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3718 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3719 } 3720 3721 elapsed_time = now - bs->slice_start; 3722 elapsed_time /= (NANOSECONDS_PER_SECOND); 3723 3724 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3725 is_write, elapsed_time, &bps_wait); 3726 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3727 elapsed_time, &iops_wait); 3728 if (bps_ret || iops_ret) { 3729 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3730 if (wait) { 3731 *wait = max_wait; 3732 } 3733 3734 now = qemu_get_clock_ns(vm_clock); 3735 if (bs->slice_end < now + max_wait) { 3736 bs->slice_end = now + max_wait; 3737 } 3738 3739 return true; 3740 } 3741 3742 if (wait) { 3743 *wait = 0; 3744 } 3745 3746 return false; 3747 } 3748 3749 /**************************************************************/ 3750 /* async block device emulation */ 3751 3752 typedef struct BlockDriverAIOCBSync { 3753 BlockDriverAIOCB common; 3754 QEMUBH *bh; 3755 int ret; 3756 /* vector translation state */ 3757 QEMUIOVector *qiov; 3758 uint8_t *bounce; 3759 int is_write; 3760 } BlockDriverAIOCBSync; 3761 3762 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3763 { 3764 BlockDriverAIOCBSync *acb = 3765 container_of(blockacb, BlockDriverAIOCBSync, common); 3766 qemu_bh_delete(acb->bh); 3767 acb->bh = NULL; 3768 qemu_aio_release(acb); 3769 } 3770 3771 static const AIOCBInfo bdrv_em_aiocb_info = { 3772 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3773 .cancel = bdrv_aio_cancel_em, 3774 }; 3775 3776 static void bdrv_aio_bh_cb(void *opaque) 3777 { 3778 BlockDriverAIOCBSync *acb = opaque; 3779 3780 if (!acb->is_write) 3781 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3782 qemu_vfree(acb->bounce); 3783 acb->common.cb(acb->common.opaque, acb->ret); 3784 qemu_bh_delete(acb->bh); 3785 acb->bh = NULL; 3786 qemu_aio_release(acb); 3787 } 3788 3789 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3790 int64_t sector_num, 3791 QEMUIOVector *qiov, 3792 int nb_sectors, 3793 BlockDriverCompletionFunc *cb, 3794 void *opaque, 3795 int is_write) 3796 3797 { 3798 BlockDriverAIOCBSync *acb; 3799 3800 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 3801 acb->is_write = is_write; 3802 acb->qiov = qiov; 3803 acb->bounce = qemu_blockalign(bs, qiov->size); 3804 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3805 3806 if (is_write) { 3807 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3808 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3809 } else { 3810 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3811 } 3812 3813 qemu_bh_schedule(acb->bh); 3814 3815 return &acb->common; 3816 } 3817 3818 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3819 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3820 BlockDriverCompletionFunc *cb, void *opaque) 3821 { 3822 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3823 } 3824 3825 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3826 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3827 BlockDriverCompletionFunc *cb, void *opaque) 3828 { 3829 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3830 } 3831 3832 3833 typedef struct BlockDriverAIOCBCoroutine { 3834 BlockDriverAIOCB common; 3835 BlockRequest req; 3836 bool is_write; 3837 bool *done; 3838 QEMUBH* bh; 3839 } BlockDriverAIOCBCoroutine; 3840 3841 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3842 { 3843 BlockDriverAIOCBCoroutine *acb = 3844 container_of(blockacb, BlockDriverAIOCBCoroutine, common); 3845 bool done = false; 3846 3847 acb->done = &done; 3848 while (!done) { 3849 qemu_aio_wait(); 3850 } 3851 } 3852 3853 static const AIOCBInfo bdrv_em_co_aiocb_info = { 3854 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3855 .cancel = bdrv_aio_co_cancel_em, 3856 }; 3857 3858 static void bdrv_co_em_bh(void *opaque) 3859 { 3860 BlockDriverAIOCBCoroutine *acb = opaque; 3861 3862 acb->common.cb(acb->common.opaque, acb->req.error); 3863 3864 if (acb->done) { 3865 *acb->done = true; 3866 } 3867 3868 