1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor.h" 28 #include "block_int.h" 29 #include "module.h" 30 #include "qjson.h" 31 #include "qemu-coroutine.h" 32 #include "qmp-commands.h" 33 #include "qemu-timer.h" 34 35 #ifdef CONFIG_BSD 36 #include <sys/types.h> 37 #include <sys/stat.h> 38 #include <sys/ioctl.h> 39 #include <sys/queue.h> 40 #ifndef __DragonFly__ 41 #include <sys/disk.h> 42 #endif 43 #endif 44 45 #ifdef _WIN32 46 #include <windows.h> 47 #endif 48 49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 50 51 typedef enum { 52 BDRV_REQ_COPY_ON_READ = 0x1, 53 BDRV_REQ_ZERO_WRITE = 0x2, 54 } BdrvRequestFlags; 55 56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 58 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 59 BlockDriverCompletionFunc *cb, void *opaque); 60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 61 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 62 BlockDriverCompletionFunc *cb, void *opaque); 63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 64 int64_t sector_num, int nb_sectors, 65 QEMUIOVector *iov); 66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 67 int64_t sector_num, int nb_sectors, 68 QEMUIOVector *iov); 69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 70 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 71 BdrvRequestFlags flags); 72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 73 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 74 BdrvRequestFlags flags); 75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 76 int64_t sector_num, 77 QEMUIOVector *qiov, 78 int nb_sectors, 79 BlockDriverCompletionFunc *cb, 80 void *opaque, 81 bool is_write); 82 static void coroutine_fn bdrv_co_do_rw(void *opaque); 83 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 84 int64_t sector_num, int nb_sectors); 85 86 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 87 bool is_write, double elapsed_time, uint64_t *wait); 88 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 89 double elapsed_time, uint64_t *wait); 90 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 91 bool is_write, int64_t *wait); 92 93 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 94 QTAILQ_HEAD_INITIALIZER(bdrv_states); 95 96 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 97 QLIST_HEAD_INITIALIZER(bdrv_drivers); 98 99 /* The device to use for VM snapshots */ 100 static BlockDriverState *bs_snapshots; 101 102 /* If non-zero, use only whitelisted block drivers */ 103 static int use_bdrv_whitelist; 104 105 #ifdef _WIN32 106 static int is_windows_drive_prefix(const char *filename) 107 { 108 return (((filename[0] >= 'a' && filename[0] <= 'z') || 109 (filename[0] >= 'A' && filename[0] <= 'Z')) && 110 filename[1] == ':'); 111 } 112 113 int is_windows_drive(const char *filename) 114 { 115 if (is_windows_drive_prefix(filename) && 116 filename[2] == '\0') 117 return 1; 118 if (strstart(filename, "\\\\.\\", NULL) || 119 strstart(filename, "//./", NULL)) 120 return 1; 121 return 0; 122 } 123 #endif 124 125 /* throttling disk I/O limits */ 126 void bdrv_io_limits_disable(BlockDriverState *bs) 127 { 128 bs->io_limits_enabled = false; 129 130 while (qemu_co_queue_next(&bs->throttled_reqs)); 131 132 if (bs->block_timer) { 133 qemu_del_timer(bs->block_timer); 134 qemu_free_timer(bs->block_timer); 135 bs->block_timer = NULL; 136 } 137 138 bs->slice_start = 0; 139 bs->slice_end = 0; 140 bs->slice_time = 0; 141 memset(&bs->io_base, 0, sizeof(bs->io_base)); 142 } 143 144 static void bdrv_block_timer(void *opaque) 145 { 146 BlockDriverState *bs = opaque; 147 148 qemu_co_queue_next(&bs->throttled_reqs); 149 } 150 151 void bdrv_io_limits_enable(BlockDriverState *bs) 152 { 153 qemu_co_queue_init(&bs->throttled_reqs); 154 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 155 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 156 bs->slice_start = qemu_get_clock_ns(vm_clock); 157 bs->slice_end = bs->slice_start + bs->slice_time; 158 memset(&bs->io_base, 0, sizeof(bs->io_base)); 159 bs->io_limits_enabled = true; 160 } 161 162 bool bdrv_io_limits_enabled(BlockDriverState *bs) 163 { 164 BlockIOLimit *io_limits = &bs->io_limits; 165 return io_limits->bps[BLOCK_IO_LIMIT_READ] 166 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 167 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 168 || io_limits->iops[BLOCK_IO_LIMIT_READ] 169 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 170 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 171 } 172 173 static void bdrv_io_limits_intercept(BlockDriverState *bs, 174 bool is_write, int nb_sectors) 175 { 176 int64_t wait_time = -1; 177 178 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 179 qemu_co_queue_wait(&bs->throttled_reqs); 180 } 181 182 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 183 * throttled requests will not be dequeued until the current request is 184 * allowed to be serviced. So if the current request still exceeds the 185 * limits, it will be inserted to the head. All requests followed it will 186 * be still in throttled_reqs queue. 187 */ 188 189 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 190 qemu_mod_timer(bs->block_timer, 191 wait_time + qemu_get_clock_ns(vm_clock)); 192 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 193 } 194 195 qemu_co_queue_next(&bs->throttled_reqs); 196 } 197 198 /* check if the path starts with "<protocol>:" */ 199 static int path_has_protocol(const char *path) 200 { 201 const char *p; 202 203 #ifdef _WIN32 204 if (is_windows_drive(path) || 205 is_windows_drive_prefix(path)) { 206 return 0; 207 } 208 p = path + strcspn(path, ":/\\"); 209 #else 210 p = path + strcspn(path, ":/"); 211 #endif 212 213 return *p == ':'; 214 } 215 216 int path_is_absolute(const char *path) 217 { 218 #ifdef _WIN32 219 /* specific case for names like: "\\.\d:" */ 220 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 221 return 1; 222 } 223 return (*path == '/' || *path == '\\'); 224 #else 225 return (*path == '/'); 226 #endif 227 } 228 229 /* if filename is absolute, just copy it to dest. Otherwise, build a 230 path to it by considering it is relative to base_path. URL are 231 supported. */ 232 void path_combine(char *dest, int dest_size, 233 const char *base_path, 234 const char *filename) 235 { 236 const char *p, *p1; 237 int len; 238 239 if (dest_size <= 0) 240 return; 241 if (path_is_absolute(filename)) { 242 pstrcpy(dest, dest_size, filename); 243 } else { 244 p = strchr(base_path, ':'); 245 if (p) 246 p++; 247 else 248 p = base_path; 249 p1 = strrchr(base_path, '/'); 250 #ifdef _WIN32 251 { 252 const char *p2; 253 p2 = strrchr(base_path, '\\'); 254 if (!p1 || p2 > p1) 255 p1 = p2; 256 } 257 #endif 258 if (p1) 259 p1++; 260 else 261 p1 = base_path; 262 if (p1 > p) 263 p = p1; 264 len = p - base_path; 265 if (len > dest_size - 1) 266 len = dest_size - 1; 267 memcpy(dest, base_path, len); 268 dest[len] = '\0'; 269 pstrcat(dest, dest_size, filename); 270 } 271 } 272 273 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 274 { 275 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 276 pstrcpy(dest, sz, bs->backing_file); 277 } else { 278 path_combine(dest, sz, bs->filename, bs->backing_file); 279 } 280 } 281 282 void bdrv_register(BlockDriver *bdrv) 283 { 284 /* Block drivers without coroutine functions need emulation */ 285 if (!bdrv->bdrv_co_readv) { 286 bdrv->bdrv_co_readv = bdrv_co_readv_em; 287 bdrv->bdrv_co_writev = bdrv_co_writev_em; 288 289 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 290 * the block driver lacks aio we need to emulate that too. 291 */ 292 if (!bdrv->bdrv_aio_readv) { 293 /* add AIO emulation layer */ 294 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 295 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 296 } 297 } 298 299 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 300 } 301 302 /* create a new block device (by default it is empty) */ 303 BlockDriverState *bdrv_new(const char *device_name) 304 { 305 BlockDriverState *bs; 306 307 bs = g_malloc0(sizeof(BlockDriverState)); 308 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 309 if (device_name[0] != '\0') { 310 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 311 } 312 bdrv_iostatus_disable(bs); 313 return bs; 314 } 315 316 BlockDriver *bdrv_find_format(const char *format_name) 317 { 318 BlockDriver *drv1; 319 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 320 if (!strcmp(drv1->format_name, format_name)) { 321 return drv1; 322 } 323 } 324 return NULL; 325 } 326 327 static int bdrv_is_whitelisted(BlockDriver *drv) 328 { 329 static const char *whitelist[] = { 330 CONFIG_BDRV_WHITELIST 331 }; 332 const char **p; 333 334 if (!whitelist[0]) 335 return 1; /* no whitelist, anything goes */ 336 337 for (p = whitelist; *p; p++) { 338 if (!strcmp(drv->format_name, *p)) { 339 return 1; 340 } 341 } 342 return 0; 343 } 344 345 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 346 { 347 BlockDriver *drv = bdrv_find_format(format_name); 348 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 349 } 350 351 typedef struct CreateCo { 352 BlockDriver *drv; 353 char *filename; 354 QEMUOptionParameter *options; 355 int ret; 356 } CreateCo; 357 358 static void coroutine_fn bdrv_create_co_entry(void *opaque) 359 { 360 CreateCo *cco = opaque; 361 assert(cco->drv); 362 363 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 364 } 365 366 int bdrv_create(BlockDriver *drv, const char* filename, 367 QEMUOptionParameter *options) 368 { 369 int ret; 370 371 Coroutine *co; 372 CreateCo cco = { 373 .drv = drv, 374 .filename = g_strdup(filename), 375 .options = options, 376 .ret = NOT_DONE, 377 }; 378 379 if (!drv->bdrv_create) { 380 return -ENOTSUP; 381 } 382 383 if (qemu_in_coroutine()) { 384 /* Fast-path if already in coroutine context */ 385 bdrv_create_co_entry(&cco); 386 } else { 387 co = qemu_coroutine_create(bdrv_create_co_entry); 388 qemu_coroutine_enter(co, &cco); 389 while (cco.ret == NOT_DONE) { 390 qemu_aio_wait(); 391 } 392 } 393 394 ret = cco.ret; 395 g_free(cco.filename); 396 397 return ret; 398 } 399 400 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 401 { 402 BlockDriver *drv; 403 404 drv = bdrv_find_protocol(filename); 405 if (drv == NULL) { 406 return -ENOENT; 407 } 408 409 return bdrv_create(drv, filename, options); 410 } 411 412 /* 413 * Create a uniquely-named empty temporary file. 414 * Return 0 upon success, otherwise a negative errno value. 415 */ 416 int get_tmp_filename(char *filename, int size) 417 { 418 #ifdef _WIN32 419 char temp_dir[MAX_PATH]; 420 /* GetTempFileName requires that its output buffer (4th param) 421 have length MAX_PATH or greater. */ 422 assert(size >= MAX_PATH); 423 return (GetTempPath(MAX_PATH, temp_dir) 424 && GetTempFileName(temp_dir, "qem", 0, filename) 425 ? 0 : -GetLastError()); 426 #else 427 int fd; 428 const char *tmpdir; 429 tmpdir = getenv("TMPDIR"); 430 if (!tmpdir) 431 tmpdir = "/tmp"; 432 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 433 return -EOVERFLOW; 434 } 435 fd = mkstemp(filename); 436 if (fd < 0 || close(fd)) { 437 return -errno; 438 } 439 return 0; 440 #endif 441 } 442 443 /* 444 * Detect host devices. By convention, /dev/cdrom[N] is always 445 * recognized as a host CDROM. 446 */ 447 static BlockDriver *find_hdev_driver(const char *filename) 448 { 449 int score_max = 0, score; 450 BlockDriver *drv = NULL, *d; 451 452 QLIST_FOREACH(d, &bdrv_drivers, list) { 453 if (d->bdrv_probe_device) { 454 score = d->bdrv_probe_device(filename); 455 if (score > score_max) { 456 score_max = score; 457 drv = d; 458 } 459 } 460 } 461 462 return drv; 463 } 464 465 BlockDriver *bdrv_find_protocol(const char *filename) 466 { 467 BlockDriver *drv1; 468 char protocol[128]; 469 int len; 470 const char *p; 471 472 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 473 474 /* 475 * XXX(hch): we really should not let host device detection 476 * override an explicit protocol specification, but moving this 477 * later breaks access to device names with colons in them. 478 * Thanks to the brain-dead persistent naming schemes on udev- 479 * based Linux systems those actually are quite common. 480 */ 481 drv1 = find_hdev_driver(filename); 482 if (drv1) { 483 return drv1; 484 } 485 486 if (!path_has_protocol(filename)) { 487 return bdrv_find_format("file"); 488 } 489 p = strchr(filename, ':'); 490 assert(p != NULL); 491 len = p - filename; 492 if (len > sizeof(protocol) - 1) 493 len = sizeof(protocol) - 1; 494 memcpy(protocol, filename, len); 495 protocol[len] = '\0'; 496 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 497 if (drv1->protocol_name && 498 !strcmp(drv1->protocol_name, protocol)) { 499 return drv1; 500 } 501 } 502 return NULL; 503 } 504 505 static int find_image_format(const char *filename, BlockDriver **pdrv) 506 { 507 int ret, score, score_max; 508 BlockDriver *drv1, *drv; 509 uint8_t buf[2048]; 510 BlockDriverState *bs; 511 512 ret = bdrv_file_open(&bs, filename, 0); 513 if (ret < 0) { 514 *pdrv = NULL; 515 return ret; 516 } 517 518 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 519 if (bs->sg || !bdrv_is_inserted(bs)) { 520 bdrv_delete(bs); 521 drv = bdrv_find_format("raw"); 522 if (!drv) { 523 ret = -ENOENT; 524 } 525 *pdrv = drv; 526 return ret; 527 } 528 529 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 530 bdrv_delete(bs); 531 if (ret < 0) { 532 *pdrv = NULL; 533 return ret; 534 } 535 536 score_max = 0; 537 drv = NULL; 538 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 539 if (drv1->bdrv_probe) { 540 score = drv1->bdrv_probe(buf, ret, filename); 541 if (score > score_max) { 542 score_max = score; 543 drv = drv1; 544 } 545 } 546 } 547 if (!drv) { 548 ret = -ENOENT; 549 } 550 *pdrv = drv; 551 return ret; 552 } 553 554 /** 555 * Set the current 'total_sectors' value 556 */ 557 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 558 { 559 BlockDriver *drv = bs->drv; 560 561 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 562 if (bs->sg) 563 return 0; 564 565 /* query actual device if possible, otherwise just trust the hint */ 566 if (drv->bdrv_getlength) { 567 int64_t length = drv->bdrv_getlength(bs); 568 if (length < 0) { 569 return length; 570 } 571 hint = length >> BDRV_SECTOR_BITS; 572 } 573 574 bs->total_sectors = hint; 575 return 0; 576 } 577 578 /** 579 * Set open flags for a given cache mode 580 * 581 * Return 0 on success, -1 if the cache mode was invalid. 