1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor/monitor.h" 28 #include "block/block_int.h" 29 #include "block/blockjob.h" 30 #include "qemu/module.h" 31 #include "qapi/qmp/qjson.h" 32 #include "sysemu/sysemu.h" 33 #include "qemu/notify.h" 34 #include "block/coroutine.h" 35 #include "qmp-commands.h" 36 #include "qemu/timer.h" 37 38 #ifdef CONFIG_BSD 39 #include <sys/types.h> 40 #include <sys/stat.h> 41 #include <sys/ioctl.h> 42 #include <sys/queue.h> 43 #ifndef __DragonFly__ 44 #include <sys/disk.h> 45 #endif 46 #endif 47 48 #ifdef _WIN32 49 #include <windows.h> 50 #endif 51 52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 53 54 typedef enum { 55 BDRV_REQ_COPY_ON_READ = 0x1, 56 BDRV_REQ_ZERO_WRITE = 0x2, 57 } BdrvRequestFlags; 58 59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 64 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 65 BlockDriverCompletionFunc *cb, void *opaque); 66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, 71 QEMUIOVector *iov); 72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 76 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 77 BdrvRequestFlags flags); 78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 79 int64_t sector_num, 80 QEMUIOVector *qiov, 81 int nb_sectors, 82 BlockDriverCompletionFunc *cb, 83 void *opaque, 84 bool is_write); 85 static void coroutine_fn bdrv_co_do_rw(void *opaque); 86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 87 int64_t sector_num, int nb_sectors); 88 89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 90 bool is_write, double elapsed_time, uint64_t *wait); 91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 92 double elapsed_time, uint64_t *wait); 93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 94 bool is_write, int64_t *wait); 95 96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 97 QTAILQ_HEAD_INITIALIZER(bdrv_states); 98 99 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 100 QLIST_HEAD_INITIALIZER(bdrv_drivers); 101 102 /* The device to use for VM snapshots */ 103 static BlockDriverState *bs_snapshots; 104 105 /* If non-zero, use only whitelisted block drivers */ 106 static int use_bdrv_whitelist; 107 108 #ifdef _WIN32 109 static int is_windows_drive_prefix(const char *filename) 110 { 111 return (((filename[0] >= 'a' && filename[0] <= 'z') || 112 (filename[0] >= 'A' && filename[0] <= 'Z')) && 113 filename[1] == ':'); 114 } 115 116 int is_windows_drive(const char *filename) 117 { 118 if (is_windows_drive_prefix(filename) && 119 filename[2] == '\0') 120 return 1; 121 if (strstart(filename, "\\\\.\\", NULL) || 122 strstart(filename, "//./", NULL)) 123 return 1; 124 return 0; 125 } 126 #endif 127 128 /* throttling disk I/O limits */ 129 void bdrv_io_limits_disable(BlockDriverState *bs) 130 { 131 bs->io_limits_enabled = false; 132 133 while (qemu_co_queue_next(&bs->throttled_reqs)); 134 135 if (bs->block_timer) { 136 qemu_del_timer(bs->block_timer); 137 qemu_free_timer(bs->block_timer); 138 bs->block_timer = NULL; 139 } 140 141 bs->slice_start = 0; 142 bs->slice_end = 0; 143 bs->slice_time = 0; 144 memset(&bs->io_base, 0, sizeof(bs->io_base)); 145 } 146 147 static void bdrv_block_timer(void *opaque) 148 { 149 BlockDriverState *bs = opaque; 150 151 qemu_co_queue_next(&bs->throttled_reqs); 152 } 153 154 void bdrv_io_limits_enable(BlockDriverState *bs) 155 { 156 qemu_co_queue_init(&bs->throttled_reqs); 157 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 158 bs->io_limits_enabled = true; 159 } 160 161 bool bdrv_io_limits_enabled(BlockDriverState *bs) 162 { 163 BlockIOLimit *io_limits = &bs->io_limits; 164 return io_limits->bps[BLOCK_IO_LIMIT_READ] 165 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 166 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 167 || io_limits->iops[BLOCK_IO_LIMIT_READ] 168 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 169 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 170 } 171 172 static void bdrv_io_limits_intercept(BlockDriverState *bs, 173 bool is_write, int nb_sectors) 174 { 175 int64_t wait_time = -1; 176 177 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 178 qemu_co_queue_wait(&bs->throttled_reqs); 179 } 180 181 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 182 * throttled requests will not be dequeued until the current request is 183 * allowed to be serviced. So if the current request still exceeds the 184 * limits, it will be inserted to the head. All requests followed it will 185 * be still in throttled_reqs queue. 186 */ 187 188 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 189 qemu_mod_timer(bs->block_timer, 190 wait_time + qemu_get_clock_ns(vm_clock)); 191 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 192 } 193 194 qemu_co_queue_next(&bs->throttled_reqs); 195 } 196 197 /* check if the path starts with "<protocol>:" */ 198 static int path_has_protocol(const char *path) 199 { 200 const char *p; 201 202 #ifdef _WIN32 203 if (is_windows_drive(path) || 204 is_windows_drive_prefix(path)) { 205 return 0; 206 } 207 p = path + strcspn(path, ":/\\"); 208 #else 209 p = path + strcspn(path, ":/"); 210 #endif 211 212 return *p == ':'; 213 } 214 215 int path_is_absolute(const char *path) 216 { 217 #ifdef _WIN32 218 /* specific case for names like: "\\.\d:" */ 219 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 220 return 1; 221 } 222 return (*path == '/' || *path == '\\'); 223 #else 224 return (*path == '/'); 225 #endif 226 } 227 228 /* if filename is absolute, just copy it to dest. Otherwise, build a 229 path to it by considering it is relative to base_path. URL are 230 supported. */ 231 void path_combine(char *dest, int dest_size, 232 const char *base_path, 233 const char *filename) 234 { 235 const char *p, *p1; 236 int len; 237 238 if (dest_size <= 0) 239 return; 240 if (path_is_absolute(filename)) { 241 pstrcpy(dest, dest_size, filename); 242 } else { 243 p = strchr(base_path, ':'); 244 if (p) 245 p++; 246 else 247 p = base_path; 248 p1 = strrchr(base_path, '/'); 249 #ifdef _WIN32 250 { 251 const char *p2; 252 p2 = strrchr(base_path, '\\'); 253 if (!p1 || p2 > p1) 254 p1 = p2; 255 } 256 #endif 257 if (p1) 258 p1++; 259 else 260 p1 = base_path; 261 if (p1 > p) 262 p = p1; 263 len = p - base_path; 264 if (len > dest_size - 1) 265 len = dest_size - 1; 266 memcpy(dest, base_path, len); 267 dest[len] = '\0'; 268 pstrcat(dest, dest_size, filename); 269 } 270 } 271 272 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 273 { 274 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 275 pstrcpy(dest, sz, bs->backing_file); 276 } else { 277 path_combine(dest, sz, bs->filename, bs->backing_file); 278 } 279 } 280 281 void bdrv_register(BlockDriver *bdrv) 282 { 283 /* Block drivers without coroutine functions need emulation */ 284 if (!bdrv->bdrv_co_readv) { 285 bdrv->bdrv_co_readv = bdrv_co_readv_em; 286 bdrv->bdrv_co_writev = bdrv_co_writev_em; 287 288 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 289 * the block driver lacks aio we need to emulate that too. 290 */ 291 if (!bdrv->bdrv_aio_readv) { 292 /* add AIO emulation layer */ 293 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 294 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 295 } 296 } 297 298 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 299 } 300 301 /* create a new block device (by default it is empty) */ 302 BlockDriverState *bdrv_new(const char *device_name) 303 { 304 BlockDriverState *bs; 305 306 bs = g_malloc0(sizeof(BlockDriverState)); 307 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 308 if (device_name[0] != '\0') { 309 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 310 } 311 bdrv_iostatus_disable(bs); 312 notifier_list_init(&bs->close_notifiers); 313 314 return bs; 315 } 316 317 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify) 318 { 319 notifier_list_add(&bs->close_notifiers, notify); 320 } 321 322 BlockDriver *bdrv_find_format(const char *format_name) 323 { 324 BlockDriver *drv1; 325 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 326 if (!strcmp(drv1->format_name, format_name)) { 327 return drv1; 328 } 329 } 330 return NULL; 331 } 332 333 static int bdrv_is_whitelisted(BlockDriver *drv) 334 { 335 static const char *whitelist[] = { 336 CONFIG_BDRV_WHITELIST 337 }; 338 const char **p; 339 340 if (!whitelist[0]) 341 return 1; /* no whitelist, anything goes */ 342 343 for (p = whitelist; *p; p++) { 344 if (!strcmp(drv->format_name, *p)) { 345 return 1; 346 } 347 } 348 return 0; 349 } 350 351 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 352 { 353 BlockDriver *drv = bdrv_find_format(format_name); 354 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 355 } 356 357 typedef struct CreateCo { 358 BlockDriver *drv; 359 char *filename; 360 QEMUOptionParameter *options; 361 int ret; 362 } CreateCo; 363 364 static void coroutine_fn bdrv_create_co_entry(void *opaque) 365 { 366 CreateCo *cco = opaque; 367 assert(cco->drv); 368 369 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 370 } 371 372 int bdrv_create(BlockDriver *drv, const char* filename, 373 QEMUOptionParameter *options) 374 { 375 int ret; 376 377 Coroutine *co; 378 CreateCo cco = { 379 .drv = drv, 380 .filename = g_strdup(filename), 381 .options = options, 382 .ret = NOT_DONE, 383 }; 384 385 if (!drv->bdrv_create) { 386 ret = -ENOTSUP; 387 goto out; 388 } 389 390 if (qemu_in_coroutine()) { 391 /* Fast-path if already in coroutine context */ 392 bdrv_create_co_entry(&cco); 393 } else { 394 co = qemu_coroutine_create(bdrv_create_co_entry); 395 qemu_coroutine_enter(co, &cco); 396 while (cco.ret == NOT_DONE) { 397 qemu_aio_wait(); 398 } 399 } 400 401 ret = cco.ret; 402 403 out: 404 g_free(cco.filename); 405 return ret; 406 } 407 408 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 409 { 410 BlockDriver *drv; 411 412 drv = bdrv_find_protocol(filename); 413 if (drv == NULL) { 414 return -ENOENT; 415 } 416 417 return bdrv_create(drv, filename, options); 418 } 419 420 /* 421 * Create a uniquely-named empty temporary file. 422 * Return 0 upon success, otherwise a negative errno value. 423 */ 424 int get_tmp_filename(char *filename, int size) 425 { 426 #ifdef _WIN32 427 char temp_dir[MAX_PATH]; 428 /* GetTempFileName requires that its output buffer (4th param) 429 have length MAX_PATH or greater. */ 430 assert(size >= MAX_PATH); 431 return (GetTempPath(MAX_PATH, temp_dir) 432 && GetTempFileName(temp_dir, "qem", 0, filename) 433 ? 0 : -GetLastError()); 434 #else 435 int fd; 436 const char *tmpdir; 437 tmpdir = getenv("TMPDIR"); 438 if (!tmpdir) 439 tmpdir = "/tmp"; 440 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 441 return -EOVERFLOW; 442 } 443 fd = mkstemp(filename); 444 if (fd < 0) { 445 return -errno; 446 } 447 if (close(fd) != 0) { 448 unlink(filename); 449 return -errno; 450 } 451 return 0; 452 #endif 453 } 454 455 /* 456 * Detect host devices. By convention, /dev/cdrom[N] is always 457 * recognized as a host CDROM. 458 */ 459 static BlockDriver *find_hdev_driver(const char *filename) 460 { 461 int score_max = 0, score; 462 BlockDriver *drv = NULL, *d; 463 464 QLIST_FOREACH(d, &bdrv_drivers, list) { 465 if (d->bdrv_probe_device) { 466 score = d->bdrv_probe_device(filename); 467 if (score > score_max) { 468 score_max = score; 469 drv = d; 470 } 471 } 472 } 473 474 return drv; 475 } 476 477 BlockDriver *bdrv_find_protocol(const char *filename) 478 { 479 BlockDriver *drv1; 480 char protocol[128]; 481 int len; 482 const char *p; 483 484 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 485 486 /* 487 * XXX(hch): we really should not let host device detection 488 * override an explicit protocol specification, but moving this 489 * later breaks access to device names with colons in them. 490 * Thanks to the brain-dead persistent naming schemes on udev- 491 * based Linux systems those actually are quite common. 492 */ 493 drv1 = find_hdev_driver(filename); 494 if (drv1) { 495 return drv1; 496 } 497 498 if (!path_has_protocol(filename)) { 499 return bdrv_find_format("file"); 500 } 501 p = strchr(filename, ':'); 502 assert(p != NULL); 503 len = p - filename; 504 if (len > sizeof(protocol) - 1) 505 len = sizeof(protocol) - 1; 506 memcpy(protocol, filename, len); 507 protocol[len] = '\0'; 508 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 509 if (drv1->protocol_name && 510 !strcmp(drv1->protocol_name, protocol)) { 511 return drv1; 512 } 513 } 514 return NULL; 515 } 516 517 static int find_image_format(BlockDriverState *bs, const char *filename, 518 BlockDriver **pdrv) 519 { 520 int score, score_max; 521 BlockDriver *drv1, *drv; 522 uint8_t buf[2048]; 523 int ret = 0; 524 525 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 526 if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) { 527 drv = bdrv_find_format("raw"); 528 if (!drv) { 529 ret = -ENOENT; 530 } 531 *pdrv = drv; 532 return ret; 533 } 534 535 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 536 if (ret < 0) { 537 *pdrv = NULL; 538 return ret; 539 } 540 541 score_max = 0; 542 drv = NULL; 543 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 544 if (drv1->bdrv_probe) { 545 score = drv1->bdrv_probe(buf, ret, filename); 546 if (score > score_max) { 547 score_max = score; 548 drv = drv1; 549 } 550 } 551 } 552 if (!drv) { 553 ret = -ENOENT; 554 } 555 *pdrv = drv; 556 return ret; 557 } 558 559 /** 560 * Set the current 'total_sectors' value 561 */ 562 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 563 { 564 BlockDriver *drv = bs->drv; 565 566 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 567 if (bs->sg) 568 return 0; 569 570 /* query actual device if possible, otherwise just trust the hint */ 571 if (drv->bdrv_getlength) { 572 int64_t length = drv->bdrv_getlength(bs); 573 if (length < 0) { 574 return length; 575 } 576 hint = length >> BDRV_SECTOR_BITS; 577 } 578 579 bs->total_sectors = hint; 580 return 0; 581 } 582 583 /** 584 * Set open flags for a given discard mode 585 * 586 * Return 0 on success, -1 if the discard mode was invalid. 587 */ 588 int bdrv_parse_discard_flags(const char *mode, int *flags) 589 { 590 *flags &= ~BDRV_O_UNMAP; 591 592 if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) { 593 /* do nothing */ 594 } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) { 595 *flags |= BDRV_O_UNMAP; 596 } else { 597 return -1; 598 } 599 600 return 0; 601 } 602 603 /** 604 * Set open flags for a given cache mode 605 * 606 * Return 0 on success, -1 if the cache mode was invalid. 607 */ 608 int bdrv_parse_cache_flags(const char *mode, int *flags) 609 { 610 *flags &= ~BDRV_O_CACHE_MASK; 611 612 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 613 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 614 } else if (!strcmp(mode, "directsync")) { 615 *flags |= BDRV_O_NOCACHE; 616 } else if (!strcmp(mode, "writeback")) { 617 *flags |= BDRV_O_CACHE_WB; 618 } else if (!strcmp(mode, "unsafe")) { 619 *flags |= BDRV_O_CACHE_WB; 620 *flags |= BDRV_O_NO_FLUSH; 621 } else if (!strcmp(mode, "writethrough")) { 622 /* this is the default */ 623 } else { 624 return -1; 625 } 626 627 return 0; 628 } 629 630 /** 631 * The copy-on-read flag is actually a reference count so multiple users may 632 * use the feature without worrying about clobbering its previous state. 