qemu_bh_delete(acb->bh); 3869 qemu_aio_release(acb); 3870 } 3871 3872 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3873 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3874 { 3875 BlockDriverAIOCBCoroutine *acb = opaque; 3876 BlockDriverState *bs = acb->common.bs; 3877 3878 if (!acb->is_write) { 3879 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3880 acb->req.nb_sectors, acb->req.qiov, 0); 3881 } else { 3882 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3883 acb->req.nb_sectors, acb->req.qiov, 0); 3884 } 3885 3886 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3887 qemu_bh_schedule(acb->bh); 3888 } 3889 3890 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3891 int64_t sector_num, 3892 QEMUIOVector *qiov, 3893 int nb_sectors, 3894 BlockDriverCompletionFunc *cb, 3895 void *opaque, 3896 bool is_write) 3897 { 3898 Coroutine *co; 3899 BlockDriverAIOCBCoroutine *acb; 3900 3901 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3902 acb->req.sector = sector_num; 3903 acb->req.nb_sectors = nb_sectors; 3904 acb->req.qiov = qiov; 3905 acb->is_write = is_write; 3906 acb->done = NULL; 3907 3908 co = qemu_coroutine_create(bdrv_co_do_rw); 3909 qemu_coroutine_enter(co, acb); 3910 3911 return &acb->common; 3912 } 3913 3914 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3915 { 3916 BlockDriverAIOCBCoroutine *acb = opaque; 3917 BlockDriverState *bs = acb->common.bs; 3918 3919 acb->req.error = bdrv_co_flush(bs); 3920 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3921 qemu_bh_schedule(acb->bh); 3922 } 3923 3924 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3925 BlockDriverCompletionFunc *cb, void *opaque) 3926 { 3927 trace_bdrv_aio_flush(bs, opaque); 3928 3929 Coroutine *co; 3930 BlockDriverAIOCBCoroutine *acb; 3931 3932 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3933 acb->done = NULL; 3934 3935 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3936 qemu_coroutine_enter(co, acb); 3937 3938 return &acb->common; 3939 } 3940 3941 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3942 { 3943 BlockDriverAIOCBCoroutine *acb = opaque; 3944 BlockDriverState *bs = acb->common.bs; 3945 3946 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3947 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3948 qemu_bh_schedule(acb->bh); 3949 } 3950 3951 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3952 int64_t sector_num, int nb_sectors, 3953 BlockDriverCompletionFunc *cb, void *opaque) 3954 { 3955 Coroutine *co; 3956 BlockDriverAIOCBCoroutine *acb; 3957 3958 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3959 3960 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3961 acb->req.sector = sector_num; 3962 acb->req.nb_sectors = nb_sectors; 3963 acb->done = NULL; 3964 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3965 qemu_coroutine_enter(co, acb); 3966 3967 return &acb->common; 3968 } 3969 3970 void bdrv_init(void) 3971 { 3972 module_call_init(MODULE_INIT_BLOCK); 3973 } 3974 3975 void bdrv_init_with_whitelist(void) 3976 { 3977 use_bdrv_whitelist = 1; 3978 bdrv_init(); 3979 } 3980 3981 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 3982 BlockDriverCompletionFunc *cb, void *opaque) 3983 { 3984 BlockDriverAIOCB *acb; 3985 3986 acb = g_slice_alloc(aiocb_info->aiocb_size); 3987 acb->aiocb_info = aiocb_info; 3988 acb->bs = bs; 3989 acb->cb = cb; 3990 acb->opaque = opaque; 3991 return acb; 3992 } 3993 3994 void qemu_aio_release(void *p) 3995 { 3996 BlockDriverAIOCB *acb = p; 3997 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 3998 } 3999 4000 /**************************************************************/ 4001 /* Coroutine block device emulation */ 4002 4003 typedef struct CoroutineIOCompletion { 4004 Coroutine *coroutine; 4005 int ret; 4006 } CoroutineIOCompletion; 4007 4008 static void bdrv_co_io_em_complete(void *opaque, int ret) 4009 { 4010 CoroutineIOCompletion *co = opaque; 4011 4012 co->ret = ret; 4013 qemu_coroutine_enter(co->coroutine, NULL); 4014 } 4015 4016 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 