582 */ 583 int bdrv_parse_cache_flags(const char *mode, int *flags) 584 { 585 *flags &= ~BDRV_O_CACHE_MASK; 586 587 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 588 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 589 } else if (!strcmp(mode, "directsync")) { 590 *flags |= BDRV_O_NOCACHE; 591 } else if (!strcmp(mode, "writeback")) { 592 *flags |= BDRV_O_CACHE_WB; 593 } else if (!strcmp(mode, "unsafe")) { 594 *flags |= BDRV_O_CACHE_WB; 595 *flags |= BDRV_O_NO_FLUSH; 596 } else if (!strcmp(mode, "writethrough")) { 597 /* this is the default */ 598 } else { 599 return -1; 600 } 601 602 return 0; 603 } 604 605 /** 606 * The copy-on-read flag is actually a reference count so multiple users may 607 * use the feature without worrying about clobbering its previous state. 608 * Copy-on-read stays enabled until all users have called to disable it. 609 */ 610 void bdrv_enable_copy_on_read(BlockDriverState *bs) 611 { 612 bs->copy_on_read++; 613 } 614 615 void bdrv_disable_copy_on_read(BlockDriverState *bs) 616 { 617 assert(bs->copy_on_read > 0); 618 bs->copy_on_read--; 619 } 620 621 /* 622 * Common part for opening disk images and files 623 */ 624 static int bdrv_open_common(BlockDriverState *bs, const char *filename, 625 int flags, BlockDriver *drv) 626 { 627 int ret, open_flags; 628 629 assert(drv != NULL); 630 assert(bs->file == NULL); 631 632 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 633 634 bs->open_flags = flags; 635 bs->buffer_alignment = 512; 636 637 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 638 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 639 bdrv_enable_copy_on_read(bs); 640 } 641 642 pstrcpy(bs->filename, sizeof(bs->filename), filename); 643 644 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 645 return -ENOTSUP; 646 } 647 648 bs->drv = drv; 649 bs->opaque = g_malloc0(drv->instance_size); 650 651 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 652 open_flags = flags | BDRV_O_CACHE_WB; 653 654 /* 655 * Clear flags that are internal to the block layer before opening the 656 * image. 657 */ 658 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 659 660 /* 661 * Snapshots should be writable. 662 */ 663 if (bs->is_temporary) { 664 open_flags |= BDRV_O_RDWR; 665 } 666 667 bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR); 668 669 /* Open the image, either directly or using a protocol */ 670 if (drv->bdrv_file_open) { 671 ret = drv->bdrv_file_open(bs, filename, open_flags); 672 } else { 673 ret = bdrv_file_open(&bs->file, filename, open_flags); 674 if (ret >= 0) { 675 ret = drv->bdrv_open(bs, open_flags); 676 } 677 } 678 679 if (ret < 0) { 680 goto free_and_fail; 681 } 682 683 ret = refresh_total_sectors(bs, bs->total_sectors); 684 if (ret < 0) { 685 goto free_and_fail; 686 } 687 688 #ifndef _WIN32 689 if (bs->is_temporary) { 690 unlink(filename); 691 } 692 #endif 693 return 0; 694 695 free_and_fail: 696 if (bs->file) { 697 bdrv_delete(bs->file); 698 bs->file = NULL; 699 } 700 g_free(bs->opaque); 701 bs->opaque = NULL; 702 bs->drv = NULL; 703 return ret; 704 } 705 706 /* 707 * Opens a file using a protocol (file, host_device, nbd, ...) 708 */ 709 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 710 { 711 BlockDriverState *bs; 712 BlockDriver *drv; 713 int ret; 714 715 drv = bdrv_find_protocol(filename); 716 if (!drv) { 717 return -ENOENT; 718 } 719 720 bs = bdrv_new(""); 721 ret = bdrv_open_common(bs, filename, flags, drv); 722 if (ret < 0) { 723 bdrv_delete(bs); 724 return ret; 725 } 726 bs->growable = 1; 727 *pbs = bs; 728 return 0; 729 } 730 731 /* 732 * Opens a disk image (raw, qcow2, vmdk, ...) 733 */ 734 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 735 BlockDriver *drv) 736 { 737 int ret; 738 char tmp_filename[PATH_MAX]; 739 740 if (flags & BDRV_O_SNAPSHOT) { 741 BlockDriverState *bs1; 742 int64_t total_size; 743 int is_protocol = 0; 744 BlockDriver *bdrv_qcow2; 745 QEMUOptionParameter *options; 746 char backing_filename[PATH_MAX]; 747 748 /* if snapshot, we create a temporary backing file and open it 749 instead of opening 'filename' directly */ 750 751 /* if there is a backing file, use it */ 752 bs1 = bdrv_new(""); 753 ret = bdrv_open(bs1, filename, 0, drv); 754 if (ret < 0) { 755 bdrv_delete(bs1); 756 return ret; 757 } 758 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 759 760 if (bs1->drv && bs1->drv->protocol_name) 761 is_protocol = 1; 762 763 bdrv_delete(bs1); 764 765 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 766 if (ret < 0) { 767 return ret; 768 } 769 770 /* Real path is meaningless for protocols */ 771 if (is_protocol) 772 snprintf(backing_filename, sizeof(backing_filename), 773 "%s", filename); 774 else if (!realpath(filename, backing_filename)) 775 return -errno; 776 777 bdrv_qcow2 = bdrv_find_format("qcow2"); 778 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 779 780 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 781 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 782 if (drv) { 783 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 784 drv->format_name); 785 } 786 787 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 788 free_option_parameters(options); 789 if (ret < 0) { 790 return ret; 791 } 792 793 filename = tmp_filename; 794 drv = bdrv_qcow2; 795 bs->is_temporary = 1; 796 } 797 798 /* Find the right image format driver */ 799 if (!drv) { 800 ret = find_image_format(filename, &drv); 801 } 802 803 if (!drv) { 804 goto unlink_and_fail; 805 } 806 807 /* Open the image */ 808 ret = bdrv_open_common(bs, filename, flags, drv); 809 if (ret < 0) { 810 goto unlink_and_fail; 811 } 812 813 /* If there is a backing file, use it */ 814 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') { 815 char backing_filename[PATH_MAX]; 816 int back_flags; 817 BlockDriver *back_drv = NULL; 818 819 bs->backing_hd = bdrv_new(""); 820 bdrv_get_full_backing_filename(bs, backing_filename, 821 sizeof(backing_filename)); 822 823 if (bs->backing_format[0] != '\0') { 824 back_drv = bdrv_find_format(bs->backing_format); 825 } 826 827 /* backing files always opened read-only */ 828 back_flags = 829 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 830 831 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 832 if (ret < 0) { 833 bdrv_close(bs); 834 return ret; 835 } 836 if (bs->is_temporary) { 837 bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR); 838 } else { 839 /* base image inherits from "parent" */ 840 bs->backing_hd->keep_read_only = bs->keep_read_only; 841 } 842 } 843 844 if (!bdrv_key_required(bs)) { 845 bdrv_dev_change_media_cb(bs, true); 846 } 847 848 /* throttling disk I/O limits */ 849 if (bs->io_limits_enabled) { 850 bdrv_io_limits_enable(bs); 851 } 852 853 return 0; 854 855 unlink_and_fail: 856 if (bs->is_temporary) { 857 unlink(filename); 858 } 859 return ret; 860 } 861 862 void bdrv_close(BlockDriverState *bs) 863 { 864 bdrv_flush(bs); 865 if (bs->drv) { 866 if (bs->job) { 867 block_job_cancel_sync(bs->job); 868 } 869 bdrv_drain_all(); 870 871 if (bs == bs_snapshots) { 872 bs_snapshots = NULL; 873 } 874 if (bs->backing_hd) { 875 bdrv_delete(bs->backing_hd); 876 bs->backing_hd = NULL; 877 } 878 bs->drv->bdrv_close(bs); 879 g_free(bs->opaque); 880 #ifdef _WIN32 881 if (bs->is_temporary) { 882 unlink(bs->filename); 883 } 884 #endif 885 bs->opaque = NULL; 886 bs->drv = NULL; 887 bs->copy_on_read = 0; 888 bs->backing_file[0] = '\0'; 889 bs->backing_format[0] = '\0'; 890 bs->total_sectors = 0; 891 bs->encrypted = 0; 892 bs->valid_key = 0; 893 bs->sg = 0; 894 bs->growable = 0; 895 896 if (bs->file != NULL) { 897 bdrv_delete(bs->file); 898 bs->file = NULL; 899 } 900 901 bdrv_dev_change_media_cb(bs, false); 902 } 903 904 /*throttling disk I/O limits*/ 905 if (bs->io_limits_enabled) { 906 bdrv_io_limits_disable(bs); 907 } 908 } 909 910 void bdrv_close_all(void) 911 { 912 BlockDriverState *bs; 913 914 QTAILQ_FOREACH(bs, &bdrv_states, list) { 915 bdrv_close(bs); 916 } 917 } 918 919 /* 920 * Wait for pending requests to complete across all BlockDriverStates 921 * 922 * This function does not flush data to disk, use bdrv_flush_all() for that 923 * after calling this function. 924 * 925 * Note that completion of an asynchronous I/O operation can trigger any 926 * number of other I/O operations on other devices---for example a coroutine 927 * can be arbitrarily complex and a constant flow of I/O can come until the 928 * coroutine is complete. Because of this, it is not possible to have a 929 * function to drain a single device's I/O queue. 930 */ 931 void bdrv_drain_all(void) 932 { 933 BlockDriverState *bs; 934 bool busy; 935 936 do { 937 busy = qemu_aio_wait(); 938 939 /* FIXME: We do not have timer support here, so this is effectively 940 * a busy wait. 941 */ 942 QTAILQ_FOREACH(bs, &bdrv_states, list) { 943 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 944 qemu_co_queue_restart_all(&bs->throttled_reqs); 945 busy = true; 946 } 947 } 948 } while (busy); 949 950 /* If requests are still pending there is a bug somewhere */ 951 QTAILQ_FOREACH(bs, &bdrv_states, list) { 952 assert(QLIST_EMPTY(&bs->tracked_requests)); 953 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 954 } 955 } 956 957 /* make a BlockDriverState anonymous by removing from bdrv_state list. 958 Also, NULL terminate the device_name to prevent double remove */ 959 void bdrv_make_anon(BlockDriverState *bs) 960 { 961 if (bs->device_name[0] != '\0') { 962 QTAILQ_REMOVE(&bdrv_states, bs, list); 963 } 964 bs->device_name[0] = '\0'; 965 } 966 967 static void bdrv_rebind(BlockDriverState *bs) 968 { 969 if (bs->drv && bs->drv->bdrv_rebind) { 970 bs->drv->bdrv_rebind(bs); 971 } 972 } 973 974 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 975 BlockDriverState *bs_src) 976 { 977 /* move some fields that need to stay attached to the device */ 978 bs_dest->open_flags = bs_src->open_flags; 979 980 /* dev info */ 981 bs_dest->dev_ops = bs_src->dev_ops; 982 bs_dest->dev_opaque = bs_src->dev_opaque; 983 bs_dest->dev = bs_src->dev; 984 bs_dest->buffer_alignment = bs_src->buffer_alignment; 985 bs_dest->copy_on_read = bs_src->copy_on_read; 986 987 bs_dest->enable_write_cache = bs_src->enable_write_cache; 988 989 /* i/o timing parameters */ 990 bs_dest->slice_time = bs_src->slice_time; 991 bs_dest->slice_start = bs_src->slice_start; 992 bs_dest->slice_end = bs_src->slice_end; 993 bs_dest->io_limits = bs_src->io_limits; 994 bs_dest->io_base = bs_src->io_base; 995 bs_dest->throttled_reqs = bs_src->throttled_reqs; 996 bs_dest->block_timer = bs_src->block_timer; 997 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 998 999 /* r/w error */ 1000 bs_dest->on_read_error = bs_src->on_read_error; 1001 bs_dest->on_write_error = bs_src->on_write_error; 1002 1003 /* i/o status */ 1004 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1005 bs_dest->iostatus = bs_src->iostatus; 1006 1007 /* dirty bitmap */ 1008 bs_dest->dirty_count = bs_src->dirty_count; 1009 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1010 1011 /* job */ 1012 bs_dest->in_use = bs_src->in_use; 1013 bs_dest->job = bs_src->job; 1014 1015 /* keep the same entry in bdrv_states */ 1016 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1017 bs_src->device_name); 1018 bs_dest->list = bs_src->list; 1019 } 1020 1021 /* 1022 * Swap bs contents for two image chains while they are live, 1023 * while keeping required fields on the BlockDriverState that is 1024 * actually attached to a device. 1025 * 1026 * This will modify the BlockDriverState fields, and swap contents 1027 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1028 * 1029 * bs_new is required to be anonymous. 1030 * 1031 * This function does not create any image files. 