xref: /openbmc/qemu/block.c (revision 1559e0d4)
1 /*
2  * QEMU System Emulator block driver
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor/monitor.h"
28 #include "block/block_int.h"
29 #include "block/blockjob.h"
30 #include "qemu/module.h"
31 #include "qapi/qmp/qjson.h"
32 #include "sysemu/sysemu.h"
33 #include "qemu/notify.h"
34 #include "block/coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu/timer.h"
37 
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47 
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51 
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53 
54 typedef enum {
55     BDRV_REQ_COPY_ON_READ = 0x1,
56     BDRV_REQ_ZERO_WRITE   = 0x2,
57 } BdrvRequestFlags;
58 
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62         BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65         BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67                                          int64_t sector_num, int nb_sectors,
68                                          QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70                                          int64_t sector_num, int nb_sectors,
71                                          QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74     BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77     BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79                                                int64_t sector_num,
80                                                QEMUIOVector *qiov,
81                                                int nb_sectors,
82                                                BlockDriverCompletionFunc *cb,
83                                                void *opaque,
84                                                bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87     int64_t sector_num, int nb_sectors);
88 
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90         bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92         double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94         bool is_write, int64_t *wait);
95 
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97     QTAILQ_HEAD_INITIALIZER(bdrv_states);
98 
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100     QLIST_HEAD_INITIALIZER(bdrv_drivers);
101 
102 /* The device to use for VM snapshots */
103 static BlockDriverState *bs_snapshots;
104 
105 /* If non-zero, use only whitelisted block drivers */
106 static int use_bdrv_whitelist;
107 
108 #ifdef _WIN32
109 static int is_windows_drive_prefix(const char *filename)
110 {
111     return (((filename[0] >= 'a' && filename[0] <= 'z') ||
112              (filename[0] >= 'A' && filename[0] <= 'Z')) &&
113             filename[1] == ':');
114 }
115 
116 int is_windows_drive(const char *filename)
117 {
118     if (is_windows_drive_prefix(filename) &&
119         filename[2] == '\0')
120         return 1;
121     if (strstart(filename, "\\\\.\\", NULL) ||
122         strstart(filename, "//./", NULL))
123         return 1;
124     return 0;
125 }
126 #endif
127 
128 /* throttling disk I/O limits */
129 void bdrv_io_limits_disable(BlockDriverState *bs)
130 {
131     bs->io_limits_enabled = false;
132 
133     while (qemu_co_queue_next(&bs->throttled_reqs));
134 
135     if (bs->block_timer) {
136         qemu_del_timer(bs->block_timer);
137         qemu_free_timer(bs->block_timer);
138         bs->block_timer = NULL;
139     }
140 
141     bs->slice_start = 0;
142     bs->slice_end   = 0;
143     bs->slice_time  = 0;
144     memset(&bs->io_base, 0, sizeof(bs->io_base));
145 }
146 
147 static void bdrv_block_timer(void *opaque)
148 {
149     BlockDriverState *bs = opaque;
150 
151     qemu_co_queue_next(&bs->throttled_reqs);
152 }
153 
154 void bdrv_io_limits_enable(BlockDriverState *bs)
155 {
156     qemu_co_queue_init(&bs->throttled_reqs);
157     bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
158     bs->io_limits_enabled = true;
159 }
160 
161 bool bdrv_io_limits_enabled(BlockDriverState *bs)
162 {
163     BlockIOLimit *io_limits = &bs->io_limits;
164     return io_limits->bps[BLOCK_IO_LIMIT_READ]
165          || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
166          || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
167          || io_limits->iops[BLOCK_IO_LIMIT_READ]
168          || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
169          || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
170 }
171 
172 static void bdrv_io_limits_intercept(BlockDriverState *bs,
173                                      bool is_write, int nb_sectors)
174 {
175     int64_t wait_time = -1;
176 
177     if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
178         qemu_co_queue_wait(&bs->throttled_reqs);
179     }
180 
181     /* In fact, we hope to keep each request's timing, in FIFO mode. The next
182      * throttled requests will not be dequeued until the current request is
183      * allowed to be serviced. So if the current request still exceeds the
184      * limits, it will be inserted to the head. All requests followed it will
185      * be still in throttled_reqs queue.
186      */
187 
188     while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
189         qemu_mod_timer(bs->block_timer,
190                        wait_time + qemu_get_clock_ns(vm_clock));
191         qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
192     }
193 
194     qemu_co_queue_next(&bs->throttled_reqs);
195 }
196 
197 /* check if the path starts with "<protocol>:" */
198 static int path_has_protocol(const char *path)
199 {
200     const char *p;
201 
202 #ifdef _WIN32
203     if (is_windows_drive(path) ||
204         is_windows_drive_prefix(path)) {
205         return 0;
206     }
207     p = path + strcspn(path, ":/\\");
208 #else
209     p = path + strcspn(path, ":/");
210 #endif
211 
212     return *p == ':';
213 }
214 
215 int path_is_absolute(const char *path)
216 {
217 #ifdef _WIN32
218     /* specific case for names like: "\\.\d:" */
219     if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
220         return 1;
221     }
222     return (*path == '/' || *path == '\\');
223 #else
224     return (*path == '/');
225 #endif
226 }
227 
228 /* if filename is absolute, just copy it to dest. Otherwise, build a
229    path to it by considering it is relative to base_path. URL are
230    supported. */
231 void path_combine(char *dest, int dest_size,
232                   const char *base_path,
233                   const char *filename)
234 {
235     const char *p, *p1;
236     int len;
237 
238     if (dest_size <= 0)
239         return;
240     if (path_is_absolute(filename)) {
241         pstrcpy(dest, dest_size, filename);
242     } else {
243         p = strchr(base_path, ':');
244         if (p)
245             p++;
246         else
247             p = base_path;
248         p1 = strrchr(base_path, '/');
249 #ifdef _WIN32
250         {
251             const char *p2;
252             p2 = strrchr(base_path, '\\');
253             if (!p1 || p2 > p1)
254                 p1 = p2;
255         }
256 #endif
257         if (p1)
258             p1++;
259         else
260             p1 = base_path;
261         if (p1 > p)
262             p = p1;
263         len = p - base_path;
264         if (len > dest_size - 1)
265             len = dest_size - 1;
266         memcpy(dest, base_path, len);
267         dest[len] = '\0';
268         pstrcat(dest, dest_size, filename);
269     }
270 }
271 
272 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
273 {
274     if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
275         pstrcpy(dest, sz, bs->backing_file);
276     } else {
277         path_combine(dest, sz, bs->filename, bs->backing_file);
278     }
279 }
280 
281 void bdrv_register(BlockDriver *bdrv)
282 {
283     /* Block drivers without coroutine functions need emulation */
284     if (!bdrv->bdrv_co_readv) {
285         bdrv->bdrv_co_readv = bdrv_co_readv_em;
286         bdrv->bdrv_co_writev = bdrv_co_writev_em;
287 
288         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
289          * the block driver lacks aio we need to emulate that too.
290          */
291         if (!bdrv->bdrv_aio_readv) {
292             /* add AIO emulation layer */
293             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
294             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
295         }
296     }
297 
298     QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
299 }
300 
301 /* create a new block device (by default it is empty) */
302 BlockDriverState *bdrv_new(const char *device_name)
303 {
304     BlockDriverState *bs;
305 
306     bs = g_malloc0(sizeof(BlockDriverState));
307     pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
308     if (device_name[0] != '\0') {
309         QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
310     }
311     bdrv_iostatus_disable(bs);
312     notifier_list_init(&bs->close_notifiers);
313 
314     return bs;
315 }
316 
317 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
318 {
319     notifier_list_add(&bs->close_notifiers, notify);
320 }
321 
322 BlockDriver *bdrv_find_format(const char *format_name)
323 {
324     BlockDriver *drv1;
325     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
326         if (!strcmp(drv1->format_name, format_name)) {
327             return drv1;
328         }
329     }
330     return NULL;
331 }
332 
333 static int bdrv_is_whitelisted(BlockDriver *drv)
334 {
335     static const char *whitelist[] = {
336         CONFIG_BDRV_WHITELIST
337     };
338     const char **p;
339 
340     if (!whitelist[0])
341         return 1;               /* no whitelist, anything goes */
342 
343     for (p = whitelist; *p; p++) {
344         if (!strcmp(drv->format_name, *p)) {
345             return 1;
346         }
347     }
348     return 0;
349 }
350 
351 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
352 {
353     BlockDriver *drv = bdrv_find_format(format_name);
354     return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
355 }
356 
357 typedef struct CreateCo {
358     BlockDriver *drv;
359     char *filename;
360     QEMUOptionParameter *options;
361     int ret;
362 } CreateCo;
363 
364 static void coroutine_fn bdrv_create_co_entry(void *opaque)
365 {
366     CreateCo *cco = opaque;
367     assert(cco->drv);
368 
369     cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
370 }
371 
372 int bdrv_create(BlockDriver *drv, const char* filename,
373     QEMUOptionParameter *options)
374 {
375     int ret;
376 
377     Coroutine *co;
378     CreateCo cco = {
379         .drv = drv,
380         .filename = g_strdup(filename),
381         .options = options,
382         .ret = NOT_DONE,
383     };
384 
385     if (!drv->bdrv_create) {
386         ret = -ENOTSUP;
387         goto out;
388     }
389 
390     if (qemu_in_coroutine()) {
391         /* Fast-path if already in coroutine context */
392         bdrv_create_co_entry(&cco);
393     } else {
394         co = qemu_coroutine_create(bdrv_create_co_entry);
395         qemu_coroutine_enter(co, &cco);
396         while (cco.ret == NOT_DONE) {
397             qemu_aio_wait();
398         }
399     }
400 
401     ret = cco.ret;
402 
403 out:
404     g_free(cco.filename);
405     return ret;
406 }
407 
408 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
409 {
410     BlockDriver *drv;
411 
412     drv = bdrv_find_protocol(filename);
413     if (drv == NULL) {
414         return -ENOENT;
415     }
416 
417     return bdrv_create(drv, filename, options);
418 }
419 
420 /*
421  * Create a uniquely-named empty temporary file.
422  * Return 0 upon success, otherwise a negative errno value.
423  */
424 int get_tmp_filename(char *filename, int size)
425 {
426 #ifdef _WIN32
427     char temp_dir[MAX_PATH];
428     /* GetTempFileName requires that its output buffer (4th param)
429        have length MAX_PATH or greater.  */
430     assert(size >= MAX_PATH);
431     return (GetTempPath(MAX_PATH, temp_dir)
432             && GetTempFileName(temp_dir, "qem", 0, filename)
433             ? 0 : -GetLastError());
434 #else
435     int fd;
436     const char *tmpdir;
437     tmpdir = getenv("TMPDIR");
438     if (!tmpdir)
439         tmpdir = "/tmp";
440     if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
441         return -EOVERFLOW;
442     }
443     fd = mkstemp(filename);
444     if (fd < 0) {
445         return -errno;
446     }
447     if (close(fd) != 0) {
448         unlink(filename);
449         return -errno;
450     }
451     return 0;
452 #endif
453 }
454 
455 /*
456  * Detect host devices. By convention, /dev/cdrom[N] is always
457  * recognized as a host CDROM.
458  */
459 static BlockDriver *find_hdev_driver(const char *filename)
460 {
461     int score_max = 0, score;
462     BlockDriver *drv = NULL, *d;
463 
464     QLIST_FOREACH(d, &bdrv_drivers, list) {
465         if (d->bdrv_probe_device) {
466             score = d->bdrv_probe_device(filename);
467             if (score > score_max) {
468                 score_max = score;
469                 drv = d;
470             }
471         }
472     }
473 
474     return drv;
475 }
476 
477 BlockDriver *bdrv_find_protocol(const char *filename)
478 {
479     BlockDriver *drv1;
480     char protocol[128];
481     int len;
482     const char *p;
483 
484     /* TODO Drivers without bdrv_file_open must be specified explicitly */
485 
486     /*
487      * XXX(hch): we really should not let host device detection
488      * override an explicit protocol specification, but moving this
489      * later breaks access to device names with colons in them.
490      * Thanks to the brain-dead persistent naming schemes on udev-
491      * based Linux systems those actually are quite common.
492      */
493     drv1 = find_hdev_driver(filename);
494     if (drv1) {
495         return drv1;
496     }
497 
498     if (!path_has_protocol(filename)) {
499         return bdrv_find_format("file");
500     }
501     p = strchr(filename, ':');
502     assert(p != NULL);
503     len = p - filename;
504     if (len > sizeof(protocol) - 1)
505         len = sizeof(protocol) - 1;
506     memcpy(protocol, filename, len);
507     protocol[len] = '\0';
508     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
509         if (drv1->protocol_name &&
510             !strcmp(drv1->protocol_name, protocol)) {
511             return drv1;
512         }
513     }
514     return NULL;
515 }
516 
517 static int find_image_format(BlockDriverState *bs, const char *filename,
518                              BlockDriver **pdrv)
519 {
520     int score, score_max;
521     BlockDriver *drv1, *drv;
522     uint8_t buf[2048];
523     int ret = 0;
524 
525     /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
526     if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) {
527         drv = bdrv_find_format("raw");
528         if (!drv) {
529             ret = -ENOENT;
530         }
531         *pdrv = drv;
532         return ret;
533     }
534 
535     ret = bdrv_pread(bs, 0, buf, sizeof(buf));
536     if (ret < 0) {
537         *pdrv = NULL;
538         return ret;
539     }
540 
541     score_max = 0;
542     drv = NULL;
543     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
544         if (drv1->bdrv_probe) {
545             score = drv1->bdrv_probe(buf, ret, filename);
546             if (score > score_max) {
547                 score_max = score;
548                 drv = drv1;
549             }
550         }
551     }
552     if (!drv) {
553         ret = -ENOENT;
554     }
555     *pdrv = drv;
556     return ret;
557 }
558 
559 /**
560  * Set the current 'total_sectors' value
561  */
562 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
563 {
564     BlockDriver *drv = bs->drv;
565 
566     /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
567     if (bs->sg)
568         return 0;
569 
570     /* query actual device if possible, otherwise just trust the hint */
571     if (drv->bdrv_getlength) {
572         int64_t length = drv->bdrv_getlength(bs);
573         if (length < 0) {
574             return length;
575         }
576         hint = length >> BDRV_SECTOR_BITS;
577     }
578 
579     bs->total_sectors = hint;
580     return 0;
581 }
582 
583 /**
584  * Set open flags for a given discard mode
585  *
586  * Return 0 on success, -1 if the discard mode was invalid.
587  */
588 int bdrv_parse_discard_flags(const char *mode, int *flags)
589 {
590     *flags &= ~BDRV_O_UNMAP;
591 
592     if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) {
593         /* do nothing */
594     } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) {
595         *flags |= BDRV_O_UNMAP;
596     } else {
597         return -1;
598     }
599 
600     return 0;
601 }
602 
603 /**
604  * Set open flags for a given cache mode
605  *
606  * Return 0 on success, -1 if the cache mode was invalid.
607  */
608 int bdrv_parse_cache_flags(const char *mode, int *flags)
609 {
610     *flags &= ~BDRV_O_CACHE_MASK;
611 
612     if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
613         *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
614     } else if (!strcmp(mode, "directsync")) {
615         *flags |= BDRV_O_NOCACHE;
616     } else if (!strcmp(mode, "writeback")) {
617         *flags |= BDRV_O_CACHE_WB;
618     } else if (!strcmp(mode, "unsafe")) {
619         *flags |= BDRV_O_CACHE_WB;
620         *flags |= BDRV_O_NO_FLUSH;
621     } else if (!strcmp(mode, "writethrough")) {
622         /* this is the default */
623     } else {
624         return -1;
625     }
626 
627     return 0;
628 }
629 
630 /**
631  * The copy-on-read flag is actually a reference count so multiple users may
632  * use the feature without worrying about clobbering its previous state.
633  * Copy-on-read stays enabled until all users have called to disable it.
634  */
635 void bdrv_enable_copy_on_read(BlockDriverState *bs)
636 {
637     bs->copy_on_read++;
638 }
639 
640 void bdrv_disable_copy_on_read(BlockDriverState *bs)
641 {
642     assert(bs->copy_on_read > 0);
643     bs->copy_on_read--;
644 }
645 
646 static int bdrv_open_flags(BlockDriverState *bs, int flags)
647 {
648     int open_flags = flags | BDRV_O_CACHE_WB;
649 
650     /*
651      * Clear flags that are internal to the block layer before opening the
652      * image.