633 * Copy-on-read stays enabled until all users have called to disable it. 634 */ 635 void bdrv_enable_copy_on_read(BlockDriverState *bs) 636 { 637 bs->copy_on_read++; 638 } 639 640 void bdrv_disable_copy_on_read(BlockDriverState *bs) 641 { 642 assert(bs->copy_on_read > 0); 643 bs->copy_on_read--; 644 } 645 646 static int bdrv_open_flags(BlockDriverState *bs, int flags) 647 { 648 int open_flags = flags | BDRV_O_CACHE_WB; 649 650 /* 651 * Clear flags that are internal to the block layer before opening the 652 * image. 653 */ 654 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 655 656 /* 657 * Snapshots should be writable. 658 */ 659 if (bs->is_temporary) { 660 open_flags |= BDRV_O_RDWR; 661 } 662 663 return open_flags; 664 } 665 666 /* 667 * Common part for opening disk images and files 668 */ 669 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file, 670 const char *filename, 671 int flags, BlockDriver *drv) 672 { 673 int ret, open_flags; 674 675 assert(drv != NULL); 676 assert(bs->file == NULL); 677 678 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 679 680 bs->open_flags = flags; 681 bs->buffer_alignment = 512; 682 683 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 684 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 685 bdrv_enable_copy_on_read(bs); 686 } 687 688 pstrcpy(bs->filename, sizeof(bs->filename), filename); 689 690 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 691 return -ENOTSUP; 692 } 693 694 bs->drv = drv; 695 bs->opaque = g_malloc0(drv->instance_size); 696 697 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 698 open_flags = bdrv_open_flags(bs, flags); 699 700 bs->read_only = !(open_flags & BDRV_O_RDWR); 701 702 /* Open the image, either directly or using a protocol */ 703 if (drv->bdrv_file_open) { 704 if (file != NULL) { 705 bdrv_swap(file, bs); 706 ret = 0; 707 } else { 708 ret = drv->bdrv_file_open(bs, filename, open_flags); 709 } 710 } else { 711 assert(file != NULL); 712 bs->file = file; 713 ret = drv->bdrv_open(bs, open_flags); 714 } 715 716 if (ret < 0) { 717 goto free_and_fail; 718 } 719 720 ret = refresh_total_sectors(bs, bs->total_sectors); 721 if (ret < 0) { 722 goto free_and_fail; 723 } 724 725 #ifndef _WIN32 726 if (bs->is_temporary) { 727 unlink(filename); 728 } 729 #endif 730 return 0; 731 732 free_and_fail: 733 bs->file = NULL; 734 g_free(bs->opaque); 735 bs->opaque = NULL; 736 bs->drv = NULL; 737 return ret; 738 } 739 740 /* 741 * Opens a file using a protocol (file, host_device, nbd, ...) 742 */ 743 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 744 { 745 BlockDriverState *bs; 746 BlockDriver *drv; 747 int ret; 748 749 drv = bdrv_find_protocol(filename); 750 if (!drv) { 751 return -ENOENT; 752 } 753 754 bs = bdrv_new(""); 755 ret = bdrv_open_common(bs, NULL, filename, flags, drv); 756 if (ret < 0) { 757 bdrv_delete(bs); 758 return ret; 759 } 760 bs->growable = 1; 761 *pbs = bs; 762 return 0; 763 } 764 765 int bdrv_open_backing_file(BlockDriverState *bs) 766 { 767 char backing_filename[PATH_MAX]; 768 int back_flags, ret; 769 BlockDriver *back_drv = NULL; 770 771 if (bs->backing_hd != NULL) { 772 return 0; 773 } 774 775 bs->open_flags &= ~BDRV_O_NO_BACKING; 776 if (bs->backing_file[0] == '\0') { 777 return 0; 778 } 779 780 bs->backing_hd = bdrv_new(""); 781 bdrv_get_full_backing_filename(bs, backing_filename, 782 sizeof(backing_filename)); 783 784 if (bs->backing_format[0] != '\0') { 785 back_drv = bdrv_find_format(bs->backing_format); 786 } 787 788 /* backing files always opened read-only */ 789 back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT); 790 791 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 792 if (ret < 0) { 793 bdrv_delete(bs->backing_hd); 794 bs->backing_hd = NULL; 795 bs->open_flags |= BDRV_O_NO_BACKING; 796 return ret; 797 } 798 return 0; 799 } 800 801 /* 802 * Opens a disk image (raw, qcow2, vmdk, ...) 803 */ 804 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 805 BlockDriver *drv) 806 { 807 int ret; 808 /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */ 809 char tmp_filename[PATH_MAX + 1]; 810 BlockDriverState *file = NULL; 811 812 if (flags & BDRV_O_SNAPSHOT) { 813 BlockDriverState *bs1; 814 int64_t total_size; 815 int is_protocol = 0; 816 BlockDriver *bdrv_qcow2; 817 QEMUOptionParameter *options; 818 char backing_filename[PATH_MAX]; 819 820 /* if snapshot, we create a temporary backing file and open it 821 instead of opening 'filename' directly */ 822 823 /* if there is a backing file, use it */ 824 bs1 = bdrv_new(""); 825 ret = bdrv_open(bs1, filename, 0, drv); 826 if (ret < 0) { 827 bdrv_delete(bs1); 828 return ret; 829 } 830 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 831 832 if (bs1->drv && bs1->drv->protocol_name) 833 is_protocol = 1; 834 835 bdrv_delete(bs1); 836 837 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 838 if (ret < 0) { 839 return ret; 840 } 841 842 /* Real path is meaningless for protocols */ 843 if (is_protocol) 844 snprintf(backing_filename, sizeof(backing_filename), 845 "%s", filename); 846 else if (!realpath(filename, backing_filename)) 847 return -errno; 848 849 bdrv_qcow2 = bdrv_find_format("qcow2"); 850 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 851 852 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 853 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 854 if (drv) { 855 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 856 drv->format_name); 857 } 858 859 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 860 free_option_parameters(options); 861 if (ret < 0) { 862 return ret; 863 } 864 865 filename = tmp_filename; 866 drv = bdrv_qcow2; 867 bs->is_temporary = 1; 868 } 869 870 /* Open image file without format layer */ 871 if (flags & BDRV_O_RDWR) { 872 flags |= BDRV_O_ALLOW_RDWR; 873 } 874 875 ret = bdrv_file_open(&file, filename, bdrv_open_flags(bs, flags)); 876 if (ret < 0) { 877 return ret; 878 } 879 880 /* Find the right image format driver */ 881 if (!drv) { 882 ret = find_image_format(file, filename, &drv); 883 } 884 885 if (!drv) { 886 goto unlink_and_fail; 887 } 888 889 /* Open the image */ 890 ret = bdrv_open_common(bs, file, filename, flags, drv); 891 if (ret < 0) { 892 goto unlink_and_fail; 893 } 894 895 if (bs->file != file) { 896 bdrv_delete(file); 897 file = NULL; 898 } 899 900 /* If there is a backing file, use it */ 901 if ((flags & BDRV_O_NO_BACKING) == 0) { 902 ret = bdrv_open_backing_file(bs); 903 if (ret < 0) { 904 bdrv_close(bs); 905 return ret; 906 } 907 } 908 909 if (!bdrv_key_required(bs)) { 910 bdrv_dev_change_media_cb(bs, true); 911 } 912 913 /* throttling disk I/O limits */ 914 if (bs->io_limits_enabled) { 915 bdrv_io_limits_enable(bs); 916 } 917 918 return 0; 919 920 unlink_and_fail: 921 if (file != NULL) { 922 bdrv_delete(file); 923 } 924 if (bs->is_temporary) { 925 unlink(filename); 926 } 927 return ret; 928 } 929 930 typedef struct BlockReopenQueueEntry { 931 bool prepared; 932 BDRVReopenState state; 933 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 934 } BlockReopenQueueEntry; 935 936 /* 937 * Adds a BlockDriverState to a simple queue for an atomic, transactional 938 * reopen of multiple devices. 939 * 940 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 941 * already performed, or alternatively may be NULL a new BlockReopenQueue will 942 * be created and initialized. This newly created BlockReopenQueue should be 943 * passed back in for subsequent calls that are intended to be of the same 944 * atomic 'set'. 945 * 946 * bs is the BlockDriverState to add to the reopen queue. 947 * 948 * flags contains the open flags for the associated bs 949 * 950 * returns a pointer to bs_queue, which is either the newly allocated 951 * bs_queue, or the existing bs_queue being used. 952 * 953 */ 954 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 955 BlockDriverState *bs, int flags) 956 { 957 assert(bs != NULL); 958 959 BlockReopenQueueEntry *bs_entry; 960 if (bs_queue == NULL) { 961 bs_queue = g_new0(BlockReopenQueue, 1); 962 QSIMPLEQ_INIT(bs_queue); 963 } 964 965 if (bs->file) { 966 bdrv_reopen_queue(bs_queue, bs->file, flags); 967 } 968 969 bs_entry = g_new0(BlockReopenQueueEntry, 1); 970 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 971 972 bs_entry->state.bs = bs; 973 bs_entry->state.flags = flags; 974 975 return bs_queue; 976 } 977 978 /* 979 * Reopen multiple BlockDriverStates atomically & transactionally. 980 * 981 * The queue passed in (bs_queue) must have been built up previous 982 * via bdrv_reopen_queue(). 983 * 984 * Reopens all BDS specified in the queue, with the appropriate 985 * flags. All devices are prepared for reopen, and failure of any 986 * device will cause all device changes to be abandonded, and intermediate 987 * data cleaned up. 988 * 989 * If all devices prepare successfully, then the changes are committed 990 * to all devices. 991 * 992 */ 993 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 994 { 995 int ret = -1; 996 BlockReopenQueueEntry *bs_entry, *next; 997 Error *local_err = NULL; 998 999 assert(bs_queue != NULL); 1000 1001 bdrv_drain_all(); 1002 1003 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1004 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 1005 error_propagate(errp, local_err); 1006 goto cleanup; 1007 } 1008 bs_entry->prepared = true; 1009 } 1010 1011 /* If we reach this point, we have success and just need to apply the 1012 * changes 1013 */ 1014 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 1015 bdrv_reopen_commit(&bs_entry->state); 1016 } 1017 1018 ret = 0; 1019 1020 cleanup: 1021 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 1022 if (ret && bs_entry->prepared) { 1023 bdrv_reopen_abort(&bs_entry->state); 1024 } 1025 g_free(bs_entry); 1026 } 1027 g_free(bs_queue); 1028 return ret; 1029 } 1030 1031 1032 /* Reopen a single BlockDriverState with the specified flags. */ 1033 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 1034 { 1035 int ret = -1; 1036 Error *local_err = NULL; 1037 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 1038 1039 ret = bdrv_reopen_multiple(queue, &local_err); 1040 if (local_err != NULL) { 1041 error_propagate(errp, local_err); 1042 } 1043 return ret; 1044 } 1045 1046 1047 /* 1048 * Prepares a BlockDriverState for reopen. All changes are staged in the 1049 * 'opaque' field of the BDRVReopenState, which is used and allocated by 1050 * the block driver layer .bdrv_reopen_prepare() 1051 * 1052 * bs is the BlockDriverState to reopen 1053 * flags are the new open flags 1054 * queue is the reopen queue 1055 * 1056 * Returns 0 on success, non-zero on error. On error errp will be set 1057 * as well. 1058 * 1059 * On failure, bdrv_reopen_abort() will be called to clean up any data. 1060 * It is the responsibility of the caller to then call the abort() or 1061 * commit() for any other BDS that have been left in a prepare() state 1062 * 1063 */ 1064 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1065 Error **errp) 1066 { 1067 int ret = -1; 1068 Error *local_err = NULL; 1069 BlockDriver *drv; 1070 1071 assert(reopen_state != NULL); 1072 assert(reopen_state->bs->drv != NULL); 1073 drv = reopen_state->bs->drv; 1074 1075 /* if we are to stay read-only, do not allow permission change 1076 * to r/w */ 1077 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1078 reopen_state->flags & BDRV_O_RDWR) { 1079 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1080 reopen_state->bs->device_name); 1081 goto error; 1082 } 1083 1084 1085 ret = bdrv_flush(reopen_state->bs); 1086 if (ret) { 1087 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1088 strerror(-ret)); 1089 goto error; 1090 } 1091 1092 if (drv->bdrv_reopen_prepare) { 1093 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1094 if (ret) { 1095 if (local_err != NULL) { 1096 error_propagate(errp, local_err); 1097 } else { 1098 error_set(errp, QERR_OPEN_FILE_FAILED, 1099 reopen_state->bs->filename); 1100 } 1101 goto error; 1102 } 1103 } else { 1104 /* It is currently mandatory to have a bdrv_reopen_prepare() 1105 * handler for each supported drv. */ 1106 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1107 drv->format_name, reopen_state->bs->device_name, 1108 "reopening of file"); 1109 ret = -1; 1110 goto error; 1111 } 1112 1113 ret = 0; 1114 1115 error: 1116 return ret; 1117 } 1118 1119 /* 1120 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1121 * makes them final by swapping the staging BlockDriverState contents into 1122 * the active BlockDriverState contents. 1123 */ 1124 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1125 { 1126 BlockDriver *drv; 1127 1128 assert(reopen_state != NULL); 1129 drv = reopen_state->bs->drv; 1130 assert(drv != NULL); 1131 1132 /* If there are any driver level actions to take */ 1133 if (drv->bdrv_reopen_commit) { 1134 drv->bdrv_reopen_commit(reopen_state); 1135 } 1136 1137 /* set BDS specific flags now */ 1138 reopen_state->bs->open_flags = reopen_state->flags; 1139 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1140 BDRV_O_CACHE_WB); 1141 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1142 } 1143 1144 /* 1145 * Abort the reopen, and delete and free the staged changes in 1146 * reopen_state 1147 */ 1148 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1149 { 1150 BlockDriver *drv; 1151 1152 assert(reopen_state != NULL); 1153 drv = reopen_state->bs->drv; 1154 assert(drv != NULL); 1155 1156 if (drv->bdrv_reopen_abort) { 1157 drv->bdrv_reopen_abort(reopen_state); 1158 } 1159 } 1160 1161 1162 void bdrv_close(BlockDriverState *bs) 1163 { 1164 bdrv_flush(bs); 1165 if (bs->job) { 1166 block_job_cancel_sync(bs->job); 1167 } 1168 bdrv_drain_all(); 1169 notifier_list_notify(&bs->close_notifiers, bs); 1170 1171 if (bs->drv) { 1172 if (bs == bs_snapshots) { 1173 bs_snapshots = NULL; 1174 } 1175 if (bs->backing_hd) { 1176 bdrv_delete(bs->backing_hd); 1177 bs->backing_hd = NULL; 1178 } 1179 bs->drv->bdrv_close(bs); 1180 g_free(bs->opaque); 1181 #ifdef _WIN32 1182 if (bs->is_temporary) { 1183 unlink(bs->filename); 1184 } 1185 #endif 1186 bs->opaque = NULL; 1187 bs->drv = NULL; 1188 bs->copy_on_read = 0; 1189 bs->backing_file[0] = '\0'; 1190 bs->backing_format[0] = '\0'; 1191 bs->total_sectors = 0; 1192 bs->encrypted = 0; 1193 bs->valid_key = 0; 1194 bs->sg = 0; 1195 bs->growable = 0; 1196 1197 if (bs->file != NULL) { 1198 bdrv_delete(bs->file); 1199 bs->file = NULL; 1200 } 1201 } 1202 1203 bdrv_dev_change_media_cb(bs, false); 1204 1205 /*throttling disk I/O limits*/ 1206 if (bs->io_limits_enabled) { 1207 bdrv_io_limits_disable(bs); 1208 } 1209 } 1210 1211 void bdrv_close_all(void) 1212 { 1213 BlockDriverState *bs; 1214 1215 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1216 bdrv_close(bs); 1217 } 1218 } 1219 1220 /* 1221 * Wait for pending requests to complete across all BlockDriverStates 1222 * 1223 * This function does not flush data to disk, use bdrv_flush_all() for that 1224 * after calling this function. 1225 * 1226 * Note that completion of an asynchronous I/O operation can trigger any 1227 * number of other I/O operations on other devices---for example a coroutine 1228 * can be arbitrarily complex and a constant flow of I/O can come until the 1229 * coroutine is complete. Because of this, it is not possible to have a 1230 * function to drain a single device's I/O queue. 