1032 */ 1033 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1034 { 1035 BlockDriverState tmp; 1036 1037 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1038 assert(bs_new->device_name[0] == '\0'); 1039 assert(bs_new->dirty_bitmap == NULL); 1040 assert(bs_new->job == NULL); 1041 assert(bs_new->dev == NULL); 1042 assert(bs_new->in_use == 0); 1043 assert(bs_new->io_limits_enabled == false); 1044 assert(bs_new->block_timer == NULL); 1045 1046 tmp = *bs_new; 1047 *bs_new = *bs_old; 1048 *bs_old = tmp; 1049 1050 /* there are some fields that should not be swapped, move them back */ 1051 bdrv_move_feature_fields(&tmp, bs_old); 1052 bdrv_move_feature_fields(bs_old, bs_new); 1053 bdrv_move_feature_fields(bs_new, &tmp); 1054 1055 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1056 assert(bs_new->device_name[0] == '\0'); 1057 1058 /* Check a few fields that should remain attached to the device */ 1059 assert(bs_new->dev == NULL); 1060 assert(bs_new->job == NULL); 1061 assert(bs_new->in_use == 0); 1062 assert(bs_new->io_limits_enabled == false); 1063 assert(bs_new->block_timer == NULL); 1064 1065 bdrv_rebind(bs_new); 1066 bdrv_rebind(bs_old); 1067 } 1068 1069 /* 1070 * Add new bs contents at the top of an image chain while the chain is 1071 * live, while keeping required fields on the top layer. 1072 * 1073 * This will modify the BlockDriverState fields, and swap contents 1074 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1075 * 1076 * bs_new is required to be anonymous. 1077 * 1078 * This function does not create any image files. 1079 */ 1080 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1081 { 1082 bdrv_swap(bs_new, bs_top); 1083 1084 /* The contents of 'tmp' will become bs_top, as we are 1085 * swapping bs_new and bs_top contents. */ 1086 bs_top->backing_hd = bs_new; 1087 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1088 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1089 bs_new->filename); 1090 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1091 bs_new->drv ? bs_new->drv->format_name : ""); 1092 } 1093 1094 void bdrv_delete(BlockDriverState *bs) 1095 { 1096 assert(!bs->dev); 1097 assert(!bs->job); 1098 assert(!bs->in_use); 1099 1100 /* remove from list, if necessary */ 1101 bdrv_make_anon(bs); 1102 1103 bdrv_close(bs); 1104 1105 assert(bs != bs_snapshots); 1106 g_free(bs); 1107 } 1108 1109 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1110 /* TODO change to DeviceState *dev when all users are qdevified */ 1111 { 1112 if (bs->dev) { 1113 return -EBUSY; 1114 } 1115 bs->dev = dev; 1116 bdrv_iostatus_reset(bs); 1117 return 0; 1118 } 1119 1120 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1121 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1122 { 1123 if (bdrv_attach_dev(bs, dev) < 0) { 1124 abort(); 1125 } 1126 } 1127 1128 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1129 /* TODO change to DeviceState *dev when all users are qdevified */ 1130 { 1131 assert(bs->dev == dev); 1132 bs->dev = NULL; 1133 bs->dev_ops = NULL; 1134 bs->dev_opaque = NULL; 1135 bs->buffer_alignment = 512; 1136 } 1137 1138 /* TODO change to return DeviceState * when all users are qdevified */ 1139 void *bdrv_get_attached_dev(BlockDriverState *bs) 1140 { 1141 return bs->dev; 1142 } 1143 1144 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1145 void *opaque) 1146 { 1147 bs->dev_ops = ops; 1148 bs->dev_opaque = opaque; 1149 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1150 bs_snapshots = NULL; 1151 } 1152 } 1153 1154 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1155 BlockQMPEventAction action, int is_read) 1156 { 1157 QObject *data; 1158 const char *action_str; 1159 1160 switch (action) { 1161 case BDRV_ACTION_REPORT: 1162 action_str = "report"; 1163 break; 1164 case BDRV_ACTION_IGNORE: 1165 action_str = "ignore"; 1166 break; 1167 case BDRV_ACTION_STOP: 1168 action_str = "stop"; 1169 break; 1170 default: 1171 abort(); 1172 } 1173 1174 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1175 bdrv->device_name, 1176 action_str, 1177 is_read ? "read" : "write"); 1178 monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data); 1179 1180 qobject_decref(data); 1181 } 1182 1183 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1184 { 1185 QObject *data; 1186 1187 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1188 bdrv_get_device_name(bs), ejected); 1189 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1190 1191 qobject_decref(data); 1192 } 1193 1194 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1195 { 1196 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1197 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1198 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1199 if (tray_was_closed) { 1200 /* tray open */ 1201 bdrv_emit_qmp_eject_event(bs, true); 1202 } 1203 if (load) { 1204 /* tray close */ 1205 bdrv_emit_qmp_eject_event(bs, false); 1206 } 1207 } 1208 } 1209 1210 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1211 { 1212 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1213 } 1214 1215 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1216 { 1217 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1218 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1219 } 1220 } 1221 1222 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1223 { 1224 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1225 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1226 } 1227 return false; 1228 } 1229 1230 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1231 { 1232 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1233 bs->dev_ops->resize_cb(bs->dev_opaque); 1234 } 1235 } 1236 1237 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1238 { 1239 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1240 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1241 } 1242 return false; 1243 } 1244 1245 /* 1246 * Run consistency checks on an image 1247 * 1248 * Returns 0 if the check could be completed (it doesn't mean that the image is 1249 * free of errors) or -errno when an internal error occurred. The results of the 1250 * check are stored in res. 1251 */ 1252 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1253 { 1254 if (bs->drv->bdrv_check == NULL) { 1255 return -ENOTSUP; 1256 } 1257 1258 memset(res, 0, sizeof(*res)); 1259 return bs->drv->bdrv_check(bs, res, fix); 1260 } 1261 1262 #define COMMIT_BUF_SECTORS 2048 1263 1264 /* commit COW file into the raw image */ 1265 int bdrv_commit(BlockDriverState *bs) 1266 { 1267 BlockDriver *drv = bs->drv; 1268 BlockDriver *backing_drv; 1269 int64_t sector, total_sectors; 1270 int n, ro, open_flags; 1271 int ret = 0, rw_ret = 0; 1272 uint8_t *buf; 1273 char filename[1024]; 1274 BlockDriverState *bs_rw, *bs_ro; 1275 1276 if (!drv) 1277 return -ENOMEDIUM; 1278 1279 if (!bs->backing_hd) { 1280 return -ENOTSUP; 1281 } 1282 1283 if (bs->backing_hd->keep_read_only) { 1284 return -EACCES; 1285 } 1286 1287 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1288 return -EBUSY; 1289 } 1290 1291 backing_drv = bs->backing_hd->drv; 1292 ro = bs->backing_hd->read_only; 1293 strncpy(filename, bs->backing_hd->filename, sizeof(filename)); 1294 open_flags = bs->backing_hd->open_flags; 1295 1296 if (ro) { 1297 /* re-open as RW */ 1298 bdrv_delete(bs->backing_hd); 1299 bs->backing_hd = NULL; 1300 bs_rw = bdrv_new(""); 1301 rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR, 1302 backing_drv); 1303 if (rw_ret < 0) { 1304 bdrv_delete(bs_rw); 1305 /* try to re-open read-only */ 1306 bs_ro = bdrv_new(""); 1307 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR, 1308 backing_drv); 1309 if (ret < 0) { 1310 bdrv_delete(bs_ro); 1311 /* drive not functional anymore */ 1312 bs->drv = NULL; 1313 return ret; 1314 } 1315 bs->backing_hd = bs_ro; 1316 return rw_ret; 1317 } 1318 bs->backing_hd = bs_rw; 1319 } 1320 1321 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1322 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1323 1324 for (sector = 0; sector < total_sectors; sector += n) { 1325 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1326 1327 if (bdrv_read(bs, sector, buf, n) != 0) { 1328 ret = -EIO; 1329 goto ro_cleanup; 1330 } 1331 1332 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1333 ret = -EIO; 1334 goto ro_cleanup; 1335 } 1336 } 1337 } 1338 1339 if (drv->bdrv_make_empty) { 1340 ret = drv->bdrv_make_empty(bs); 1341 bdrv_flush(bs); 1342 } 1343 1344 /* 1345 * Make sure all data we wrote to the backing device is actually 1346 * stable on disk. 1347 */ 1348 if (bs->backing_hd) 1349 bdrv_flush(bs->backing_hd); 1350 1351 ro_cleanup: 1352 g_free(buf); 1353 1354 if (ro) { 1355 /* re-open as RO */ 1356 bdrv_delete(bs->backing_hd); 1357 bs->backing_hd = NULL; 1358 bs_ro = bdrv_new(""); 1359 ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR, 1360 backing_drv); 1361 if (ret < 0) { 1362 bdrv_delete(bs_ro); 1363 /* drive not functional anymore */ 1364 bs->drv = NULL; 1365 return ret; 1366 } 1367 bs->backing_hd = bs_ro; 1368 bs->backing_hd->keep_read_only = 0; 1369 } 1370 1371 return ret; 1372 } 1373 1374 int bdrv_commit_all(void) 1375 { 1376 BlockDriverState *bs; 1377 1378 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1379 int ret = bdrv_commit(bs); 1380 if (ret < 0) { 1381 return ret; 1382 } 1383 } 1384 return 0; 1385 } 1386 1387 struct BdrvTrackedRequest { 1388 BlockDriverState *bs; 1389 int64_t sector_num; 1390 int nb_sectors; 1391 bool is_write; 1392 QLIST_ENTRY(BdrvTrackedRequest) list; 1393 Coroutine *co; /* owner, used for deadlock detection */ 1394 CoQueue wait_queue; /* coroutines blocked on this request */ 1395 }; 1396 1397 /** 1398 * Remove an active request from the tracked requests list 1399 * 1400 * This function should be called when a tracked request is completing. 1401 */ 1402 static void tracked_request_end(BdrvTrackedRequest *req) 1403 { 1404 QLIST_REMOVE(req, list); 1405 qemu_co_queue_restart_all(&req->wait_queue); 1406 } 1407 1408 /** 1409 * Add an active request to the tracked requests list 1410 */ 1411 static void tracked_request_begin(BdrvTrackedRequest *req, 1412 BlockDriverState *bs, 1413 int64_t sector_num, 1414 int nb_sectors, bool is_write) 1415 { 1416 *req = (BdrvTrackedRequest){ 1417 .bs = bs, 1418 .sector_num = sector_num, 1419 .nb_sectors = nb_sectors, 1420 .is_write = is_write, 1421 .co = qemu_coroutine_self(), 1422 }; 1423 1424 qemu_co_queue_init(&req->wait_queue); 1425 1426 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1427 } 1428 1429 /** 1430 * Round a region to cluster boundaries 1431 */ 1432 static void round_to_clusters(BlockDriverState *bs, 1433 int64_t sector_num, int nb_sectors, 1434 int64_t *cluster_sector_num, 1435 int *cluster_nb_sectors) 1436 { 1437 BlockDriverInfo bdi; 1438 1439 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1440 *cluster_sector_num = sector_num; 1441 *cluster_nb_sectors = nb_sectors; 1442 } else { 1443 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1444 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1445 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1446 nb_sectors, c); 1447 } 1448 } 1449 1450 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1451 int64_t sector_num, int nb_sectors) { 1452 /* aaaa bbbb */ 1453 if (sector_num >= req->sector_num + req->nb_sectors) { 1454 return false; 1455 } 1456 /* bbbb aaaa */ 1457 if (req->sector_num >= sector_num + nb_sectors) { 1458 return false; 1459 } 1460 return true; 1461 } 1462 1463 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1464 int64_t sector_num, int nb_sectors) 1465 { 1466 BdrvTrackedRequest *req; 1467 int64_t cluster_sector_num; 1468 int cluster_nb_sectors; 1469 bool retry; 1470 1471 /* If we touch the same cluster it counts as an overlap. This guarantees 1472 * that allocating writes will be serialized and not race with each other 1473 * for the same cluster. For example, in copy-on-read it ensures that the 1474 * CoR read and write operations are atomic and guest writes cannot 1475 * interleave between them. 1476 */ 1477 round_to_clusters(bs, sector_num, nb_sectors, 1478 &cluster_sector_num, &cluster_nb_sectors); 1479 1480 do { 1481 retry = false; 1482 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1483 if (tracked_request_overlaps(req, cluster_sector_num, 1484 cluster_nb_sectors)) { 1485 /* Hitting this means there was a reentrant request, for 1486 * example, a block driver issuing nested requests. This must 1487 * never happen since it means deadlock. 