653      */
654     open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
655 
656     /*
657      * Snapshots should be writable.
658      */
659     if (bs->is_temporary) {
660         open_flags |= BDRV_O_RDWR;
661     }
662 
663     return open_flags;
664 }
665 
666 /*
667  * Common part for opening disk images and files
668  */
669 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file,
670     const char *filename,
671     int flags, BlockDriver *drv)
672 {
673     int ret, open_flags;
674 
675     assert(drv != NULL);
676     assert(bs->file == NULL);
677 
678     trace_bdrv_open_common(bs, filename, flags, drv->format_name);
679 
680     bs->open_flags = flags;
681     bs->buffer_alignment = 512;
682 
683     assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
684     if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
685         bdrv_enable_copy_on_read(bs);
686     }
687 
688     pstrcpy(bs->filename, sizeof(bs->filename), filename);
689 
690     if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
691         return -ENOTSUP;
692     }
693 
694     bs->drv = drv;
695     bs->opaque = g_malloc0(drv->instance_size);
696 
697     bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
698     open_flags = bdrv_open_flags(bs, flags);
699 
700     bs->read_only = !(open_flags & BDRV_O_RDWR);
701 
702     /* Open the image, either directly or using a protocol */
703     if (drv->bdrv_file_open) {
704         if (file != NULL) {
705             bdrv_swap(file, bs);
706             ret = 0;
707         } else {
708             ret = drv->bdrv_file_open(bs, filename, open_flags);
709         }
710     } else {
711         assert(file != NULL);
712         bs->file = file;
713         ret = drv->bdrv_open(bs, open_flags);
714     }
715 
716     if (ret < 0) {
717         goto free_and_fail;
718     }
719 
720     ret = refresh_total_sectors(bs, bs->total_sectors);
721     if (ret < 0) {
722         goto free_and_fail;
723     }
724 
725 #ifndef _WIN32
726     if (bs->is_temporary) {
727         unlink(filename);
728     }
729 #endif
730     return 0;
731 
732 free_and_fail:
733     bs->file = NULL;
734     g_free(bs->opaque);
735     bs->opaque = NULL;
736     bs->drv = NULL;
737     return ret;
738 }
739 
740 /*
741  * Opens a file using a protocol (file, host_device, nbd, ...)
742  */
743 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
744 {
745     BlockDriverState *bs;
746     BlockDriver *drv;
747     int ret;
748 
749     drv = bdrv_find_protocol(filename);
750     if (!drv) {
751         return -ENOENT;
752     }
753 
754     bs = bdrv_new("");
755     ret = bdrv_open_common(bs, NULL, filename, flags, drv);
756     if (ret < 0) {
757         bdrv_delete(bs);
758         return ret;
759     }
760     bs->growable = 1;
761     *pbs = bs;
762     return 0;
763 }
764 
765 int bdrv_open_backing_file(BlockDriverState *bs)
766 {
767     char backing_filename[PATH_MAX];
768     int back_flags, ret;
769     BlockDriver *back_drv = NULL;
770 
771     if (bs->backing_hd != NULL) {
772         return 0;
773     }
774 
775     bs->open_flags &= ~BDRV_O_NO_BACKING;
776     if (bs->backing_file[0] == '\0') {
777         return 0;
778     }
779 
780     bs->backing_hd = bdrv_new("");
781     bdrv_get_full_backing_filename(bs, backing_filename,
782                                    sizeof(backing_filename));
783 
784     if (bs->backing_format[0] != '\0') {
785         back_drv = bdrv_find_format(bs->backing_format);
786     }
787 
788     /* backing files always opened read-only */
789     back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
790 
791     ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
792     if (ret < 0) {
793         bdrv_delete(bs->backing_hd);
794         bs->backing_hd = NULL;
795         bs->open_flags |= BDRV_O_NO_BACKING;
796         return ret;
797     }
798     return 0;
799 }
800 
801 /*
802  * Opens a disk image (raw, qcow2, vmdk, ...)
803  */
804 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
805               BlockDriver *drv)
806 {
807     int ret;
808     /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
809     char tmp_filename[PATH_MAX + 1];
810     BlockDriverState *file = NULL;
811 
812     if (flags & BDRV_O_SNAPSHOT) {
813         BlockDriverState *bs1;
814         int64_t total_size;
815         int is_protocol = 0;
816         BlockDriver *bdrv_qcow2;
817         QEMUOptionParameter *options;
818         char backing_filename[PATH_MAX];
819 
820         /* if snapshot, we create a temporary backing file and open it
821            instead of opening 'filename' directly */
822 
823         /* if there is a backing file, use it */
824         bs1 = bdrv_new("");
825         ret = bdrv_open(bs1, filename, 0, drv);
826         if (ret < 0) {
827             bdrv_delete(bs1);
828             return ret;
829         }
830         total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
831 
832         if (bs1->drv && bs1->drv->protocol_name)
833             is_protocol = 1;
834 
835         bdrv_delete(bs1);
836 
837         ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
838         if (ret < 0) {
839             return ret;
840         }
841 
842         /* Real path is meaningless for protocols */
843         if (is_protocol)
844             snprintf(backing_filename, sizeof(backing_filename),
845                      "%s", filename);
846         else if (!realpath(filename, backing_filename))
847             return -errno;
848 
849         bdrv_qcow2 = bdrv_find_format("qcow2");
850         options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
851 
852         set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
853         set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
854         if (drv) {
855             set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
856                 drv->format_name);
857         }
858 
859         ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
860         free_option_parameters(options);
861         if (ret < 0) {
862             return ret;
863         }
864 
865         filename = tmp_filename;
866         drv = bdrv_qcow2;
867         bs->is_temporary = 1;
868     }
869 
870     /* Open image file without format layer */
871     if (flags & BDRV_O_RDWR) {
872         flags |= BDRV_O_ALLOW_RDWR;
873     }
874 
875     ret = bdrv_file_open(&file, filename, bdrv_open_flags(bs, flags));
876     if (ret < 0) {
877         return ret;
878     }
879 
880     /* Find the right image format driver */
881     if (!drv) {
882         ret = find_image_format(file, filename, &drv);
883     }
884 
885     if (!drv) {
886         goto unlink_and_fail;
887     }
888 
889     /* Open the image */
890     ret = bdrv_open_common(bs, file, filename, flags, drv);
891     if (ret < 0) {
892         goto unlink_and_fail;
893     }
894 
895     if (bs->file != file) {
896         bdrv_delete(file);
897         file = NULL;
898     }
899 
900     /* If there is a backing file, use it */
901     if ((flags & BDRV_O_NO_BACKING) == 0) {
902         ret = bdrv_open_backing_file(bs);
903         if (ret < 0) {
904             bdrv_close(bs);
905             return ret;
906         }
907     }
908 
909     if (!bdrv_key_required(bs)) {
910         bdrv_dev_change_media_cb(bs, true);
911     }
912 
913     /* throttling disk I/O limits */
914     if (bs->io_limits_enabled) {
915         bdrv_io_limits_enable(bs);
916     }
917 
918     return 0;
919 
920 unlink_and_fail:
921     if (file != NULL) {
922         bdrv_delete(file);
923     }
924     if (bs->is_temporary) {
925         unlink(filename);
926     }
927     return ret;
928 }
929 
930 typedef struct BlockReopenQueueEntry {
931      bool prepared;
932      BDRVReopenState state;
933      QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
934 } BlockReopenQueueEntry;
935 
936 /*
937  * Adds a BlockDriverState to a simple queue for an atomic, transactional
938  * reopen of multiple devices.
939  *
940  * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
941  * already performed, or alternatively may be NULL a new BlockReopenQueue will
942  * be created and initialized. This newly created BlockReopenQueue should be
943  * passed back in for subsequent calls that are intended to be of the same
944  * atomic 'set'.
945  *
946  * bs is the BlockDriverState to add to the reopen queue.
947  *
948  * flags contains the open flags for the associated bs
949  *
950  * returns a pointer to bs_queue, which is either the newly allocated
951  * bs_queue, or the existing bs_queue being used.
952  *
953  */
954 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
955                                     BlockDriverState *bs, int flags)
956 {
957     assert(bs != NULL);
958 
959     BlockReopenQueueEntry *bs_entry;
960     if (bs_queue == NULL) {
961         bs_queue = g_new0(BlockReopenQueue, 1);
962         QSIMPLEQ_INIT(bs_queue);
963     }
964 
965     if (bs->file) {
966         bdrv_reopen_queue(bs_queue, bs->file, flags);
967     }
968 
969     bs_entry = g_new0(BlockReopenQueueEntry, 1);
970     QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
971 
972     bs_entry->state.bs = bs;
973     bs_entry->state.flags = flags;
974 
975     return bs_queue;
976 }
977 
978 /*
979  * Reopen multiple BlockDriverStates atomically & transactionally.
980  *
981  * The queue passed in (bs_queue) must have been built up previous
982  * via bdrv_reopen_queue().
983  *
984  * Reopens all BDS specified in the queue, with the appropriate
985  * flags.  All devices are prepared for reopen, and failure of any
986  * device will cause all device changes to be abandonded, and intermediate
987  * data cleaned up.
988  *
989  * If all devices prepare successfully, then the changes are committed
990  * to all devices.
991  *
992  */
993 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
994 {
995     int ret = -1;
996     BlockReopenQueueEntry *bs_entry, *next;
997     Error *local_err = NULL;
998 
999     assert(bs_queue != NULL);
1000 
1001     bdrv_drain_all();
1002 
1003     QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
1004         if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
1005             error_propagate(errp, local_err);
1006             goto cleanup;
1007         }
1008         bs_entry->prepared = true;
1009     }
1010 
1011     /* If we reach this point, we have success and just need to apply the
1012      * changes
1013      */
1014     QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
1015         bdrv_reopen_commit(&bs_entry->state);
1016     }
1017 
1018     ret = 0;
1019 
1020 cleanup:
1021     QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
1022         if (ret && bs_entry->prepared) {
1023             bdrv_reopen_abort(&bs_entry->state);
1024         }
1025         g_free(bs_entry);
1026     }
1027     g_free(bs_queue);
1028     return ret;
1029 }
1030 
1031 
1032 /* Reopen a single BlockDriverState with the specified flags. */
1033 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
1034 {
1035     int ret = -1;
1036     Error *local_err = NULL;
1037     BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
1038 
1039     ret = bdrv_reopen_multiple(queue, &local_err);
1040     if (local_err != NULL) {
1041         error_propagate(errp, local_err);
1042     }
1043     return ret;
1044 }
1045 
1046 
1047 /*
1048  * Prepares a BlockDriverState for reopen. All changes are staged in the
1049  * 'opaque' field of the BDRVReopenState, which is used and allocated by
1050  * the block driver layer .bdrv_reopen_prepare()
1051  *
1052  * bs is the BlockDriverState to reopen
1053  * flags are the new open flags
1054  * queue is the reopen queue
1055  *
1056  * Returns 0 on success, non-zero on error.  On error errp will be set
1057  * as well.
1058  *
1059  * On failure, bdrv_reopen_abort() will be called to clean up any data.
1060  * It is the responsibility of the caller to then call the abort() or
1061  * commit() for any other BDS that have been left in a prepare() state
1062  *
1063  */
1064 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1065                         Error **errp)
1066 {
1067     int ret = -1;
1068     Error *local_err = NULL;
1069     BlockDriver *drv;
1070 
1071     assert(reopen_state != NULL);
1072     assert(reopen_state->bs->drv != NULL);
1073     drv = reopen_state->bs->drv;
1074 
1075     /* if we are to stay read-only, do not allow permission change
1076      * to r/w */
1077     if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1078         reopen_state->flags & BDRV_O_RDWR) {
1079         error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1080                   reopen_state->bs->device_name);
1081         goto error;
1082     }
1083 
1084 
1085     ret = bdrv_flush(reopen_state->bs);
1086     if (ret) {
1087         error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1088                   strerror(-ret));
1089         goto error;
1090     }
1091 
1092     if (drv->bdrv_reopen_prepare) {
1093         ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1094         if (ret) {
1095             if (local_err != NULL) {
1096                 error_propagate(errp, local_err);
1097             } else {
1098                 error_set(errp, QERR_OPEN_FILE_FAILED,
1099                           reopen_state->bs->filename);
1100             }
1101             goto error;
1102         }
1103     } else {
1104         /* It is currently mandatory to have a bdrv_reopen_prepare()
1105          * handler for each supported drv. */
1106         error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1107                   drv->format_name, reopen_state->bs->device_name,
1108                  "reopening of file");
1109         ret = -1;
1110         goto error;
1111     }
1112 
1113     ret = 0;
1114 
1115 error:
1116     return ret;
1117 }
1118 
1119 /*
1120  * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1121  * makes them final by swapping the staging BlockDriverState contents into
1122  * the active BlockDriverState contents.
1123  */
1124 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1125 {
1126     BlockDriver *drv;
1127 
1128     assert(reopen_state != NULL);
1129     drv = reopen_state->bs->drv;
1130     assert(drv != NULL);
1131 
1132     /* If there are any driver level actions to take */
1133     if (drv->bdrv_reopen_commit) {
1134         drv->bdrv_reopen_commit(reopen_state);
1135     }
1136 
1137     /* set BDS specific flags now */
1138     reopen_state->bs->open_flags         = reopen_state->flags;
1139     reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1140                                               BDRV_O_CACHE_WB);
1141     reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1142 }
1143 
1144 /*
1145  * Abort the reopen, and delete and free the staged changes in
1146  * reopen_state
1147  */
1148 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1149 {
1150     BlockDriver *drv;
1151 
1152     assert(reopen_state != NULL);
1153     drv = reopen_state->bs->drv;
1154     assert(drv != NULL);
1155 
1156     if (drv->bdrv_reopen_abort) {
1157         drv->bdrv_reopen_abort(reopen_state);
1158     }
1159 }
1160 
1161 
1162 void bdrv_close(BlockDriverState *bs)
1163 {
1164     bdrv_flush(bs);
1165     if (bs->job) {
1166         block_job_cancel_sync(bs->job);
1167     }
1168     bdrv_drain_all();
1169     notifier_list_notify(&bs->close_notifiers, bs);
1170 
1171     if (bs->drv) {
1172         if (bs == bs_snapshots) {
1173             bs_snapshots = NULL;
1174         }
1175         if (bs->backing_hd) {
1176             bdrv_delete(bs->backing_hd);
1177             bs->backing_hd = NULL;
1178         }
1179         bs->drv->bdrv_close(bs);
1180         g_free(bs->opaque);
1181 #ifdef _WIN32
1182         if (bs->is_temporary) {
1183             unlink(bs->filename);
1184         }
1185 #endif
1186         bs->opaque = NULL;
1187         bs->drv = NULL;
1188         bs->copy_on_read = 0;
1189         bs->backing_file[0] = '\0';
1190         bs->backing_format[0] = '\0';
1191         bs->total_sectors = 0;
1192         bs->encrypted = 0;
1193         bs->valid_key = 0;
1194         bs->sg = 0;
1195         bs->growable = 0;
1196 
1197         if (bs->file != NULL) {
1198             bdrv_delete(bs->file);
1199             bs->file = NULL;
1200         }
1201     }
1202 
1203     bdrv_dev_change_media_cb(bs, false);
1204 
1205     /*throttling disk I/O limits*/
1206     if (bs->io_limits_enabled) {
1207         bdrv_io_limits_disable(bs);
1208     }
1209 }
1210 
1211 void bdrv_close_all(void)
1212 {
1213     BlockDriverState *bs;
1214 
1215     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1216         bdrv_close(bs);
1217     }
1218 }
1219 
1220 /*
1221  * Wait for pending requests to complete across all BlockDriverStates
1222  *
1223  * This function does not flush data to disk, use bdrv_flush_all() for that
1224  * after calling this function.
1225  *
1226  * Note that completion of an asynchronous I/O operation can trigger any
1227  * number of other I/O operations on other devices---for example a coroutine
1228  * can be arbitrarily complex and a constant flow of I/O can come until the
1229  * coroutine is complete.  Because of this, it is not possible to have a
1230  * function to drain a single device's I/O queue.