1231 */ 1232 void bdrv_drain_all(void) 1233 { 1234 BlockDriverState *bs; 1235 bool busy; 1236 1237 do { 1238 busy = qemu_aio_wait(); 1239 1240 /* FIXME: We do not have timer support here, so this is effectively 1241 * a busy wait. 1242 */ 1243 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1244 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1245 qemu_co_queue_restart_all(&bs->throttled_reqs); 1246 busy = true; 1247 } 1248 } 1249 } while (busy); 1250 1251 /* If requests are still pending there is a bug somewhere */ 1252 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1253 assert(QLIST_EMPTY(&bs->tracked_requests)); 1254 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1255 } 1256 } 1257 1258 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1259 Also, NULL terminate the device_name to prevent double remove */ 1260 void bdrv_make_anon(BlockDriverState *bs) 1261 { 1262 if (bs->device_name[0] != '\0') { 1263 QTAILQ_REMOVE(&bdrv_states, bs, list); 1264 } 1265 bs->device_name[0] = '\0'; 1266 } 1267 1268 static void bdrv_rebind(BlockDriverState *bs) 1269 { 1270 if (bs->drv && bs->drv->bdrv_rebind) { 1271 bs->drv->bdrv_rebind(bs); 1272 } 1273 } 1274 1275 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1276 BlockDriverState *bs_src) 1277 { 1278 /* move some fields that need to stay attached to the device */ 1279 bs_dest->open_flags = bs_src->open_flags; 1280 1281 /* dev info */ 1282 bs_dest->dev_ops = bs_src->dev_ops; 1283 bs_dest->dev_opaque = bs_src->dev_opaque; 1284 bs_dest->dev = bs_src->dev; 1285 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1286 bs_dest->copy_on_read = bs_src->copy_on_read; 1287 1288 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1289 1290 /* i/o timing parameters */ 1291 bs_dest->slice_time = bs_src->slice_time; 1292 bs_dest->slice_start = bs_src->slice_start; 1293 bs_dest->slice_end = bs_src->slice_end; 1294 bs_dest->io_limits = bs_src->io_limits; 1295 bs_dest->io_base = bs_src->io_base; 1296 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1297 bs_dest->block_timer = bs_src->block_timer; 1298 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1299 1300 /* r/w error */ 1301 bs_dest->on_read_error = bs_src->on_read_error; 1302 bs_dest->on_write_error = bs_src->on_write_error; 1303 1304 /* i/o status */ 1305 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1306 bs_dest->iostatus = bs_src->iostatus; 1307 1308 /* dirty bitmap */ 1309 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1310 1311 /* job */ 1312 bs_dest->in_use = bs_src->in_use; 1313 bs_dest->job = bs_src->job; 1314 1315 /* keep the same entry in bdrv_states */ 1316 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1317 bs_src->device_name); 1318 bs_dest->list = bs_src->list; 1319 } 1320 1321 /* 1322 * Swap bs contents for two image chains while they are live, 1323 * while keeping required fields on the BlockDriverState that is 1324 * actually attached to a device. 1325 * 1326 * This will modify the BlockDriverState fields, and swap contents 1327 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1328 * 1329 * bs_new is required to be anonymous. 1330 * 1331 * This function does not create any image files. 1332 */ 1333 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1334 { 1335 BlockDriverState tmp; 1336 1337 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1338 assert(bs_new->device_name[0] == '\0'); 1339 assert(bs_new->dirty_bitmap == NULL); 1340 assert(bs_new->job == NULL); 1341 assert(bs_new->dev == NULL); 1342 assert(bs_new->in_use == 0); 1343 assert(bs_new->io_limits_enabled == false); 1344 assert(bs_new->block_timer == NULL); 1345 1346 tmp = *bs_new; 1347 *bs_new = *bs_old; 1348 *bs_old = tmp; 1349 1350 /* there are some fields that should not be swapped, move them back */ 1351 bdrv_move_feature_fields(&tmp, bs_old); 1352 bdrv_move_feature_fields(bs_old, bs_new); 1353 bdrv_move_feature_fields(bs_new, &tmp); 1354 1355 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1356 assert(bs_new->device_name[0] == '\0'); 1357 1358 /* Check a few fields that should remain attached to the device */ 1359 assert(bs_new->dev == NULL); 1360 assert(bs_new->job == NULL); 1361 assert(bs_new->in_use == 0); 1362 assert(bs_new->io_limits_enabled == false); 1363 assert(bs_new->block_timer == NULL); 1364 1365 bdrv_rebind(bs_new); 1366 bdrv_rebind(bs_old); 1367 } 1368 1369 /* 1370 * Add new bs contents at the top of an image chain while the chain is 1371 * live, while keeping required fields on the top layer. 1372 * 1373 * This will modify the BlockDriverState fields, and swap contents 1374 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1375 * 1376 * bs_new is required to be anonymous. 1377 * 1378 * This function does not create any image files. 1379 */ 1380 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1381 { 1382 bdrv_swap(bs_new, bs_top); 1383 1384 /* The contents of 'tmp' will become bs_top, as we are 1385 * swapping bs_new and bs_top contents. */ 1386 bs_top->backing_hd = bs_new; 1387 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1388 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1389 bs_new->filename); 1390 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1391 bs_new->drv ? bs_new->drv->format_name : ""); 1392 } 1393 1394 void bdrv_delete(BlockDriverState *bs) 1395 { 1396 assert(!bs->dev); 1397 assert(!bs->job); 1398 assert(!bs->in_use); 1399 1400 /* remove from list, if necessary */ 1401 bdrv_make_anon(bs); 1402 1403 bdrv_close(bs); 1404 1405 assert(bs != bs_snapshots); 1406 g_free(bs); 1407 } 1408 1409 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1410 /* TODO change to DeviceState *dev when all users are qdevified */ 1411 { 1412 if (bs->dev) { 1413 return -EBUSY; 1414 } 1415 bs->dev = dev; 1416 bdrv_iostatus_reset(bs); 1417 return 0; 1418 } 1419 1420 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1421 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1422 { 1423 if (bdrv_attach_dev(bs, dev) < 0) { 1424 abort(); 1425 } 1426 } 1427 1428 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1429 /* TODO change to DeviceState *dev when all users are qdevified */ 1430 { 1431 assert(bs->dev == dev); 1432 bs->dev = NULL; 1433 bs->dev_ops = NULL; 1434 bs->dev_opaque = NULL; 1435 bs->buffer_alignment = 512; 1436 } 1437 1438 /* TODO change to return DeviceState * when all users are qdevified */ 1439 void *bdrv_get_attached_dev(BlockDriverState *bs) 1440 { 1441 return bs->dev; 1442 } 1443 1444 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1445 void *opaque) 1446 { 1447 bs->dev_ops = ops; 1448 bs->dev_opaque = opaque; 1449 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1450 bs_snapshots = NULL; 1451 } 1452 } 1453 1454 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1455 enum MonitorEvent ev, 1456 BlockErrorAction action, bool is_read) 1457 { 1458 QObject *data; 1459 const char *action_str; 1460 1461 switch (action) { 1462 case BDRV_ACTION_REPORT: 1463 action_str = "report"; 1464 break; 1465 case BDRV_ACTION_IGNORE: 1466 action_str = "ignore"; 1467 break; 1468 case BDRV_ACTION_STOP: 1469 action_str = "stop"; 1470 break; 1471 default: 1472 abort(); 1473 } 1474 1475 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1476 bdrv->device_name, 1477 action_str, 1478 is_read ? "read" : "write"); 1479 monitor_protocol_event(ev, data); 1480 1481 qobject_decref(data); 1482 } 1483 1484 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1485 { 1486 QObject *data; 1487 1488 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1489 bdrv_get_device_name(bs), ejected); 1490 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1491 1492 qobject_decref(data); 1493 } 1494 1495 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1496 { 1497 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1498 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1499 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1500 if (tray_was_closed) { 1501 /* tray open */ 1502 bdrv_emit_qmp_eject_event(bs, true); 1503 } 1504 if (load) { 1505 /* tray close */ 1506 bdrv_emit_qmp_eject_event(bs, false); 1507 } 1508 } 1509 } 1510 1511 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1512 { 1513 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1514 } 1515 1516 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1517 { 1518 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1519 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1520 } 1521 } 1522 1523 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1524 { 1525 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1526 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1527 } 1528 return false; 1529 } 1530 1531 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1532 { 1533 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1534 bs->dev_ops->resize_cb(bs->dev_opaque); 1535 } 1536 } 1537 1538 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1539 { 1540 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1541 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1542 } 1543 return false; 1544 } 1545 1546 /* 1547 * Run consistency checks on an image 1548 * 1549 * Returns 0 if the check could be completed (it doesn't mean that the image is 1550 * free of errors) or -errno when an internal error occurred. The results of the 1551 * check are stored in res. 1552 */ 1553 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1554 { 1555 if (bs->drv->bdrv_check == NULL) { 1556 return -ENOTSUP; 1557 } 1558 1559 memset(res, 0, sizeof(*res)); 1560 return bs->drv->bdrv_check(bs, res, fix); 1561 } 1562 1563 #define COMMIT_BUF_SECTORS 2048 1564 1565 /* commit COW file into the raw image */ 1566 int bdrv_commit(BlockDriverState *bs) 1567 { 1568 BlockDriver *drv = bs->drv; 1569 int64_t sector, total_sectors; 1570 int n, ro, open_flags; 1571 int ret = 0; 1572 uint8_t *buf; 1573 char filename[PATH_MAX]; 1574 1575 if (!drv) 1576 return -ENOMEDIUM; 1577 1578 if (!bs->backing_hd) { 1579 return -ENOTSUP; 1580 } 1581 1582 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1583 return -EBUSY; 1584 } 1585 1586 ro = bs->backing_hd->read_only; 1587 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1588 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1589 open_flags = bs->backing_hd->open_flags; 1590 1591 if (ro) { 1592 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1593 return -EACCES; 1594 } 1595 } 1596 1597 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1598 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1599 1600 for (sector = 0; sector < total_sectors; sector += n) { 1601 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1602 1603 if (bdrv_read(bs, sector, buf, n) != 0) { 1604 ret = -EIO; 1605 goto ro_cleanup; 1606 } 1607 1608 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1609 ret = -EIO; 1610 goto ro_cleanup; 1611 } 1612 } 1613 } 1614 1615 if (drv->bdrv_make_empty) { 1616 ret = drv->bdrv_make_empty(bs); 1617 bdrv_flush(bs); 1618 } 1619 1620 /* 1621 * Make sure all data we wrote to the backing device is actually 1622 * stable on disk. 1623 */ 1624 if (bs->backing_hd) 1625 bdrv_flush(bs->backing_hd); 1626 1627 ro_cleanup: 1628 g_free(buf); 1629 1630 if (ro) { 1631 /* ignoring error return here */ 1632 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1633 } 1634 1635 return ret; 1636 } 1637 1638 int bdrv_commit_all(void) 1639 { 1640 BlockDriverState *bs; 1641 1642 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1643 int ret = bdrv_commit(bs); 1644 if (ret < 0) { 1645 return ret; 1646 } 1647 } 1648 return 0; 1649 } 1650 1651 struct BdrvTrackedRequest { 1652 BlockDriverState *bs; 1653 int64_t sector_num; 1654 int nb_sectors; 1655 bool is_write; 1656 QLIST_ENTRY(BdrvTrackedRequest) list; 1657 Coroutine *co; /* owner, used for deadlock detection */ 1658 CoQueue wait_queue; /* coroutines blocked on this request */ 1659 }; 1660 1661 /** 1662 * Remove an active request from the tracked requests list 1663 * 1664 * This function should be called when a tracked request is completing. 1665 */ 1666 static void tracked_request_end(BdrvTrackedRequest *req) 1667 { 1668 QLIST_REMOVE(req, list); 1669 qemu_co_queue_restart_all(&req->wait_queue); 1670 } 1671 1672 /** 1673 * Add an active request to the tracked requests list 1674 */ 1675 static void tracked_request_begin(BdrvTrackedRequest *req, 1676 BlockDriverState *bs, 1677 int64_t sector_num, 1678 int nb_sectors, bool is_write) 1679 { 1680 *req = (BdrvTrackedRequest){ 1681 .bs = bs, 1682 .sector_num = sector_num, 1683 .nb_sectors = nb_sectors, 1684 .is_write = is_write, 1685 .co = qemu_coroutine_self(), 1686 }; 1687 1688 qemu_co_queue_init(&req->wait_queue); 1689 1690 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1691 } 1692 1693 /** 1694 * Round a region to cluster boundaries 1695 */ 1696 void bdrv_round_to_clusters(BlockDriverState *bs, 1697 int64_t sector_num, int nb_sectors, 1698 int64_t *cluster_sector_num, 1699 int *cluster_nb_sectors) 1700 { 1701 BlockDriverInfo bdi; 1702 1703 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1704 *cluster_sector_num = sector_num; 1705 *cluster_nb_sectors = nb_sectors; 1706 } else { 1707 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1708 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1709 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1710 nb_sectors, c); 1711 } 1712 } 1713 1714 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1715 int64_t sector_num, int nb_sectors) { 1716 /* aaaa bbbb */ 1717 if (sector_num >= req->sector_num + req->nb_sectors) { 1718 return false; 1719 } 1720 /* bbbb aaaa */ 1721 if (req->sector_num >= sector_num + nb_sectors) { 1722 return false; 1723 } 1724 return true; 1725 } 1726 1727 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1728 int64_t sector_num, int nb_sectors) 1729 { 1730 BdrvTrackedRequest *req; 1731 int64_t cluster_sector_num; 1732 int cluster_nb_sectors; 1733 bool retry; 1734 1735 /* If we touch the same cluster it counts as an overlap. This guarantees 1736 * that allocating writes will be serialized and not race with each other 1737 * for the same cluster. For example, in copy-on-read it ensures that the 1738 * CoR read and write operations are atomic and guest writes cannot 1739 * interleave between them. 1740 */ 1741 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 1742 &cluster_sector_num, &cluster_nb_sectors); 1743 1744 do { 1745 retry = false; 1746 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1747 if (tracked_request_overlaps(req, cluster_sector_num, 1748 cluster_nb_sectors)) { 1749 /* Hitting this means there was a reentrant request, for 1750 * example, a block driver issuing nested requests. This must 1751 * never happen since it means deadlock. 1752 */ 1753 assert(qemu_coroutine_self() != req->co); 1754 1755 qemu_co_queue_wait(&req->wait_queue); 1756 retry = true; 1757 break; 1758 } 1759 } 1760 } while (retry); 1761 } 1762 1763 /* 1764 * Return values: 1765 * 0 - success 1766 * -EINVAL - backing format specified, but no file 1767 * -ENOSPC - can't update the backing file because no space is left in the 1768 * image file header 1769 * -ENOTSUP - format driver doesn't support changing the backing file 1770 */ 1771 int bdrv_change_backing_file(BlockDriverState *bs, 1772 const char *backing_file, const char *backing_fmt) 1773 { 1774 BlockDriver *drv = bs->drv; 1775 int ret; 1776 1777 /* Backing file format doesn't make sense without a backing file */ 1778 if (backing_fmt && !backing_file) { 1779 return -EINVAL; 1780 } 1781 1782 if (drv->bdrv_change_backing_file != NULL) { 1783 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1784 } else { 1785 ret = -ENOTSUP; 1786 } 1787 1788 if (ret == 0) { 1789 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1790 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1791 } 1792 return ret; 1793 } 1794 1795 /* 1796 * Finds the image layer in the chain that has 'bs' as its backing file. 1797 * 1798 * active is the current topmost image. 