4017 int nb_sectors, QEMUIOVector *iov, 4018 bool is_write) 4019 { 4020 CoroutineIOCompletion co = { 4021 .coroutine = qemu_coroutine_self(), 4022 }; 4023 BlockDriverAIOCB *acb; 4024 4025 if (is_write) { 4026 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 4027 bdrv_co_io_em_complete, &co); 4028 } else { 4029 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 4030 bdrv_co_io_em_complete, &co); 4031 } 4032 4033 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 4034 if (!acb) { 4035 return -EIO; 4036 } 4037 qemu_coroutine_yield(); 4038 4039 return co.ret; 4040 } 4041 4042 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 4043 int64_t sector_num, int nb_sectors, 4044 QEMUIOVector *iov) 4045 { 4046 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 4047 } 4048 4049 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 4050 int64_t sector_num, int nb_sectors, 4051 QEMUIOVector *iov) 4052 { 4053 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 4054 } 4055 4056 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 4057 { 4058 RwCo *rwco = opaque; 4059 4060 rwco->ret = bdrv_co_flush(rwco->bs); 4061 } 4062 4063 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 4064 { 4065 int ret; 4066 4067 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 4068 return 0; 4069 } 4070 4071 /* Write back cached data to the OS even with cache=unsafe */ 4072 if (bs->drv->bdrv_co_flush_to_os) { 4073 ret = bs->drv->bdrv_co_flush_to_os(bs); 4074 if (ret < 0) { 4075 return ret; 4076 } 4077 } 4078 4079 /* But don't actually force it to the disk with cache=unsafe */ 4080 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4081 goto flush_parent; 4082 } 4083 4084 if (bs->drv->bdrv_co_flush_to_disk) { 4085 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4086 } else if (bs->drv->bdrv_aio_flush) { 4087 BlockDriverAIOCB *acb; 4088 CoroutineIOCompletion co = { 4089 .coroutine = qemu_coroutine_self(), 4090 }; 4091 4092 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4093 if (acb == NULL) { 4094 ret = -EIO; 4095 } else { 4096 qemu_coroutine_yield(); 4097 ret = co.ret; 4098 } 4099 } else { 4100 /* 4101 * Some block drivers always operate in either writethrough or unsafe 4102 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4103 * know how the server works (because the behaviour is hardcoded or 4104 * depends on server-side configuration), so we can't ensure that 4105 * everything is safe on disk. Returning an error doesn't work because 4106 * that would break guests even if the server operates in writethrough 4107 * mode. 4108 * 4109 * Let's hope the user knows what he's doing. 4110 */ 4111 ret = 0; 4112 } 4113 if (ret < 0) { 4114 return ret; 4115 } 4116 4117 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4118 * in the case of cache=unsafe, so there are no useless flushes. 4119 */ 4120 flush_parent: 4121 return bdrv_co_flush(bs->file); 4122 } 4123 4124 void bdrv_invalidate_cache(BlockDriverState *bs) 4125 { 4126 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4127 bs->drv->bdrv_invalidate_cache(bs); 4128 } 4129 } 4130 4131 void bdrv_invalidate_cache_all(void) 4132 { 4133 BlockDriverState *bs; 4134 4135 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4136 bdrv_invalidate_cache(bs); 4137 } 4138 } 4139 4140 void bdrv_clear_incoming_migration_all(void) 4141 { 4142 BlockDriverState *bs; 4143 4144 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4145 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4146 } 4147 } 4148 4149 int bdrv_flush(BlockDriverState *bs) 4150 { 4151 Coroutine *co; 4152 RwCo rwco = { 4153 .bs = bs, 4154 .ret = NOT_DONE, 4155 }; 4156 4157 if (qemu_in_coroutine()) { 4158 /* Fast-path if already in coroutine context */ 4159 bdrv_flush_co_entry(&rwco); 4160 } else { 4161 co = qemu_coroutine_create(bdrv_flush_co_entry); 4162 qemu_coroutine_enter(co, &rwco); 4163 while (rwco.ret == NOT_DONE) { 4164 qemu_aio_wait(); 4165 } 4166 } 4167 4168 return rwco.ret; 4169 } 4170 4171 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4172 { 4173 