1488 */ 1489 assert(qemu_coroutine_self() != req->co); 1490 1491 qemu_co_queue_wait(&req->wait_queue); 1492 retry = true; 1493 break; 1494 } 1495 } 1496 } while (retry); 1497 } 1498 1499 /* 1500 * Return values: 1501 * 0 - success 1502 * -EINVAL - backing format specified, but no file 1503 * -ENOSPC - can't update the backing file because no space is left in the 1504 * image file header 1505 * -ENOTSUP - format driver doesn't support changing the backing file 1506 */ 1507 int bdrv_change_backing_file(BlockDriverState *bs, 1508 const char *backing_file, const char *backing_fmt) 1509 { 1510 BlockDriver *drv = bs->drv; 1511 int ret; 1512 1513 /* Backing file format doesn't make sense without a backing file */ 1514 if (backing_fmt && !backing_file) { 1515 return -EINVAL; 1516 } 1517 1518 if (drv->bdrv_change_backing_file != NULL) { 1519 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1520 } else { 1521 ret = -ENOTSUP; 1522 } 1523 1524 if (ret == 0) { 1525 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1526 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1527 } 1528 return ret; 1529 } 1530 1531 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1532 size_t size) 1533 { 1534 int64_t len; 1535 1536 if (!bdrv_is_inserted(bs)) 1537 return -ENOMEDIUM; 1538 1539 if (bs->growable) 1540 return 0; 1541 1542 len = bdrv_getlength(bs); 1543 1544 if (offset < 0) 1545 return -EIO; 1546 1547 if ((offset > len) || (len - offset < size)) 1548 return -EIO; 1549 1550 return 0; 1551 } 1552 1553 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1554 int nb_sectors) 1555 { 1556 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1557 nb_sectors * BDRV_SECTOR_SIZE); 1558 } 1559 1560 typedef struct RwCo { 1561 BlockDriverState *bs; 1562 int64_t sector_num; 1563 int nb_sectors; 1564 QEMUIOVector *qiov; 1565 bool is_write; 1566 int ret; 1567 } RwCo; 1568 1569 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1570 { 1571 RwCo *rwco = opaque; 1572 1573 if (!rwco->is_write) { 1574 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1575 rwco->nb_sectors, rwco->qiov, 0); 1576 } else { 1577 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1578 rwco->nb_sectors, rwco->qiov, 0); 1579 } 1580 } 1581 1582 /* 1583 * Process a synchronous request using coroutines 1584 */ 1585 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1586 int nb_sectors, bool is_write) 1587 { 1588 QEMUIOVector qiov; 1589 struct iovec iov = { 1590 .iov_base = (void *)buf, 1591 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1592 }; 1593 Coroutine *co; 1594 RwCo rwco = { 1595 .bs = bs, 1596 .sector_num = sector_num, 1597 .nb_sectors = nb_sectors, 1598 .qiov = &qiov, 1599 .is_write = is_write, 1600 .ret = NOT_DONE, 1601 }; 1602 1603 qemu_iovec_init_external(&qiov, &iov, 1); 1604 1605 /** 1606 * In sync call context, when the vcpu is blocked, this throttling timer 1607 * will not fire; so the I/O throttling function has to be disabled here 1608 * if it has been enabled. 1609 */ 1610 if (bs->io_limits_enabled) { 1611 fprintf(stderr, "Disabling I/O throttling on '%s' due " 1612 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 1613 bdrv_io_limits_disable(bs); 1614 } 1615 1616 if (qemu_in_coroutine()) { 1617 /* Fast-path if already in coroutine context */ 1618 bdrv_rw_co_entry(&rwco); 1619 } else { 1620 co = qemu_coroutine_create(bdrv_rw_co_entry); 1621 qemu_coroutine_enter(co, &rwco); 1622 while (rwco.ret == NOT_DONE) { 1623 qemu_aio_wait(); 1624 } 1625 } 1626 return rwco.ret; 1627 } 1628 1629 /* return < 0 if error. See bdrv_write() for the return codes */ 1630 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 1631 uint8_t *buf, int nb_sectors) 1632 { 1633 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 1634 } 1635 1636 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 1637 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 1638 uint8_t *buf, int nb_sectors) 1639 { 1640 bool enabled; 1641 int ret; 1642 1643 enabled = bs->io_limits_enabled; 1644 bs->io_limits_enabled = false; 1645 ret = bdrv_read(bs, 0, buf, 1); 1646 bs->io_limits_enabled = enabled; 1647 return ret; 1648 } 1649 1650 #define BITS_PER_LONG (sizeof(unsigned long) * 8) 1651 1652 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num, 1653 int nb_sectors, int dirty) 1654 { 1655 int64_t start, end; 1656 unsigned long val, idx, bit; 1657 1658 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK; 1659 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK; 1660 1661 for (; start <= end; start++) { 1662 idx = start / BITS_PER_LONG; 1663 bit = start % BITS_PER_LONG; 1664 val = bs->dirty_bitmap[idx]; 1665 if (dirty) { 1666 if (!(val & (1UL << bit))) { 1667 bs->dirty_count++; 1668 val |= 1UL << bit; 1669 } 1670 } else { 1671 if (val & (1UL << bit)) { 1672 bs->dirty_count--; 1673 val &= ~(1UL << bit); 1674 } 1675 } 1676 bs->dirty_bitmap[idx] = val; 1677 } 1678 } 1679 1680 /* Return < 0 if error. Important errors are: 1681 -EIO generic I/O error (may happen for all errors) 1682 -ENOMEDIUM No media inserted. 1683 -EINVAL Invalid sector number or nb_sectors 1684 -EACCES Trying to write a read-only device 1685 */ 1686 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 1687 const uint8_t *buf, int nb_sectors) 1688 { 1689 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 1690 } 1691 1692 int bdrv_pread(BlockDriverState *bs, int64_t offset, 1693 void *buf, int count1) 1694 { 1695 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 1696 int len, nb_sectors, count; 1697 int64_t sector_num; 1698 int ret; 1699 1700 count = count1; 1701 /* first read to align to sector start */ 1702 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 1703 if (len > count) 1704 len = count; 1705 sector_num = offset >> BDRV_SECTOR_BITS; 1706 if (len > 0) { 1707 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1708 return ret; 1709 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 1710 count -= len; 1711 if (count == 0) 1712 return count1; 1713 sector_num++; 1714 buf += len; 1715 } 1716 1717 /* read the sectors "in place" */ 1718 nb_sectors = count >> BDRV_SECTOR_BITS; 1719 if (nb_sectors > 0) { 1720 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 1721 return ret; 1722 sector_num += nb_sectors; 1723 len = nb_sectors << BDRV_SECTOR_BITS; 1724 buf += len; 1725 count -= len; 1726 } 1727 1728 /* add data from the last sector */ 1729 if (count > 0) { 1730 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1731 return ret; 1732 memcpy(buf, tmp_buf, count); 1733 } 1734 return count1; 1735 } 1736 1737 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 1738 const void *buf, int count1) 1739 { 1740 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 1741 int len, nb_sectors, count; 1742 int64_t sector_num; 1743 int ret; 1744 1745 count = count1; 1746 /* first write to align to sector start */ 1747 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 1748 if (len > count) 1749 len = count; 1750 sector_num = offset >> BDRV_SECTOR_BITS; 1751 if (len > 0) { 1752 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1753 return ret; 1754 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 1755 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 1756 return ret; 1757 count -= len; 1758 if (count == 0) 1759 return count1; 1760 sector_num++; 1761 buf += len; 1762 } 1763 1764 /* write the sectors "in place" */ 1765 nb_sectors = count >> BDRV_SECTOR_BITS; 1766 if (nb_sectors > 0) { 1767 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 1768 return ret; 1769 sector_num += nb_sectors; 1770 len = nb_sectors << BDRV_SECTOR_BITS; 1771 buf += len; 1772 count -= len; 1773 } 1774 1775 /* add data from the last sector */ 1776 if (count > 0) { 1777 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 1778 return ret; 1779 memcpy(tmp_buf, buf, count); 1780 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 1781 return ret; 1782 } 1783 return count1; 1784 } 1785 1786 /* 1787 * Writes to the file and ensures that no writes are reordered across this 1788 * request (acts as a barrier) 1789 * 1790 * Returns 0 on success, -errno in error cases. 1791 */ 1792 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 1793 const void *buf, int count) 1794 { 1795 int ret; 1796 1797 ret = bdrv_pwrite(bs, offset, buf, count); 1798 if (ret < 0) { 1799 return ret; 1800 } 1801 1802 /* No flush needed for cache modes that already do it */ 1803 if (bs->enable_write_cache) { 1804 bdrv_flush(bs); 1805 } 1806 1807 return 0; 1808 } 1809 1810 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 1811 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1812 { 1813 /* Perform I/O through a temporary buffer so that users who scribble over 1814 * their read buffer while the operation is in progress do not end up 1815 * modifying the image file. This is critical for zero-copy guest I/O 1816 * where anything might happen inside guest memory. 1817 */ 1818 void *bounce_buffer; 1819 1820 BlockDriver *drv = bs->drv; 1821 struct iovec iov; 1822 QEMUIOVector bounce_qiov; 1823 int64_t cluster_sector_num; 1824 int cluster_nb_sectors; 1825 size_t skip_bytes; 1826 int ret; 1827 1828 /* Cover entire cluster so no additional backing file I/O is required when 1829 * allocating cluster in the image file. 1830 */ 1831 round_to_clusters(bs, sector_num, nb_sectors, 1832 &cluster_sector_num, &cluster_nb_sectors); 1833 1834 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 1835 cluster_sector_num, cluster_nb_sectors); 1836 1837 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 1838 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 1839 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 1840 1841 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 1842 &bounce_qiov); 1843 if (ret < 0) { 1844 goto err; 1845 } 1846 1847 if (drv->bdrv_co_write_zeroes && 1848 buffer_is_zero(bounce_buffer, iov.iov_len)) { 1849 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 1850 cluster_nb_sectors); 1851 } else { 1852 /* This does not change the data on the disk, it is not necessary 1853 * to flush even in cache=writethrough mode. 1854 */ 1855 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 1856 &bounce_qiov); 1857 } 1858 1859 if (ret < 0) { 1860 /* It might be okay to ignore write errors for guest requests. If this 1861 * is a deliberate copy-on-read then we don't want to ignore the error. 1862 * Simply report it in all cases. 1863 */ 1864 goto err; 1865 } 1866 1867 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 1868 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 1869 nb_sectors * BDRV_SECTOR_SIZE); 1870 1871 err: 1872 qemu_vfree(bounce_buffer); 1873 return ret; 1874 } 1875 1876 /* 1877 * Handle a read request in coroutine context 1878 */ 1879 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 1880 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1881 BdrvRequestFlags flags) 1882 { 1883 BlockDriver *drv = bs->drv; 1884 BdrvTrackedRequest req; 1885 int ret; 1886 1887 if (!drv) { 1888 return -ENOMEDIUM; 1889 } 1890 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 1891 return -EIO; 1892 } 1893 1894 /* throttling disk read I/O */ 1895 if (bs->io_limits_enabled) { 1896 bdrv_io_limits_intercept(bs, false, nb_sectors); 1897 } 1898 1899 if (bs->copy_on_read) { 1900 flags |= BDRV_REQ_COPY_ON_READ; 1901 } 1902 if (flags & BDRV_REQ_COPY_ON_READ) { 1903 bs->copy_on_read_in_flight++; 1904 } 1905 1906 if (bs->copy_on_read_in_flight) { 1907 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 1908 } 1909 1910 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 1911 1912 if (flags & BDRV_REQ_COPY_ON_READ) { 1913 int pnum; 1914 1915 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 1916 if (ret < 0) { 1917 goto out; 1918 } 1919 1920 if (!ret || pnum != nb_sectors) { 1921 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 1922 goto out; 1923 } 1924 } 1925 1926 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 1927 1928 out: 1929 tracked_request_end(&req); 1930 1931 if (flags & BDRV_REQ_COPY_ON_READ) { 1932 bs->copy_on_read_in_flight--; 1933 } 1934 1935 return ret; 1936 } 1937 1938 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 1939 int nb_sectors, QEMUIOVector *qiov) 1940 { 1941 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 1942 1943 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 1944 } 1945 1946 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 1947 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 1948 { 1949 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 1950 1951 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 1952 BDRV_REQ_COPY_ON_READ); 1953 } 1954 1955 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 1956 int64_t sector_num, int nb_sectors) 1957 { 1958 BlockDriver *drv = bs->drv; 1959 QEMUIOVector qiov; 1960 struct iovec iov; 1961 int ret; 1962 1963 /* TODO Emulate only part of misaligned requests instead of letting block 1964 * drivers return -ENOTSUP and emulate everything */ 1965 1966 /* First try the efficient write zeroes operation */ 1967 if (drv->bdrv_co_write_zeroes) { 1968 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 1969 if (ret != -ENOTSUP) { 1970 return ret; 1971 } 1972 } 1973 1974 /* Fall back to bounce buffer if write zeroes is unsupported */ 1975 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 1976 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 1977 memset(iov.iov_base, 0, iov.iov_len); 1978 qemu_iovec_init_external(&qiov, &iov, 1); 1979 1980 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 1981 1982 qemu_vfree(iov.iov_base); 1983 return ret; 1984 } 1985 1986 /* 1987 * Handle a write request in coroutine context 1988 */ 1989 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 1990 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 1991 BdrvRequestFlags flags) 1992 { 1993 BlockDriver *drv = bs->drv; 1994 BdrvTrackedRequest req; 1995 int ret; 1996 1997 if (!bs->drv) { 1998 return -ENOMEDIUM; 1999 } 2000 if (bs->read_only) { 2001 return -EACCES; 2002 } 2003 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2004 return -EIO; 2005 } 2006 2007 /* throttling disk write I/O */ 2008 if (bs->io_limits_enabled) { 2009 bdrv_io_limits_intercept(bs, true, nb_sectors); 2010 } 2011 2012 if (bs->copy_on_read_in_flight) { 2013 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2014 } 2015 2016 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2017 2018 if (flags & BDRV_REQ_ZERO_WRITE) { 2019 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2020 } else { 2021 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2022 } 2023 2024 if (ret == 0 && !bs->enable_write_cache) { 2025 ret = bdrv_co_flush(bs); 2026 } 2027 2028 if (bs->dirty_bitmap) { 2029 set_dirty_bitmap(bs, sector_num, nb_sectors, 1); 2030 } 2031 2032 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2033 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2034 } 2035 2036 tracked_request_end(&req); 2037 2038 return ret; 2039 } 2040 2041 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2042 int nb_sectors, QEMUIOVector *qiov) 2043 { 2044 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2045 2046 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2047 } 2048 2049 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2050 int64_t sector_num, int nb_sectors) 2051 { 2052 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2053 2054 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2055 BDRV_REQ_ZERO_WRITE); 2056 } 2057 2058 /** 2059 * Truncate file to 'offset' bytes (needed only for file protocols) 2060 */ 2061 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2062 { 2063 BlockDriver *drv = bs->drv; 2064 int ret; 2065 if (!drv) 2066 return -ENOMEDIUM; 2067 if (!drv->bdrv_truncate) 2068 return -ENOTSUP; 2069 if (bs->read_only) 2070 return -EACCES; 2071 if (bdrv_in_use(bs)) 2072 return -EBUSY; 2073 ret = drv->bdrv_truncate(bs, offset); 2074 if (ret == 0) { 2075 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2076 bdrv_dev_resize_cb(bs); 2077 } 2078 return ret; 2079 } 2080 2081 /** 2082 * Length of a allocated file in bytes. Sparse files are counted by actual 2083 * allocated space. Return < 0 if error or unknown. 