1231  */
1232 void bdrv_drain_all(void)
1233 {
1234     BlockDriverState *bs;
1235     bool busy;
1236 
1237     do {
1238         busy = qemu_aio_wait();
1239 
1240         /* FIXME: We do not have timer support here, so this is effectively
1241          * a busy wait.
1242          */
1243         QTAILQ_FOREACH(bs, &bdrv_states, list) {
1244             if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1245                 qemu_co_queue_restart_all(&bs->throttled_reqs);
1246                 busy = true;
1247             }
1248         }
1249     } while (busy);
1250 
1251     /* If requests are still pending there is a bug somewhere */
1252     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1253         assert(QLIST_EMPTY(&bs->tracked_requests));
1254         assert(qemu_co_queue_empty(&bs->throttled_reqs));
1255     }
1256 }
1257 
1258 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1259    Also, NULL terminate the device_name to prevent double remove */
1260 void bdrv_make_anon(BlockDriverState *bs)
1261 {
1262     if (bs->device_name[0] != '\0') {
1263         QTAILQ_REMOVE(&bdrv_states, bs, list);
1264     }
1265     bs->device_name[0] = '\0';
1266 }
1267 
1268 static void bdrv_rebind(BlockDriverState *bs)
1269 {
1270     if (bs->drv && bs->drv->bdrv_rebind) {
1271         bs->drv->bdrv_rebind(bs);
1272     }
1273 }
1274 
1275 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1276                                      BlockDriverState *bs_src)
1277 {
1278     /* move some fields that need to stay attached to the device */
1279     bs_dest->open_flags         = bs_src->open_flags;
1280 
1281     /* dev info */
1282     bs_dest->dev_ops            = bs_src->dev_ops;
1283     bs_dest->dev_opaque         = bs_src->dev_opaque;
1284     bs_dest->dev                = bs_src->dev;
1285     bs_dest->buffer_alignment   = bs_src->buffer_alignment;
1286     bs_dest->copy_on_read       = bs_src->copy_on_read;
1287 
1288     bs_dest->enable_write_cache = bs_src->enable_write_cache;
1289 
1290     /* i/o timing parameters */
1291     bs_dest->slice_time         = bs_src->slice_time;
1292     bs_dest->slice_start        = bs_src->slice_start;
1293     bs_dest->slice_end          = bs_src->slice_end;
1294     bs_dest->io_limits          = bs_src->io_limits;
1295     bs_dest->io_base            = bs_src->io_base;
1296     bs_dest->throttled_reqs     = bs_src->throttled_reqs;
1297     bs_dest->block_timer        = bs_src->block_timer;
1298     bs_dest->io_limits_enabled  = bs_src->io_limits_enabled;
1299 
1300     /* r/w error */
1301     bs_dest->on_read_error      = bs_src->on_read_error;
1302     bs_dest->on_write_error     = bs_src->on_write_error;
1303 
1304     /* i/o status */
1305     bs_dest->iostatus_enabled   = bs_src->iostatus_enabled;
1306     bs_dest->iostatus           = bs_src->iostatus;
1307 
1308     /* dirty bitmap */
1309     bs_dest->dirty_bitmap       = bs_src->dirty_bitmap;
1310 
1311     /* job */
1312     bs_dest->in_use             = bs_src->in_use;
1313     bs_dest->job                = bs_src->job;
1314 
1315     /* keep the same entry in bdrv_states */
1316     pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1317             bs_src->device_name);
1318     bs_dest->list = bs_src->list;
1319 }
1320 
1321 /*
1322  * Swap bs contents for two image chains while they are live,
1323  * while keeping required fields on the BlockDriverState that is
1324  * actually attached to a device.
1325  *
1326  * This will modify the BlockDriverState fields, and swap contents
1327  * between bs_new and bs_old. Both bs_new and bs_old are modified.
1328  *
1329  * bs_new is required to be anonymous.
1330  *
1331  * This function does not create any image files.
1332  */
1333 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1334 {
1335     BlockDriverState tmp;
1336 
1337     /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1338     assert(bs_new->device_name[0] == '\0');
1339     assert(bs_new->dirty_bitmap == NULL);
1340     assert(bs_new->job == NULL);
1341     assert(bs_new->dev == NULL);
1342     assert(bs_new->in_use == 0);
1343     assert(bs_new->io_limits_enabled == false);
1344     assert(bs_new->block_timer == NULL);
1345 
1346     tmp = *bs_new;
1347     *bs_new = *bs_old;
1348     *bs_old = tmp;
1349 
1350     /* there are some fields that should not be swapped, move them back */
1351     bdrv_move_feature_fields(&tmp, bs_old);
1352     bdrv_move_feature_fields(bs_old, bs_new);
1353     bdrv_move_feature_fields(bs_new, &tmp);
1354 
1355     /* bs_new shouldn't be in bdrv_states even after the swap!  */
1356     assert(bs_new->device_name[0] == '\0');
1357 
1358     /* Check a few fields that should remain attached to the device */
1359     assert(bs_new->dev == NULL);
1360     assert(bs_new->job == NULL);
1361     assert(bs_new->in_use == 0);
1362     assert(bs_new->io_limits_enabled == false);
1363     assert(bs_new->block_timer == NULL);
1364 
1365     bdrv_rebind(bs_new);
1366     bdrv_rebind(bs_old);
1367 }
1368 
1369 /*
1370  * Add new bs contents at the top of an image chain while the chain is
1371  * live, while keeping required fields on the top layer.
1372  *
1373  * This will modify the BlockDriverState fields, and swap contents
1374  * between bs_new and bs_top. Both bs_new and bs_top are modified.
1375  *
1376  * bs_new is required to be anonymous.
1377  *
1378  * This function does not create any image files.
1379  */
1380 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1381 {
1382     bdrv_swap(bs_new, bs_top);
1383 
1384     /* The contents of 'tmp' will become bs_top, as we are
1385      * swapping bs_new and bs_top contents. */
1386     bs_top->backing_hd = bs_new;
1387     bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1388     pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1389             bs_new->filename);
1390     pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1391             bs_new->drv ? bs_new->drv->format_name : "");
1392 }
1393 
1394 void bdrv_delete(BlockDriverState *bs)
1395 {
1396     assert(!bs->dev);
1397     assert(!bs->job);
1398     assert(!bs->in_use);
1399 
1400     /* remove from list, if necessary */
1401     bdrv_make_anon(bs);
1402 
1403     bdrv_close(bs);
1404 
1405     assert(bs != bs_snapshots);
1406     g_free(bs);
1407 }
1408 
1409 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1410 /* TODO change to DeviceState *dev when all users are qdevified */
1411 {
1412     if (bs->dev) {
1413         return -EBUSY;
1414     }
1415     bs->dev = dev;
1416     bdrv_iostatus_reset(bs);
1417     return 0;
1418 }
1419 
1420 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1421 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1422 {
1423     if (bdrv_attach_dev(bs, dev) < 0) {
1424         abort();
1425     }
1426 }
1427 
1428 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1429 /* TODO change to DeviceState *dev when all users are qdevified */
1430 {
1431     assert(bs->dev == dev);
1432     bs->dev = NULL;
1433     bs->dev_ops = NULL;
1434     bs->dev_opaque = NULL;
1435     bs->buffer_alignment = 512;
1436 }
1437 
1438 /* TODO change to return DeviceState * when all users are qdevified */
1439 void *bdrv_get_attached_dev(BlockDriverState *bs)
1440 {
1441     return bs->dev;
1442 }
1443 
1444 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1445                       void *opaque)
1446 {
1447     bs->dev_ops = ops;
1448     bs->dev_opaque = opaque;
1449     if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1450         bs_snapshots = NULL;
1451     }
1452 }
1453 
1454 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1455                                enum MonitorEvent ev,
1456                                BlockErrorAction action, bool is_read)
1457 {
1458     QObject *data;
1459     const char *action_str;
1460 
1461     switch (action) {
1462     case BDRV_ACTION_REPORT:
1463         action_str = "report";
1464         break;
1465     case BDRV_ACTION_IGNORE:
1466         action_str = "ignore";
1467         break;
1468     case BDRV_ACTION_STOP:
1469         action_str = "stop";
1470         break;
1471     default:
1472         abort();
1473     }
1474 
1475     data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1476                               bdrv->device_name,
1477                               action_str,
1478                               is_read ? "read" : "write");
1479     monitor_protocol_event(ev, data);
1480 
1481     qobject_decref(data);
1482 }
1483 
1484 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1485 {
1486     QObject *data;
1487 
1488     data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1489                               bdrv_get_device_name(bs), ejected);
1490     monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1491 
1492     qobject_decref(data);
1493 }
1494 
1495 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1496 {
1497     if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1498         bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1499         bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1500         if (tray_was_closed) {
1501             /* tray open */
1502             bdrv_emit_qmp_eject_event(bs, true);
1503         }
1504         if (load) {
1505             /* tray close */
1506             bdrv_emit_qmp_eject_event(bs, false);
1507         }
1508     }
1509 }
1510 
1511 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1512 {
1513     return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1514 }
1515 
1516 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1517 {
1518     if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1519         bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1520     }
1521 }
1522 
1523 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1524 {
1525     if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1526         return bs->dev_ops->is_tray_open(bs->dev_opaque);
1527     }
1528     return false;
1529 }
1530 
1531 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1532 {
1533     if (bs->dev_ops && bs->dev_ops->resize_cb) {
1534         bs->dev_ops->resize_cb(bs->dev_opaque);
1535     }
1536 }
1537 
1538 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1539 {
1540     if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1541         return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1542     }
1543     return false;
1544 }
1545 
1546 /*
1547  * Run consistency checks on an image
1548  *
1549  * Returns 0 if the check could be completed (it doesn't mean that the image is
1550  * free of errors) or -errno when an internal error occurred. The results of the
1551  * check are stored in res.
1552  */
1553 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1554 {
1555     if (bs->drv->bdrv_check == NULL) {
1556         return -ENOTSUP;
1557     }
1558 
1559     memset(res, 0, sizeof(*res));
1560     return bs->drv->bdrv_check(bs, res, fix);
1561 }
1562 
1563 #define COMMIT_BUF_SECTORS 2048
1564 
1565 /* commit COW file into the raw image */
1566 int bdrv_commit(BlockDriverState *bs)
1567 {
1568     BlockDriver *drv = bs->drv;
1569     int64_t sector, total_sectors;
1570     int n, ro, open_flags;
1571     int ret = 0;
1572     uint8_t *buf;
1573     char filename[PATH_MAX];
1574 
1575     if (!drv)
1576         return -ENOMEDIUM;
1577 
1578     if (!bs->backing_hd) {
1579         return -ENOTSUP;
1580     }
1581 
1582     if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1583         return -EBUSY;
1584     }
1585 
1586     ro = bs->backing_hd->read_only;
1587     /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1588     pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1589     open_flags =  bs->backing_hd->open_flags;
1590 
1591     if (ro) {
1592         if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1593             return -EACCES;
1594         }
1595     }
1596 
1597     total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1598     buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1599 
1600     for (sector = 0; sector < total_sectors; sector += n) {
1601         if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1602 
1603             if (bdrv_read(bs, sector, buf, n) != 0) {
1604                 ret = -EIO;
1605                 goto ro_cleanup;
1606             }
1607 
1608             if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1609                 ret = -EIO;
1610                 goto ro_cleanup;
1611             }
1612         }
1613     }
1614 
1615     if (drv->bdrv_make_empty) {
1616         ret = drv->bdrv_make_empty(bs);
1617         bdrv_flush(bs);
1618     }
1619 
1620     /*
1621      * Make sure all data we wrote to the backing device is actually
1622      * stable on disk.
1623      */
1624     if (bs->backing_hd)
1625         bdrv_flush(bs->backing_hd);
1626 
1627 ro_cleanup:
1628     g_free(buf);
1629 
1630     if (ro) {
1631         /* ignoring error return here */
1632         bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1633     }
1634 
1635     return ret;
1636 }
1637 
1638 int bdrv_commit_all(void)
1639 {
1640     BlockDriverState *bs;
1641 
1642     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1643         int ret = bdrv_commit(bs);
1644         if (ret < 0) {
1645             return ret;
1646         }
1647     }
1648     return 0;
1649 }
1650 
1651 struct BdrvTrackedRequest {
1652     BlockDriverState *bs;
1653     int64_t sector_num;
1654     int nb_sectors;
1655     bool is_write;
1656     QLIST_ENTRY(BdrvTrackedRequest) list;
1657     Coroutine *co; /* owner, used for deadlock detection */
1658     CoQueue wait_queue; /* coroutines blocked on this request */
1659 };
1660 
1661 /**
1662  * Remove an active request from the tracked requests list
1663  *
1664  * This function should be called when a tracked request is completing.
1665  */
1666 static void tracked_request_end(BdrvTrackedRequest *req)
1667 {
1668     QLIST_REMOVE(req, list);
1669     qemu_co_queue_restart_all(&req->wait_queue);
1670 }
1671 
1672 /**
1673  * Add an active request to the tracked requests list
1674  */
1675 static void tracked_request_begin(BdrvTrackedRequest *req,
1676                                   BlockDriverState *bs,
1677                                   int64_t sector_num,
1678                                   int nb_sectors, bool is_write)
1679 {
1680     *req = (BdrvTrackedRequest){
1681         .bs = bs,
1682         .sector_num = sector_num,
1683         .nb_sectors = nb_sectors,
1684         .is_write = is_write,
1685         .co = qemu_coroutine_self(),
1686     };
1687 
1688     qemu_co_queue_init(&req->wait_queue);
1689 
1690     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1691 }
1692 
1693 /**
1694  * Round a region to cluster boundaries
1695  */
1696 void bdrv_round_to_clusters(BlockDriverState *bs,
1697                             int64_t sector_num, int nb_sectors,
1698                             int64_t *cluster_sector_num,
1699                             int *cluster_nb_sectors)
1700 {
1701     BlockDriverInfo bdi;
1702 
1703     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1704         *cluster_sector_num = sector_num;
1705         *cluster_nb_sectors = nb_sectors;
1706     } else {
1707         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1708         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1709         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1710                                             nb_sectors, c);
1711     }
1712 }
1713 
1714 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1715                                      int64_t sector_num, int nb_sectors) {
1716     /*        aaaa   bbbb */
1717     if (sector_num >= req->sector_num + req->nb_sectors) {
1718         return false;
1719     }
1720     /* bbbb   aaaa        */
1721     if (req->sector_num >= sector_num + nb_sectors) {
1722         return false;
1723     }
1724     return true;
1725 }
1726 
1727 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1728         int64_t sector_num, int nb_sectors)
1729 {
1730     BdrvTrackedRequest *req;
1731     int64_t cluster_sector_num;
1732     int cluster_nb_sectors;
1733     bool retry;
1734 
1735     /* If we touch the same cluster it counts as an overlap.  This guarantees
1736      * that allocating writes will be serialized and not race with each other
1737      * for the same cluster.  For example, in copy-on-read it ensures that the
1738      * CoR read and write operations are atomic and guest writes cannot
1739      * interleave between them.
1740      */
1741     bdrv_round_to_clusters(bs, sector_num, nb_sectors,
1742                            &cluster_sector_num, &cluster_nb_sectors);
1743 
1744     do {
1745         retry = false;
1746         QLIST_FOREACH(req, &bs->tracked_requests, list) {
1747             if (tracked_request_overlaps(req, cluster_sector_num,
1748                                          cluster_nb_sectors)) {
1749                 /* Hitting this means there was a reentrant request, for
1750                  * example, a block driver issuing nested requests.  This must
1751                  * never happen since it means deadlock.
1752                  */
1753                 assert(qemu_coroutine_self() != req->co);
1754 
1755                 qemu_co_queue_wait(&req->wait_queue);
1756                 retry = true;
1757                 break;
1758             }
1759         }
1760     } while (retry);
1761 }
1762 
1763 /*
1764  * Return values:
1765  * 0        - success
1766  * -EINVAL  - backing format specified, but no file
1767  * -ENOSPC  - can't update the backing file because no space is left in the
1768  *            image file header
1769  * -ENOTSUP - format driver doesn't support changing the backing file
1770  */
1771 int bdrv_change_backing_file(BlockDriverState *bs,
1772     const char *backing_file, const char *backing_fmt)
1773 {
1774     BlockDriver *drv = bs->drv;
1775     int ret;
1776 
1777     /* Backing file format doesn't make sense without a backing file */
1778     if (backing_fmt && !backing_file) {
1779         return -EINVAL;
1780     }
1781 
1782     if (drv->bdrv_change_backing_file != NULL) {
1783         ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1784     } else {
1785         ret = -ENOTSUP;
1786     }
1787 
1788     if (ret == 0) {
1789         pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1790         pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1791     }
1792     return ret;
1793 }
1794 
1795 /*
1796  * Finds the image layer in the chain that has 'bs' as its backing file.