1799 * 1800 * Returns NULL if bs is not found in active's image chain, 1801 * or if active == bs. 1802 */ 1803 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1804 BlockDriverState *bs) 1805 { 1806 BlockDriverState *overlay = NULL; 1807 BlockDriverState *intermediate; 1808 1809 assert(active != NULL); 1810 assert(bs != NULL); 1811 1812 /* if bs is the same as active, then by definition it has no overlay 1813 */ 1814 if (active == bs) { 1815 return NULL; 1816 } 1817 1818 intermediate = active; 1819 while (intermediate->backing_hd) { 1820 if (intermediate->backing_hd == bs) { 1821 overlay = intermediate; 1822 break; 1823 } 1824 intermediate = intermediate->backing_hd; 1825 } 1826 1827 return overlay; 1828 } 1829 1830 typedef struct BlkIntermediateStates { 1831 BlockDriverState *bs; 1832 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 1833 } BlkIntermediateStates; 1834 1835 1836 /* 1837 * Drops images above 'base' up to and including 'top', and sets the image 1838 * above 'top' to have base as its backing file. 1839 * 1840 * Requires that the overlay to 'top' is opened r/w, so that the backing file 1841 * information in 'bs' can be properly updated. 1842 * 1843 * E.g., this will convert the following chain: 1844 * bottom <- base <- intermediate <- top <- active 1845 * 1846 * to 1847 * 1848 * bottom <- base <- active 1849 * 1850 * It is allowed for bottom==base, in which case it converts: 1851 * 1852 * base <- intermediate <- top <- active 1853 * 1854 * to 1855 * 1856 * base <- active 1857 * 1858 * Error conditions: 1859 * if active == top, that is considered an error 1860 * 1861 */ 1862 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 1863 BlockDriverState *base) 1864 { 1865 BlockDriverState *intermediate; 1866 BlockDriverState *base_bs = NULL; 1867 BlockDriverState *new_top_bs = NULL; 1868 BlkIntermediateStates *intermediate_state, *next; 1869 int ret = -EIO; 1870 1871 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 1872 QSIMPLEQ_INIT(&states_to_delete); 1873 1874 if (!top->drv || !base->drv) { 1875 goto exit; 1876 } 1877 1878 new_top_bs = bdrv_find_overlay(active, top); 1879 1880 if (new_top_bs == NULL) { 1881 /* we could not find the image above 'top', this is an error */ 1882 goto exit; 1883 } 1884 1885 /* special case of new_top_bs->backing_hd already pointing to base - nothing 1886 * to do, no intermediate images */ 1887 if (new_top_bs->backing_hd == base) { 1888 ret = 0; 1889 goto exit; 1890 } 1891 1892 intermediate = top; 1893 1894 /* now we will go down through the list, and add each BDS we find 1895 * into our deletion queue, until we hit the 'base' 1896 */ 1897 while (intermediate) { 1898 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 1899 intermediate_state->bs = intermediate; 1900 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 1901 1902 if (intermediate->backing_hd == base) { 1903 base_bs = intermediate->backing_hd; 1904 break; 1905 } 1906 intermediate = intermediate->backing_hd; 1907 } 1908 if (base_bs == NULL) { 1909 /* something went wrong, we did not end at the base. safely 1910 * unravel everything, and exit with error */ 1911 goto exit; 1912 } 1913 1914 /* success - we can delete the intermediate states, and link top->base */ 1915 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 1916 base_bs->drv ? base_bs->drv->format_name : ""); 1917 if (ret) { 1918 goto exit; 1919 } 1920 new_top_bs->backing_hd = base_bs; 1921 1922 1923 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1924 /* so that bdrv_close() does not recursively close the chain */ 1925 intermediate_state->bs->backing_hd = NULL; 1926 bdrv_delete(intermediate_state->bs); 1927 } 1928 ret = 0; 1929 1930 exit: 1931 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1932 g_free(intermediate_state); 1933 } 1934 return ret; 1935 } 1936 1937 1938 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1939 size_t size) 1940 { 1941 int64_t len; 1942 1943 if (!bdrv_is_inserted(bs)) 1944 return -ENOMEDIUM; 1945 1946 if (bs->growable) 1947 return 0; 1948 1949 len = bdrv_getlength(bs); 1950 1951 if (offset < 0) 1952 return -EIO; 1953 1954 if ((offset > len) || (len - offset < size)) 1955 return -EIO; 1956 1957 return 0; 1958 } 1959 1960 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1961 int nb_sectors) 1962 { 1963 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1964 nb_sectors * BDRV_SECTOR_SIZE); 1965 } 1966 1967 typedef struct RwCo { 1968 BlockDriverState *bs; 1969 int64_t sector_num; 1970 int nb_sectors; 1971 QEMUIOVector *qiov; 1972 bool is_write; 1973 int ret; 1974 } RwCo; 1975 1976 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1977 { 1978 RwCo *rwco = opaque; 1979 1980 if (!rwco->is_write) { 1981 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1982 rwco->nb_sectors, rwco->qiov, 0); 1983 } else { 1984 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1985 rwco->nb_sectors, rwco->qiov, 0); 1986 } 1987 } 1988 1989 /* 1990 * Process a synchronous request using coroutines 1991 */ 1992 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1993 int nb_sectors, bool is_write) 1994 { 1995 QEMUIOVector qiov; 1996 struct iovec iov = { 1997 .iov_base = (void *)buf, 1998 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1999 }; 2000 Coroutine *co; 2001 RwCo rwco = { 2002 .bs = bs, 2003 .sector_num = sector_num, 2004 .nb_sectors = nb_sectors, 2005 .qiov = &qiov, 2006 .is_write = is_write, 2007 .ret = NOT_DONE, 2008 }; 2009 2010 qemu_iovec_init_external(&qiov, &iov, 1); 2011 2012 /** 2013 * In sync call context, when the vcpu is blocked, this throttling timer 2014 * will not fire; so the I/O throttling function has to be disabled here 2015 * if it has been enabled. 2016 */ 2017 if (bs->io_limits_enabled) { 2018 fprintf(stderr, "Disabling I/O throttling on '%s' due " 2019 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 2020 bdrv_io_limits_disable(bs); 2021 } 2022 2023 if (qemu_in_coroutine()) { 2024 /* Fast-path if already in coroutine context */ 2025 bdrv_rw_co_entry(&rwco); 2026 } else { 2027 co = qemu_coroutine_create(bdrv_rw_co_entry); 2028 qemu_coroutine_enter(co, &rwco); 2029 while (rwco.ret == NOT_DONE) { 2030 qemu_aio_wait(); 2031 } 2032 } 2033 return rwco.ret; 2034 } 2035 2036 /* return < 0 if error. See bdrv_write() for the return codes */ 2037 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 2038 uint8_t *buf, int nb_sectors) 2039 { 2040 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 2041 } 2042 2043 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 2044 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 2045 uint8_t *buf, int nb_sectors) 2046 { 2047 bool enabled; 2048 int ret; 2049 2050 enabled = bs->io_limits_enabled; 2051 bs->io_limits_enabled = false; 2052 ret = bdrv_read(bs, 0, buf, 1); 2053 bs->io_limits_enabled = enabled; 2054 return ret; 2055 } 2056 2057 /* Return < 0 if error. Important errors are: 2058 -EIO generic I/O error (may happen for all errors) 2059 -ENOMEDIUM No media inserted. 2060 -EINVAL Invalid sector number or nb_sectors 2061 -EACCES Trying to write a read-only device 2062 */ 2063 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2064 const uint8_t *buf, int nb_sectors) 2065 { 2066 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2067 } 2068 2069 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2070 void *buf, int count1) 2071 { 2072 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2073 int len, nb_sectors, count; 2074 int64_t sector_num; 2075 int ret; 2076 2077 count = count1; 2078 /* first read to align to sector start */ 2079 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2080 if (len > count) 2081 len = count; 2082 sector_num = offset >> BDRV_SECTOR_BITS; 2083 if (len > 0) { 2084 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2085 return ret; 2086 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2087 count -= len; 2088 if (count == 0) 2089 return count1; 2090 sector_num++; 2091 buf += len; 2092 } 2093 2094 /* read the sectors "in place" */ 2095 nb_sectors = count >> BDRV_SECTOR_BITS; 2096 if (nb_sectors > 0) { 2097 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2098 return ret; 2099 sector_num += nb_sectors; 2100 len = nb_sectors << BDRV_SECTOR_BITS; 2101 buf += len; 2102 count -= len; 2103 } 2104 2105 /* add data from the last sector */ 2106 if (count > 0) { 2107 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2108 return ret; 2109 memcpy(buf, tmp_buf, count); 2110 } 2111 return count1; 2112 } 2113 2114 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2115 const void *buf, int count1) 2116 { 2117 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2118 int len, nb_sectors, count; 2119 int64_t sector_num; 2120 int ret; 2121 2122 count = count1; 2123 /* first write to align to sector start */ 2124 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2125 if (len > count) 2126 len = count; 2127 sector_num = offset >> BDRV_SECTOR_BITS; 2128 if (len > 0) { 2129 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2130 return ret; 2131 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 2132 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2133 return ret; 2134 count -= len; 2135 if (count == 0) 2136 return count1; 2137 sector_num++; 2138 buf += len; 2139 } 2140 2141 /* write the sectors "in place" */ 2142 nb_sectors = count >> BDRV_SECTOR_BITS; 2143 if (nb_sectors > 0) { 2144 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 2145 return ret; 2146 sector_num += nb_sectors; 2147 len = nb_sectors << BDRV_SECTOR_BITS; 2148 buf += len; 2149 count -= len; 2150 } 2151 2152 /* add data from the last sector */ 2153 if (count > 0) { 2154 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2155 return ret; 2156 memcpy(tmp_buf, buf, count); 2157 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2158 return ret; 2159 } 2160 return count1; 2161 } 2162 2163 /* 2164 * Writes to the file and ensures that no writes are reordered across this 2165 * request (acts as a barrier) 2166 * 2167 * Returns 0 on success, -errno in error cases. 2168 */ 2169 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2170 const void *buf, int count) 2171 { 2172 int ret; 2173 2174 ret = bdrv_pwrite(bs, offset, buf, count); 2175 if (ret < 0) { 2176 return ret; 2177 } 2178 2179 /* No flush needed for cache modes that already do it */ 2180 if (bs->enable_write_cache) { 2181 bdrv_flush(bs); 2182 } 2183 2184 return 0; 2185 } 2186 2187 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2188 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2189 { 2190 /* Perform I/O through a temporary buffer so that users who scribble over 2191 * their read buffer while the operation is in progress do not end up 2192 * modifying the image file. This is critical for zero-copy guest I/O 2193 * where anything might happen inside guest memory. 2194 */ 2195 void *bounce_buffer; 2196 2197 BlockDriver *drv = bs->drv; 2198 struct iovec iov; 2199 QEMUIOVector bounce_qiov; 2200 int64_t cluster_sector_num; 2201 int cluster_nb_sectors; 2202 size_t skip_bytes; 2203 int ret; 2204 2205 /* Cover entire cluster so no additional backing file I/O is required when 2206 * allocating cluster in the image file. 2207 */ 2208 bdrv_round_to_clusters(bs, sector_num, nb_sectors, 2209 &cluster_sector_num, &cluster_nb_sectors); 2210 2211 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2212 cluster_sector_num, cluster_nb_sectors); 2213 2214 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2215 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2216 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2217 2218 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2219 &bounce_qiov); 2220 if (ret < 0) { 2221 goto err; 2222 } 2223 2224 if (drv->bdrv_co_write_zeroes && 2225 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2226 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2227 cluster_nb_sectors); 2228 } else { 2229 /* This does not change the data on the disk, it is not necessary 2230 * to flush even in cache=writethrough mode. 2231 */ 2232 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2233 &bounce_qiov); 2234 } 2235 2236 if (ret < 0) { 2237 /* It might be okay to ignore write errors for guest requests. If this 2238 * is a deliberate copy-on-read then we don't want to ignore the error. 2239 * Simply report it in all cases. 2240 */ 2241 goto err; 2242 } 2243 2244 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2245 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2246 nb_sectors * BDRV_SECTOR_SIZE); 2247 2248 err: 2249 qemu_vfree(bounce_buffer); 2250 return ret; 2251 } 2252 2253 /* 2254 * Handle a read request in coroutine context 2255 */ 2256 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2257 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2258 BdrvRequestFlags flags) 2259 { 2260 BlockDriver *drv = bs->drv; 2261 BdrvTrackedRequest req; 2262 int ret; 2263 2264 if (!drv) { 2265 return -ENOMEDIUM; 2266 } 2267 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2268 return -EIO; 2269 } 2270 2271 /* throttling disk read I/O */ 2272 if (bs->io_limits_enabled) { 2273 bdrv_io_limits_intercept(bs, false, nb_sectors); 2274 } 2275 2276 if (bs->copy_on_read) { 2277 flags |= BDRV_REQ_COPY_ON_READ; 2278 } 2279 if (flags & BDRV_REQ_COPY_ON_READ) { 2280 bs->copy_on_read_in_flight++; 2281 } 2282 2283 if (bs->copy_on_read_in_flight) { 2284 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2285 } 2286 2287 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2288 2289 if (flags & BDRV_REQ_COPY_ON_READ) { 2290 int pnum; 2291 2292 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2293 if (ret < 0) { 2294 goto out; 2295 } 2296 2297 if (!ret || pnum != nb_sectors) { 2298 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2299 goto out; 2300 } 2301 } 2302 2303 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2304 2305 out: 2306 tracked_request_end(&req); 2307 2308 if (flags & BDRV_REQ_COPY_ON_READ) { 2309 bs->copy_on_read_in_flight--; 2310 } 2311 2312 return ret; 2313 } 2314 2315 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2316 int nb_sectors, QEMUIOVector *qiov) 2317 { 2318 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2319 2320 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2321 } 2322 2323 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2324 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2325 { 2326 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2327 2328 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2329 BDRV_REQ_COPY_ON_READ); 2330 } 2331 2332 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2333 int64_t sector_num, int nb_sectors) 2334 { 2335 BlockDriver *drv = bs->drv; 2336 QEMUIOVector qiov; 2337 struct iovec iov; 2338 int ret; 2339 2340 /* TODO Emulate only part of misaligned requests instead of letting block 2341 * drivers return -ENOTSUP and emulate everything */ 2342 2343 /* First try the efficient write zeroes operation */ 2344 if (drv->bdrv_co_write_zeroes) { 2345 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2346 if (ret != -ENOTSUP) { 2347 return ret; 2348 } 2349 } 2350 2351 /* Fall back to bounce buffer if write zeroes is unsupported */ 2352 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2353 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2354 memset(iov.iov_base, 0, iov.iov_len); 2355 qemu_iovec_init_external(&qiov, &iov, 1); 2356 2357 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2358 2359 qemu_vfree(iov.iov_base); 2360 return ret; 2361 } 2362 2363 /* 2364 * Handle a write request in coroutine context 2365 */ 2366 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2367 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2368 BdrvRequestFlags flags) 2369 { 2370 BlockDriver *drv = bs->drv; 2371 BdrvTrackedRequest req; 2372 int ret; 2373 2374 if (!bs->drv) { 2375 return -ENOMEDIUM; 2376 } 2377 if (bs->read_only) { 2378 return -EACCES; 2379 } 2380 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2381 return -EIO; 2382 } 2383 2384 /* throttling disk write I/O */ 2385 if (bs->io_limits_enabled) { 2386 bdrv_io_limits_intercept(bs, true, nb_sectors); 2387 } 2388 2389 if (bs->copy_on_read_in_flight) { 2390 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2391 } 2392 2393 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2394 2395 if (flags & BDRV_REQ_ZERO_WRITE) { 2396 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2397 } else { 2398 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2399 } 2400 2401 if (ret == 0 && !bs->enable_write_cache) { 2402 ret = bdrv_co_flush(bs); 2403 } 2404 2405 if (bs->dirty_bitmap) { 2406 bdrv_set_dirty(bs, sector_num, nb_sectors); 2407 } 2408 2409 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2410 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2411 } 2412 2413 tracked_request_end(&req); 2414 2415 return ret; 2416 } 2417 2418 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2419 int nb_sectors, QEMUIOVector *qiov) 2420 { 2421 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2422 2423 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2424 } 2425 2426 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2427 int64_t sector_num, int nb_sectors) 2428 { 2429 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2430 2431 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2432 BDRV_REQ_ZERO_WRITE); 2433 } 2434 2435 /** 2436 * Truncate file to 'offset' bytes (needed only for file protocols) 2437 */ 2438 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2439 { 2440 BlockDriver *drv = bs->drv; 2441 int ret; 2442 if (!drv) 2443 return -ENOMEDIUM; 2444 if (!drv->bdrv_truncate) 2445 return -ENOTSUP; 2446 if (bs->read_only) 2447 return -EACCES; 2448 if (bdrv_in_use(bs)) 2449 return -EBUSY; 2450 2451 /* There better not be any in-flight IOs when we truncate the device. */ 2452 bdrv_drain_all(); 2453 2454 ret = drv->bdrv_truncate(bs, offset); 2455 if (ret == 0) { 2456 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2457 bdrv_dev_resize_cb(bs); 2458 } 2459 return ret; 2460 } 2461 2462 /** 2463 * Length of a allocated file in bytes. Sparse files are counted by actual 2464 * allocated space. Return < 0 if error or unknown. 2465 */ 2466 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2467 { 2468 BlockDriver *drv = bs->drv; 2469 if (!drv) { 2470 return -ENOMEDIUM; 2471 } 2472 if (drv->bdrv_get_allocated_file_size) { 2473 return drv->bdrv_get_allocated_file_size(bs); 2474 } 2475 if (bs->file) { 2476 return bdrv_get_allocated_file_size(bs->file); 2477 } 2478 return -ENOTSUP; 2479 } 2480 2481 /** 2482 * Length of a file in bytes. Return < 0 if error or unknown. 2483 */ 2484 int64_t bdrv_getlength(BlockDriverState *bs) 2485 { 2486 BlockDriver *drv = bs->drv; 2487 if (!drv) 2488 return -ENOMEDIUM; 2489 2490 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2491 if (drv->bdrv_getlength) { 2492 return drv->bdrv_getlength(bs); 2493 } 2494 } 2495 return bs->total_sectors * BDRV_SECTOR_SIZE; 2496 } 2497 2498 /* return 0 as number of sectors if no device present or error */ 2499 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2500 { 2501 int64_t length; 2502 length = bdrv_getlength(bs); 2503 if (length < 0) 2504 length = 0; 2505 else 2506 length = length >> BDRV_SECTOR_BITS; 2507 *nb_sectors_ptr = length; 2508 } 2509 2510 /* throttling disk io limits */ 2511 void bdrv_set_io_limits(BlockDriverState *bs, 2512 BlockIOLimit *io_limits) 2513 { 2514 bs->io_limits = *io_limits; 2515 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2516 } 2517 2518 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2519 BlockdevOnError on_write_error) 2520 { 2521 bs->on_read_error = on_read_error; 2522 bs->on_write_error = on_write_error; 2523 } 2524 2525 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2526 { 2527 return is_read ? bs->on_read_error : bs->on_write_error; 2528 } 2529 2530 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2531 { 2532 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2533 2534 switch (on_err) { 2535 case BLOCKDEV_ON_ERROR_ENOSPC: 2536 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2537 case BLOCKDEV_ON_ERROR_STOP: 2538 return BDRV_ACTION_STOP; 2539 case BLOCKDEV_ON_ERROR_REPORT: 2540 return BDRV_ACTION_REPORT; 2541 case BLOCKDEV_ON_ERROR_IGNORE: 2542 return BDRV_ACTION_IGNORE; 2543 default: 2544 abort(); 2545 } 2546 } 2547 2548 /* This is done by device models because, while the block layer knows 2549 * about the error, it does not know whether an operation comes from 2550 * the device or the block layer (from a job, for example). 2551 */ 2552 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2553 bool is_read, int error) 2554 { 2555 assert(error >= 0); 2556 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2557 if (action == BDRV_ACTION_STOP) { 2558 vm_stop(RUN_STATE_IO_ERROR); 2559 bdrv_iostatus_set_err(bs, error); 2560 } 2561 } 2562 2563 int bdrv_is_read_only(BlockDriverState *bs) 2564 { 2565 return bs->read_only; 2566 } 2567 2568 int bdrv_is_sg(BlockDriverState *bs) 2569 { 2570 return bs->sg; 2571 } 2572 2573 int bdrv_enable_write_cache(BlockDriverState *bs) 2574 { 2575 return bs->enable_write_cache; 2576 } 2577 2578 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2579 { 2580 bs->enable_write_cache = wce; 2581 2582 /* so a reopen() will preserve wce */ 2583 if (wce) { 2584 bs->open_flags |= BDRV_O_CACHE_WB; 2585 } else { 2586 bs->open_flags &= ~BDRV_O_CACHE_WB; 2587 } 2588 } 2589 2590 int bdrv_is_encrypted(BlockDriverState *bs) 2591 { 2592 if (bs->backing_hd && bs->backing_hd->encrypted) 2593 return 1; 2594 return bs->encrypted; 2595 } 2596 2597 int bdrv_key_required(BlockDriverState *bs) 2598 { 2599 BlockDriverState *backing_hd = bs->backing_hd; 2600 2601 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2602 return 1; 2603 return (bs->encrypted && !bs->valid_key); 2604 } 2605 2606 int bdrv_set_key(BlockDriverState *bs, const char *key) 2607 { 2608 int ret; 2609 if (bs->backing_hd && bs->backing_hd->encrypted) { 2610 ret = bdrv_set_key(bs->backing_hd, key); 2611 if (ret < 0) 2612 return ret; 2613 if (!bs->encrypted) 2614 return 0; 2615 } 2616 if (!bs->encrypted) { 2617 return -EINVAL; 2618 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2619 return -ENOMEDIUM; 2620 } 2621 ret = bs->drv->bdrv_set_key(bs, key); 2622 if (ret < 0) { 2623 bs->valid_key = 0; 2624 } else if (!bs->valid_key) { 2625 bs->valid_key = 1; 2626 /* call the change callback now, we skipped it on open */ 2627 bdrv_dev_change_media_cb(bs, true); 2628 } 2629 return ret; 2630 } 2631 2632 const char *bdrv_get_format_name(BlockDriverState *bs) 2633 { 2634 return bs->drv ? bs->drv->format_name : NULL; 2635 } 2636 2637 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2638 void *opaque) 2639 { 2640 BlockDriver *drv; 2641 2642 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2643 it(opaque, drv->format_name); 2644 } 2645 } 2646 2647 BlockDriverState *bdrv_find(const char *name) 2648 { 2649 BlockDriverState *bs; 2650 2651 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2652 if (!strcmp(name, bs->device_name)) { 2653 return bs; 2654 } 2655 } 2656 return NULL; 2657 } 2658 2659 BlockDriverState *bdrv_next(BlockDriverState *bs) 2660 { 2661 if (!bs) { 2662 return QTAILQ_FIRST(&bdrv_states); 2663 } 2664 return QTAILQ_NEXT(bs, list); 2665 } 2666 2667 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2668 { 2669 BlockDriverState *bs; 2670 2671 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2672 it(opaque, bs); 2673 } 2674 } 2675 2676 const char *bdrv_get_device_name(BlockDriverState *bs) 2677 { 2678 return bs->device_name; 2679 } 2680 2681 int bdrv_get_flags(BlockDriverState *bs) 2682 { 2683 return bs->open_flags; 2684 } 2685 2686 void bdrv_flush_all(void) 2687 { 2688 BlockDriverState *bs; 2689 2690 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2691 bdrv_flush(bs); 2692 } 2693 } 2694 2695 int bdrv_has_zero_init(BlockDriverState *bs) 2696 { 2697 assert(bs->drv); 2698 2699 if (bs->drv->bdrv_has_zero_init) { 2700 return bs->drv->bdrv_has_zero_init(bs); 2701 } 2702 2703 return 1; 2704 } 2705 2706 typedef struct BdrvCoIsAllocatedData { 2707 BlockDriverState *bs; 2708 BlockDriverState *base; 2709 int64_t sector_num; 2710 int nb_sectors; 2711 int *pnum; 2712 int ret; 2713 bool done; 2714 } BdrvCoIsAllocatedData; 2715 2716 /* 2717 * Returns true iff the specified sector is present in the disk image. Drivers 2718 * not implementing the functionality are assumed to not support backing files, 2719 * hence all their sectors are reported as allocated. 2720 * 2721 * If 'sector_num' is beyond the end of the disk image the return value is 0 2722 * and 'pnum' is set to 0. 2723 * 2724 * 'pnum' is set to the number of sectors (including and immediately following 2725 * the specified sector) that are known to be in the same 2726 * allocated/unallocated state. 2727 * 2728 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2729 * beyond the end of the disk image it will be clamped. 2730 */ 2731 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2732 int nb_sectors, int *pnum) 2733 { 2734 int64_t n; 2735 2736 if (sector_num >= bs->total_sectors) { 2737 *pnum = 0; 2738 return 0; 2739 } 2740 2741 n = bs->total_sectors - sector_num; 2742 if (n < nb_sectors) { 2743 nb_sectors = n; 2744 } 2745 2746 if (!bs->drv->bdrv_co_is_allocated) { 2747 *pnum = nb_sectors; 2748 return 1; 2749 } 2750 2751 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2752 } 2753 2754 /* Coroutine wrapper for bdrv_is_allocated() */ 2755 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2756 { 2757 BdrvCoIsAllocatedData *data = opaque; 2758 BlockDriverState *bs = data->bs; 2759 2760 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2761 data->pnum); 2762 data->done = true; 2763 } 2764 2765 /* 2766 * Synchronous wrapper around bdrv_co_is_allocated(). 2767 * 2768 * See bdrv_co_is_allocated() for details. 2769 */ 2770 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2771 int *pnum) 2772 { 2773 Coroutine *co; 2774 BdrvCoIsAllocatedData data = { 2775 .bs = bs, 2776 .sector_num = sector_num, 2777 .nb_sectors = nb_sectors, 2778 .pnum = pnum, 2779 .done = false, 2780 }; 2781 2782 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2783 qemu_coroutine_enter(co, &data); 2784 while (!data.done) { 2785 qemu_aio_wait(); 2786 } 2787 return data.ret; 2788 } 2789 2790 /* 2791 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2792 * 2793 * Return true if the given sector is allocated in any image between 2794 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2795 * sector is allocated in any image of the chain. Return false otherwise. 2796 * 2797 * 'pnum' is set to the number of sectors (including and immediately following 2798 * the specified sector) that are known to be in the same 2799 * allocated/unallocated state. 2800 * 2801 */ 2802 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2803 BlockDriverState *base, 2804 int64_t sector_num, 2805 int nb_sectors, int *pnum) 2806 { 2807 BlockDriverState *intermediate; 2808 int ret, n = nb_sectors; 2809 2810 intermediate = top; 2811 while (intermediate && intermediate != base) { 2812 int pnum_inter; 2813 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2814 &pnum_inter); 2815 if (ret < 0) { 2816 return ret; 2817 } else if (ret) { 2818 *pnum = pnum_inter; 2819 return 1; 2820 } 2821 2822 /* 2823 * [sector_num, nb_sectors] is unallocated on top but intermediate 2824 * might have 2825 * 2826 * [sector_num+x, nr_sectors] allocated. 2827 */ 2828 if (n > pnum_inter && 2829 (intermediate == top || 2830 sector_num + pnum_inter < intermediate->total_sectors)) { 2831 n = pnum_inter; 2832 } 2833 2834 intermediate = intermediate->backing_hd; 2835 } 2836 2837 *pnum = n; 2838 return 0; 2839 } 2840 2841 /* Coroutine wrapper for bdrv_is_allocated_above() */ 2842 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque) 2843 { 2844 BdrvCoIsAllocatedData *data = opaque; 2845 BlockDriverState *top = data->bs; 2846 BlockDriverState *base = data->base; 2847 2848 data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num, 2849 data->nb_sectors, data->pnum); 2850 data->done = true; 2851 } 2852 2853 /* 2854 * Synchronous wrapper around bdrv_co_is_allocated_above(). 2855 * 2856 * See bdrv_co_is_allocated_above() for details. 