2084 */ 2085 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2086 { 2087 BlockDriver *drv = bs->drv; 2088 if (!drv) { 2089 return -ENOMEDIUM; 2090 } 2091 if (drv->bdrv_get_allocated_file_size) { 2092 return drv->bdrv_get_allocated_file_size(bs); 2093 } 2094 if (bs->file) { 2095 return bdrv_get_allocated_file_size(bs->file); 2096 } 2097 return -ENOTSUP; 2098 } 2099 2100 /** 2101 * Length of a file in bytes. Return < 0 if error or unknown. 2102 */ 2103 int64_t bdrv_getlength(BlockDriverState *bs) 2104 { 2105 BlockDriver *drv = bs->drv; 2106 if (!drv) 2107 return -ENOMEDIUM; 2108 2109 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2110 if (drv->bdrv_getlength) { 2111 return drv->bdrv_getlength(bs); 2112 } 2113 } 2114 return bs->total_sectors * BDRV_SECTOR_SIZE; 2115 } 2116 2117 /* return 0 as number of sectors if no device present or error */ 2118 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2119 { 2120 int64_t length; 2121 length = bdrv_getlength(bs); 2122 if (length < 0) 2123 length = 0; 2124 else 2125 length = length >> BDRV_SECTOR_BITS; 2126 *nb_sectors_ptr = length; 2127 } 2128 2129 /* throttling disk io limits */ 2130 void bdrv_set_io_limits(BlockDriverState *bs, 2131 BlockIOLimit *io_limits) 2132 { 2133 bs->io_limits = *io_limits; 2134 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2135 } 2136 2137 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error, 2138 BlockErrorAction on_write_error) 2139 { 2140 bs->on_read_error = on_read_error; 2141 bs->on_write_error = on_write_error; 2142 } 2143 2144 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read) 2145 { 2146 return is_read ? bs->on_read_error : bs->on_write_error; 2147 } 2148 2149 int bdrv_is_read_only(BlockDriverState *bs) 2150 { 2151 return bs->read_only; 2152 } 2153 2154 int bdrv_is_sg(BlockDriverState *bs) 2155 { 2156 return bs->sg; 2157 } 2158 2159 int bdrv_enable_write_cache(BlockDriverState *bs) 2160 { 2161 return bs->enable_write_cache; 2162 } 2163 2164 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2165 { 2166 bs->enable_write_cache = wce; 2167 } 2168 2169 int bdrv_is_encrypted(BlockDriverState *bs) 2170 { 2171 if (bs->backing_hd && bs->backing_hd->encrypted) 2172 return 1; 2173 return bs->encrypted; 2174 } 2175 2176 int bdrv_key_required(BlockDriverState *bs) 2177 { 2178 BlockDriverState *backing_hd = bs->backing_hd; 2179 2180 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2181 return 1; 2182 return (bs->encrypted && !bs->valid_key); 2183 } 2184 2185 int bdrv_set_key(BlockDriverState *bs, const char *key) 2186 { 2187 int ret; 2188 if (bs->backing_hd && bs->backing_hd->encrypted) { 2189 ret = bdrv_set_key(bs->backing_hd, key); 2190 if (ret < 0) 2191 return ret; 2192 if (!bs->encrypted) 2193 return 0; 2194 } 2195 if (!bs->encrypted) { 2196 return -EINVAL; 2197 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2198 return -ENOMEDIUM; 2199 } 2200 ret = bs->drv->bdrv_set_key(bs, key); 2201 if (ret < 0) { 2202 bs->valid_key = 0; 2203 } else if (!bs->valid_key) { 2204 bs->valid_key = 1; 2205 /* call the change callback now, we skipped it on open */ 2206 bdrv_dev_change_media_cb(bs, true); 2207 } 2208 return ret; 2209 } 2210 2211 const char *bdrv_get_format_name(BlockDriverState *bs) 2212 { 2213 return bs->drv ? bs->drv->format_name : NULL; 2214 } 2215 2216 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2217 void *opaque) 2218 { 2219 BlockDriver *drv; 2220 2221 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2222 it(opaque, drv->format_name); 2223 } 2224 } 2225 2226 BlockDriverState *bdrv_find(const char *name) 2227 { 2228 BlockDriverState *bs; 2229 2230 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2231 if (!strcmp(name, bs->device_name)) { 2232 return bs; 2233 } 2234 } 2235 return NULL; 2236 } 2237 2238 BlockDriverState *bdrv_next(BlockDriverState *bs) 2239 { 2240 if (!bs) { 2241 return QTAILQ_FIRST(&bdrv_states); 2242 } 2243 return QTAILQ_NEXT(bs, list); 2244 } 2245 2246 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2247 { 2248 BlockDriverState *bs; 2249 2250 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2251 it(opaque, bs); 2252 } 2253 } 2254 2255 const char *bdrv_get_device_name(BlockDriverState *bs) 2256 { 2257 return bs->device_name; 2258 } 2259 2260 int bdrv_get_flags(BlockDriverState *bs) 2261 { 2262 return bs->open_flags; 2263 } 2264 2265 void bdrv_flush_all(void) 2266 { 2267 BlockDriverState *bs; 2268 2269 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2270 bdrv_flush(bs); 2271 } 2272 } 2273 2274 int bdrv_has_zero_init(BlockDriverState *bs) 2275 { 2276 assert(bs->drv); 2277 2278 if (bs->drv->bdrv_has_zero_init) { 2279 return bs->drv->bdrv_has_zero_init(bs); 2280 } 2281 2282 return 1; 2283 } 2284 2285 typedef struct BdrvCoIsAllocatedData { 2286 BlockDriverState *bs; 2287 int64_t sector_num; 2288 int nb_sectors; 2289 int *pnum; 2290 int ret; 2291 bool done; 2292 } BdrvCoIsAllocatedData; 2293 2294 /* 2295 * Returns true iff the specified sector is present in the disk image. Drivers 2296 * not implementing the functionality are assumed to not support backing files, 2297 * hence all their sectors are reported as allocated. 2298 * 2299 * If 'sector_num' is beyond the end of the disk image the return value is 0 2300 * and 'pnum' is set to 0. 2301 * 2302 * 'pnum' is set to the number of sectors (including and immediately following 2303 * the specified sector) that are known to be in the same 2304 * allocated/unallocated state. 2305 * 2306 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2307 * beyond the end of the disk image it will be clamped. 2308 */ 2309 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2310 int nb_sectors, int *pnum) 2311 { 2312 int64_t n; 2313 2314 if (sector_num >= bs->total_sectors) { 2315 *pnum = 0; 2316 return 0; 2317 } 2318 2319 n = bs->total_sectors - sector_num; 2320 if (n < nb_sectors) { 2321 nb_sectors = n; 2322 } 2323 2324 if (!bs->drv->bdrv_co_is_allocated) { 2325 *pnum = nb_sectors; 2326 return 1; 2327 } 2328 2329 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2330 } 2331 2332 /* Coroutine wrapper for bdrv_is_allocated() */ 2333 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2334 { 2335 BdrvCoIsAllocatedData *data = opaque; 2336 BlockDriverState *bs = data->bs; 2337 2338 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2339 data->pnum); 2340 data->done = true; 2341 } 2342 2343 /* 2344 * Synchronous wrapper around bdrv_co_is_allocated(). 2345 * 2346 * See bdrv_co_is_allocated() for details. 2347 */ 2348 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2349 int *pnum) 2350 { 2351 Coroutine *co; 2352 BdrvCoIsAllocatedData data = { 2353 .bs = bs, 2354 .sector_num = sector_num, 2355 .nb_sectors = nb_sectors, 2356 .pnum = pnum, 2357 .done = false, 2358 }; 2359 2360 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2361 qemu_coroutine_enter(co, &data); 2362 while (!data.done) { 2363 qemu_aio_wait(); 2364 } 2365 return data.ret; 2366 } 2367 2368 /* 2369 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2370 * 2371 * Return true if the given sector is allocated in any image between 2372 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2373 * sector is allocated in any image of the chain. Return false otherwise. 2374 * 2375 * 'pnum' is set to the number of sectors (including and immediately following 2376 * the specified sector) that are known to be in the same 2377 * allocated/unallocated state. 2378 * 2379 */ 2380 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2381 BlockDriverState *base, 2382 int64_t sector_num, 2383 int nb_sectors, int *pnum) 2384 { 2385 BlockDriverState *intermediate; 2386 int ret, n = nb_sectors; 2387 2388 intermediate = top; 2389 while (intermediate && intermediate != base) { 2390 int pnum_inter; 2391 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2392 &pnum_inter); 2393 if (ret < 0) { 2394 return ret; 2395 } else if (ret) { 2396 *pnum = pnum_inter; 2397 return 1; 2398 } 2399 2400 /* 2401 * [sector_num, nb_sectors] is unallocated on top but intermediate 2402 * might have 2403 * 2404 * [sector_num+x, nr_sectors] allocated. 2405 */ 2406 if (n > pnum_inter) { 2407 n = pnum_inter; 2408 } 2409 2410 intermediate = intermediate->backing_hd; 2411 } 2412 2413 *pnum = n; 2414 return 0; 2415 } 2416 2417 BlockInfoList *qmp_query_block(Error **errp) 2418 { 2419 BlockInfoList *head = NULL, *cur_item = NULL; 2420 BlockDriverState *bs; 2421 2422 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2423 BlockInfoList *info = g_malloc0(sizeof(*info)); 2424 2425 info->value = g_malloc0(sizeof(*info->value)); 2426 info->value->device = g_strdup(bs->device_name); 2427 info->value->type = g_strdup("unknown"); 2428 info->value->locked = bdrv_dev_is_medium_locked(bs); 2429 info->value->removable = bdrv_dev_has_removable_media(bs); 2430 2431 if (bdrv_dev_has_removable_media(bs)) { 2432 info->value->has_tray_open = true; 2433 info->value->tray_open = bdrv_dev_is_tray_open(bs); 2434 } 2435 2436 if (bdrv_iostatus_is_enabled(bs)) { 2437 info->value->has_io_status = true; 2438 info->value->io_status = bs->iostatus; 2439 } 2440 2441 if (bs->drv) { 2442 info->value->has_inserted = true; 2443 info->value->inserted = g_malloc0(sizeof(*info->value->inserted)); 2444 info->value->inserted->file = g_strdup(bs->filename); 2445 info->value->inserted->ro = bs->read_only; 2446 info->value->inserted->drv = g_strdup(bs->drv->format_name); 2447 info->value->inserted->encrypted = bs->encrypted; 2448 if (bs->backing_file[0]) { 2449 info->value->inserted->has_backing_file = true; 2450 info->value->inserted->backing_file = g_strdup(bs->backing_file); 2451 } 2452 2453 info->value->inserted->backing_file_depth = 2454 bdrv_get_backing_file_depth(bs); 2455 2456 if (bs->io_limits_enabled) { 2457 info->value->inserted->bps = 2458 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2459 info->value->inserted->bps_rd = 2460 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2461 info->value->inserted->bps_wr = 2462 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2463 info->value->inserted->iops = 2464 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2465 info->value->inserted->iops_rd = 2466 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2467 info->value->inserted->iops_wr = 2468 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2469 } 2470 } 2471 2472 /* XXX: waiting for the qapi to support GSList */ 2473 if (!cur_item) { 2474 head = cur_item = info; 2475 } else { 2476 cur_item->next = info; 2477 cur_item = info; 2478 } 2479 } 2480 2481 return head; 2482 } 2483 2484 /* Consider exposing this as a full fledged QMP command */ 2485 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp) 2486 { 2487 BlockStats *s; 2488 2489 s = g_malloc0(sizeof(*s)); 2490 2491 if (bs->device_name[0]) { 2492 s->has_device = true; 2493 s->device = g_strdup(bs->device_name); 2494 } 2495 2496 s->stats = g_malloc0(sizeof(*s->stats)); 2497 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2498 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2499 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2500 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2501 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2502 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2503 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2504 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2505 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2506 2507 if (bs->file) { 2508 s->has_parent = true; 2509 s->parent = qmp_query_blockstat(bs->file, NULL); 2510 } 2511 2512 return s; 2513 } 2514 2515 BlockStatsList *qmp_query_blockstats(Error **errp) 2516 { 2517 BlockStatsList *head = NULL, *cur_item = NULL; 2518 BlockDriverState *bs; 2519 2520 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2521 BlockStatsList *info = g_malloc0(sizeof(*info)); 2522 info->value = qmp_query_blockstat(bs, NULL); 2523 2524 /* XXX: waiting for the qapi to support GSList */ 2525 if (!cur_item) { 2526 head = cur_item = info; 2527 } else { 2528 cur_item->next = info; 2529 cur_item = info; 2530 } 2531 } 2532 2533 return head; 2534 } 2535 2536 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 2537 { 2538 if (bs->backing_hd && bs->backing_hd->encrypted) 2539 return bs->backing_file; 2540 else if (bs->encrypted) 2541 return bs->filename; 2542 else 2543 return NULL; 2544 } 2545 2546 void bdrv_get_backing_filename(BlockDriverState *bs, 2547 char *filename, int filename_size) 2548 { 2549 pstrcpy(filename, filename_size, bs->backing_file); 2550 } 2551 2552 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 2553 const uint8_t *buf, int nb_sectors) 2554 { 2555 BlockDriver *drv = bs->drv; 2556 if (!drv) 2557 return -ENOMEDIUM; 2558 if (!drv->bdrv_write_compressed) 2559 return -ENOTSUP; 2560 if (bdrv_check_request(bs, sector_num, nb_sectors)) 2561 return -EIO; 2562 2563 if (bs->dirty_bitmap) { 2564 set_dirty_bitmap(bs, sector_num, nb_sectors, 1); 2565 } 2566 2567 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 2568 } 2569 2570 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 2571 { 2572 BlockDriver *drv = bs->drv; 2573 if (!drv) 2574 return -ENOMEDIUM; 2575 if (!drv->bdrv_get_info) 2576 return -ENOTSUP; 2577 memset(bdi, 0, sizeof(*bdi)); 2578 return drv->bdrv_get_info(bs, bdi); 2579 } 2580 2581 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2582 int64_t pos, int size) 2583 { 2584 BlockDriver *drv = bs->drv; 2585 if (!drv) 2586 return -ENOMEDIUM; 2587 if (drv->bdrv_save_vmstate) 2588 return drv->bdrv_save_vmstate(bs, buf, pos, size); 2589 if (bs->file) 2590 return bdrv_save_vmstate(bs->file, buf, pos, size); 2591 return -ENOTSUP; 2592 } 2593 2594 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2595 int64_t pos, int size) 2596 { 2597 BlockDriver *drv = bs->drv; 2598 if (!drv) 2599 return -ENOMEDIUM; 2600 if (drv->bdrv_load_vmstate) 2601 return drv->bdrv_load_vmstate(bs, buf, pos, size); 2602 if (bs->file) 2603 return bdrv_load_vmstate(bs->file, buf, pos, size); 2604 return -ENOTSUP; 2605 } 2606 2607 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 2608 { 2609 BlockDriver *drv = bs->drv; 2610 2611 if (!drv || !drv->bdrv_debug_event) { 2612 return; 2613 } 2614 2615 drv->bdrv_debug_event(bs, event); 2616 2617 } 2618 2619 /**************************************************************/ 2620 /* handling of snapshots */ 2621 2622 int bdrv_can_snapshot(BlockDriverState *bs) 2623 { 2624 BlockDriver *drv = bs->drv; 2625 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 2626 return 0; 2627 } 2628 2629 if (!drv->bdrv_snapshot_create) { 2630 if (bs->file != NULL) { 2631 return bdrv_can_snapshot(bs->file); 2632 } 2633 return 0; 2634 } 2635 2636 return 1; 2637 } 2638 2639 int bdrv_is_snapshot(BlockDriverState *bs) 2640 { 2641 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 2642 } 2643 2644 BlockDriverState *bdrv_snapshots(void) 2645 { 2646 BlockDriverState *bs; 2647 2648 if (bs_snapshots) { 2649 return bs_snapshots; 2650 } 2651 2652 bs = NULL; 2653 while ((bs = bdrv_next(bs))) { 2654 if (bdrv_can_snapshot(bs)) { 2655 bs_snapshots = bs; 2656 return bs; 2657 } 2658 } 2659 return NULL; 2660 } 2661 2662 int bdrv_snapshot_create(BlockDriverState *bs, 2663 QEMUSnapshotInfo *sn_info) 2664 { 2665 BlockDriver *drv = bs->drv; 2666 if (!drv) 2667 return -ENOMEDIUM; 2668 if (drv->bdrv_snapshot_create) 2669 return drv->bdrv_snapshot_create(bs, sn_info); 2670 if (bs->file) 2671 return bdrv_snapshot_create(bs->file, sn_info); 2672 return -ENOTSUP; 2673 } 2674 2675 int bdrv_snapshot_goto(BlockDriverState *bs, 2676 const char *snapshot_id) 2677 { 2678 BlockDriver *drv = bs->drv; 2679 int ret, open_ret; 2680 2681 if (!drv) 2682 return -ENOMEDIUM; 2683 if (drv->bdrv_snapshot_goto) 2684 return drv->bdrv_snapshot_goto(bs, snapshot_id); 2685 2686 if (bs->file) { 2687 drv->bdrv_close(bs); 2688 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 2689 open_ret = drv->bdrv_open(bs, bs->open_flags); 2690 if (open_ret < 0) { 2691 bdrv_delete(bs->file); 2692 bs->drv = NULL; 2693 return open_ret; 2694 } 2695 return ret; 2696 } 2697 2698 return -ENOTSUP; 2699 } 2700 2701 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 2702 { 2703 BlockDriver *drv = bs->drv; 2704 if (!drv) 2705 return -ENOMEDIUM; 2706 if (drv->bdrv_snapshot_delete) 2707 return drv->bdrv_snapshot_delete(bs, snapshot_id); 2708 if (bs->file) 2709 return bdrv_snapshot_delete(bs->file, snapshot_id); 2710 return -ENOTSUP; 2711 } 2712 2713 int bdrv_snapshot_list(BlockDriverState *bs, 2714 QEMUSnapshotInfo **psn_info) 2715 { 2716 BlockDriver *drv = bs->drv; 2717 if (!drv) 2718 return -ENOMEDIUM; 2719 if (drv->bdrv_snapshot_list) 2720 return drv->bdrv_snapshot_list(bs, psn_info); 2721 if (bs->file) 2722 return bdrv_snapshot_list(bs->file, psn_info); 2723 return -ENOTSUP; 2724 } 2725 2726 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 2727 const char *snapshot_name) 2728 { 2729 BlockDriver *drv = bs->drv; 2730 if (!drv) { 2731 return -ENOMEDIUM; 2732 } 2733 if (!bs->read_only) { 2734 return -EINVAL; 2735 } 2736 if (drv->bdrv_snapshot_load_tmp) { 2737 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 2738 } 2739 return -ENOTSUP; 2740 } 2741 2742 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 2743 const char *backing_file) 2744 { 2745 if (!bs->drv) { 2746 return NULL; 2747 } 2748 2749 if (bs->backing_hd) { 2750 if (strcmp(bs->backing_file, backing_file) == 0) { 2751 return bs->backing_hd; 2752 } else { 2753 return bdrv_find_backing_image(bs->backing_hd, backing_file); 2754 } 2755 } 2756 2757 return NULL; 2758 } 2759 2760 int bdrv_get_backing_file_depth(BlockDriverState *bs) 2761 { 2762 if (!bs->drv) { 2763 return 0; 2764 } 2765 2766 if (!bs->backing_hd) { 2767 return 0; 2768 } 2769 2770 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 2771 } 2772 2773 #define NB_SUFFIXES 4 2774 2775 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 2776 { 2777 static const char suffixes[NB_SUFFIXES] = "KMGT"; 2778 int64_t base; 2779 int i; 2780 2781 if (size <= 999) { 2782 snprintf(buf, buf_size, "%" PRId64, size); 2783 } else { 2784 base = 1024; 2785 for(i = 0; i < NB_SUFFIXES; i++) { 2786 if (size < (10 * base)) { 2787 snprintf(buf, buf_size, "%0.1f%c", 2788 (double)size / base, 2789 suffixes[i]); 2790 break; 2791 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 2792 snprintf(buf, buf_size, "%" PRId64 "%c", 2793 ((size + (base >> 1)) / base), 2794 suffixes[i]); 2795 break; 2796 } 2797 base = base * 1024; 2798 } 2799 } 2800 return buf; 2801 } 2802 2803 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 2804 { 2805 char buf1[128], date_buf[128], clock_buf[128]; 2806 #ifdef _WIN32 2807 struct tm *ptm; 2808 #else 2809 struct tm tm; 2810 #endif 2811 time_t ti; 2812 int64_t secs; 2813 2814 if (!sn) { 2815 snprintf(buf, buf_size, 2816 "%-10s%-20s%7s%20s%15s", 2817 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 2818 } else { 2819 ti = sn->date_sec; 2820 #ifdef _WIN32 2821 ptm = localtime(&ti); 2822 strftime(date_buf, sizeof(date_buf), 2823 "%Y-%m-%d %H:%M:%S", ptm); 2824 #else 2825 localtime_r(&ti, &tm); 2826 strftime(date_buf, sizeof(date_buf), 2827 "%Y-%m-%d %H:%M:%S", &tm); 2828 #endif 2829 secs = sn->vm_clock_nsec / 1000000000; 2830 snprintf(clock_buf, sizeof(clock_buf), 2831 "%02d:%02d:%02d.%03d", 2832 (int)(secs / 3600), 2833 (int)((secs / 60) % 60), 2834 (int)(secs % 60), 2835 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 2836 snprintf(buf, buf_size, 2837 "%-10s%-20s%7s%20s%15s", 2838 sn->id_str, sn->name, 2839 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 2840 date_buf, 2841 clock_buf); 2842 } 2843 return buf; 2844 } 2845 2846 /**************************************************************/ 2847 /* async I/Os */ 2848 2849 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 2850 QEMUIOVector *qiov, int nb_sectors, 2851 BlockDriverCompletionFunc *cb, void *opaque) 2852 { 2853 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 2854 2855 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 2856 cb, opaque, false); 2857 } 2858 2859 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 2860 QEMUIOVector *qiov, int nb_sectors, 2861 BlockDriverCompletionFunc *cb, void *opaque) 2862 { 2863 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 2864 2865 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 2866 cb, opaque, true); 2867 } 2868 2869 2870 typedef struct MultiwriteCB { 2871 int error; 2872 int num_requests; 2873 int num_callbacks; 2874 struct { 2875 BlockDriverCompletionFunc *cb; 2876 void *opaque; 2877 QEMUIOVector *free_qiov; 2878 } callbacks[]; 2879 } MultiwriteCB; 2880 2881 static void multiwrite_user_cb(MultiwriteCB *mcb) 2882 { 2883 int i; 2884 2885 for (i = 0; i < mcb->num_callbacks; i++) { 2886 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 2887 if (mcb->callbacks[i].free_qiov) { 2888 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 2889 } 2890 g_free(mcb->callbacks[i].free_qiov); 2891 } 2892 } 2893 2894 static void multiwrite_cb(void *opaque, int ret) 2895 { 2896 MultiwriteCB *mcb = opaque; 2897 2898 trace_multiwrite_cb(mcb, ret); 2899 2900 if (ret < 0 && !mcb->error) { 2901 mcb->error = ret; 2902 } 2903 2904 mcb->num_requests--; 2905 if (mcb->num_requests == 0) { 2906 multiwrite_user_cb(mcb); 2907 g_free(mcb); 2908 } 2909 } 2910 2911 static int multiwrite_req_compare(const void *a, const void *b) 2912 { 2913 const BlockRequest *req1 = a, *req2 = b; 2914 2915 /* 2916 * Note that we can't simply subtract req2->sector from req1->sector 2917 * here as that could overflow the return value. 2918 */ 2919 if (req1->sector > req2->sector) { 2920 return 1; 2921 } else if (req1->sector < req2->sector) { 2922 return -1; 2923 } else { 2924 return 0; 2925 } 2926 } 2927 2928 /* 2929 * Takes a bunch of requests and tries to merge them. Returns the number of 2930 * requests that remain after merging. 2931 */ 2932 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 2933 int num_reqs, MultiwriteCB *mcb) 2934 { 2935 int i, outidx; 2936 2937 // Sort requests by start sector 2938 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 2939 2940 // Check if adjacent requests touch the same clusters. If so, combine them, 2941 // filling up gaps with zero sectors. 2942 outidx = 0; 2943 for (i = 1; i < num_reqs; i++) { 2944 int merge = 0; 2945 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 2946 2947 // Handle exactly sequential writes and overlapping writes. 2948 if (reqs[i].sector <= oldreq_last) { 2949 merge = 1; 2950 } 2951 2952 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 2953 merge = 0; 2954 } 2955 2956 if (merge) { 2957 size_t size; 2958 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 2959 qemu_iovec_init(qiov, 2960 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 2961 2962 // Add the first request to the merged one. If the requests are 2963 // overlapping, drop the last sectors of the first request. 2964 size = (reqs[i].sector - reqs[outidx].sector) << 9; 2965 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 2966 2967 // We should need to add any zeros between the two requests 2968 assert (reqs[i].sector <= oldreq_last); 2969 2970 // Add the second request 2971 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 2972 2973 reqs[outidx].nb_sectors = qiov->size >> 9; 2974 reqs[outidx].qiov = qiov; 2975 2976 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 2977 } else { 2978 outidx++; 2979 reqs[outidx].sector = reqs[i].sector; 2980 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 2981 reqs[outidx].qiov = reqs[i].qiov; 2982 } 2983 } 2984 2985 return outidx + 1; 2986 } 2987 2988 /* 2989 * Submit multiple AIO write requests at once. 2990 * 2991 * On success, the function returns 0 and all requests in the reqs array have 2992 * been submitted. In error case this function returns -1, and any of the 2993 * requests may or may not be submitted yet. In particular, this means that the 2994 * callback will be called for some of the requests, for others it won't. The 2995 * caller must check the error field of the BlockRequest to wait for the right 2996 * callbacks (if error != 0, no callback will be called). 2997 * 2998 * The implementation may modify the contents of the reqs array, e.g. to merge 2999 * requests. However, the fields opaque and error are left unmodified as they 3000 * are used to signal failure for a single request to the caller. 