1797  *
1798  * active is the current topmost image.
1799  *
1800  * Returns NULL if bs is not found in active's image chain,
1801  * or if active == bs.
1802  */
1803 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1804                                     BlockDriverState *bs)
1805 {
1806     BlockDriverState *overlay = NULL;
1807     BlockDriverState *intermediate;
1808 
1809     assert(active != NULL);
1810     assert(bs != NULL);
1811 
1812     /* if bs is the same as active, then by definition it has no overlay
1813      */
1814     if (active == bs) {
1815         return NULL;
1816     }
1817 
1818     intermediate = active;
1819     while (intermediate->backing_hd) {
1820         if (intermediate->backing_hd == bs) {
1821             overlay = intermediate;
1822             break;
1823         }
1824         intermediate = intermediate->backing_hd;
1825     }
1826 
1827     return overlay;
1828 }
1829 
1830 typedef struct BlkIntermediateStates {
1831     BlockDriverState *bs;
1832     QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1833 } BlkIntermediateStates;
1834 
1835 
1836 /*
1837  * Drops images above 'base' up to and including 'top', and sets the image
1838  * above 'top' to have base as its backing file.
1839  *
1840  * Requires that the overlay to 'top' is opened r/w, so that the backing file
1841  * information in 'bs' can be properly updated.
1842  *
1843  * E.g., this will convert the following chain:
1844  * bottom <- base <- intermediate <- top <- active
1845  *
1846  * to
1847  *
1848  * bottom <- base <- active
1849  *
1850  * It is allowed for bottom==base, in which case it converts:
1851  *
1852  * base <- intermediate <- top <- active
1853  *
1854  * to
1855  *
1856  * base <- active
1857  *
1858  * Error conditions:
1859  *  if active == top, that is considered an error
1860  *
1861  */
1862 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1863                            BlockDriverState *base)
1864 {
1865     BlockDriverState *intermediate;
1866     BlockDriverState *base_bs = NULL;
1867     BlockDriverState *new_top_bs = NULL;
1868     BlkIntermediateStates *intermediate_state, *next;
1869     int ret = -EIO;
1870 
1871     QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1872     QSIMPLEQ_INIT(&states_to_delete);
1873 
1874     if (!top->drv || !base->drv) {
1875         goto exit;
1876     }
1877 
1878     new_top_bs = bdrv_find_overlay(active, top);
1879 
1880     if (new_top_bs == NULL) {
1881         /* we could not find the image above 'top', this is an error */
1882         goto exit;
1883     }
1884 
1885     /* special case of new_top_bs->backing_hd already pointing to base - nothing
1886      * to do, no intermediate images */
1887     if (new_top_bs->backing_hd == base) {
1888         ret = 0;
1889         goto exit;
1890     }
1891 
1892     intermediate = top;
1893 
1894     /* now we will go down through the list, and add each BDS we find
1895      * into our deletion queue, until we hit the 'base'
1896      */
1897     while (intermediate) {
1898         intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1899         intermediate_state->bs = intermediate;
1900         QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1901 
1902         if (intermediate->backing_hd == base) {
1903             base_bs = intermediate->backing_hd;
1904             break;
1905         }
1906         intermediate = intermediate->backing_hd;
1907     }
1908     if (base_bs == NULL) {
1909         /* something went wrong, we did not end at the base. safely
1910          * unravel everything, and exit with error */
1911         goto exit;
1912     }
1913 
1914     /* success - we can delete the intermediate states, and link top->base */
1915     ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1916                                    base_bs->drv ? base_bs->drv->format_name : "");
1917     if (ret) {
1918         goto exit;
1919     }
1920     new_top_bs->backing_hd = base_bs;
1921 
1922 
1923     QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1924         /* so that bdrv_close() does not recursively close the chain */
1925         intermediate_state->bs->backing_hd = NULL;
1926         bdrv_delete(intermediate_state->bs);
1927     }
1928     ret = 0;
1929 
1930 exit:
1931     QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1932         g_free(intermediate_state);
1933     }
1934     return ret;
1935 }
1936 
1937 
1938 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1939                                    size_t size)
1940 {
1941     int64_t len;
1942 
1943     if (!bdrv_is_inserted(bs))
1944         return -ENOMEDIUM;
1945 
1946     if (bs->growable)
1947         return 0;
1948 
1949     len = bdrv_getlength(bs);
1950 
1951     if (offset < 0)
1952         return -EIO;
1953 
1954     if ((offset > len) || (len - offset < size))
1955         return -EIO;
1956 
1957     return 0;
1958 }
1959 
1960 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1961                               int nb_sectors)
1962 {
1963     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1964                                    nb_sectors * BDRV_SECTOR_SIZE);
1965 }
1966 
1967 typedef struct RwCo {
1968     BlockDriverState *bs;
1969     int64_t sector_num;
1970     int nb_sectors;
1971     QEMUIOVector *qiov;
1972     bool is_write;
1973     int ret;
1974 } RwCo;
1975 
1976 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1977 {
1978     RwCo *rwco = opaque;
1979 
1980     if (!rwco->is_write) {
1981         rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1982                                      rwco->nb_sectors, rwco->qiov, 0);
1983     } else {
1984         rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1985                                       rwco->nb_sectors, rwco->qiov, 0);
1986     }
1987 }
1988 
1989 /*
1990  * Process a synchronous request using coroutines
1991  */
1992 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1993                       int nb_sectors, bool is_write)
1994 {
1995     QEMUIOVector qiov;
1996     struct iovec iov = {
1997         .iov_base = (void *)buf,
1998         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1999     };
2000     Coroutine *co;
2001     RwCo rwco = {
2002         .bs = bs,
2003         .sector_num = sector_num,
2004         .nb_sectors = nb_sectors,
2005         .qiov = &qiov,
2006         .is_write = is_write,
2007         .ret = NOT_DONE,
2008     };
2009 
2010     qemu_iovec_init_external(&qiov, &iov, 1);
2011 
2012     /**
2013      * In sync call context, when the vcpu is blocked, this throttling timer
2014      * will not fire; so the I/O throttling function has to be disabled here
2015      * if it has been enabled.
2016      */
2017     if (bs->io_limits_enabled) {
2018         fprintf(stderr, "Disabling I/O throttling on '%s' due "
2019                         "to synchronous I/O.\n", bdrv_get_device_name(bs));
2020         bdrv_io_limits_disable(bs);
2021     }
2022 
2023     if (qemu_in_coroutine()) {
2024         /* Fast-path if already in coroutine context */
2025         bdrv_rw_co_entry(&rwco);
2026     } else {
2027         co = qemu_coroutine_create(bdrv_rw_co_entry);
2028         qemu_coroutine_enter(co, &rwco);
2029         while (rwco.ret == NOT_DONE) {
2030             qemu_aio_wait();
2031         }
2032     }
2033     return rwco.ret;
2034 }
2035 
2036 /* return < 0 if error. See bdrv_write() for the return codes */
2037 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
2038               uint8_t *buf, int nb_sectors)
2039 {
2040     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
2041 }
2042 
2043 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2044 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2045                           uint8_t *buf, int nb_sectors)
2046 {
2047     bool enabled;
2048     int ret;
2049 
2050     enabled = bs->io_limits_enabled;
2051     bs->io_limits_enabled = false;
2052     ret = bdrv_read(bs, 0, buf, 1);
2053     bs->io_limits_enabled = enabled;
2054     return ret;
2055 }
2056 
2057 /* Return < 0 if error. Important errors are:
2058   -EIO         generic I/O error (may happen for all errors)
2059   -ENOMEDIUM   No media inserted.
2060   -EINVAL      Invalid sector number or nb_sectors
2061   -EACCES      Trying to write a read-only device
2062 */
2063 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2064                const uint8_t *buf, int nb_sectors)
2065 {
2066     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2067 }
2068 
2069 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2070                void *buf, int count1)
2071 {
2072     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2073     int len, nb_sectors, count;
2074     int64_t sector_num;
2075     int ret;
2076 
2077     count = count1;
2078     /* first read to align to sector start */
2079     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2080     if (len > count)
2081         len = count;
2082     sector_num = offset >> BDRV_SECTOR_BITS;
2083     if (len > 0) {
2084         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2085             return ret;
2086         memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2087         count -= len;
2088         if (count == 0)
2089             return count1;
2090         sector_num++;
2091         buf += len;
2092     }
2093 
2094     /* read the sectors "in place" */
2095     nb_sectors = count >> BDRV_SECTOR_BITS;
2096     if (nb_sectors > 0) {
2097         if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2098             return ret;
2099         sector_num += nb_sectors;
2100         len = nb_sectors << BDRV_SECTOR_BITS;
2101         buf += len;
2102         count -= len;
2103     }
2104 
2105     /* add data from the last sector */
2106     if (count > 0) {
2107         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2108             return ret;
2109         memcpy(buf, tmp_buf, count);
2110     }
2111     return count1;
2112 }
2113 
2114 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2115                 const void *buf, int count1)
2116 {
2117     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2118     int len, nb_sectors, count;
2119     int64_t sector_num;
2120     int ret;
2121 
2122     count = count1;
2123     /* first write to align to sector start */
2124     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2125     if (len > count)
2126         len = count;
2127     sector_num = offset >> BDRV_SECTOR_BITS;
2128     if (len > 0) {
2129         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2130             return ret;
2131         memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2132         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2133             return ret;
2134         count -= len;
2135         if (count == 0)
2136             return count1;
2137         sector_num++;
2138         buf += len;
2139     }
2140 
2141     /* write the sectors "in place" */
2142     nb_sectors = count >> BDRV_SECTOR_BITS;
2143     if (nb_sectors > 0) {
2144         if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2145             return ret;
2146         sector_num += nb_sectors;
2147         len = nb_sectors << BDRV_SECTOR_BITS;
2148         buf += len;
2149         count -= len;
2150     }
2151 
2152     /* add data from the last sector */
2153     if (count > 0) {
2154         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2155             return ret;
2156         memcpy(tmp_buf, buf, count);
2157         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2158             return ret;
2159     }
2160     return count1;
2161 }
2162 
2163 /*
2164  * Writes to the file and ensures that no writes are reordered across this
2165  * request (acts as a barrier)
2166  *
2167  * Returns 0 on success, -errno in error cases.
2168  */
2169 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2170     const void *buf, int count)
2171 {
2172     int ret;
2173 
2174     ret = bdrv_pwrite(bs, offset, buf, count);
2175     if (ret < 0) {
2176         return ret;
2177     }
2178 
2179     /* No flush needed for cache modes that already do it */
2180     if (bs->enable_write_cache) {
2181         bdrv_flush(bs);
2182     }
2183 
2184     return 0;
2185 }
2186 
2187 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2188         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2189 {
2190     /* Perform I/O through a temporary buffer so that users who scribble over
2191      * their read buffer while the operation is in progress do not end up
2192      * modifying the image file.  This is critical for zero-copy guest I/O
2193      * where anything might happen inside guest memory.
2194      */
2195     void *bounce_buffer;
2196 
2197     BlockDriver *drv = bs->drv;
2198     struct iovec iov;
2199     QEMUIOVector bounce_qiov;
2200     int64_t cluster_sector_num;
2201     int cluster_nb_sectors;
2202     size_t skip_bytes;
2203     int ret;
2204 
2205     /* Cover entire cluster so no additional backing file I/O is required when
2206      * allocating cluster in the image file.
2207      */
2208     bdrv_round_to_clusters(bs, sector_num, nb_sectors,
2209                            &cluster_sector_num, &cluster_nb_sectors);
2210 
2211     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2212                                    cluster_sector_num, cluster_nb_sectors);
2213 
2214     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2215     iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2216     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2217 
2218     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2219                              &bounce_qiov);
2220     if (ret < 0) {
2221         goto err;
2222     }
2223 
2224     if (drv->bdrv_co_write_zeroes &&
2225         buffer_is_zero(bounce_buffer, iov.iov_len)) {
2226         ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2227                                       cluster_nb_sectors);
2228     } else {
2229         /* This does not change the data on the disk, it is not necessary
2230          * to flush even in cache=writethrough mode.
2231          */
2232         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2233                                   &bounce_qiov);
2234     }
2235 
2236     if (ret < 0) {
2237         /* It might be okay to ignore write errors for guest requests.  If this
2238          * is a deliberate copy-on-read then we don't want to ignore the error.
2239          * Simply report it in all cases.
2240          */
2241         goto err;
2242     }
2243 
2244     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2245     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2246                         nb_sectors * BDRV_SECTOR_SIZE);
2247 
2248 err:
2249     qemu_vfree(bounce_buffer);
2250     return ret;
2251 }
2252 
2253 /*
2254  * Handle a read request in coroutine context
2255  */
2256 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2257     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2258     BdrvRequestFlags flags)
2259 {
2260     BlockDriver *drv = bs->drv;
2261     BdrvTrackedRequest req;
2262     int ret;
2263 
2264     if (!drv) {
2265         return -ENOMEDIUM;
2266     }
2267     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2268         return -EIO;
2269     }
2270 
2271     /* throttling disk read I/O */
2272     if (bs->io_limits_enabled) {
2273         bdrv_io_limits_intercept(bs, false, nb_sectors);
2274     }
2275 
2276     if (bs->copy_on_read) {
2277         flags |= BDRV_REQ_COPY_ON_READ;
2278     }
2279     if (flags & BDRV_REQ_COPY_ON_READ) {
2280         bs->copy_on_read_in_flight++;
2281     }
2282 
2283     if (bs->copy_on_read_in_flight) {
2284         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2285     }
2286 
2287     tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2288 
2289     if (flags & BDRV_REQ_COPY_ON_READ) {
2290         int pnum;
2291 
2292         ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2293         if (ret < 0) {
2294             goto out;
2295         }
2296 
2297         if (!ret || pnum != nb_sectors) {
2298             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2299             goto out;
2300         }
2301     }
2302 
2303     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2304 
2305 out:
2306     tracked_request_end(&req);
2307 
2308     if (flags & BDRV_REQ_COPY_ON_READ) {
2309         bs->copy_on_read_in_flight--;
2310     }
2311 
2312     return ret;
2313 }
2314 
2315 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2316     int nb_sectors, QEMUIOVector *qiov)
2317 {
2318     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2319 
2320     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2321 }
2322 
2323 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2324     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2325 {
2326     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2327 
2328     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2329                             BDRV_REQ_COPY_ON_READ);
2330 }
2331 
2332 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2333     int64_t sector_num, int nb_sectors)
2334 {
2335     BlockDriver *drv = bs->drv;
2336     QEMUIOVector qiov;
2337     struct iovec iov;
2338     int ret;
2339 
2340     /* TODO Emulate only part of misaligned requests instead of letting block
2341      * drivers return -ENOTSUP and emulate everything */
2342 
2343     /* First try the efficient write zeroes operation */
2344     if (drv->bdrv_co_write_zeroes) {
2345         ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2346         if (ret != -ENOTSUP) {
2347             return ret;
2348         }
2349     }
2350 
2351     /* Fall back to bounce buffer if write zeroes is unsupported */
2352     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE;
2353     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2354     memset(iov.iov_base, 0, iov.iov_len);
2355     qemu_iovec_init_external(&qiov, &iov, 1);
2356 
2357     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2358 
2359     qemu_vfree(iov.iov_base);
2360     return ret;
2361 }
2362 
2363 /*
2364  * Handle a write request in coroutine context
2365  */
2366 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2367     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2368     BdrvRequestFlags flags)
2369 {
2370     BlockDriver *drv = bs->drv;
2371     BdrvTrackedRequest req;
2372     int ret;
2373 
2374     if (!bs->drv) {
2375         return -ENOMEDIUM;
2376     }
2377     if (bs->read_only) {
2378         return -EACCES;
2379     }
2380     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2381         return -EIO;
2382     }
2383 
2384     /* throttling disk write I/O */
2385     if (bs->io_limits_enabled) {
2386         bdrv_io_limits_intercept(bs, true, nb_sectors);
2387     }
2388 
2389     if (bs->copy_on_read_in_flight) {
2390         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2391     }
2392 
2393     tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2394 
2395     if (flags & BDRV_REQ_ZERO_WRITE) {
2396         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2397     } else {
2398         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2399     }
2400 
2401     if (ret == 0 && !bs->enable_write_cache) {
2402         ret = bdrv_co_flush(bs);
2403     }
2404 
2405     if (bs->dirty_bitmap) {
2406         bdrv_set_dirty(bs, sector_num, nb_sectors);
2407     }
2408 
2409     if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2410         bs->wr_highest_sector = sector_num + nb_sectors - 1;
2411     }
2412 
2413     tracked_request_end(&req);
2414 
2415     return ret;
2416 }
2417 
2418 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2419     int nb_sectors, QEMUIOVector *qiov)
2420 {
2421     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2422 
2423     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2424 }
2425 
2426 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2427                                       int64_t sector_num, int nb_sectors)
2428 {
2429     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2430 
2431     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2432                              BDRV_REQ_ZERO_WRITE);
2433 }
2434 
2435 /**
2436  * Truncate file to 'offset' bytes (needed only for file protocols)
2437  */
2438 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2439 {
2440     BlockDriver *drv = bs->drv;
2441     int ret;
2442     if (!drv)
2443         return -ENOMEDIUM;
2444     if (!drv->bdrv_truncate)
2445         return -ENOTSUP;
2446     if (bs->read_only)
2447         return -EACCES;
2448     if (bdrv_in_use(bs))
2449         return -EBUSY;
2450 
2451     /* There better not be any in-flight IOs when we truncate the device. */
2452     bdrv_drain_all();
2453 
2454     ret = drv->bdrv_truncate(bs, offset);
2455     if (ret == 0) {
2456         ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2457         bdrv_dev_resize_cb(bs);
2458     }
2459     return ret;
2460 }
2461 
2462 /**
2463  * Length of a allocated file in bytes. Sparse files are counted by actual
2464  * allocated space. Return < 0 if error or unknown.