2857 */ 2858 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base, 2859 int64_t sector_num, int nb_sectors, int *pnum) 2860 { 2861 Coroutine *co; 2862 BdrvCoIsAllocatedData data = { 2863 .bs = top, 2864 .base = base, 2865 .sector_num = sector_num, 2866 .nb_sectors = nb_sectors, 2867 .pnum = pnum, 2868 .done = false, 2869 }; 2870 2871 co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry); 2872 qemu_coroutine_enter(co, &data); 2873 while (!data.done) { 2874 qemu_aio_wait(); 2875 } 2876 return data.ret; 2877 } 2878 2879 BlockInfo *bdrv_query_info(BlockDriverState *bs) 2880 { 2881 BlockInfo *info = g_malloc0(sizeof(*info)); 2882 info->device = g_strdup(bs->device_name); 2883 info->type = g_strdup("unknown"); 2884 info->locked = bdrv_dev_is_medium_locked(bs); 2885 info->removable = bdrv_dev_has_removable_media(bs); 2886 2887 if (bdrv_dev_has_removable_media(bs)) { 2888 info->has_tray_open = true; 2889 info->tray_open = bdrv_dev_is_tray_open(bs); 2890 } 2891 2892 if (bdrv_iostatus_is_enabled(bs)) { 2893 info->has_io_status = true; 2894 info->io_status = bs->iostatus; 2895 } 2896 2897 if (bs->dirty_bitmap) { 2898 info->has_dirty = true; 2899 info->dirty = g_malloc0(sizeof(*info->dirty)); 2900 info->dirty->count = bdrv_get_dirty_count(bs) * BDRV_SECTOR_SIZE; 2901 info->dirty->granularity = 2902 ((int64_t) BDRV_SECTOR_SIZE << hbitmap_granularity(bs->dirty_bitmap)); 2903 } 2904 2905 if (bs->drv) { 2906 info->has_inserted = true; 2907 info->inserted = g_malloc0(sizeof(*info->inserted)); 2908 info->inserted->file = g_strdup(bs->filename); 2909 info->inserted->ro = bs->read_only; 2910 info->inserted->drv = g_strdup(bs->drv->format_name); 2911 info->inserted->encrypted = bs->encrypted; 2912 info->inserted->encryption_key_missing = bdrv_key_required(bs); 2913 2914 if (bs->backing_file[0]) { 2915 info->inserted->has_backing_file = true; 2916 info->inserted->backing_file = g_strdup(bs->backing_file); 2917 } 2918 2919 info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs); 2920 2921 if (bs->io_limits_enabled) { 2922 info->inserted->bps = 2923 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2924 info->inserted->bps_rd = 2925 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2926 info->inserted->bps_wr = 2927 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2928 info->inserted->iops = 2929 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2930 info->inserted->iops_rd = 2931 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2932 info->inserted->iops_wr = 2933 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2934 } 2935 } 2936 return info; 2937 } 2938 2939 BlockInfoList *qmp_query_block(Error **errp) 2940 { 2941 BlockInfoList *head = NULL, **p_next = &head; 2942 BlockDriverState *bs; 2943 2944 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2945 BlockInfoList *info = g_malloc0(sizeof(*info)); 2946 info->value = bdrv_query_info(bs); 2947 2948 *p_next = info; 2949 p_next = &info->next; 2950 } 2951 2952 return head; 2953 } 2954 2955 BlockStats *bdrv_query_stats(const BlockDriverState *bs) 2956 { 2957 BlockStats *s; 2958 2959 s = g_malloc0(sizeof(*s)); 2960 2961 if (bs->device_name[0]) { 2962 s->has_device = true; 2963 s->device = g_strdup(bs->device_name); 2964 } 2965 2966 s->stats = g_malloc0(sizeof(*s->stats)); 2967 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2968 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2969 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2970 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2971 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2972 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2973 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2974 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2975 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2976 2977 if (bs->file) { 2978 s->has_parent = true; 2979 s->parent = bdrv_query_stats(bs->file); 2980 } 2981 2982 return s; 2983 } 2984 2985 BlockStatsList *qmp_query_blockstats(Error **errp) 2986 { 2987 BlockStatsList *head = NULL, **p_next = &head; 2988 BlockDriverState *bs; 2989 2990 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2991 BlockStatsList *info = g_malloc0(sizeof(*info)); 2992 info->value = bdrv_query_stats(bs); 2993 2994 *p_next = info; 2995 p_next = &info->next; 2996 } 2997 2998 return head; 2999 } 3000 3001 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 3002 { 3003 if (bs->backing_hd && bs->backing_hd->encrypted) 3004 return bs->backing_file; 3005 else if (bs->encrypted) 3006 return bs->filename; 3007 else 3008 return NULL; 3009 } 3010 3011 void bdrv_get_backing_filename(BlockDriverState *bs, 3012 char *filename, int filename_size) 3013 { 3014 pstrcpy(filename, filename_size, bs->backing_file); 3015 } 3016 3017 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 3018 const uint8_t *buf, int nb_sectors) 3019 { 3020 BlockDriver *drv = bs->drv; 3021 if (!drv) 3022 return -ENOMEDIUM; 3023 if (!drv->bdrv_write_compressed) 3024 return -ENOTSUP; 3025 if (bdrv_check_request(bs, sector_num, nb_sectors)) 3026 return -EIO; 3027 3028 assert(!bs->dirty_bitmap); 3029 3030 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 3031 } 3032 3033 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 3034 { 3035 BlockDriver *drv = bs->drv; 3036 if (!drv) 3037 return -ENOMEDIUM; 3038 if (!drv->bdrv_get_info) 3039 return -ENOTSUP; 3040 memset(bdi, 0, sizeof(*bdi)); 3041 return drv->bdrv_get_info(bs, bdi); 3042 } 3043 3044 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 3045 int64_t pos, int size) 3046 { 3047 BlockDriver *drv = bs->drv; 3048 if (!drv) 3049 return -ENOMEDIUM; 3050 if (drv->bdrv_save_vmstate) 3051 return drv->bdrv_save_vmstate(bs, buf, pos, size); 3052 if (bs->file) 3053 return bdrv_save_vmstate(bs->file, buf, pos, size); 3054 return -ENOTSUP; 3055 } 3056 3057 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 3058 int64_t pos, int size) 3059 { 3060 BlockDriver *drv = bs->drv; 3061 if (!drv) 3062 return -ENOMEDIUM; 3063 if (drv->bdrv_load_vmstate) 3064 return drv->bdrv_load_vmstate(bs, buf, pos, size); 3065 if (bs->file) 3066 return bdrv_load_vmstate(bs->file, buf, pos, size); 3067 return -ENOTSUP; 3068 } 3069 3070 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 3071 { 3072 BlockDriver *drv = bs->drv; 3073 3074 if (!drv || !drv->bdrv_debug_event) { 3075 return; 3076 } 3077 3078 drv->bdrv_debug_event(bs, event); 3079 } 3080 3081 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event, 3082 const char *tag) 3083 { 3084 while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) { 3085 bs = bs->file; 3086 } 3087 3088 if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) { 3089 return bs->drv->bdrv_debug_breakpoint(bs, event, tag); 3090 } 3091 3092 return -ENOTSUP; 3093 } 3094 3095 int bdrv_debug_resume(BlockDriverState *bs, const char *tag) 3096 { 3097 while (bs && bs->drv && !bs->drv->bdrv_debug_resume) { 3098 bs = bs->file; 3099 } 3100 3101 if (bs && bs->drv && bs->drv->bdrv_debug_resume) { 3102 return bs->drv->bdrv_debug_resume(bs, tag); 3103 } 3104 3105 return -ENOTSUP; 3106 } 3107 3108 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag) 3109 { 3110 while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) { 3111 bs = bs->file; 3112 } 3113 3114 if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) { 3115 return bs->drv->bdrv_debug_is_suspended(bs, tag); 3116 } 3117 3118 return false; 3119 } 3120 3121 /**************************************************************/ 3122 /* handling of snapshots */ 3123 3124 int bdrv_can_snapshot(BlockDriverState *bs) 3125 { 3126 BlockDriver *drv = bs->drv; 3127 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3128 return 0; 3129 } 3130 3131 if (!drv->bdrv_snapshot_create) { 3132 if (bs->file != NULL) { 3133 return bdrv_can_snapshot(bs->file); 3134 } 3135 return 0; 3136 } 3137 3138 return 1; 3139 } 3140 3141 int bdrv_is_snapshot(BlockDriverState *bs) 3142 { 3143 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3144 } 3145 3146 BlockDriverState *bdrv_snapshots(void) 3147 { 3148 BlockDriverState *bs; 3149 3150 if (bs_snapshots) { 3151 return bs_snapshots; 3152 } 3153 3154 bs = NULL; 3155 while ((bs = bdrv_next(bs))) { 3156 if (bdrv_can_snapshot(bs)) { 3157 bs_snapshots = bs; 3158 return bs; 3159 } 3160 } 3161 return NULL; 3162 } 3163 3164 int bdrv_snapshot_create(BlockDriverState *bs, 3165 QEMUSnapshotInfo *sn_info) 3166 { 3167 BlockDriver *drv = bs->drv; 3168 if (!drv) 3169 return -ENOMEDIUM; 3170 if (drv->bdrv_snapshot_create) 3171 return drv->bdrv_snapshot_create(bs, sn_info); 3172 if (bs->file) 3173 return bdrv_snapshot_create(bs->file, sn_info); 3174 return -ENOTSUP; 3175 } 3176 3177 int bdrv_snapshot_goto(BlockDriverState *bs, 3178 const char *snapshot_id) 3179 { 3180 BlockDriver *drv = bs->drv; 3181 int ret, open_ret; 3182 3183 if (!drv) 3184 return -ENOMEDIUM; 3185 if (drv->bdrv_snapshot_goto) 3186 return drv->bdrv_snapshot_goto(bs, snapshot_id); 3187 3188 if (bs->file) { 3189 drv->bdrv_close(bs); 3190 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 3191 open_ret = drv->bdrv_open(bs, bs->open_flags); 3192 if (open_ret < 0) { 3193 bdrv_delete(bs->file); 3194 bs->drv = NULL; 3195 return open_ret; 3196 } 3197 return ret; 3198 } 3199 3200 return -ENOTSUP; 3201 } 3202 3203 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 3204 { 3205 BlockDriver *drv = bs->drv; 3206 if (!drv) 3207 return -ENOMEDIUM; 3208 if (drv->bdrv_snapshot_delete) 3209 return drv->bdrv_snapshot_delete(bs, snapshot_id); 3210 if (bs->file) 3211 return bdrv_snapshot_delete(bs->file, snapshot_id); 3212 return -ENOTSUP; 3213 } 3214 3215 int bdrv_snapshot_list(BlockDriverState *bs, 3216 QEMUSnapshotInfo **psn_info) 3217 { 3218 BlockDriver *drv = bs->drv; 3219 if (!drv) 3220 return -ENOMEDIUM; 3221 if (drv->bdrv_snapshot_list) 3222 return drv->bdrv_snapshot_list(bs, psn_info); 3223 if (bs->file) 3224 return bdrv_snapshot_list(bs->file, psn_info); 3225 return -ENOTSUP; 3226 } 3227 3228 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 3229 const char *snapshot_name) 3230 { 3231 BlockDriver *drv = bs->drv; 3232 if (!drv) { 3233 return -ENOMEDIUM; 3234 } 3235 if (!bs->read_only) { 3236 return -EINVAL; 3237 } 3238 if (drv->bdrv_snapshot_load_tmp) { 3239 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 3240 } 3241 return -ENOTSUP; 3242 } 3243 3244 /* backing_file can either be relative, or absolute, or a protocol. If it is 3245 * relative, it must be relative to the chain. So, passing in bs->filename 3246 * from a BDS as backing_file should not be done, as that may be relative to 3247 * the CWD rather than the chain. */ 3248 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3249 const char *backing_file) 3250 { 3251 char *filename_full = NULL; 3252 char *backing_file_full = NULL; 3253 char *filename_tmp = NULL; 3254 int is_protocol = 0; 3255 BlockDriverState *curr_bs = NULL; 3256 BlockDriverState *retval = NULL; 3257 3258 if (!bs || !bs->drv || !backing_file) { 3259 return NULL; 3260 } 3261 3262 filename_full = g_malloc(PATH_MAX); 3263 backing_file_full = g_malloc(PATH_MAX); 3264 filename_tmp = g_malloc(PATH_MAX); 3265 3266 is_protocol = path_has_protocol(backing_file); 3267 3268 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3269 3270 /* If either of the filename paths is actually a protocol, then 3271 * compare unmodified paths; otherwise make paths relative */ 3272 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3273 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3274 retval = curr_bs->backing_hd; 3275 break; 3276 } 3277 } else { 3278 /* If not an absolute filename path, make it relative to the current 3279 * image's filename path */ 3280 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3281 backing_file); 3282 3283 /* We are going to compare absolute pathnames */ 3284 if (!realpath(filename_tmp, filename_full)) { 3285 continue; 3286 } 3287 3288 /* We need to make sure the backing filename we are comparing against 3289 * is relative to the current image filename (or absolute) */ 3290 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3291 curr_bs->backing_file); 3292 3293 if (!realpath(filename_tmp, backing_file_full)) { 3294 continue; 3295 } 3296 3297 if (strcmp(backing_file_full, filename_full) == 0) { 3298 retval = curr_bs->backing_hd; 3299 break; 3300 } 3301 } 3302 } 3303 3304 g_free(filename_full); 3305 g_free(backing_file_full); 3306 g_free(filename_tmp); 3307 return retval; 3308 } 3309 3310 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3311 { 3312 if (!bs->drv) { 3313 return 0; 3314 } 3315 3316 if (!bs->backing_hd) { 3317 return 0; 3318 } 3319 3320 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3321 } 3322 3323 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3324 { 3325 BlockDriverState *curr_bs = NULL; 3326 3327 if (!bs) { 3328 return NULL; 3329 } 3330 3331 curr_bs = bs; 3332 3333 while (curr_bs->backing_hd) { 3334 curr_bs = curr_bs->backing_hd; 3335 } 3336 return curr_bs; 3337 } 3338 3339 #define NB_SUFFIXES 4 3340 3341 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 3342 { 3343 static const char suffixes[NB_SUFFIXES] = "KMGT"; 3344 int64_t base; 3345 int i; 3346 3347 if (size <= 999) { 3348 snprintf(buf, buf_size, "%" PRId64, size); 3349 } else { 3350 base = 1024; 3351 for(i = 0; i < NB_SUFFIXES; i++) { 3352 if (size < (10 * base)) { 3353 snprintf(buf, buf_size, "%0.1f%c", 3354 (double)size / base, 3355 suffixes[i]); 3356 break; 3357 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3358 snprintf(buf, buf_size, "%" PRId64 "%c", 3359 ((size + (base >> 1)) / base), 3360 suffixes[i]); 3361 break; 3362 } 3363 base = base * 1024; 3364 } 3365 } 3366 return buf; 3367 } 3368 3369 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3370 { 3371 char buf1[128], date_buf[128], clock_buf[128]; 3372 struct tm tm; 3373 time_t ti; 3374 int64_t secs; 3375 3376 if (!sn) { 3377 snprintf(buf, buf_size, 3378 "%-10s%-20s%7s%20s%15s", 3379 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3380 } else { 3381 ti = sn->date_sec; 3382 localtime_r(&ti, &tm); 3383 strftime(date_buf, sizeof(date_buf), 3384 "%Y-%m-%d %H:%M:%S", &tm); 3385 secs = sn->vm_clock_nsec / 1000000000; 3386 snprintf(clock_buf, sizeof(clock_buf), 3387 "%02d:%02d:%02d.%03d", 3388 (int)(secs / 3600), 3389 (int)((secs / 60) % 60), 3390 (int)(secs % 60), 3391 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3392 snprintf(buf, buf_size, 3393 "%-10s%-20s%7s%20s%15s", 3394 sn->id_str, sn->name, 3395 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3396 date_buf, 3397 clock_buf); 3398 } 3399 return buf; 3400 } 3401 3402 /**************************************************************/ 3403 /* async I/Os */ 3404 3405 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3406 QEMUIOVector *qiov, int nb_sectors, 3407 BlockDriverCompletionFunc *cb, void *opaque) 3408 { 3409 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3410 3411 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3412 cb, opaque, false); 3413 } 3414 3415 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3416 QEMUIOVector *qiov, int nb_sectors, 3417 BlockDriverCompletionFunc *cb, void *opaque) 3418 { 3419 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3420 3421 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3422 cb, opaque, true); 3423 } 3424 3425 3426 typedef struct MultiwriteCB { 3427 int error; 3428 int num_requests; 3429 int num_callbacks; 3430 struct { 3431 BlockDriverCompletionFunc *cb; 3432 void *opaque; 3433 QEMUIOVector *free_qiov; 3434 } callbacks[]; 3435 } MultiwriteCB; 3436 3437 static void multiwrite_user_cb(MultiwriteCB *mcb) 3438 { 3439 int i; 3440 3441 for (i = 0; i < mcb->num_callbacks; i++) { 3442 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3443 if (mcb->callbacks[i].free_qiov) { 3444 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3445 } 3446 g_free(mcb->callbacks[i].free_qiov); 3447 } 3448 } 3449 3450 static void multiwrite_cb(void *opaque, int ret) 3451 { 3452 MultiwriteCB *mcb = opaque; 3453 3454 trace_multiwrite_cb(mcb, ret); 3455 3456 if (ret < 0 && !mcb->error) { 3457 mcb->error = ret; 3458 } 3459 3460 mcb->num_requests--; 3461 if (mcb->num_requests == 0) { 3462 multiwrite_user_cb(mcb); 3463 g_free(mcb); 3464 } 3465 } 3466 3467 static int multiwrite_req_compare(const void *a, const void *b) 3468 { 3469 const BlockRequest *req1 = a, *req2 = b; 3470 3471 /* 3472 * Note that we can't simply subtract req2->sector from req1->sector 3473 * here as that could overflow the return value. 3474 */ 3475 if (req1->sector > req2->sector) { 3476 return 1; 3477 } else if (req1->sector < req2->sector) { 3478 return -1; 3479 } else { 3480 return 0; 3481 } 3482 } 3483 3484 /* 3485 * Takes a bunch of requests and tries to merge them. Returns the number of 3486 * requests that remain after merging. 3487 */ 3488 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3489 int num_reqs, MultiwriteCB *mcb) 3490 { 3491 int i, outidx; 3492 3493 // Sort requests by start sector 3494 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3495 3496 // Check if adjacent requests touch the same clusters. If so, combine them, 3497 // filling up gaps with zero sectors. 3498 outidx = 0; 3499 for (i = 1; i < num_reqs; i++) { 3500 int merge = 0; 3501 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3502 3503 // Handle exactly sequential writes and overlapping writes. 3504 if (reqs[i].sector <= oldreq_last) { 3505 merge = 1; 3506 } 3507 3508 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3509 merge = 0; 3510 } 3511 3512 if (merge) { 3513 size_t size; 3514 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3515 qemu_iovec_init(qiov, 3516 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3517 3518 // Add the first request to the merged one. If the requests are 3519 // overlapping, drop the last sectors of the first request. 