RwCo *rwco = opaque; 4174 4175 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4176 } 4177 4178 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4179 int nb_sectors) 4180 { 4181 if (!bs->drv) { 4182 return -ENOMEDIUM; 4183 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4184 return -EIO; 4185 } else if (bs->read_only) { 4186 return -EROFS; 4187 } else if (bs->drv->bdrv_co_discard) { 4188 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4189 } else if (bs->drv->bdrv_aio_discard) { 4190 BlockDriverAIOCB *acb; 4191 CoroutineIOCompletion co = { 4192 .coroutine = qemu_coroutine_self(), 4193 }; 4194 4195 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4196 bdrv_co_io_em_complete, &co); 4197 if (acb == NULL) { 4198 return -EIO; 4199 } else { 4200 qemu_coroutine_yield(); 4201 return co.ret; 4202 } 4203 } else { 4204 return 0; 4205 } 4206 } 4207 4208 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4209 { 4210 Coroutine *co; 4211 RwCo rwco = { 4212 .bs = bs, 4213 .sector_num = sector_num, 4214 .nb_sectors = nb_sectors, 4215 .ret = NOT_DONE, 4216 }; 4217 4218 if (qemu_in_coroutine()) { 4219 /* Fast-path if already in coroutine context */ 4220 bdrv_discard_co_entry(&rwco); 4221 } else { 4222 co = qemu_coroutine_create(bdrv_discard_co_entry); 4223 qemu_coroutine_enter(co, &rwco); 4224 while (rwco.ret == NOT_DONE) { 4225 qemu_aio_wait(); 4226 } 4227 } 4228 4229 return rwco.ret; 4230 } 4231 4232 /**************************************************************/ 4233 /* removable device support */ 4234 4235 /** 4236 * Return TRUE if the media is present 4237 */ 4238 int bdrv_is_inserted(BlockDriverState *bs) 4239 { 4240 BlockDriver *drv = bs->drv; 4241 4242 if (!drv) 4243 return 0; 4244 if (!drv->bdrv_is_inserted) 4245 return 1; 4246 return drv->bdrv_is_inserted(bs); 4247 } 4248 4249 /** 4250 * Return whether the media changed since the last call to this 4251 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4252 */ 4253 int bdrv_media_changed(BlockDriverState *bs) 4254 { 4255 BlockDriver *drv = bs->drv; 4256 4257 if (drv && drv->bdrv_media_changed) { 4258 return drv->bdrv_media_changed(bs); 4259 } 4260 return -ENOTSUP; 4261 } 4262 4263 /** 4264 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4265 */ 4266 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4267 { 4268 BlockDriver *drv = bs->drv; 4269 4270 if (drv && drv->bdrv_eject) { 4271 drv->bdrv_eject(bs, eject_flag); 4272 } 4273 4274 if (bs->device_name[0] != '\0') { 4275 bdrv_emit_qmp_eject_event(bs, eject_flag); 4276 } 4277 } 4278 4279 /** 4280 * Lock or unlock the media (if it is locked, the user won't be able 4281 * to eject it manually). 4282 */ 4283 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4284 { 4285 BlockDriver *drv = bs->drv; 4286 4287 trace_bdrv_lock_medium(bs, locked); 4288 4289 if (drv && drv->bdrv_lock_medium) { 4290 drv->bdrv_lock_medium(bs, locked); 4291 } 4292 } 4293 4294 /* needed for generic scsi interface */ 4295 4296 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4297 { 4298 BlockDriver *drv = bs->drv; 4299 4300 if (drv && drv->bdrv_ioctl) 4301 return drv->bdrv_ioctl(bs, req, buf); 4302 return -ENOTSUP; 4303 } 4304 4305 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4306 unsigned long int req, void *buf, 4307 BlockDriverCompletionFunc *cb, void *opaque) 4308 { 4309 BlockDriver *drv = bs->drv; 4310 4311 if (drv && drv->bdrv_aio_ioctl) 4312 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4313 return NULL; 4314 } 4315 4316 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4317 { 4318 bs->buffer_alignment = align; 4319 } 4320 4321 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4322 { 4323 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4324 } 4325 4326 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable) 4327 { 4328 int64_t bitmap_size; 4329 4330 bs->dirty_count = 0; 4331 if (enable) { 4332 if (!bs->dirty_bitmap) { 4333 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) + 4334 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1; 4335 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 4336 4337 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size); 4338 } 4339 } else { 4340 if (bs->dirty_bitmap) { 4341 g_free(bs->dirty_bitmap); 4342 bs->dirty_bitmap = NULL; 4343 } 4344 } 4345 } 4346 4347 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4348 { 4349 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4350 4351 if (bs->dirty_bitmap && 4352 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) { 4353 return !!