2465  */
2466 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2467 {
2468     BlockDriver *drv = bs->drv;
2469     if (!drv) {
2470         return -ENOMEDIUM;
2471     }
2472     if (drv->bdrv_get_allocated_file_size) {
2473         return drv->bdrv_get_allocated_file_size(bs);
2474     }
2475     if (bs->file) {
2476         return bdrv_get_allocated_file_size(bs->file);
2477     }
2478     return -ENOTSUP;
2479 }
2480 
2481 /**
2482  * Length of a file in bytes. Return < 0 if error or unknown.
2483  */
2484 int64_t bdrv_getlength(BlockDriverState *bs)
2485 {
2486     BlockDriver *drv = bs->drv;
2487     if (!drv)
2488         return -ENOMEDIUM;
2489 
2490     if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2491         if (drv->bdrv_getlength) {
2492             return drv->bdrv_getlength(bs);
2493         }
2494     }
2495     return bs->total_sectors * BDRV_SECTOR_SIZE;
2496 }
2497 
2498 /* return 0 as number of sectors if no device present or error */
2499 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2500 {
2501     int64_t length;
2502     length = bdrv_getlength(bs);
2503     if (length < 0)
2504         length = 0;
2505     else
2506         length = length >> BDRV_SECTOR_BITS;
2507     *nb_sectors_ptr = length;
2508 }
2509 
2510 /* throttling disk io limits */
2511 void bdrv_set_io_limits(BlockDriverState *bs,
2512                         BlockIOLimit *io_limits)
2513 {
2514     bs->io_limits = *io_limits;
2515     bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2516 }
2517 
2518 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2519                        BlockdevOnError on_write_error)
2520 {
2521     bs->on_read_error = on_read_error;
2522     bs->on_write_error = on_write_error;
2523 }
2524 
2525 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2526 {
2527     return is_read ? bs->on_read_error : bs->on_write_error;
2528 }
2529 
2530 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2531 {
2532     BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2533 
2534     switch (on_err) {
2535     case BLOCKDEV_ON_ERROR_ENOSPC:
2536         return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2537     case BLOCKDEV_ON_ERROR_STOP:
2538         return BDRV_ACTION_STOP;
2539     case BLOCKDEV_ON_ERROR_REPORT:
2540         return BDRV_ACTION_REPORT;
2541     case BLOCKDEV_ON_ERROR_IGNORE:
2542         return BDRV_ACTION_IGNORE;
2543     default:
2544         abort();
2545     }
2546 }
2547 
2548 /* This is done by device models because, while the block layer knows
2549  * about the error, it does not know whether an operation comes from
2550  * the device or the block layer (from a job, for example).
2551  */
2552 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2553                        bool is_read, int error)
2554 {
2555     assert(error >= 0);
2556     bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2557     if (action == BDRV_ACTION_STOP) {
2558         vm_stop(RUN_STATE_IO_ERROR);
2559         bdrv_iostatus_set_err(bs, error);
2560     }
2561 }
2562 
2563 int bdrv_is_read_only(BlockDriverState *bs)
2564 {
2565     return bs->read_only;
2566 }
2567 
2568 int bdrv_is_sg(BlockDriverState *bs)
2569 {
2570     return bs->sg;
2571 }
2572 
2573 int bdrv_enable_write_cache(BlockDriverState *bs)
2574 {
2575     return bs->enable_write_cache;
2576 }
2577 
2578 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2579 {
2580     bs->enable_write_cache = wce;
2581 
2582     /* so a reopen() will preserve wce */
2583     if (wce) {
2584         bs->open_flags |= BDRV_O_CACHE_WB;
2585     } else {
2586         bs->open_flags &= ~BDRV_O_CACHE_WB;
2587     }
2588 }
2589 
2590 int bdrv_is_encrypted(BlockDriverState *bs)
2591 {
2592     if (bs->backing_hd && bs->backing_hd->encrypted)
2593         return 1;
2594     return bs->encrypted;
2595 }
2596 
2597 int bdrv_key_required(BlockDriverState *bs)
2598 {
2599     BlockDriverState *backing_hd = bs->backing_hd;
2600 
2601     if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2602         return 1;
2603     return (bs->encrypted && !bs->valid_key);
2604 }
2605 
2606 int bdrv_set_key(BlockDriverState *bs, const char *key)
2607 {
2608     int ret;
2609     if (bs->backing_hd && bs->backing_hd->encrypted) {
2610         ret = bdrv_set_key(bs->backing_hd, key);
2611         if (ret < 0)
2612             return ret;
2613         if (!bs->encrypted)
2614             return 0;
2615     }
2616     if (!bs->encrypted) {
2617         return -EINVAL;
2618     } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2619         return -ENOMEDIUM;
2620     }
2621     ret = bs->drv->bdrv_set_key(bs, key);
2622     if (ret < 0) {
2623         bs->valid_key = 0;
2624     } else if (!bs->valid_key) {
2625         bs->valid_key = 1;
2626         /* call the change callback now, we skipped it on open */
2627         bdrv_dev_change_media_cb(bs, true);
2628     }
2629     return ret;
2630 }
2631 
2632 const char *bdrv_get_format_name(BlockDriverState *bs)
2633 {
2634     return bs->drv ? bs->drv->format_name : NULL;
2635 }
2636 
2637 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2638                          void *opaque)
2639 {
2640     BlockDriver *drv;
2641 
2642     QLIST_FOREACH(drv, &bdrv_drivers, list) {
2643         it(opaque, drv->format_name);
2644     }
2645 }
2646 
2647 BlockDriverState *bdrv_find(const char *name)
2648 {
2649     BlockDriverState *bs;
2650 
2651     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2652         if (!strcmp(name, bs->device_name)) {
2653             return bs;
2654         }
2655     }
2656     return NULL;
2657 }
2658 
2659 BlockDriverState *bdrv_next(BlockDriverState *bs)
2660 {
2661     if (!bs) {
2662         return QTAILQ_FIRST(&bdrv_states);
2663     }
2664     return QTAILQ_NEXT(bs, list);
2665 }
2666 
2667 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2668 {
2669     BlockDriverState *bs;
2670 
2671     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2672         it(opaque, bs);
2673     }
2674 }
2675 
2676 const char *bdrv_get_device_name(BlockDriverState *bs)
2677 {
2678     return bs->device_name;
2679 }
2680 
2681 int bdrv_get_flags(BlockDriverState *bs)
2682 {
2683     return bs->open_flags;
2684 }
2685 
2686 void bdrv_flush_all(void)
2687 {
2688     BlockDriverState *bs;
2689 
2690     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2691         bdrv_flush(bs);
2692     }
2693 }
2694 
2695 int bdrv_has_zero_init(BlockDriverState *bs)
2696 {
2697     assert(bs->drv);
2698 
2699     if (bs->drv->bdrv_has_zero_init) {
2700         return bs->drv->bdrv_has_zero_init(bs);
2701     }
2702 
2703     return 1;
2704 }
2705 
2706 typedef struct BdrvCoIsAllocatedData {
2707     BlockDriverState *bs;
2708     BlockDriverState *base;
2709     int64_t sector_num;
2710     int nb_sectors;
2711     int *pnum;
2712     int ret;
2713     bool done;
2714 } BdrvCoIsAllocatedData;
2715 
2716 /*
2717  * Returns true iff the specified sector is present in the disk image. Drivers
2718  * not implementing the functionality are assumed to not support backing files,
2719  * hence all their sectors are reported as allocated.
2720  *
2721  * If 'sector_num' is beyond the end of the disk image the return value is 0
2722  * and 'pnum' is set to 0.
2723  *
2724  * 'pnum' is set to the number of sectors (including and immediately following
2725  * the specified sector) that are known to be in the same
2726  * allocated/unallocated state.
2727  *
2728  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
2729  * beyond the end of the disk image it will be clamped.
2730  */
2731 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2732                                       int nb_sectors, int *pnum)
2733 {
2734     int64_t n;
2735 
2736     if (sector_num >= bs->total_sectors) {
2737         *pnum = 0;
2738         return 0;
2739     }
2740 
2741     n = bs->total_sectors - sector_num;
2742     if (n < nb_sectors) {
2743         nb_sectors = n;
2744     }
2745 
2746     if (!bs->drv->bdrv_co_is_allocated) {
2747         *pnum = nb_sectors;
2748         return 1;
2749     }
2750 
2751     return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2752 }
2753 
2754 /* Coroutine wrapper for bdrv_is_allocated() */
2755 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2756 {
2757     BdrvCoIsAllocatedData *data = opaque;
2758     BlockDriverState *bs = data->bs;
2759 
2760     data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2761                                      data->pnum);
2762     data->done = true;
2763 }
2764 
2765 /*
2766  * Synchronous wrapper around bdrv_co_is_allocated().
2767  *
2768  * See bdrv_co_is_allocated() for details.
2769  */
2770 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2771                       int *pnum)
2772 {
2773     Coroutine *co;
2774     BdrvCoIsAllocatedData data = {
2775         .bs = bs,
2776         .sector_num = sector_num,
2777         .nb_sectors = nb_sectors,
2778         .pnum = pnum,
2779         .done = false,
2780     };
2781 
2782     co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2783     qemu_coroutine_enter(co, &data);
2784     while (!data.done) {
2785         qemu_aio_wait();
2786     }
2787     return data.ret;
2788 }
2789 
2790 /*
2791  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2792  *
2793  * Return true if the given sector is allocated in any image between
2794  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
2795  * sector is allocated in any image of the chain.  Return false otherwise.
2796  *
2797  * 'pnum' is set to the number of sectors (including and immediately following
2798  *  the specified sector) that are known to be in the same
2799  *  allocated/unallocated state.
2800  *
2801  */
2802 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2803                                             BlockDriverState *base,
2804                                             int64_t sector_num,
2805                                             int nb_sectors, int *pnum)
2806 {
2807     BlockDriverState *intermediate;
2808     int ret, n = nb_sectors;
2809 
2810     intermediate = top;
2811     while (intermediate && intermediate != base) {
2812         int pnum_inter;
2813         ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2814                                    &pnum_inter);
2815         if (ret < 0) {
2816             return ret;
2817         } else if (ret) {
2818             *pnum = pnum_inter;
2819             return 1;
2820         }
2821 
2822         /*
2823          * [sector_num, nb_sectors] is unallocated on top but intermediate
2824          * might have
2825          *
2826          * [sector_num+x, nr_sectors] allocated.
2827          */
2828         if (n > pnum_inter &&
2829             (intermediate == top ||
2830              sector_num + pnum_inter < intermediate->total_sectors)) {
2831             n = pnum_inter;
2832         }
2833 
2834         intermediate = intermediate->backing_hd;
2835     }
2836 
2837     *pnum = n;
2838     return 0;
2839 }
2840 
2841 /* Coroutine wrapper for bdrv_is_allocated_above() */
2842 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque)
2843 {
2844     BdrvCoIsAllocatedData *data = opaque;
2845     BlockDriverState *top = data->bs;
2846     BlockDriverState *base = data->base;
2847 
2848     data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num,
2849                                            data->nb_sectors, data->pnum);
2850     data->done = true;
2851 }
2852 
2853 /*
2854  * Synchronous wrapper around bdrv_co_is_allocated_above().
2855  *
2856  * See bdrv_co_is_allocated_above() for details.