3001 */ 3002 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3003 { 3004 MultiwriteCB *mcb; 3005 int i; 3006 3007 /* don't submit writes if we don't have a medium */ 3008 if (bs->drv == NULL) { 3009 for (i = 0; i < num_reqs; i++) { 3010 reqs[i].error = -ENOMEDIUM; 3011 } 3012 return -1; 3013 } 3014 3015 if (num_reqs == 0) { 3016 return 0; 3017 } 3018 3019 // Create MultiwriteCB structure 3020 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3021 mcb->num_requests = 0; 3022 mcb->num_callbacks = num_reqs; 3023 3024 for (i = 0; i < num_reqs; i++) { 3025 mcb->callbacks[i].cb = reqs[i].cb; 3026 mcb->callbacks[i].opaque = reqs[i].opaque; 3027 } 3028 3029 // Check for mergable requests 3030 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3031 3032 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3033 3034 /* Run the aio requests. */ 3035 mcb->num_requests = num_reqs; 3036 for (i = 0; i < num_reqs; i++) { 3037 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3038 reqs[i].nb_sectors, multiwrite_cb, mcb); 3039 } 3040 3041 return 0; 3042 } 3043 3044 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3045 { 3046 acb->pool->cancel(acb); 3047 } 3048 3049 /* block I/O throttling */ 3050 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3051 bool is_write, double elapsed_time, uint64_t *wait) 3052 { 3053 uint64_t bps_limit = 0; 3054 double bytes_limit, bytes_base, bytes_res; 3055 double slice_time, wait_time; 3056 3057 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3058 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3059 } else if (bs->io_limits.bps[is_write]) { 3060 bps_limit = bs->io_limits.bps[is_write]; 3061 } else { 3062 if (wait) { 3063 *wait = 0; 3064 } 3065 3066 return false; 3067 } 3068 3069 slice_time = bs->slice_end - bs->slice_start; 3070 slice_time /= (NANOSECONDS_PER_SECOND); 3071 bytes_limit = bps_limit * slice_time; 3072 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3073 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3074 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3075 } 3076 3077 /* bytes_base: the bytes of data which have been read/written; and 3078 * it is obtained from the history statistic info. 3079 * bytes_res: the remaining bytes of data which need to be read/written. 3080 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3081 * the total time for completing reading/writting all data. 3082 */ 3083 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3084 3085 if (bytes_base + bytes_res <= bytes_limit) { 3086 if (wait) { 3087 *wait = 0; 3088 } 3089 3090 return false; 3091 } 3092 3093 /* Calc approx time to dispatch */ 3094 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3095 3096 /* When the I/O rate at runtime exceeds the limits, 3097 * bs->slice_end need to be extended in order that the current statistic 3098 * info can be kept until the timer fire, so it is increased and tuned 3099 * based on the result of experiment. 3100 */ 3101 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3102 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3103 if (wait) { 3104 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3105 } 3106 3107 return true; 3108 } 3109 3110 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3111 double elapsed_time, uint64_t *wait) 3112 { 3113 uint64_t iops_limit = 0; 3114 double ios_limit, ios_base; 3115 double slice_time, wait_time; 3116 3117 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3118 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3119 } else if (bs->io_limits.iops[is_write]) { 3120 iops_limit = bs->io_limits.iops[is_write]; 3121 } else { 3122 if (wait) { 3123 *wait = 0; 3124 } 3125 3126 return false; 3127 } 3128 3129 slice_time = bs->slice_end - bs->slice_start; 3130 slice_time /= (NANOSECONDS_PER_SECOND); 3131 ios_limit = iops_limit * slice_time; 3132 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3133 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3134 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3135 } 3136 3137 if (ios_base + 1 <= ios_limit) { 3138 if (wait) { 3139 *wait = 0; 3140 } 3141 3142 return false; 3143 } 3144 3145 /* Calc approx time to dispatch */ 3146 wait_time = (ios_base + 1) / iops_limit; 3147 if (wait_time > elapsed_time) { 3148 wait_time = wait_time - elapsed_time; 3149 } else { 3150 wait_time = 0; 3151 } 3152 3153 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3154 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3155 if (wait) { 3156 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3157 } 3158 3159 return true; 3160 } 3161 3162 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3163 bool is_write, int64_t *wait) 3164 { 3165 int64_t now, max_wait; 3166 uint64_t bps_wait = 0, iops_wait = 0; 3167 double elapsed_time; 3168 int bps_ret, iops_ret; 3169 3170 now = qemu_get_clock_ns(vm_clock); 3171 if ((bs->slice_start < now) 3172 && (bs->slice_end > now)) { 3173 bs->slice_end = now + bs->slice_time; 3174 } else { 3175 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3176 bs->slice_start = now; 3177 bs->slice_end = now + bs->slice_time; 3178 3179 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3180 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3181 3182 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3183 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3184 } 3185 3186 elapsed_time = now - bs->slice_start; 3187 elapsed_time /= (NANOSECONDS_PER_SECOND); 3188 3189 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3190 is_write, elapsed_time, &bps_wait); 3191 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3192 elapsed_time, &iops_wait); 3193 if (bps_ret || iops_ret) { 3194 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3195 if (wait) { 3196 *wait = max_wait; 3197 } 3198 3199 now = qemu_get_clock_ns(vm_clock); 3200 if (bs->slice_end < now + max_wait) { 3201 bs->slice_end = now + max_wait; 3202 } 3203 3204 return true; 3205 } 3206 3207 if (wait) { 3208 *wait = 0; 3209 } 3210 3211 return false; 3212 } 3213 3214 /**************************************************************/ 3215 /* async block device emulation */ 3216 3217 typedef struct BlockDriverAIOCBSync { 3218 BlockDriverAIOCB common; 3219 QEMUBH *bh; 3220 int ret; 3221 /* vector translation state */ 3222 QEMUIOVector *qiov; 3223 uint8_t *bounce; 3224 int is_write; 3225 } BlockDriverAIOCBSync; 3226 3227 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3228 { 3229 BlockDriverAIOCBSync *acb = 3230 container_of(blockacb, BlockDriverAIOCBSync, common); 3231 qemu_bh_delete(acb->bh); 3232 acb->bh = NULL; 3233 qemu_aio_release(acb); 3234 } 3235 3236 static AIOPool bdrv_em_aio_pool = { 3237 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3238 .cancel = bdrv_aio_cancel_em, 3239 }; 3240 3241 static void bdrv_aio_bh_cb(void *opaque) 3242 { 3243 BlockDriverAIOCBSync *acb = opaque; 3244 3245 if (!acb->is_write) 3246 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3247 qemu_vfree(acb->bounce); 3248 acb->common.cb(acb->common.opaque, acb->ret); 3249 qemu_bh_delete(acb->bh); 3250 acb->bh = NULL; 3251 qemu_aio_release(acb); 3252 } 3253 3254 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3255 int64_t sector_num, 3256 QEMUIOVector *qiov, 3257 int nb_sectors, 3258 BlockDriverCompletionFunc *cb, 3259 void *opaque, 3260 int is_write) 3261 3262 { 3263 BlockDriverAIOCBSync *acb; 3264 3265 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque); 3266 acb->is_write = is_write; 3267 acb->qiov = qiov; 3268 acb->bounce = qemu_blockalign(bs, qiov->size); 3269 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3270 3271 if (is_write) { 3272 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3273 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3274 } else { 3275 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3276 } 3277 3278 qemu_bh_schedule(acb->bh); 3279 3280 return &acb->common; 3281 } 3282 3283 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3284 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3285 BlockDriverCompletionFunc *cb, void *opaque) 3286 { 3287 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3288 } 3289 3290 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3291 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3292 BlockDriverCompletionFunc *cb, void *opaque) 3293 { 3294 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3295 } 3296 3297 3298 typedef struct BlockDriverAIOCBCoroutine { 3299 BlockDriverAIOCB common; 3300 BlockRequest req; 3301 bool is_write; 3302 QEMUBH* bh; 3303 } BlockDriverAIOCBCoroutine; 3304 3305 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3306 { 3307 qemu_aio_flush(); 3308 } 3309 3310 static AIOPool bdrv_em_co_aio_pool = { 3311 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3312 .cancel = bdrv_aio_co_cancel_em, 3313 }; 3314 3315 static void bdrv_co_em_bh(void *opaque) 3316 { 3317 BlockDriverAIOCBCoroutine *acb = opaque; 3318 3319 acb->common.cb(acb->common.opaque, acb->req.error); 3320 qemu_bh_delete(acb->bh); 3321 qemu_aio_release(acb); 3322 } 3323 3324 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3325 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3326 { 3327 BlockDriverAIOCBCoroutine *acb = opaque; 3328 BlockDriverState *bs = acb->common.bs; 3329 3330 if (!acb->is_write) { 3331 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3332 acb->req.nb_sectors, acb->req.qiov, 0); 3333 } else { 3334 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3335 acb->req.nb_sectors, acb->req.qiov, 0); 3336 } 3337 3338 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3339 qemu_bh_schedule(acb->bh); 3340 } 3341 3342 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3343 int64_t sector_num, 3344 QEMUIOVector *qiov, 3345 int nb_sectors, 3346 BlockDriverCompletionFunc *cb, 3347 void *opaque, 3348 bool is_write) 3349 { 3350 Coroutine *co; 3351 BlockDriverAIOCBCoroutine *acb; 3352 3353 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3354 acb->req.sector = sector_num; 3355 acb->req.nb_sectors = nb_sectors; 3356 acb->req.qiov = qiov; 3357 acb->is_write = is_write; 3358 3359 co = qemu_coroutine_create(bdrv_co_do_rw); 3360 qemu_coroutine_enter(co, acb); 3361 3362 return &acb->common; 3363 } 3364 3365 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3366 { 3367 BlockDriverAIOCBCoroutine *acb = opaque; 3368 BlockDriverState *bs = acb->common.bs; 3369 3370 acb->req.error = bdrv_co_flush(bs); 3371 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3372 qemu_bh_schedule(acb->bh); 3373 } 3374 3375 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3376 BlockDriverCompletionFunc *cb, void *opaque) 3377 { 3378 trace_bdrv_aio_flush(bs, opaque); 3379 3380 Coroutine *co; 3381 BlockDriverAIOCBCoroutine *acb; 3382 3383 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3384 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3385 qemu_coroutine_enter(co, acb); 3386 3387 return &acb->common; 3388 } 3389 3390 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3391 { 3392 BlockDriverAIOCBCoroutine *acb = opaque; 3393 BlockDriverState *bs = acb->common.bs; 3394 3395 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3396 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3397 qemu_bh_schedule(acb->bh); 3398 } 3399 3400 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3401 int64_t sector_num, int nb_sectors, 3402 BlockDriverCompletionFunc *cb, void *opaque) 3403 { 3404 Coroutine *co; 3405 BlockDriverAIOCBCoroutine *acb; 3406 3407 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3408 3409 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3410 acb->req.sector = sector_num; 3411 acb->req.nb_sectors = nb_sectors; 3412 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3413 qemu_coroutine_enter(co, acb); 3414 3415 return &acb->common; 3416 } 3417 3418 void bdrv_init(void) 3419 { 3420 module_call_init(MODULE_INIT_BLOCK); 3421 } 3422 3423 void bdrv_init_with_whitelist(void) 3424 { 3425 use_bdrv_whitelist = 1; 3426 bdrv_init(); 3427 } 3428 3429 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs, 3430 BlockDriverCompletionFunc *cb, void *opaque) 3431 { 3432 BlockDriverAIOCB *acb; 3433 3434 if (pool->free_aiocb) { 3435 acb = pool->free_aiocb; 3436 pool->free_aiocb = acb->next; 3437 } else { 3438 acb = g_malloc0(pool->aiocb_size); 3439 acb->pool = pool; 3440 } 3441 acb->bs = bs; 3442 acb->cb = cb; 3443 acb->opaque = opaque; 3444 return acb; 3445 } 3446 3447 void qemu_aio_release(void *p) 3448 { 3449 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p; 3450 AIOPool *pool = acb->pool; 3451 acb->next = pool->free_aiocb; 3452 pool->free_aiocb = acb; 3453 } 3454 3455 /**************************************************************/ 3456 /* Coroutine block device emulation */ 3457 3458 typedef struct CoroutineIOCompletion { 3459 Coroutine *coroutine; 3460 int ret; 3461 } CoroutineIOCompletion; 3462 3463 static void bdrv_co_io_em_complete(void *opaque, int ret) 3464 { 3465 CoroutineIOCompletion *co = opaque; 3466 3467 co->ret = ret; 3468 qemu_coroutine_enter(co->coroutine, NULL); 3469 } 3470 3471 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 3472 int nb_sectors, QEMUIOVector *iov, 3473 bool is_write) 3474 { 3475 CoroutineIOCompletion co = { 3476 .coroutine = qemu_coroutine_self(), 3477 }; 3478 BlockDriverAIOCB *acb; 3479 3480 if (is_write) { 3481 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 3482 bdrv_co_io_em_complete, &co); 3483 } else { 3484 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 3485 bdrv_co_io_em_complete, &co); 3486 } 3487 3488 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 3489 if (!acb) { 3490 return -EIO; 3491 } 3492 qemu_coroutine_yield(); 3493 3494 return co.ret; 3495 } 3496 3497 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 3498 int64_t sector_num, int nb_sectors, 3499 QEMUIOVector *iov) 3500 { 3501 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 3502 } 3503 3504 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 3505 int64_t sector_num, int nb_sectors, 3506 QEMUIOVector *iov) 3507 { 3508 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 3509 } 3510 3511 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 3512 { 3513 RwCo *rwco = opaque; 3514 3515 rwco->ret = bdrv_co_flush(rwco->bs); 3516 } 3517 3518 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 3519 { 3520 int ret; 3521 3522 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3523 return 0; 3524 } 3525 3526 /* Write back cached data to the OS even with cache=unsafe */ 3527 if (bs->drv->bdrv_co_flush_to_os) { 3528 ret = bs->drv->bdrv_co_flush_to_os(bs); 3529 if (ret < 0) { 3530 return ret; 3531 } 3532 } 3533 3534 /* But don't actually force it to the disk with cache=unsafe */ 3535 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3536 return 0; 3537 } 3538 3539 if (bs->drv->bdrv_co_flush_to_disk) { 3540 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3541 } else if (bs->drv->bdrv_aio_flush) { 3542 BlockDriverAIOCB *acb; 3543 CoroutineIOCompletion co = { 3544 .coroutine = qemu_coroutine_self(), 3545 }; 3546 3547 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3548 if (acb == NULL) { 3549 ret = -EIO; 3550 } else { 3551 qemu_coroutine_yield(); 3552 ret = co.ret; 3553 } 3554 } else { 3555 /* 3556 * Some block drivers always operate in either writethrough or unsafe 3557 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 3558 * know how the server works (because the behaviour is hardcoded or 3559 * depends on server-side configuration), so we can't ensure that 3560 * everything is safe on disk. Returning an error doesn't work because 3561 * that would break guests even if the server operates in writethrough 3562 * mode. 3563 * 3564 * Let's hope the user knows what he's doing. 