3520 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3521 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3522 3523 // We should need to add any zeros between the two requests 3524 assert (reqs[i].sector <= oldreq_last); 3525 3526 // Add the second request 3527 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3528 3529 reqs[outidx].nb_sectors = qiov->size >> 9; 3530 reqs[outidx].qiov = qiov; 3531 3532 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3533 } else { 3534 outidx++; 3535 reqs[outidx].sector = reqs[i].sector; 3536 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3537 reqs[outidx].qiov = reqs[i].qiov; 3538 } 3539 } 3540 3541 return outidx + 1; 3542 } 3543 3544 /* 3545 * Submit multiple AIO write requests at once. 3546 * 3547 * On success, the function returns 0 and all requests in the reqs array have 3548 * been submitted. In error case this function returns -1, and any of the 3549 * requests may or may not be submitted yet. In particular, this means that the 3550 * callback will be called for some of the requests, for others it won't. The 3551 * caller must check the error field of the BlockRequest to wait for the right 3552 * callbacks (if error != 0, no callback will be called). 3553 * 3554 * The implementation may modify the contents of the reqs array, e.g. to merge 3555 * requests. However, the fields opaque and error are left unmodified as they 3556 * are used to signal failure for a single request to the caller. 3557 */ 3558 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3559 { 3560 MultiwriteCB *mcb; 3561 int i; 3562 3563 /* don't submit writes if we don't have a medium */ 3564 if (bs->drv == NULL) { 3565 for (i = 0; i < num_reqs; i++) { 3566 reqs[i].error = -ENOMEDIUM; 3567 } 3568 return -1; 3569 } 3570 3571 if (num_reqs == 0) { 3572 return 0; 3573 } 3574 3575 // Create MultiwriteCB structure 3576 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3577 mcb->num_requests = 0; 3578 mcb->num_callbacks = num_reqs; 3579 3580 for (i = 0; i < num_reqs; i++) { 3581 mcb->callbacks[i].cb = reqs[i].cb; 3582 mcb->callbacks[i].opaque = reqs[i].opaque; 3583 } 3584 3585 // Check for mergable requests 3586 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3587 3588 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3589 3590 /* Run the aio requests. */ 3591 mcb->num_requests = num_reqs; 3592 for (i = 0; i < num_reqs; i++) { 3593 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3594 reqs[i].nb_sectors, multiwrite_cb, mcb); 3595 } 3596 3597 return 0; 3598 } 3599 3600 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3601 { 3602 acb->aiocb_info->cancel(acb); 3603 } 3604 3605 /* block I/O throttling */ 3606 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3607 bool is_write, double elapsed_time, uint64_t *wait) 3608 { 3609 uint64_t bps_limit = 0; 3610 double bytes_limit, bytes_base, bytes_res; 3611 double slice_time, wait_time; 3612 3613 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3614 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3615 } else if (bs->io_limits.bps[is_write]) { 3616 bps_limit = bs->io_limits.bps[is_write]; 3617 } else { 3618 if (wait) { 3619 *wait = 0; 3620 } 3621 3622 return false; 3623 } 3624 3625 slice_time = bs->slice_end - bs->slice_start; 3626 slice_time /= (NANOSECONDS_PER_SECOND); 3627 bytes_limit = bps_limit * slice_time; 3628 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3629 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3630 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3631 } 3632 3633 /* bytes_base: the bytes of data which have been read/written; and 3634 * it is obtained from the history statistic info. 3635 * bytes_res: the remaining bytes of data which need to be read/written. 3636 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3637 * the total time for completing reading/writting all data. 3638 */ 3639 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3640 3641 if (bytes_base + bytes_res <= bytes_limit) { 3642 if (wait) { 3643 *wait = 0; 3644 } 3645 3646 return false; 3647 } 3648 3649 /* Calc approx time to dispatch */ 3650 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3651 3652 /* When the I/O rate at runtime exceeds the limits, 3653 * bs->slice_end need to be extended in order that the current statistic 3654 * info can be kept until the timer fire, so it is increased and tuned 3655 * based on the result of experiment. 3656 */ 3657 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3658 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3659 if (wait) { 3660 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3661 } 3662 3663 return true; 3664 } 3665 3666 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3667 double elapsed_time, uint64_t *wait) 3668 { 3669 uint64_t iops_limit = 0; 3670 double ios_limit, ios_base; 3671 double slice_time, wait_time; 3672 3673 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3674 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3675 } else if (bs->io_limits.iops[is_write]) { 3676 iops_limit = bs->io_limits.iops[is_write]; 3677 } else { 3678 if (wait) { 3679 *wait = 0; 3680 } 3681 3682 return false; 3683 } 3684 3685 slice_time = bs->slice_end - bs->slice_start; 3686 slice_time /= (NANOSECONDS_PER_SECOND); 3687 ios_limit = iops_limit * slice_time; 3688 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3689 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3690 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3691 } 3692 3693 if (ios_base + 1 <= ios_limit) { 3694 if (wait) { 3695 *wait = 0; 3696 } 3697 3698 return false; 3699 } 3700 3701 /* Calc approx time to dispatch */ 3702 wait_time = (ios_base + 1) / iops_limit; 3703 if (wait_time > elapsed_time) { 3704 wait_time = wait_time - elapsed_time; 3705 } else { 3706 wait_time = 0; 3707 } 3708 3709 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3710 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3711 if (wait) { 3712 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3713 } 3714 3715 return true; 3716 } 3717 3718 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3719 bool is_write, int64_t *wait) 3720 { 3721 int64_t now, max_wait; 3722 uint64_t bps_wait = 0, iops_wait = 0; 3723 double elapsed_time; 3724 int bps_ret, iops_ret; 3725 3726 now = qemu_get_clock_ns(vm_clock); 3727 if ((bs->slice_start < now) 3728 && (bs->slice_end > now)) { 3729 bs->slice_end = now + bs->slice_time; 3730 } else { 3731 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3732 bs->slice_start = now; 3733 bs->slice_end = now + bs->slice_time; 3734 3735 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3736 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3737 3738 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3739 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3740 } 3741 3742 elapsed_time = now - bs->slice_start; 3743 elapsed_time /= (NANOSECONDS_PER_SECOND); 3744 3745 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3746 is_write, elapsed_time, &bps_wait); 3747 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3748 elapsed_time, &iops_wait); 3749 if (bps_ret || iops_ret) { 3750 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3751 if (wait) { 3752 *wait = max_wait; 3753 } 3754 3755 now = qemu_get_clock_ns(vm_clock); 3756 if (bs->slice_end < now + max_wait) { 3757 bs->slice_end = now + max_wait; 3758 } 3759 3760 return true; 3761 } 3762 3763 if (wait) { 3764 *wait = 0; 3765 } 3766 3767 return false; 3768 } 3769 3770 /**************************************************************/ 3771 /* async block device emulation */ 3772 3773 typedef struct BlockDriverAIOCBSync { 3774 BlockDriverAIOCB common; 3775 QEMUBH *bh; 3776 int ret; 3777 /* vector translation state */ 3778 QEMUIOVector *qiov; 3779 uint8_t *bounce; 3780 int is_write; 3781 } BlockDriverAIOCBSync; 3782 3783 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3784 { 3785 BlockDriverAIOCBSync *acb = 3786 container_of(blockacb, BlockDriverAIOCBSync, common); 3787 qemu_bh_delete(acb->bh); 3788 acb->bh = NULL; 3789 qemu_aio_release(acb); 3790 } 3791 3792 static const AIOCBInfo bdrv_em_aiocb_info = { 3793 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3794 .cancel = bdrv_aio_cancel_em, 3795 }; 3796 3797 static void bdrv_aio_bh_cb(void *opaque) 3798 { 3799 BlockDriverAIOCBSync *acb = opaque; 3800 3801 if (!acb->is_write) 3802 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3803 qemu_vfree(acb->bounce); 3804 acb->common.cb(acb->common.opaque, acb->ret); 3805 qemu_bh_delete(acb->bh); 3806 acb->bh = NULL; 3807 qemu_aio_release(acb); 3808 } 3809 3810 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3811 int64_t sector_num, 3812 QEMUIOVector *qiov, 3813 int nb_sectors, 3814 BlockDriverCompletionFunc *cb, 3815 void *opaque, 3816 int is_write) 3817 3818 { 3819 BlockDriverAIOCBSync *acb; 3820 3821 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque); 3822 acb->is_write = is_write; 3823 acb->qiov = qiov; 3824 acb->bounce = qemu_blockalign(bs, qiov->size); 3825 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3826 3827 if (is_write) { 3828 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3829 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3830 } else { 3831 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3832 } 3833 3834 qemu_bh_schedule(acb->bh); 3835 3836 return &acb->common; 3837 } 3838 3839 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3840 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3841 BlockDriverCompletionFunc *cb, void *opaque) 3842 { 3843 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3844 } 3845 3846 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3847 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3848 BlockDriverCompletionFunc *cb, void *opaque) 3849 { 3850 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3851 } 3852 3853 3854 typedef struct BlockDriverAIOCBCoroutine { 3855 BlockDriverAIOCB common; 3856 BlockRequest req; 3857 bool is_write; 3858 bool *done; 3859 QEMUBH* bh; 3860 } BlockDriverAIOCBCoroutine; 3861 3862 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3863 { 3864 BlockDriverAIOCBCoroutine *acb = 3865 container_of(blockacb, BlockDriverAIOCBCoroutine, common); 3866 bool done = false; 3867 3868 acb->done = &done; 3869 while (!done) { 3870 qemu_aio_wait(); 3871 } 3872 } 3873 3874 static const AIOCBInfo bdrv_em_co_aiocb_info = { 3875 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3876 .cancel = bdrv_aio_co_cancel_em, 3877 }; 3878 3879 static void bdrv_co_em_bh(void *opaque) 3880 { 3881 BlockDriverAIOCBCoroutine *acb = opaque; 3882 3883 acb->common.cb(acb->common.opaque, acb->req.error); 3884 3885 if (acb->done) { 3886 *acb->done = true; 3887 } 3888 3889 qemu_bh_delete(acb->bh); 3890 qemu_aio_release(acb); 3891 } 3892 3893 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3894 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3895 { 3896 BlockDriverAIOCBCoroutine *acb = opaque; 3897 BlockDriverState *bs = acb->common.bs; 3898 3899 if (!acb->is_write) { 3900 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3901 acb->req.nb_sectors, acb->req.qiov, 0); 3902 } else { 3903 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3904 acb->req.nb_sectors, acb->req.qiov, 0); 3905 } 3906 3907 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3908 qemu_bh_schedule(acb->bh); 3909 } 3910 3911 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3912 int64_t sector_num, 3913 QEMUIOVector *qiov, 3914 int nb_sectors, 3915 BlockDriverCompletionFunc *cb, 3916 void *opaque, 3917 bool is_write) 3918 { 3919 Coroutine *co; 3920 BlockDriverAIOCBCoroutine *acb; 3921 3922 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3923 acb->req.sector = sector_num; 3924 acb->req.nb_sectors = nb_sectors; 3925 acb->req.qiov = qiov; 3926 acb->is_write = is_write; 3927 acb->done = NULL; 3928 3929 co = qemu_coroutine_create(bdrv_co_do_rw); 3930 qemu_coroutine_enter(co, acb); 3931 3932 return &acb->common; 3933 } 3934 3935 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3936 { 3937 BlockDriverAIOCBCoroutine *acb = opaque; 3938 BlockDriverState *bs = acb->common.bs; 3939 3940 acb->req.error = bdrv_co_flush(bs); 3941 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3942 qemu_bh_schedule(acb->bh); 3943 } 3944 3945 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3946 BlockDriverCompletionFunc *cb, void *opaque) 3947 { 3948 trace_bdrv_aio_flush(bs, opaque); 3949 3950 Coroutine *co; 3951 BlockDriverAIOCBCoroutine *acb; 3952 3953 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3954 acb->done = NULL; 3955 3956 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3957 qemu_coroutine_enter(co, acb); 3958 3959 return &acb->common; 3960 } 3961 3962 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3963 { 3964 BlockDriverAIOCBCoroutine *acb = opaque; 3965 BlockDriverState *bs = acb->common.bs; 3966 3967 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3968 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3969 qemu_bh_schedule(acb->bh); 3970 } 3971 3972 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3973 int64_t sector_num, int nb_sectors, 3974 BlockDriverCompletionFunc *cb, void *opaque) 3975 { 3976 Coroutine *co; 3977 BlockDriverAIOCBCoroutine *acb; 3978 3979 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3980 3981 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); 3982 acb->req.sector = sector_num; 3983 acb->req.nb_sectors = nb_sectors; 3984 acb->done = NULL; 3985 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3986 qemu_coroutine_enter(co, acb); 3987 3988 return &acb->common; 3989 } 3990 3991 void bdrv_init(void) 3992 { 3993 module_call_init(MODULE_INIT_BLOCK); 3994 } 3995 3996 void bdrv_init_with_whitelist(void) 3997 { 3998 use_bdrv_whitelist = 1; 3999 bdrv_init(); 4000 } 4001 4002 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, 4003 BlockDriverCompletionFunc *cb, void *opaque) 4004 { 4005 BlockDriverAIOCB *acb; 4006 4007 acb = g_slice_alloc(aiocb_info->aiocb_size); 4008 acb->aiocb_info = aiocb_info; 4009 acb->bs = bs; 4010 acb->cb = cb; 4011 acb->opaque = opaque; 4012 return acb; 4013 } 4014 4015 void qemu_aio_release(void *p) 4016 { 4017 BlockDriverAIOCB *acb = p; 4018 g_slice_free1(acb->aiocb_info->aiocb_size, acb); 4019 } 4020 4021 /**************************************************************/ 4022 /* Coroutine block device emulation */ 4023 4024 typedef struct CoroutineIOCompletion { 4025 Coroutine *coroutine; 4026 int ret; 4027 } CoroutineIOCompletion; 4028 4029 static void bdrv_co_io_em_complete(void *opaque, int ret) 4030 { 4031 CoroutineIOCompletion *co = opaque; 4032 4033 co->ret = ret; 4034 qemu_coroutine_enter(co->coroutine, NULL); 4035 } 4036 4037 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 4038 int nb_sectors, QEMUIOVector *iov, 4039 bool is_write) 4040 { 4041 CoroutineIOCompletion co = { 4042 .coroutine = qemu_coroutine_self(), 4043 }; 4044 BlockDriverAIOCB *acb; 4045 4046 if (is_write) { 4047 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 4048 bdrv_co_io_em_complete, &co); 4049 } else { 4050 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 4051 bdrv_co_io_em_complete, &co); 4052 } 4053 4054 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 4055 if (!acb) { 4056 return -EIO; 4057 } 4058 qemu_coroutine_yield(); 4059 4060 return co.ret; 4061 } 4062 4063 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 4064 int64_t sector_num, int nb_sectors, 4065 QEMUIOVector *iov) 4066 { 4067 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 4068 } 4069 4070 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 4071 int64_t sector_num, int nb_sectors, 4072 QEMUIOVector *iov) 4073 { 4074 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 4075 } 4076 4077 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 4078 { 4079 RwCo *rwco = opaque; 4080 4081 rwco->ret = bdrv_co_flush(rwco->bs); 4082 } 4083 4084 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 4085 { 4086 int ret; 4087 4088 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 4089 return 0; 4090 } 4091 4092 /* Write back cached data to the OS even with cache=unsafe */ 4093 if (bs->drv->bdrv_co_flush_to_os) { 4094 ret = bs->drv->bdrv_co_flush_to_os(bs); 4095 if (ret < 0) { 4096 return ret; 4097 } 4098 } 4099 4100 /* But don't actually force it to the disk with cache=unsafe */ 4101 if (bs->open_flags & BDRV_O_NO_FLUSH) { 4102 goto flush_parent; 4103 } 4104 4105 if (bs->drv->bdrv_co_flush_to_disk) { 4106 ret = bs->drv->bdrv_co_flush_to_disk(bs); 4107 } else if (bs->drv->bdrv_aio_flush) { 4108 BlockDriverAIOCB *acb; 4109 CoroutineIOCompletion co = { 4110 .coroutine = qemu_coroutine_self(), 4111 }; 4112 4113 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 4114 if (acb == NULL) { 4115 ret = -EIO; 4116 } else { 4117 qemu_coroutine_yield(); 4118 ret = co.ret; 4119 } 4120 } else { 4121 /* 4122 * Some block drivers always operate in either writethrough or unsafe 4123 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4124 * know how the server works (because the behaviour is hardcoded or 4125 * depends on server-side configuration), so we can't ensure that 4126 * everything is safe on disk. Returning an error doesn't work because 4127 * that would break guests even if the server operates in writethrough 4128 * mode. 4129 * 4130 * Let's hope the user knows what he's doing. 