2857  */
2858 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base,
2859                             int64_t sector_num, int nb_sectors, int *pnum)
2860 {
2861     Coroutine *co;
2862     BdrvCoIsAllocatedData data = {
2863         .bs = top,
2864         .base = base,
2865         .sector_num = sector_num,
2866         .nb_sectors = nb_sectors,
2867         .pnum = pnum,
2868         .done = false,
2869     };
2870 
2871     co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry);
2872     qemu_coroutine_enter(co, &data);
2873     while (!data.done) {
2874         qemu_aio_wait();
2875     }
2876     return data.ret;
2877 }
2878 
2879 BlockInfo *bdrv_query_info(BlockDriverState *bs)
2880 {
2881     BlockInfo *info = g_malloc0(sizeof(*info));
2882     info->device = g_strdup(bs->device_name);
2883     info->type = g_strdup("unknown");
2884     info->locked = bdrv_dev_is_medium_locked(bs);
2885     info->removable = bdrv_dev_has_removable_media(bs);
2886 
2887     if (bdrv_dev_has_removable_media(bs)) {
2888         info->has_tray_open = true;
2889         info->tray_open = bdrv_dev_is_tray_open(bs);
2890     }
2891 
2892     if (bdrv_iostatus_is_enabled(bs)) {
2893         info->has_io_status = true;
2894         info->io_status = bs->iostatus;
2895     }
2896 
2897     if (bs->dirty_bitmap) {
2898         info->has_dirty = true;
2899         info->dirty = g_malloc0(sizeof(*info->dirty));
2900         info->dirty->count = bdrv_get_dirty_count(bs) * BDRV_SECTOR_SIZE;
2901         info->dirty->granularity =
2902             ((int64_t) BDRV_SECTOR_SIZE << hbitmap_granularity(bs->dirty_bitmap));
2903     }
2904 
2905     if (bs->drv) {
2906         info->has_inserted = true;
2907         info->inserted = g_malloc0(sizeof(*info->inserted));
2908         info->inserted->file = g_strdup(bs->filename);
2909         info->inserted->ro = bs->read_only;
2910         info->inserted->drv = g_strdup(bs->drv->format_name);
2911         info->inserted->encrypted = bs->encrypted;
2912         info->inserted->encryption_key_missing = bdrv_key_required(bs);
2913 
2914         if (bs->backing_file[0]) {
2915             info->inserted->has_backing_file = true;
2916             info->inserted->backing_file = g_strdup(bs->backing_file);
2917         }
2918 
2919         info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs);
2920 
2921         if (bs->io_limits_enabled) {
2922             info->inserted->bps =
2923                            bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2924             info->inserted->bps_rd =
2925                            bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2926             info->inserted->bps_wr =
2927                            bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2928             info->inserted->iops =
2929                            bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2930             info->inserted->iops_rd =
2931                            bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2932             info->inserted->iops_wr =
2933                            bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2934         }
2935     }
2936     return info;
2937 }
2938 
2939 BlockInfoList *qmp_query_block(Error **errp)
2940 {
2941     BlockInfoList *head = NULL, **p_next = &head;
2942     BlockDriverState *bs;
2943 
2944     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2945         BlockInfoList *info = g_malloc0(sizeof(*info));
2946         info->value = bdrv_query_info(bs);
2947 
2948         *p_next = info;
2949         p_next = &info->next;
2950     }
2951 
2952     return head;
2953 }
2954 
2955 BlockStats *bdrv_query_stats(const BlockDriverState *bs)
2956 {
2957     BlockStats *s;
2958 
2959     s = g_malloc0(sizeof(*s));
2960 
2961     if (bs->device_name[0]) {
2962         s->has_device = true;
2963         s->device = g_strdup(bs->device_name);
2964     }
2965 
2966     s->stats = g_malloc0(sizeof(*s->stats));
2967     s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2968     s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2969     s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2970     s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2971     s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2972     s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2973     s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2974     s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2975     s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2976 
2977     if (bs->file) {
2978         s->has_parent = true;
2979         s->parent = bdrv_query_stats(bs->file);
2980     }
2981 
2982     return s;
2983 }
2984 
2985 BlockStatsList *qmp_query_blockstats(Error **errp)
2986 {
2987     BlockStatsList *head = NULL, **p_next = &head;
2988     BlockDriverState *bs;
2989 
2990     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2991         BlockStatsList *info = g_malloc0(sizeof(*info));
2992         info->value = bdrv_query_stats(bs);
2993 
2994         *p_next = info;
2995         p_next = &info->next;
2996     }
2997 
2998     return head;
2999 }
3000 
3001 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
3002 {
3003     if (bs->backing_hd && bs->backing_hd->encrypted)
3004         return bs->backing_file;
3005     else if (bs->encrypted)
3006         return bs->filename;
3007     else
3008         return NULL;
3009 }
3010 
3011 void bdrv_get_backing_filename(BlockDriverState *bs,
3012                                char *filename, int filename_size)
3013 {
3014     pstrcpy(filename, filename_size, bs->backing_file);
3015 }
3016 
3017 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
3018                           const uint8_t *buf, int nb_sectors)
3019 {
3020     BlockDriver *drv = bs->drv;
3021     if (!drv)
3022         return -ENOMEDIUM;
3023     if (!drv->bdrv_write_compressed)
3024         return -ENOTSUP;
3025     if (bdrv_check_request(bs, sector_num, nb_sectors))
3026         return -EIO;
3027 
3028     assert(!bs->dirty_bitmap);
3029 
3030     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
3031 }
3032 
3033 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
3034 {
3035     BlockDriver *drv = bs->drv;
3036     if (!drv)
3037         return -ENOMEDIUM;
3038     if (!drv->bdrv_get_info)
3039         return -ENOTSUP;
3040     memset(bdi, 0, sizeof(*bdi));
3041     return drv->bdrv_get_info(bs, bdi);
3042 }
3043 
3044 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
3045                       int64_t pos, int size)
3046 {
3047     BlockDriver *drv = bs->drv;
3048     if (!drv)
3049         return -ENOMEDIUM;
3050     if (drv->bdrv_save_vmstate)
3051         return drv->bdrv_save_vmstate(bs, buf, pos, size);
3052     if (bs->file)
3053         return bdrv_save_vmstate(bs->file, buf, pos, size);
3054     return -ENOTSUP;
3055 }
3056 
3057 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3058                       int64_t pos, int size)
3059 {
3060     BlockDriver *drv = bs->drv;
3061     if (!drv)
3062         return -ENOMEDIUM;
3063     if (drv->bdrv_load_vmstate)
3064         return drv->bdrv_load_vmstate(bs, buf, pos, size);
3065     if (bs->file)
3066         return bdrv_load_vmstate(bs->file, buf, pos, size);
3067     return -ENOTSUP;
3068 }
3069 
3070 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3071 {
3072     BlockDriver *drv = bs->drv;
3073 
3074     if (!drv || !drv->bdrv_debug_event) {
3075         return;
3076     }
3077 
3078     drv->bdrv_debug_event(bs, event);
3079 }
3080 
3081 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
3082                           const char *tag)
3083 {
3084     while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) {
3085         bs = bs->file;
3086     }
3087 
3088     if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) {
3089         return bs->drv->bdrv_debug_breakpoint(bs, event, tag);
3090     }
3091 
3092     return -ENOTSUP;
3093 }
3094 
3095 int bdrv_debug_resume(BlockDriverState *bs, const char *tag)
3096 {
3097     while (bs && bs->drv && !bs->drv->bdrv_debug_resume) {
3098         bs = bs->file;
3099     }
3100 
3101     if (bs && bs->drv && bs->drv->bdrv_debug_resume) {
3102         return bs->drv->bdrv_debug_resume(bs, tag);
3103     }
3104 
3105     return -ENOTSUP;
3106 }
3107 
3108 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag)
3109 {
3110     while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) {
3111         bs = bs->file;
3112     }
3113 
3114     if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) {
3115         return bs->drv->bdrv_debug_is_suspended(bs, tag);
3116     }
3117 
3118     return false;
3119 }
3120 
3121 /**************************************************************/
3122 /* handling of snapshots */
3123 
3124 int bdrv_can_snapshot(BlockDriverState *bs)
3125 {
3126     BlockDriver *drv = bs->drv;
3127     if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3128         return 0;
3129     }
3130 
3131     if (!drv->bdrv_snapshot_create) {
3132         if (bs->file != NULL) {
3133             return bdrv_can_snapshot(bs->file);
3134         }
3135         return 0;
3136     }
3137 
3138     return 1;
3139 }
3140 
3141 int bdrv_is_snapshot(BlockDriverState *bs)
3142 {
3143     return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3144 }
3145 
3146 BlockDriverState *bdrv_snapshots(void)
3147 {
3148     BlockDriverState *bs;
3149 
3150     if (bs_snapshots) {
3151         return bs_snapshots;
3152     }
3153 
3154     bs = NULL;
3155     while ((bs = bdrv_next(bs))) {
3156         if (bdrv_can_snapshot(bs)) {
3157             bs_snapshots = bs;
3158             return bs;
3159         }
3160     }
3161     return NULL;
3162 }
3163 
3164 int bdrv_snapshot_create(BlockDriverState *bs,
3165                          QEMUSnapshotInfo *sn_info)
3166 {
3167     BlockDriver *drv = bs->drv;
3168     if (!drv)
3169         return -ENOMEDIUM;
3170     if (drv->bdrv_snapshot_create)
3171         return drv->bdrv_snapshot_create(bs, sn_info);
3172     if (bs->file)
3173         return bdrv_snapshot_create(bs->file, sn_info);
3174     return -ENOTSUP;
3175 }
3176 
3177 int bdrv_snapshot_goto(BlockDriverState *bs,
3178                        const char *snapshot_id)
3179 {
3180     BlockDriver *drv = bs->drv;
3181     int ret, open_ret;
3182 
3183     if (!drv)
3184         return -ENOMEDIUM;
3185     if (drv->bdrv_snapshot_goto)
3186         return drv->bdrv_snapshot_goto(bs, snapshot_id);
3187 
3188     if (bs->file) {
3189         drv->bdrv_close(bs);
3190         ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3191         open_ret = drv->bdrv_open(bs, bs->open_flags);
3192         if (open_ret < 0) {
3193             bdrv_delete(bs->file);
3194             bs->drv = NULL;
3195             return open_ret;
3196         }
3197         return ret;
3198     }
3199 
3200     return -ENOTSUP;
3201 }
3202 
3203 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3204 {
3205     BlockDriver *drv = bs->drv;
3206     if (!drv)
3207         return -ENOMEDIUM;
3208     if (drv->bdrv_snapshot_delete)
3209         return drv->bdrv_snapshot_delete(bs, snapshot_id);
3210     if (bs->file)
3211         return bdrv_snapshot_delete(bs->file, snapshot_id);
3212     return -ENOTSUP;
3213 }
3214 
3215 int bdrv_snapshot_list(BlockDriverState *bs,
3216                        QEMUSnapshotInfo **psn_info)
3217 {
3218     BlockDriver *drv = bs->drv;
3219     if (!drv)
3220         return -ENOMEDIUM;
3221     if (drv->bdrv_snapshot_list)
3222         return drv->bdrv_snapshot_list(bs, psn_info);
3223     if (bs->file)
3224         return bdrv_snapshot_list(bs->file, psn_info);
3225     return -ENOTSUP;
3226 }
3227 
3228 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3229         const char *snapshot_name)
3230 {
3231     BlockDriver *drv = bs->drv;
3232     if (!drv) {
3233         return -ENOMEDIUM;
3234     }
3235     if (!bs->read_only) {
3236         return -EINVAL;
3237     }
3238     if (drv->bdrv_snapshot_load_tmp) {
3239         return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3240     }
3241     return -ENOTSUP;
3242 }
3243 
3244 /* backing_file can either be relative, or absolute, or a protocol.  If it is
3245  * relative, it must be relative to the chain.  So, passing in bs->filename
3246  * from a BDS as backing_file should not be done, as that may be relative to
3247  * the CWD rather than the chain. */
3248 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3249         const char *backing_file)
3250 {
3251     char *filename_full = NULL;
3252     char *backing_file_full = NULL;
3253     char *filename_tmp = NULL;
3254     int is_protocol = 0;
3255     BlockDriverState *curr_bs = NULL;
3256     BlockDriverState *retval = NULL;
3257 
3258     if (!bs || !bs->drv || !backing_file) {
3259         return NULL;
3260     }
3261 
3262     filename_full     = g_malloc(PATH_MAX);
3263     backing_file_full = g_malloc(PATH_MAX);
3264     filename_tmp      = g_malloc(PATH_MAX);
3265 
3266     is_protocol = path_has_protocol(backing_file);
3267 
3268     for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3269 
3270         /* If either of the filename paths is actually a protocol, then
3271          * compare unmodified paths; otherwise make paths relative */
3272         if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3273             if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3274                 retval = curr_bs->backing_hd;
3275                 break;
3276             }
3277         } else {
3278             /* If not an absolute filename path, make it relative to the current
3279              * image's filename path */
3280             path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3281                          backing_file);
3282 
3283             /* We are going to compare absolute pathnames */
3284             if (!realpath(filename_tmp, filename_full)) {
3285                 continue;
3286             }
3287 
3288             /* We need to make sure the backing filename we are comparing against
3289              * is relative to the current image filename (or absolute) */
3290             path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3291                          curr_bs->backing_file);
3292 
3293             if (!realpath(filename_tmp, backing_file_full)) {
3294                 continue;
3295             }
3296 
3297             if (strcmp(backing_file_full, filename_full) == 0) {
3298                 retval = curr_bs->backing_hd;
3299                 break;
3300             }
3301         }
3302     }
3303 
3304     g_free(filename_full);
3305     g_free(backing_file_full);
3306     g_free(filename_tmp);
3307     return retval;
3308 }
3309 
3310 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3311 {
3312     if (!bs->drv) {
3313         return 0;
3314     }
3315 
3316     if (!bs->backing_hd) {
3317         return 0;
3318     }
3319 
3320     return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3321 }
3322 
3323 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3324 {
3325     BlockDriverState *curr_bs = NULL;
3326 
3327     if (!bs) {
3328         return NULL;
3329     }
3330 
3331     curr_bs = bs;
3332 
3333     while (curr_bs->backing_hd) {
3334         curr_bs = curr_bs->backing_hd;
3335     }
3336     return curr_bs;
3337 }
3338 
3339 #define NB_SUFFIXES 4
3340 
3341 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3342 {
3343     static const char suffixes[NB_SUFFIXES] = "KMGT";
3344     int64_t base;
3345     int i;
3346 
3347     if (size <= 999) {
3348         snprintf(buf, buf_size, "%" PRId64, size);
3349     } else {
3350         base = 1024;
3351         for(i = 0; i < NB_SUFFIXES; i++) {
3352             if (size < (10 * base)) {
3353                 snprintf(buf, buf_size, "%0.1f%c",
3354                          (double)size / base,
3355                          suffixes[i]);
3356                 break;
3357             } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3358                 snprintf(buf, buf_size, "%" PRId64 "%c",
3359                          ((size + (base >> 1)) / base),
3360                          suffixes[i]);
3361                 break;
3362             }
3363             base = base * 1024;
3364         }
3365     }
3366     return buf;
3367 }
3368 
3369 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3370 {
3371     char buf1[128], date_buf[128], clock_buf[128];
3372     struct tm tm;
3373     time_t ti;
3374     int64_t secs;
3375 
3376     if (!sn) {
3377         snprintf(buf, buf_size,
3378                  "%-10s%-20s%7s%20s%15s",
3379                  "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3380     } else {
3381         ti = sn->date_sec;
3382         localtime_r(&ti, &tm);
3383         strftime(date_buf, sizeof(date_buf),
3384                  "%Y-%m-%d %H:%M:%S", &tm);
3385         secs = sn->vm_clock_nsec / 1000000000;
3386         snprintf(clock_buf, sizeof(clock_buf),
3387                  "%02d:%02d:%02d.%03d",
3388                  (int)(secs / 3600),
3389                  (int)((secs / 60) % 60),
3390                  (int)(secs % 60),
3391                  (int)((sn->vm_clock_nsec / 1000000) % 1000));
3392         snprintf(buf, buf_size,
3393                  "%-10s%-20s%7s%20s%15s",
3394                  sn->id_str, sn->name,
3395                  get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3396                  date_buf,
3397                  clock_buf);
3398     }
3399     return buf;
3400 }
3401 
3402 /**************************************************************/
3403 /* async I/Os */
3404 
3405 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3406                                  QEMUIOVector *qiov, int nb_sectors,
3407                                  BlockDriverCompletionFunc *cb, void *opaque)
3408 {
3409     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3410 
3411     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3412                                  cb, opaque, false);
3413 }
3414 
3415 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3416                                   QEMUIOVector *qiov, int nb_sectors,
3417                                   BlockDriverCompletionFunc *cb, void *opaque)
3418 {
3419     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3420 
3421     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3422                                  cb, opaque, true);
3423 }
3424 
3425 
3426 typedef struct MultiwriteCB {
3427     int error;
3428     int num_requests;
3429     int num_callbacks;
3430     struct {
3431         BlockDriverCompletionFunc *cb;
3432         void *opaque;
3433         QEMUIOVector *free_qiov;
3434     } callbacks[];
3435 } MultiwriteCB;
3436 
3437 static void multiwrite_user_cb(MultiwriteCB *mcb)
3438 {
3439     int i;
3440 
3441     for (i = 0; i < mcb->num_callbacks; i++) {
3442         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3443         if (mcb->callbacks[i].free_qiov) {
3444             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3445         }
3446         g_free(mcb->callbacks[i].free_qiov);
3447     }
3448 }
3449 
3450 static void multiwrite_cb(void *opaque, int ret)
3451 {
3452     MultiwriteCB *mcb = opaque;
3453 
3454     trace_multiwrite_cb(mcb, ret);
3455 
3456     if (ret < 0 && !mcb->error) {
3457         mcb->error = ret;
3458     }
3459 
3460     mcb->num_requests--;
3461     if (mcb->num_requests == 0) {
3462         multiwrite_user_cb(mcb);
3463         g_free(mcb);
3464     }
3465 }
3466 
3467 static int multiwrite_req_compare(const void *a, const void *b)
3468 {
3469     const BlockRequest *req1 = a, *req2 = b;
3470 
3471     /*
3472      * Note that we can't simply subtract req2->sector from req1->sector
3473      * here as that could overflow the return value.
3474      */
3475     if (req1->sector > req2->sector) {
3476         return 1;
3477     } else if (req1->sector < req2->sector) {
3478         return -1;
3479     } else {
3480         return 0;
3481     }
3482 }
3483 
3484 /*
3485  * Takes a bunch of requests and tries to merge them. Returns the number of
3486  * requests that remain after merging.
3487  */
3488 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3489     int num_reqs, MultiwriteCB *mcb)
3490 {
3491     int i, outidx;
3492 
3493     // Sort requests by start sector
3494     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3495 
3496     // Check if adjacent requests touch the same clusters. If so, combine them,
3497     // filling up gaps with zero sectors.