(bs->dirty_bitmap[chunk / BITS_PER_LONG] & 4354 (1UL << (chunk % BITS_PER_LONG))); 4355 } else { 4356 return 0; 4357 } 4358 } 4359 4360 int64_t bdrv_get_next_dirty(BlockDriverState *bs, int64_t sector) 4361 { 4362 int64_t chunk; 4363 int bit, elem; 4364 4365 /* Avoid an infinite loop. */ 4366 assert(bs->dirty_count > 0); 4367 4368 sector = (sector | (BDRV_SECTORS_PER_DIRTY_CHUNK - 1)) + 1; 4369 chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4370 4371 QEMU_BUILD_BUG_ON(sizeof(bs->dirty_bitmap[0]) * 8 != BITS_PER_LONG); 4372 elem = chunk / BITS_PER_LONG; 4373 bit = chunk % BITS_PER_LONG; 4374 for (;;) { 4375 if (sector >= bs->total_sectors) { 4376 sector = 0; 4377 bit = elem = 0; 4378 } 4379 if (bit == 0 && bs->dirty_bitmap[elem] == 0) { 4380 sector += BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 4381 elem++; 4382 } else { 4383 if (bs->dirty_bitmap[elem] & (1UL << bit)) { 4384 return sector; 4385 } 4386 sector += BDRV_SECTORS_PER_DIRTY_CHUNK; 4387 if (++bit == BITS_PER_LONG) { 4388 bit = 0; 4389 elem++; 4390 } 4391 } 4392 } 4393 } 4394 4395 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4396 int nr_sectors) 4397 { 4398 set_dirty_bitmap(bs, cur_sector, nr_sectors, 1); 4399 } 4400 4401 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4402 int nr_sectors) 4403 { 4404 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0); 4405 } 4406 4407 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4408 { 4409 return bs->dirty_count; 4410 } 4411 4412 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4413 { 4414 assert(bs->in_use != in_use); 4415 bs->in_use = in_use; 4416 } 4417 4418 int bdrv_in_use(BlockDriverState *bs) 4419 { 4420 return bs->in_use; 4421 } 4422 4423 void bdrv_iostatus_enable(BlockDriverState *bs) 4424 { 4425 bs->iostatus_enabled = true; 4426 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4427 } 4428 4429 /* The I/O status is only enabled if the drive explicitly 4430 * enables it _and_ the VM is configured to stop on errors */ 4431 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4432 { 4433 return (bs->iostatus_enabled && 4434 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4435 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4436 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4437 } 4438 4439 void bdrv_iostatus_disable(BlockDriverState *bs) 4440 { 4441 bs->iostatus_enabled = false; 4442 } 4443 4444 void bdrv_iostatus_reset(BlockDriverState *bs) 4445 { 4446 if (bdrv_iostatus_is_enabled(bs)) { 4447 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4448 if (bs->job) { 4449 block_job_iostatus_reset(bs->job); 4450 } 4451 } 4452 } 4453 4454 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4455 { 4456 assert(bdrv_iostatus_is_enabled(bs)); 4457 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4458 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4459 BLOCK_DEVICE_IO_STATUS_FAILED; 4460 } 4461 } 4462 4463 void 4464 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4465 enum BlockAcctType type) 4466 { 4467 assert(type < BDRV_MAX_IOTYPE); 4468 4469 cookie->bytes = bytes; 4470 cookie->start_time_ns = get_clock(); 4471 cookie->type = type; 4472 } 4473 4474 void 4475 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4476 { 4477 assert(cookie->type < BDRV_MAX_IOTYPE); 4478 4479 bs->nr_bytes[cookie->type] += cookie->bytes; 4480 bs->nr_ops[cookie->type]++; 4481 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4482 } 4483 4484 void bdrv_img_create(const char *filename, const char *fmt, 4485 const char *base_filename, const char *base_fmt, 4486 char *options, uint64_t img_size, int flags, Error **errp) 4487 { 4488 QEMUOptionParameter *param = NULL, *create_options = NULL; 4489 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4490 BlockDriverState *bs = NULL; 4491 BlockDriver *drv, *proto_drv; 4492 BlockDriver *backing_drv = NULL; 4493 int ret = 0; 4494 4495 /* Find driver and parse its options */ 4496 drv = bdrv_find_format(fmt); 4497 if (!drv) { 4498 error_setg(errp, "Unknown file format '%s'", fmt); 4499 return; 4500 } 4501 4502 proto_drv = bdrv_find_protocol(filename); 4503 if (!proto_drv) { 4504 error_setg(errp, "Unknown protocol '%s'", filename); 4505 return; 4506 } 4507 4508 create_options = append_option_parameters(create_options, 4509 drv->create_options); 4510 create_options = append_option_parameters(create_options, 4511 proto_drv->create_options); 4512 4513 /* Create parameter list with default values */ 4514 param = parse_option_parameters("", create_options, param); 4515 4516 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4517 4518 /* Parse -o options */ 4519 if (options) { 4520 param = parse_option_parameters(options, create_options, param); 4521 if (param == NULL) { 4522 error_setg(errp, "Invalid options for file format '%s'.", fmt); 4523 goto out; 4524 } 4525 } 4526 4527 if (base_filename) { 4528 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4529 base_filename)) { 4530 error_setg(errp, "Backing file not supported for file format '%s'", 4531 fmt); 4532 goto out; 4533 } 4534 } 4535 4536 if (base_fmt) { 4537 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4538 error_setg(errp, "Backing file format not supported for file " 4539 "format '%s'", fmt); 4540 goto out; 4541 } 4542 } 4543 4544 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4545 if (backing_file && backing_file->value.s) { 4546 if (!strcmp(filename, backing_file->value.s)) { 4547 error_setg(errp, "Error: Trying to create an image with the " 4548 "same filename as the backing file"); 4549 goto out; 4550 } 4551 } 4552 4553 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4554 if (backing_fmt && backing_fmt->value.s) { 4555 backing_drv = bdrv_find_format(backing_fmt->value.s); 4556 if (!backing_drv) { 4557 error_setg(errp, "Unknown backing file format '%s'", 4558 backing_fmt->value.s); 4559 goto out; 4560 } 4561 } 4562 4563 // The size for the image must always be specified, with one exception: 4564 // If we are using a backing file, we can obtain the size from there 4565 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4566 if (size && size->value.n == -1) { 4567 if (backing_file && backing_file->value.s) { 4568 uint64_t size; 4569 char buf[32]; 4570 int back_flags; 4571 4572 /* backing files always opened read-only */ 4573 back_flags = 4574 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4575 4576 bs = bdrv_new(""); 4577 4578 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4579 if (ret < 0) { 4580 error_setg_errno(errp, -ret, "Could not open '%s'", 4581 backing_file->value.s); 4582 goto out; 4583 } 4584 bdrv_get_geometry(bs, &size); 4585 size *= 512; 4586 4587 snprintf(buf, sizeof(buf), "%" PRId64, size); 4588 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4589 } else { 4590 error_setg(errp, "Image creation needs a size parameter"); 4591 goto out; 4592 } 4593 } 4594 4595 printf("Formatting '%s', fmt=%s ", filename, fmt); 4596 print_option_parameters(param); 4597 puts(""); 4598 4599 ret = bdrv_create(drv, filename, param); 4600 if (ret < 0) { 4601 if (ret == -ENOTSUP) { 4602 error_setg(errp,"Formatting or formatting option not supported for " 4603 "file format '%s'", fmt); 4604 } else if (ret == -EFBIG) { 4605 error_setg(errp, "The image size is too large for file format '%s'", 4606 fmt); 4607 } else { 4608 error_setg(errp, "%s: error while creating %s: %s", filename, fmt, 4609 strerror(-ret)); 4610 } 4611 } 4612 4613 out: 4614 free_option_parameters(create_options); 4615 free_option_parameters(param); 4616 4617 if (bs) { 4618 bdrv_delete(bs); 4619 } 4620 } 4621