4131 */ 4132 ret = 0; 4133 } 4134 if (ret < 0) { 4135 return ret; 4136 } 4137 4138 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4139 * in the case of cache=unsafe, so there are no useless flushes. 4140 */ 4141 flush_parent: 4142 return bdrv_co_flush(bs->file); 4143 } 4144 4145 void bdrv_invalidate_cache(BlockDriverState *bs) 4146 { 4147 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4148 bs->drv->bdrv_invalidate_cache(bs); 4149 } 4150 } 4151 4152 void bdrv_invalidate_cache_all(void) 4153 { 4154 BlockDriverState *bs; 4155 4156 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4157 bdrv_invalidate_cache(bs); 4158 } 4159 } 4160 4161 void bdrv_clear_incoming_migration_all(void) 4162 { 4163 BlockDriverState *bs; 4164 4165 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4166 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4167 } 4168 } 4169 4170 int bdrv_flush(BlockDriverState *bs) 4171 { 4172 Coroutine *co; 4173 RwCo rwco = { 4174 .bs = bs, 4175 .ret = NOT_DONE, 4176 }; 4177 4178 if (qemu_in_coroutine()) { 4179 /* Fast-path if already in coroutine context */ 4180 bdrv_flush_co_entry(&rwco); 4181 } else { 4182 co = qemu_coroutine_create(bdrv_flush_co_entry); 4183 qemu_coroutine_enter(co, &rwco); 4184 while (rwco.ret == NOT_DONE) { 4185 qemu_aio_wait(); 4186 } 4187 } 4188 4189 return rwco.ret; 4190 } 4191 4192 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4193 { 4194 RwCo *rwco = opaque; 4195 4196 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4197 } 4198 4199 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4200 int nb_sectors) 4201 { 4202 if (!bs->drv) { 4203 return -ENOMEDIUM; 4204 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4205 return -EIO; 4206 } else if (bs->read_only) { 4207 return -EROFS; 4208 } 4209 4210 if (bs->dirty_bitmap) { 4211 bdrv_reset_dirty(bs, sector_num, nb_sectors); 4212 } 4213 4214 /* Do nothing if disabled. */ 4215 if (!(bs->open_flags & BDRV_O_UNMAP)) { 4216 return 0; 4217 } 4218 4219 if (bs->drv->bdrv_co_discard) { 4220 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4221 } else if (bs->drv->bdrv_aio_discard) { 4222 BlockDriverAIOCB *acb; 4223 CoroutineIOCompletion co = { 4224 .coroutine = qemu_coroutine_self(), 4225 }; 4226 4227 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4228 bdrv_co_io_em_complete, &co); 4229 if (acb == NULL) { 4230 return -EIO; 4231 } else { 4232 qemu_coroutine_yield(); 4233 return co.ret; 4234 } 4235 } else { 4236 return 0; 4237 } 4238 } 4239 4240 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4241 { 4242 Coroutine *co; 4243 RwCo rwco = { 4244 .bs = bs, 4245 .sector_num = sector_num, 4246 .nb_sectors = nb_sectors, 4247 .ret = NOT_DONE, 4248 }; 4249 4250 if (qemu_in_coroutine()) { 4251 /* Fast-path if already in coroutine context */ 4252 bdrv_discard_co_entry(&rwco); 4253 } else { 4254 co = qemu_coroutine_create(bdrv_discard_co_entry); 4255 qemu_coroutine_enter(co, &rwco); 4256 while (rwco.ret == NOT_DONE) { 4257 qemu_aio_wait(); 4258 } 4259 } 4260 4261 return rwco.ret; 4262 } 4263 4264 /**************************************************************/ 4265 /* removable device support */ 4266 4267 /** 4268 * Return TRUE if the media is present 4269 */ 4270 int bdrv_is_inserted(BlockDriverState *bs) 4271 { 4272 BlockDriver *drv = bs->drv; 4273 4274 if (!drv) 4275 return 0; 4276 if (!drv->bdrv_is_inserted) 4277 return 1; 4278 return drv->bdrv_is_inserted(bs); 4279 } 4280 4281 /** 4282 * Return whether the media changed since the last call to this 4283 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4284 */ 4285 int bdrv_media_changed(BlockDriverState *bs) 4286 { 4287 BlockDriver *drv = bs->drv; 4288 4289 if (drv && drv->bdrv_media_changed) { 4290 return drv->bdrv_media_changed(bs); 4291 } 4292 return -ENOTSUP; 4293 } 4294 4295 /** 4296 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4297 */ 4298 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4299 { 4300 BlockDriver *drv = bs->drv; 4301 4302 if (drv && drv->bdrv_eject) { 4303 drv->bdrv_eject(bs, eject_flag); 4304 } 4305 4306 if (bs->device_name[0] != '\0') { 4307 bdrv_emit_qmp_eject_event(bs, eject_flag); 4308 } 4309 } 4310 4311 /** 4312 * Lock or unlock the media (if it is locked, the user won't be able 4313 * to eject it manually). 4314 */ 4315 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4316 { 4317 BlockDriver *drv = bs->drv; 4318 4319 trace_bdrv_lock_medium(bs, locked); 4320 4321 if (drv && drv->bdrv_lock_medium) { 4322 drv->bdrv_lock_medium(bs, locked); 4323 } 4324 } 4325 4326 /* needed for generic scsi interface */ 4327 4328 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4329 { 4330 BlockDriver *drv = bs->drv; 4331 4332 if (drv && drv->bdrv_ioctl) 4333 return drv->bdrv_ioctl(bs, req, buf); 4334 return -ENOTSUP; 4335 } 4336 4337 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4338 unsigned long int req, void *buf, 4339 BlockDriverCompletionFunc *cb, void *opaque) 4340 { 4341 BlockDriver *drv = bs->drv; 4342 4343 if (drv && drv->bdrv_aio_ioctl) 4344 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4345 return NULL; 4346 } 4347 4348 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4349 { 4350 bs->buffer_alignment = align; 4351 } 4352 4353 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4354 { 4355 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4356 } 4357 4358 /* 4359 * Check if all memory in this vector is sector aligned. 4360 */ 4361 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) 4362 { 4363 int i; 4364 4365 for (i = 0; i < qiov->niov; i++) { 4366 if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) { 4367 return false; 4368 } 4369 } 4370 4371 return true; 4372 } 4373 4374 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity) 4375 { 4376 int64_t bitmap_size; 4377 4378 assert((granularity & (granularity - 1)) == 0); 4379 4380 if (granularity) { 4381 granularity >>= BDRV_SECTOR_BITS; 4382 assert(!bs->dirty_bitmap); 4383 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS); 4384 bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1); 4385 } else { 4386 if (bs->dirty_bitmap) { 4387 hbitmap_free(bs->dirty_bitmap); 4388 bs->dirty_bitmap = NULL; 4389 } 4390 } 4391 } 4392 4393 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4394 { 4395 if (bs->dirty_bitmap) { 4396 return hbitmap_get(bs->dirty_bitmap, sector); 4397 } else { 4398 return 0; 4399 } 4400 } 4401 4402 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi) 4403 { 4404 hbitmap_iter_init(hbi, bs->dirty_bitmap, 0); 4405 } 4406 4407 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector, 4408 int nr_sectors) 4409 { 4410 hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors); 4411 } 4412 4413 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4414 int nr_sectors) 4415 { 4416 hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors); 4417 } 4418 4419 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4420 { 4421 if (bs->dirty_bitmap) { 4422 return hbitmap_count(bs->dirty_bitmap); 4423 } else { 4424 return 0; 4425 } 4426 } 4427 4428 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4429 { 4430 assert(bs->in_use != in_use); 4431 bs->in_use = in_use; 4432 } 4433 4434 int bdrv_in_use(BlockDriverState *bs) 4435 { 4436 return bs->in_use; 4437 } 4438 4439 void bdrv_iostatus_enable(BlockDriverState *bs) 4440 { 4441 bs->iostatus_enabled = true; 4442 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4443 } 4444 4445 /* The I/O status is only enabled if the drive explicitly 4446 * enables it _and_ the VM is configured to stop on errors */ 4447 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4448 { 4449 return (bs->iostatus_enabled && 4450 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4451 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4452 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4453 } 4454 4455 void bdrv_iostatus_disable(BlockDriverState *bs) 4456 { 4457 bs->iostatus_enabled = false; 4458 } 4459 4460 void bdrv_iostatus_reset(BlockDriverState *bs) 4461 { 4462 if (bdrv_iostatus_is_enabled(bs)) { 4463 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4464 if (bs->job) { 4465 block_job_iostatus_reset(bs->job); 4466 } 4467 } 4468 } 4469 4470 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4471 { 4472 assert(bdrv_iostatus_is_enabled(bs)); 4473 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4474 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4475 BLOCK_DEVICE_IO_STATUS_FAILED; 4476 } 4477 } 4478 4479 void 4480 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4481 enum BlockAcctType type) 4482 { 4483 assert(type < BDRV_MAX_IOTYPE); 4484 4485 cookie->bytes = bytes; 4486 cookie->start_time_ns = get_clock(); 4487 cookie->type = type; 4488 } 4489 4490 void 4491 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4492 { 4493 assert(cookie->type < BDRV_MAX_IOTYPE); 4494 4495 bs->nr_bytes[cookie->type] += cookie->bytes; 4496 bs->nr_ops[cookie->type]++; 4497 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4498 } 4499 4500 void bdrv_img_create(const char *filename, const char *fmt, 4501 const char *base_filename, const char *base_fmt, 4502 char *options, uint64_t img_size, int flags, 4503 Error **errp, bool quiet) 4504 { 4505 QEMUOptionParameter *param = NULL, *create_options = NULL; 4506 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4507 BlockDriverState *bs = NULL; 4508 BlockDriver *drv, *proto_drv; 4509 BlockDriver *backing_drv = NULL; 4510 int ret = 0; 4511 4512 /* Find driver and parse its options */ 4513 drv = bdrv_find_format(fmt); 4514 if (!drv) { 4515 error_setg(errp, "Unknown file format '%s'", fmt); 4516 return; 4517 } 4518 4519 proto_drv = bdrv_find_protocol(filename); 4520 if (!proto_drv) { 4521 error_setg(errp, "Unknown protocol '%s'", filename); 4522 return; 4523 } 4524 4525 create_options = append_option_parameters(create_options, 4526 drv->create_options); 4527 create_options = append_option_parameters(create_options, 4528 proto_drv->create_options); 4529 4530 /* Create parameter list with default values */ 4531 param = parse_option_parameters("", create_options, param); 4532 4533 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4534 4535 /* Parse -o options */ 4536 if (options) { 4537 param = parse_option_parameters(options, create_options, param); 4538 if (param == NULL) { 4539 error_setg(errp, "Invalid options for file format '%s'.", fmt); 4540 goto out; 4541 } 4542 } 4543 4544 if (base_filename) { 4545 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4546 base_filename)) { 4547 error_setg(errp, "Backing file not supported for file format '%s'", 4548 fmt); 4549 goto out; 4550 } 4551 } 4552 4553 if (base_fmt) { 4554 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4555 error_setg(errp, "Backing file format not supported for file " 4556 "format '%s'", fmt); 4557 goto out; 4558 } 4559 } 4560 4561 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4562 if (backing_file && backing_file->value.s) { 4563 if (!strcmp(filename, backing_file->value.s)) { 4564 error_setg(errp, "Error: Trying to create an image with the " 4565 "same filename as the backing file"); 4566 goto out; 4567 } 4568 } 4569 4570 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4571 if (backing_fmt && backing_fmt->value.s) { 4572 backing_drv = bdrv_find_format(backing_fmt->value.s); 4573 if (!backing_drv) { 4574 error_setg(errp, "Unknown backing file format '%s'", 4575 backing_fmt->value.s); 4576 goto out; 4577 } 4578 } 4579 4580 // The size for the image must always be specified, with one exception: 4581 // If we are using a backing file, we can obtain the size from there 4582 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4583 if (size && size->value.n == -1) { 4584 if (backing_file && backing_file->value.s) { 4585 uint64_t size; 4586 char buf[32]; 4587 int back_flags; 4588 4589 /* backing files always opened read-only */ 4590 back_flags = 4591 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4592 4593 bs = bdrv_new(""); 4594 4595 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4596 if (ret < 0) { 4597 error_setg_errno(errp, -ret, "Could not open '%s'", 4598 backing_file->value.s); 4599 goto out; 4600 } 4601 bdrv_get_geometry(bs, &size); 4602 size *= 512; 4603 4604 snprintf(buf, sizeof(buf), "%" PRId64, size); 4605 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4606 } else { 4607 error_setg(errp, "Image creation needs a size parameter"); 4608 goto out; 4609 } 4610 } 4611 4612 if (!quiet) { 4613 printf("Formatting '%s', fmt=%s ", filename, fmt); 4614 print_option_parameters(param); 4615 puts(""); 4616 } 4617 ret = bdrv_create(drv, filename, param); 4618 if (ret < 0) { 4619 if (ret == -ENOTSUP) { 4620 error_setg(errp,"Formatting or formatting option not supported for " 4621 "file format '%s'", fmt); 4622 } else if (ret == -EFBIG) { 4623 error_setg(errp, "The image size is too large for file format '%s'", 4624 fmt); 4625 } else { 4626 error_setg(errp, "%s: error while creating %s: %s", filename, fmt, 4627 strerror(-ret)); 4628 } 4629 } 4630 4631 out: 4632 free_option_parameters(create_options); 4633 free_option_parameters(param); 4634 4635 if (bs) { 4636 bdrv_delete(bs); 4637 } 4638 } 4639