3498     outidx = 0;
3499     for (i = 1; i < num_reqs; i++) {
3500         int merge = 0;
3501         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3502 
3503         // Handle exactly sequential writes and overlapping writes.
3504         if (reqs[i].sector <= oldreq_last) {
3505             merge = 1;
3506         }
3507 
3508         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3509             merge = 0;
3510         }
3511 
3512         if (merge) {
3513             size_t size;
3514             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3515             qemu_iovec_init(qiov,
3516                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3517 
3518             // Add the first request to the merged one. If the requests are
3519             // overlapping, drop the last sectors of the first request.
3520             size = (reqs[i].sector - reqs[outidx].sector) << 9;
3521             qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3522 
3523             // We should need to add any zeros between the two requests
3524             assert (reqs[i].sector <= oldreq_last);
3525 
3526             // Add the second request
3527             qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3528 
3529             reqs[outidx].nb_sectors = qiov->size >> 9;
3530             reqs[outidx].qiov = qiov;
3531 
3532             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3533         } else {
3534             outidx++;
3535             reqs[outidx].sector     = reqs[i].sector;
3536             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3537             reqs[outidx].qiov       = reqs[i].qiov;
3538         }
3539     }
3540 
3541     return outidx + 1;
3542 }
3543 
3544 /*
3545  * Submit multiple AIO write requests at once.
3546  *
3547  * On success, the function returns 0 and all requests in the reqs array have
3548  * been submitted. In error case this function returns -1, and any of the
3549  * requests may or may not be submitted yet. In particular, this means that the
3550  * callback will be called for some of the requests, for others it won't. The
3551  * caller must check the error field of the BlockRequest to wait for the right
3552  * callbacks (if error != 0, no callback will be called).
3553  *
3554  * The implementation may modify the contents of the reqs array, e.g. to merge
3555  * requests. However, the fields opaque and error are left unmodified as they
3556  * are used to signal failure for a single request to the caller.
3557  */
3558 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3559 {
3560     MultiwriteCB *mcb;
3561     int i;
3562 
3563     /* don't submit writes if we don't have a medium */
3564     if (bs->drv == NULL) {
3565         for (i = 0; i < num_reqs; i++) {
3566             reqs[i].error = -ENOMEDIUM;
3567         }
3568         return -1;
3569     }
3570 
3571     if (num_reqs == 0) {
3572         return 0;
3573     }
3574 
3575     // Create MultiwriteCB structure
3576     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3577     mcb->num_requests = 0;
3578     mcb->num_callbacks = num_reqs;
3579 
3580     for (i = 0; i < num_reqs; i++) {
3581         mcb->callbacks[i].cb = reqs[i].cb;
3582         mcb->callbacks[i].opaque = reqs[i].opaque;
3583     }
3584 
3585     // Check for mergable requests
3586     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3587 
3588     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3589 
3590     /* Run the aio requests. */
3591     mcb->num_requests = num_reqs;
3592     for (i = 0; i < num_reqs; i++) {
3593         bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3594             reqs[i].nb_sectors, multiwrite_cb, mcb);
3595     }
3596 
3597     return 0;
3598 }
3599 
3600 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3601 {
3602     acb->aiocb_info->cancel(acb);
3603 }
3604 
3605 /* block I/O throttling */
3606 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3607                  bool is_write, double elapsed_time, uint64_t *wait)
3608 {
3609     uint64_t bps_limit = 0;
3610     double   bytes_limit, bytes_base, bytes_res;
3611     double   slice_time, wait_time;
3612 
3613     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3614         bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3615     } else if (bs->io_limits.bps[is_write]) {
3616         bps_limit = bs->io_limits.bps[is_write];
3617     } else {
3618         if (wait) {
3619             *wait = 0;
3620         }
3621 
3622         return false;
3623     }
3624 
3625     slice_time = bs->slice_end - bs->slice_start;
3626     slice_time /= (NANOSECONDS_PER_SECOND);
3627     bytes_limit = bps_limit * slice_time;
3628     bytes_base  = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3629     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3630         bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3631     }
3632 
3633     /* bytes_base: the bytes of data which have been read/written; and
3634      *             it is obtained from the history statistic info.
3635      * bytes_res: the remaining bytes of data which need to be read/written.
3636      * (bytes_base + bytes_res) / bps_limit: used to calcuate
3637      *             the total time for completing reading/writting all data.
3638      */
3639     bytes_res   = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3640 
3641     if (bytes_base + bytes_res <= bytes_limit) {
3642         if (wait) {
3643             *wait = 0;
3644         }
3645 
3646         return false;
3647     }
3648 
3649     /* Calc approx time to dispatch */
3650     wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3651 
3652     /* When the I/O rate at runtime exceeds the limits,
3653      * bs->slice_end need to be extended in order that the current statistic
3654      * info can be kept until the timer fire, so it is increased and tuned
3655      * based on the result of experiment.
3656      */
3657     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3658     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3659     if (wait) {
3660         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3661     }
3662 
3663     return true;
3664 }
3665 
3666 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3667                              double elapsed_time, uint64_t *wait)
3668 {
3669     uint64_t iops_limit = 0;
3670     double   ios_limit, ios_base;
3671     double   slice_time, wait_time;
3672 
3673     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3674         iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3675     } else if (bs->io_limits.iops[is_write]) {
3676         iops_limit = bs->io_limits.iops[is_write];
3677     } else {
3678         if (wait) {
3679             *wait = 0;
3680         }
3681 
3682         return false;
3683     }
3684 
3685     slice_time = bs->slice_end - bs->slice_start;
3686     slice_time /= (NANOSECONDS_PER_SECOND);
3687     ios_limit  = iops_limit * slice_time;
3688     ios_base   = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3689     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3690         ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3691     }
3692 
3693     if (ios_base + 1 <= ios_limit) {
3694         if (wait) {
3695             *wait = 0;
3696         }
3697 
3698         return false;
3699     }
3700 
3701     /* Calc approx time to dispatch */
3702     wait_time = (ios_base + 1) / iops_limit;
3703     if (wait_time > elapsed_time) {
3704         wait_time = wait_time - elapsed_time;
3705     } else {
3706         wait_time = 0;
3707     }
3708 
3709     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3710     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3711     if (wait) {
3712         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3713     }
3714 
3715     return true;
3716 }
3717 
3718 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3719                            bool is_write, int64_t *wait)
3720 {
3721     int64_t  now, max_wait;
3722     uint64_t bps_wait = 0, iops_wait = 0;
3723     double   elapsed_time;
3724     int      bps_ret, iops_ret;
3725 
3726     now = qemu_get_clock_ns(vm_clock);
3727     if ((bs->slice_start < now)
3728         && (bs->slice_end > now)) {
3729         bs->slice_end = now + bs->slice_time;
3730     } else {
3731         bs->slice_time  =  5 * BLOCK_IO_SLICE_TIME;
3732         bs->slice_start = now;
3733         bs->slice_end   = now + bs->slice_time;
3734 
3735         bs->io_base.bytes[is_write]  = bs->nr_bytes[is_write];
3736         bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3737 
3738         bs->io_base.ios[is_write]    = bs->nr_ops[is_write];
3739         bs->io_base.ios[!is_write]   = bs->nr_ops[!is_write];
3740     }
3741 
3742     elapsed_time  = now - bs->slice_start;
3743     elapsed_time  /= (NANOSECONDS_PER_SECOND);
3744 
3745     bps_ret  = bdrv_exceed_bps_limits(bs, nb_sectors,
3746                                       is_write, elapsed_time, &bps_wait);
3747     iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3748                                       elapsed_time, &iops_wait);
3749     if (bps_ret || iops_ret) {
3750         max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3751         if (wait) {
3752             *wait = max_wait;
3753         }
3754 
3755         now = qemu_get_clock_ns(vm_clock);
3756         if (bs->slice_end < now + max_wait) {
3757             bs->slice_end = now + max_wait;
3758         }
3759 
3760         return true;
3761     }
3762 
3763     if (wait) {
3764         *wait = 0;
3765     }
3766 
3767     return false;
3768 }
3769 
3770 /**************************************************************/
3771 /* async block device emulation */
3772 
3773 typedef struct BlockDriverAIOCBSync {
3774     BlockDriverAIOCB common;
3775     QEMUBH *bh;
3776     int ret;
3777     /* vector translation state */
3778     QEMUIOVector *qiov;
3779     uint8_t *bounce;
3780     int is_write;
3781 } BlockDriverAIOCBSync;
3782 
3783 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3784 {
3785     BlockDriverAIOCBSync *acb =
3786         container_of(blockacb, BlockDriverAIOCBSync, common);
3787     qemu_bh_delete(acb->bh);
3788     acb->bh = NULL;
3789     qemu_aio_release(acb);
3790 }
3791 
3792 static const AIOCBInfo bdrv_em_aiocb_info = {
3793     .aiocb_size         = sizeof(BlockDriverAIOCBSync),
3794     .cancel             = bdrv_aio_cancel_em,
3795 };
3796 
3797 static void bdrv_aio_bh_cb(void *opaque)
3798 {
3799     BlockDriverAIOCBSync *acb = opaque;
3800 
3801     if (!acb->is_write)
3802         qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3803     qemu_vfree(acb->bounce);
3804     acb->common.cb(acb->common.opaque, acb->ret);
3805     qemu_bh_delete(acb->bh);
3806     acb->bh = NULL;
3807     qemu_aio_release(acb);
3808 }
3809 
3810 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3811                                             int64_t sector_num,
3812                                             QEMUIOVector *qiov,
3813                                             int nb_sectors,
3814                                             BlockDriverCompletionFunc *cb,
3815                                             void *opaque,
3816                                             int is_write)
3817 
3818 {
3819     BlockDriverAIOCBSync *acb;
3820 
3821     acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
3822     acb->is_write = is_write;
3823     acb->qiov = qiov;
3824     acb->bounce = qemu_blockalign(bs, qiov->size);
3825     acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3826 
3827     if (is_write) {
3828         qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3829         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3830     } else {
3831         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3832     }
3833 
3834     qemu_bh_schedule(acb->bh);
3835 
3836     return &acb->common;
3837 }
3838 
3839 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3840         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3841         BlockDriverCompletionFunc *cb, void *opaque)
3842 {
3843     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3844 }
3845 
3846 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3847         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3848         BlockDriverCompletionFunc *cb, void *opaque)
3849 {
3850     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3851 }
3852 
3853 
3854 typedef struct BlockDriverAIOCBCoroutine {
3855     BlockDriverAIOCB common;
3856     BlockRequest req;
3857     bool is_write;
3858     bool *done;
3859     QEMUBH* bh;
3860 } BlockDriverAIOCBCoroutine;
3861 
3862 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3863 {
3864     BlockDriverAIOCBCoroutine *acb =
3865         container_of(blockacb, BlockDriverAIOCBCoroutine, common);
3866     bool done = false;
3867 
3868     acb->done = &done;
3869     while (!done) {
3870         qemu_aio_wait();
3871     }
3872 }
3873 
3874 static const AIOCBInfo bdrv_em_co_aiocb_info = {
3875     .aiocb_size         = sizeof(BlockDriverAIOCBCoroutine),
3876     .cancel             = bdrv_aio_co_cancel_em,
3877 };
3878 
3879 static void bdrv_co_em_bh(void *opaque)
3880 {
3881     BlockDriverAIOCBCoroutine *acb = opaque;
3882 
3883     acb->common.cb(acb->common.opaque, acb->req.error);
3884 
3885     if (acb->done) {
3886         *acb->done = true;
3887     }
3888 
3889     qemu_bh_delete(acb->bh);
3890     qemu_aio_release(acb);
3891 }
3892 
3893 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3894 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3895 {
3896     BlockDriverAIOCBCoroutine *acb = opaque;
3897     BlockDriverState *bs = acb->common.bs;
3898 
3899     if (!acb->is_write) {
3900         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3901             acb->req.nb_sectors, acb->req.qiov, 0);
3902     } else {
3903         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3904             acb->req.nb_sectors, acb->req.qiov, 0);
3905     }
3906 
3907     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3908     qemu_bh_schedule(acb->bh);
3909 }
3910 
3911 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3912                                                int64_t sector_num,
3913                                                QEMUIOVector *qiov,
3914                                                int nb_sectors,
3915                                                BlockDriverCompletionFunc *cb,
3916                                                void *opaque,
3917                                                bool is_write)
3918 {
3919     Coroutine *co;
3920     BlockDriverAIOCBCoroutine *acb;
3921 
3922     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3923     acb->req.sector = sector_num;
3924     acb->req.nb_sectors = nb_sectors;
3925     acb->req.qiov = qiov;
3926     acb->is_write = is_write;
3927     acb->done = NULL;
3928 
3929     co = qemu_coroutine_create(bdrv_co_do_rw);
3930     qemu_coroutine_enter(co, acb);
3931 
3932     return &acb->common;
3933 }
3934 
3935 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3936 {
3937     BlockDriverAIOCBCoroutine *acb = opaque;
3938     BlockDriverState *bs = acb->common.bs;
3939 
3940     acb->req.error = bdrv_co_flush(bs);
3941     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3942     qemu_bh_schedule(acb->bh);
3943 }
3944 
3945 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3946         BlockDriverCompletionFunc *cb, void *opaque)
3947 {
3948     trace_bdrv_aio_flush(bs, opaque);
3949 
3950     Coroutine *co;
3951     BlockDriverAIOCBCoroutine *acb;
3952 
3953     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3954     acb->done = NULL;
3955 
3956     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3957     qemu_coroutine_enter(co, acb);
3958 
3959     return &acb->common;
3960 }
3961 
3962 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3963 {
3964     BlockDriverAIOCBCoroutine *acb = opaque;
3965     BlockDriverState *bs = acb->common.bs;
3966 
3967     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3968     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3969     qemu_bh_schedule(acb->bh);
3970 }
3971 
3972 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3973         int64_t sector_num, int nb_sectors,
3974         BlockDriverCompletionFunc *cb, void *opaque)
3975 {
3976     Coroutine *co;
3977     BlockDriverAIOCBCoroutine *acb;
3978 
3979     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3980 
3981     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3982     acb->req.sector = sector_num;
3983     acb->req.nb_sectors = nb_sectors;
3984     acb->done = NULL;
3985     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3986     qemu_coroutine_enter(co, acb);
3987 
3988     return &acb->common;
3989 }
3990 
3991 void bdrv_init(void)
3992 {
3993     module_call_init(MODULE_INIT_BLOCK);
3994 }
3995 
3996 void bdrv_init_with_whitelist(void)
3997 {
3998     use_bdrv_whitelist = 1;
3999     bdrv_init();
4000 }
4001 
4002 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
4003                    BlockDriverCompletionFunc *cb, void *opaque)
4004 {
4005     BlockDriverAIOCB *acb;
4006 
4007     acb = g_slice_alloc(aiocb_info->aiocb_size);
4008     acb->aiocb_info = aiocb_info;
4009     acb->bs = bs;
4010     acb->cb = cb;
4011     acb->opaque = opaque;
4012     return acb;
4013 }
4014 
4015 void qemu_aio_release(void *p)
4016 {
4017     BlockDriverAIOCB *acb = p;
4018     g_slice_free1(acb->aiocb_info->aiocb_size, acb);
4019 }
4020 
4021 /**************************************************************/
4022 /* Coroutine block device emulation */
4023 
4024 typedef struct CoroutineIOCompletion {
4025     Coroutine *coroutine;
4026     int ret;
4027 } CoroutineIOCompletion;
4028 
4029 static void bdrv_co_io_em_complete(void *opaque, int ret)
4030 {
4031     CoroutineIOCompletion *co = opaque;
4032 
4033     co->ret = ret;
4034     qemu_coroutine_enter(co->coroutine, NULL);
4035 }
4036 
4037 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
4038                                       int nb_sectors, QEMUIOVector *iov,
4039                                       bool is_write)
4040 {
4041     CoroutineIOCompletion co = {
4042         .coroutine = qemu_coroutine_self(),
4043     };
4044     BlockDriverAIOCB *acb;
4045 
4046     if (is_write) {
4047         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
4048                                        bdrv_co_io_em_complete, &co);
4049     } else {
4050         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
4051                                       bdrv_co_io_em_complete, &co);
4052     }
4053 
4054     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
4055     if (!acb) {
4056         return -EIO;
4057     }
4058     qemu_coroutine_yield();
4059 
4060     return co.ret;
4061 }
4062 
4063 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
4064                                          int64_t sector_num, int nb_sectors,
4065                                          QEMUIOVector *iov)
4066 {
4067     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
4068 }
4069 
4070 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
4071                                          int64_t sector_num, int nb_sectors,
4072                                          QEMUIOVector *iov)
4073 {
4074     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
4075 }
4076 
4077 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
4078 {
4079     RwCo *rwco = opaque;
4080 
4081     rwco->ret = bdrv_co_flush(rwco->bs);
4082 }
4083 
4084 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
4085 {
4086     int ret;
4087 
4088     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
4089         return 0;
4090     }
4091 
4092     /* Write back cached data to the OS even with cache=unsafe */
4093     if (bs->drv->bdrv_co_flush_to_os) {
4094         ret = bs->drv->bdrv_co_flush_to_os(bs);
4095         if (ret < 0) {
4096             return ret;
4097         }
4098     }
4099 
4100     /* But don't actually force it to the disk with cache=unsafe */
4101     if (bs->open_flags & BDRV_O_NO_FLUSH) {
4102         goto flush_parent;
4103     }
4104 
4105     if (bs->drv->bdrv_co_flush_to_disk) {
4106         ret = bs->drv->bdrv_co_flush_to_disk(bs);
4107     } else if (bs->drv->bdrv_aio_flush) {
4108         BlockDriverAIOCB *acb;
4109         CoroutineIOCompletion co = {
4110             .coroutine = qemu_coroutine_self(),
4111         };
4112 
4113         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4114         if (acb == NULL) {
4115             ret = -EIO;
4116         } else {
4117             qemu_coroutine_yield();
4118             ret = co.ret;
4119         }
4120     } else {
4121         /*
4122          * Some block drivers always operate in either writethrough or unsafe
4123          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4124          * know how the server works (because the behaviour is hardcoded or
4125          * depends on server-side configuration), so we can't ensure that
4126          * everything is safe on disk. Returning an error doesn't work because
4127          * that would break guests even if the server operates in writethrough
4128          * mode.
4129          *
4130          * Let's hope the user knows what he's doing.
4131          */
4132         ret = 0;
4133     }
4134     if (ret < 0) {
4135         return ret;
4136     }
4137 
4138     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
4139      * in the case of cache=unsafe, so there are no useless flushes.
4140      */
4141 flush_parent:
4142     return bdrv_co_flush(bs->file);
4143 }
4144 
4145 void bdrv_invalidate_cache(BlockDriverState *bs)
4146 {
4147     if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4148         bs->drv->bdrv_invalidate_cache(bs);
4149     }
4150 }
4151 
4152 void bdrv_invalidate_cache_all(void)
4153 {
4154     BlockDriverState *bs;
4155 
4156     QTAILQ_FOREACH(bs, &bdrv_states, list) {
4157         bdrv_invalidate_cache(bs);
4158     }
4159 }
4160 
4161 void bdrv_clear_incoming_migration_all(void)
4162 {
4163     BlockDriverState *bs;
4164 
4165     QTAILQ_FOREACH(bs, &bdrv_states, list) {
4166         bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4167     }
4168 }
4169 
4170 int bdrv_flush(BlockDriverState *bs)
4171 {
4172     Coroutine *co;
4173     RwCo rwco = {
4174         .bs = bs,
4175         .ret = NOT_DONE,
4176     };
4177 
4178     if (qemu_in_coroutine()) {
4179         /* Fast-path if already in coroutine context */
4180         bdrv_flush_co_entry(&rwco);
4181     } else {
4182         co = qemu_coroutine_create(bdrv_flush_co_entry);
4183         qemu_coroutine_enter(co, &rwco);
4184         while (rwco.ret == NOT_DONE) {
4185             qemu_aio_wait();
4186         }
4187     }
4188 
4189     return rwco.ret;
4190 }
4191 
4192 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4193 {
4194     RwCo *rwco = opaque;
4195 
4196     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4197 }
4198 
4199 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4200                                  int nb_sectors)
4201 {
4202     if (!bs->drv) {
4203         return -ENOMEDIUM;
4204     } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4205         return -EIO;
4206     } else if (bs->read_only) {
4207         return -EROFS;
4208     }
4209 
4210     if (bs->dirty_bitmap) {
4211         bdrv_reset_dirty(bs, sector_num, nb_sectors);
4212     }
4213 
4214     /* Do nothing if disabled.  */
4215     if (!(bs->open_flags & BDRV_O_UNMAP)) {
4216         return 0;
4217     }
4218 
4219     if (bs->drv->bdrv_co_discard) {
4220         return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4221     } else if (bs->drv->bdrv_aio_discard) {
4222         BlockDriverAIOCB *acb;
4223         CoroutineIOCompletion co = {
4224             .coroutine = qemu_coroutine_self(),
4225         };
4226 
4227         acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4228                                         bdrv_co_io_em_complete, &co);
4229         if (acb == NULL) {
4230             return -EIO;
4231         } else {
4232             qemu_coroutine_yield();
4233             return co.ret;
4234         }
4235     } else {
4236         return 0;
4237     }
4238 }
4239 
4240 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4241 {
4242     Coroutine *co;
4243     RwCo rwco = {
4244         .bs = bs,
4245         .sector_num = sector_num,
4246         .nb_sectors = nb_sectors,
4247         .ret = NOT_DONE,
4248     };
4249 
4250     if (qemu_in_coroutine()) {
4251         /* Fast-path if already in coroutine context */
4252         bdrv_discard_co_entry(&rwco);
4253     } else {
4254         co = qemu_coroutine_create(bdrv_discard_co_entry);
4255         qemu_coroutine_enter(co, &rwco);
4256         while (rwco.ret == NOT_DONE) {
4257             qemu_aio_wait();
4258         }
4259     }
4260 
4261     return rwco.ret;
4262 }
4263 
4264 /**************************************************************/
4265 /* removable device support */
4266 
4267 /**
4268  * Return TRUE if the media is present
4269  */
4270 int bdrv_is_inserted(BlockDriverState *bs)
4271 {
4272     BlockDriver *drv = bs->drv;
4273 
4274     if (!drv)
4275         return 0;
4276     if (!drv->bdrv_is_inserted)
4277         return 1;
4278     return drv->bdrv_is_inserted(bs);
4279 }
4280 
4281 /**
4282  * Return whether the media changed since the last call to this
4283  * function, or -ENOTSUP if we don't know.  Most drivers don't know.
4284  */
4285 int bdrv_media_changed(BlockDriverState *bs)
4286 {
4287     BlockDriver *drv = bs->drv;
4288 
4289     if (drv && drv->bdrv_media_changed) {
4290         return drv->bdrv_media_changed(bs);
4291     }
4292     return -ENOTSUP;
4293 }
4294 
4295 /**
4296  * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4297  */
4298 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4299 {
4300     BlockDriver *drv = bs->drv;
4301 
4302     if (drv && drv->bdrv_eject) {
4303         drv->bdrv_eject(bs, eject_flag);
4304     }
4305 
4306     if (bs->device_name[0] != '\0') {
4307         bdrv_emit_qmp_eject_event(bs, eject_flag);
4308     }
4309 }
4310 
4311 /**
4312  * Lock or unlock the media (if it is locked, the user won't be able
4313  * to eject it manually).
4314  */
4315 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4316 {
4317     BlockDriver *drv = bs->drv;
4318 
4319     trace_bdrv_lock_medium(bs, locked);
4320 
4321     if (drv && drv->bdrv_lock_medium) {
4322         drv->bdrv_lock_medium(bs, locked);
4323     }
4324 }
4325 
4326 /* needed for generic scsi interface */
4327 
4328 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4329 {
4330     BlockDriver *drv = bs->drv;
4331 
4332     if (drv && drv->bdrv_ioctl)
4333         return drv->bdrv_ioctl(bs, req, buf);
4334     return -ENOTSUP;
4335 }
4336 
4337 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4338         unsigned long int req, void *buf,
4339         BlockDriverCompletionFunc *cb, void *opaque)
4340 {
4341     BlockDriver *drv = bs->drv;
4342 
4343     if (drv && drv->bdrv_aio_ioctl)
4344         return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4345     return NULL;
4346 }
4347 
4348 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4349 {
4350     bs->buffer_alignment = align;
4351 }
4352 
4353 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4354 {
4355     return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4356 }
4357 
4358 /*
4359  * Check if all memory in this vector is sector aligned.
4360  */
4361 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
4362 {
4363     int i;
4364 
4365     for (i = 0; i < qiov->niov; i++) {
4366         if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) {
4367             return false;
4368         }
4369     }
4370 
4371     return true;
4372 }
4373 
4374 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity)
4375 {
4376     int64_t bitmap_size;
4377 
4378     assert((granularity & (granularity - 1)) == 0);
4379 
4380     if (granularity) {
4381         granularity >>= BDRV_SECTOR_BITS;
4382         assert(!bs->dirty_bitmap);
4383         bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS);
4384         bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1);
4385     } else {
4386         if (bs->dirty_bitmap) {
4387             hbitmap_free(bs->dirty_bitmap);
4388             bs->dirty_bitmap = NULL;
4389         }
4390     }
4391 }
4392 
4393 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4394 {
4395     if (bs->dirty_bitmap) {
4396         return hbitmap_get(bs->dirty_bitmap, sector);
4397     } else {
4398         return 0;
4399     }
4400 }
4401 
4402 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi)
4403 {
4404     hbitmap_iter_init(hbi, bs->dirty_bitmap, 0);
4405 }
4406 
4407 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4408                     int nr_sectors)
4409 {
4410     hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors);
4411 }
4412 
4413 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4414                       int nr_sectors)
4415 {
4416     hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors);
4417 }
4418 
4419 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4420 {
4421     if (bs->dirty_bitmap) {
4422         return hbitmap_count(bs->dirty_bitmap);
4423     } else {
4424         return 0;
4425     }
4426 }
4427 
4428 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4429 {
4430     assert(bs->in_use != in_use);
4431     bs->in_use = in_use;
4432 }
4433 
4434 int bdrv_in_use(BlockDriverState *bs)
4435 {
4436     return bs->in_use;
4437 }
4438 
4439 void bdrv_iostatus_enable(BlockDriverState *bs)
4440 {
4441     bs->iostatus_enabled = true;
4442     bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4443 }
4444 
4445 /* The I/O status is only enabled if the drive explicitly
4446  * enables it _and_ the VM is configured to stop on errors */
4447 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4448 {
4449     return (bs->iostatus_enabled &&
4450            (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4451             bs->on_write_error == BLOCKDEV_ON_ERROR_STOP   ||
4452             bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4453 }
4454 
4455 void bdrv_iostatus_disable(BlockDriverState *bs)
4456 {
4457     bs->iostatus_enabled = false;
4458 }
4459 
4460 void bdrv_iostatus_reset(BlockDriverState *bs)
4461 {
4462     if (bdrv_iostatus_is_enabled(bs)) {
4463         bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4464         if (bs->job) {
4465             block_job_iostatus_reset(bs->job);
4466         }
4467     }
4468 }
4469 
4470 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4471 {
4472     assert(bdrv_iostatus_is_enabled(bs));
4473     if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4474         bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4475                                          BLOCK_DEVICE_IO_STATUS_FAILED;
4476     }
4477 }
4478 
4479 void
4480 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4481         enum BlockAcctType type)
4482 {
4483     assert(type < BDRV_MAX_IOTYPE);
4484 
4485     cookie->bytes = bytes;
4486     cookie->start_time_ns = get_clock();
4487     cookie->type = type;
4488 }
4489 
4490 void
4491 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4492 {
4493     assert(cookie->type < BDRV_MAX_IOTYPE);
4494 
4495     bs->nr_bytes[cookie->type] += cookie->bytes;
4496     bs->nr_ops[cookie->type]++;
4497     bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4498 }
4499 
4500 void bdrv_img_create(const char *filename, const char *fmt,
4501                      const char *base_filename, const char *base_fmt,
4502                      char *options, uint64_t img_size, int flags,
4503                      Error **errp, bool quiet)
4504 {
4505     QEMUOptionParameter *param = NULL, *create_options = NULL;
4506     QEMUOptionParameter *backing_fmt, *backing_file, *size;
4507     BlockDriverState *bs = NULL;
4508     BlockDriver *drv, *proto_drv;
4509     BlockDriver *backing_drv = NULL;
4510     int ret = 0;
4511 
4512     /* Find driver and parse its options */
4513     drv = bdrv_find_format(fmt);
4514     if (!drv) {
4515         error_setg(errp, "Unknown file format '%s'", fmt);
4516         return;
4517     }
4518 
4519     proto_drv = bdrv_find_protocol(filename);
4520     if (!proto_drv) {
4521         error_setg(errp, "Unknown protocol '%s'", filename);
4522         return;
4523     }
4524 
4525     create_options = append_option_parameters(create_options,
4526                                               drv->create_options);
4527     create_options = append_option_parameters(create_options,
4528                                               proto_drv->create_options);
4529 
4530     /* Create parameter list with default values */
4531     param = parse_option_parameters("", create_options, param);
4532 
4533     set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4534 
4535     /* Parse -o options */
4536     if (options) {
4537         param = parse_option_parameters(options, create_options, param);
4538         if (param == NULL) {
4539             error_setg(errp, "Invalid options for file format '%s'.", fmt);
4540             goto out;
4541         }
4542     }
4543 
4544     if (base_filename) {
4545         if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4546                                  base_filename)) {
4547             error_setg(errp, "Backing file not supported for file format '%s'",
4548                        fmt);
4549             goto out;
4550         }
4551     }
4552 
4553     if (base_fmt) {
4554         if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4555             error_setg(errp, "Backing file format not supported for file "
4556                              "format '%s'", fmt);
4557             goto out;
4558         }
4559     }
4560 
4561     backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4562     if (backing_file && backing_file->value.s) {
4563         if (!strcmp(filename, backing_file->value.s)) {
4564             error_setg(errp, "Error: Trying to create an image with the "
4565                              "same filename as the backing file");
4566             goto out;
4567         }
4568     }
4569 
4570     backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4571     if (backing_fmt && backing_fmt->value.s) {
4572         backing_drv = bdrv_find_format(backing_fmt->value.s);
4573         if (!backing_drv) {
4574             error_setg(errp, "Unknown backing file format '%s'",
4575                        backing_fmt->value.s);
4576             goto out;
4577         }
4578     }
4579 
4580     // The size for the image must always be specified, with one exception:
4581     // If we are using a backing file, we can obtain the size from there
4582     size = get_option_parameter(param, BLOCK_OPT_SIZE);
4583     if (size && size->value.n == -1) {
4584         if (backing_file && backing_file->value.s) {
4585             uint64_t size;
4586             char buf[32];
4587             int back_flags;
4588 
4589             /* backing files always opened read-only */
4590             back_flags =
4591                 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4592 
4593             bs = bdrv_new("");
4594 
4595             ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4596             if (ret < 0) {
4597                 error_setg_errno(errp, -ret, "Could not open '%s'",
4598                                  backing_file->value.s);
4599                 goto out;
4600             }
4601             bdrv_get_geometry(bs, &size);
4602             size *= 512;
4603 
4604             snprintf(buf, sizeof(buf), "%" PRId64, size);
4605             set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4606         } else {
4607             error_setg(errp, "Image creation needs a size parameter");
4608             goto out;
4609         }
4610     }
4611 
4612     if (!quiet) {
4613         printf("Formatting '%s', fmt=%s ", filename, fmt);
4614         print_option_parameters(param);
4615         puts("");
4616     }
4617     ret = bdrv_create(drv, filename, param);
4618     if (ret < 0) {
4619         if (ret == -ENOTSUP) {
4620             error_setg(errp,"Formatting or formatting option not supported for "
4621                             "file format '%s'", fmt);
4622         } else if (ret == -EFBIG) {
4623             error_setg(errp, "The image size is too large for file format '%s'",
4624                        fmt);
4625         } else {
4626             error_setg(errp, "%s: error while creating %s: %s", filename, fmt,
4627                        strerror(-ret));
4628         }
4629     }
4630 
4631 out:
4632     free_option_parameters(create_options);
4633     free_option_parameters(param);
4634 
4635     if (bs) {
4636         bdrv_delete(bs);
4637     }
4638 }
4639