3565 */ 3566 ret = 0; 3567 } 3568 if (ret < 0) { 3569 return ret; 3570 } 3571 3572 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 3573 * in the case of cache=unsafe, so there are no useless flushes. 3574 */ 3575 return bdrv_co_flush(bs->file); 3576 } 3577 3578 void bdrv_invalidate_cache(BlockDriverState *bs) 3579 { 3580 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 3581 bs->drv->bdrv_invalidate_cache(bs); 3582 } 3583 } 3584 3585 void bdrv_invalidate_cache_all(void) 3586 { 3587 BlockDriverState *bs; 3588 3589 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3590 bdrv_invalidate_cache(bs); 3591 } 3592 } 3593 3594 void bdrv_clear_incoming_migration_all(void) 3595 { 3596 BlockDriverState *bs; 3597 3598 QTAILQ_FOREACH(bs, &bdrv_states, list) { 3599 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 3600 } 3601 } 3602 3603 int bdrv_flush(BlockDriverState *bs) 3604 { 3605 Coroutine *co; 3606 RwCo rwco = { 3607 .bs = bs, 3608 .ret = NOT_DONE, 3609 }; 3610 3611 if (qemu_in_coroutine()) { 3612 /* Fast-path if already in coroutine context */ 3613 bdrv_flush_co_entry(&rwco); 3614 } else { 3615 co = qemu_coroutine_create(bdrv_flush_co_entry); 3616 qemu_coroutine_enter(co, &rwco); 3617 while (rwco.ret == NOT_DONE) { 3618 qemu_aio_wait(); 3619 } 3620 } 3621 3622 return rwco.ret; 3623 } 3624 3625 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 3626 { 3627 RwCo *rwco = opaque; 3628 3629 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 3630 } 3631 3632 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 3633 int nb_sectors) 3634 { 3635 if (!bs->drv) { 3636 return -ENOMEDIUM; 3637 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 3638 return -EIO; 3639 } else if (bs->read_only) { 3640 return -EROFS; 3641 } else if (bs->drv->bdrv_co_discard) { 3642 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 3643 } else if (bs->drv->bdrv_aio_discard) { 3644 BlockDriverAIOCB *acb; 3645 CoroutineIOCompletion co = { 3646 .coroutine = qemu_coroutine_self(), 3647 }; 3648 3649 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 3650 bdrv_co_io_em_complete, &co); 3651 if (acb == NULL) { 3652 return -EIO; 3653 } else { 3654 qemu_coroutine_yield(); 3655 return co.ret; 3656 } 3657 } else { 3658 return 0; 3659 } 3660 } 3661 3662 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 3663 { 3664 Coroutine *co; 3665 RwCo rwco = { 3666 .bs = bs, 3667 .sector_num = sector_num, 3668 .nb_sectors = nb_sectors, 3669 .ret = NOT_DONE, 3670 }; 3671 3672 if (qemu_in_coroutine()) { 3673 /* Fast-path if already in coroutine context */ 3674 bdrv_discard_co_entry(&rwco); 3675 } else { 3676 co = qemu_coroutine_create(bdrv_discard_co_entry); 3677 qemu_coroutine_enter(co, &rwco); 3678 while (rwco.ret == NOT_DONE) { 3679 qemu_aio_wait(); 3680 } 3681 } 3682 3683 return rwco.ret; 3684 } 3685 3686 /**************************************************************/ 3687 /* removable device support */ 3688 3689 /** 3690 * Return TRUE if the media is present 3691 */ 3692 int bdrv_is_inserted(BlockDriverState *bs) 3693 { 3694 BlockDriver *drv = bs->drv; 3695 3696 if (!drv) 3697 return 0; 3698 if (!drv->bdrv_is_inserted) 3699 return 1; 3700 return drv->bdrv_is_inserted(bs); 3701 } 3702 3703 /** 3704 * Return whether the media changed since the last call to this 3705 * function, or -ENOTSUP if we don't know. Most drivers don't know. 3706 */ 3707 int bdrv_media_changed(BlockDriverState *bs) 3708 { 3709 BlockDriver *drv = bs->drv; 3710 3711 if (drv && drv->bdrv_media_changed) { 3712 return drv->bdrv_media_changed(bs); 3713 } 3714 return -ENOTSUP; 3715 } 3716 3717 /** 3718 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 3719 */ 3720 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 3721 { 3722 BlockDriver *drv = bs->drv; 3723 3724 if (drv && drv->bdrv_eject) { 3725 drv->bdrv_eject(bs, eject_flag); 3726 } 3727 3728 if (bs->device_name[0] != '\0') { 3729 bdrv_emit_qmp_eject_event(bs, eject_flag); 3730 } 3731 } 3732 3733 /** 3734 * Lock or unlock the media (if it is locked, the user won't be able 3735 * to eject it manually). 3736 */ 3737 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 3738 { 3739 BlockDriver *drv = bs->drv; 3740 3741 trace_bdrv_lock_medium(bs, locked); 3742 3743 if (drv && drv->bdrv_lock_medium) { 3744 drv->bdrv_lock_medium(bs, locked); 3745 } 3746 } 3747 3748 /* needed for generic scsi interface */ 3749 3750 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 3751 { 3752 BlockDriver *drv = bs->drv; 3753 3754 if (drv && drv->bdrv_ioctl) 3755 return drv->bdrv_ioctl(bs, req, buf); 3756 return -ENOTSUP; 3757 } 3758 3759 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 3760 unsigned long int req, void *buf, 3761 BlockDriverCompletionFunc *cb, void *opaque) 3762 { 3763 BlockDriver *drv = bs->drv; 3764 3765 if (drv && drv->bdrv_aio_ioctl) 3766 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 3767 return NULL; 3768 } 3769 3770 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 3771 { 3772 bs->buffer_alignment = align; 3773 } 3774 3775 void *qemu_blockalign(BlockDriverState *bs, size_t size) 3776 { 3777 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 3778 } 3779 3780 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable) 3781 { 3782 int64_t bitmap_size; 3783 3784 bs->dirty_count = 0; 3785 if (enable) { 3786 if (!bs->dirty_bitmap) { 3787 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) + 3788 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1; 3789 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 3790 3791 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size); 3792 } 3793 } else { 3794 if (bs->dirty_bitmap) { 3795 g_free(bs->dirty_bitmap); 3796 bs->dirty_bitmap = NULL; 3797 } 3798 } 3799 } 3800 3801 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 3802 { 3803 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 3804 3805 if (bs->dirty_bitmap && 3806 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) { 3807 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] & 3808 (1UL << (chunk % (sizeof(unsigned long) * 8)))); 3809 } else { 3810 return 0; 3811 } 3812 } 3813 3814 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 3815 int nr_sectors) 3816 { 3817 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0); 3818 } 3819 3820 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 3821 { 3822 return bs->dirty_count; 3823 } 3824 3825 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 3826 { 3827 assert(bs->in_use != in_use); 3828 bs->in_use = in_use; 3829 } 3830 3831 int bdrv_in_use(BlockDriverState *bs) 3832 { 3833 return bs->in_use; 3834 } 3835 3836 void bdrv_iostatus_enable(BlockDriverState *bs) 3837 { 3838 bs->iostatus_enabled = true; 3839 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 3840 } 3841 3842 /* The I/O status is only enabled if the drive explicitly 3843 * enables it _and_ the VM is configured to stop on errors */ 3844 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 3845 { 3846 return (bs->iostatus_enabled && 3847 (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC || 3848 bs->on_write_error == BLOCK_ERR_STOP_ANY || 3849 bs->on_read_error == BLOCK_ERR_STOP_ANY)); 3850 } 3851 3852 void bdrv_iostatus_disable(BlockDriverState *bs) 3853 { 3854 bs->iostatus_enabled = false; 3855 } 3856 3857 void bdrv_iostatus_reset(BlockDriverState *bs) 3858 { 3859 if (bdrv_iostatus_is_enabled(bs)) { 3860 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 3861 } 3862 } 3863 3864 /* XXX: Today this is set by device models because it makes the implementation 3865 quite simple. However, the block layer knows about the error, so it's 3866 possible to implement this without device models being involved */ 3867 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 3868 { 3869 if (bdrv_iostatus_is_enabled(bs) && 3870 bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 3871 assert(error >= 0); 3872 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 3873 BLOCK_DEVICE_IO_STATUS_FAILED; 3874 } 3875 } 3876 3877 void 3878 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 3879 enum BlockAcctType type) 3880 { 3881 assert(type < BDRV_MAX_IOTYPE); 3882 3883 cookie->bytes = bytes; 3884 cookie->start_time_ns = get_clock(); 3885 cookie->type = type; 3886 } 3887 3888 void 3889 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 3890 { 3891 assert(cookie->type < BDRV_MAX_IOTYPE); 3892 3893 bs->nr_bytes[cookie->type] += cookie->bytes; 3894 bs->nr_ops[cookie->type]++; 3895 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 3896 } 3897 3898 int bdrv_img_create(const char *filename, const char *fmt, 3899 const char *base_filename, const char *base_fmt, 3900 char *options, uint64_t img_size, int flags) 3901 { 3902 QEMUOptionParameter *param = NULL, *create_options = NULL; 3903 QEMUOptionParameter *backing_fmt, *backing_file, *size; 3904 BlockDriverState *bs = NULL; 3905 BlockDriver *drv, *proto_drv; 3906 BlockDriver *backing_drv = NULL; 3907 int ret = 0; 3908 3909 /* Find driver and parse its options */ 3910 drv = bdrv_find_format(fmt); 3911 if (!drv) { 3912 error_report("Unknown file format '%s'", fmt); 3913 ret = -EINVAL; 3914 goto out; 3915 } 3916 3917 proto_drv = bdrv_find_protocol(filename); 3918 if (!proto_drv) { 3919 error_report("Unknown protocol '%s'", filename); 3920 ret = -EINVAL; 3921 goto out; 3922 } 3923 3924 create_options = append_option_parameters(create_options, 3925 drv->create_options); 3926 create_options = append_option_parameters(create_options, 3927 proto_drv->create_options); 3928 3929 /* Create parameter list with default values */ 3930 param = parse_option_parameters("", create_options, param); 3931 3932 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 3933 3934 /* Parse -o options */ 3935 if (options) { 3936 param = parse_option_parameters(options, create_options, param); 3937 if (param == NULL) { 3938 error_report("Invalid options for file format '%s'.", fmt); 3939 ret = -EINVAL; 3940 goto out; 3941 } 3942 } 3943 3944 if (base_filename) { 3945 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 3946 base_filename)) { 3947 error_report("Backing file not supported for file format '%s'", 3948 fmt); 3949 ret = -EINVAL; 3950 goto out; 3951 } 3952 } 3953 3954 if (base_fmt) { 3955 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 3956 error_report("Backing file format not supported for file " 3957 "format '%s'", fmt); 3958 ret = -EINVAL; 3959 goto out; 3960 } 3961 } 3962 3963 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 3964 if (backing_file && backing_file->value.s) { 3965 if (!strcmp(filename, backing_file->value.s)) { 3966 error_report("Error: Trying to create an image with the " 3967 "same filename as the backing file"); 3968 ret = -EINVAL; 3969 goto out; 3970 } 3971 } 3972 3973 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 3974 if (backing_fmt && backing_fmt->value.s) { 3975 backing_drv = bdrv_find_format(backing_fmt->value.s); 3976 if (!backing_drv) { 3977 error_report("Unknown backing file format '%s'", 3978 backing_fmt->value.s); 3979 ret = -EINVAL; 3980 goto out; 3981 } 3982 } 3983 3984 // The size for the image must always be specified, with one exception: 3985 // If we are using a backing file, we can obtain the size from there 3986 size = get_option_parameter(param, BLOCK_OPT_SIZE); 3987 if (size && size->value.n == -1) { 3988 if (backing_file && backing_file->value.s) { 3989 uint64_t size; 3990 char buf[32]; 3991 int back_flags; 3992 3993 /* backing files always opened read-only */ 3994 back_flags = 3995 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 3996 3997 bs = bdrv_new(""); 3998 3999 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4000 if (ret < 0) { 4001 error_report("Could not open '%s'", backing_file->value.s); 4002 goto out; 4003 } 4004 bdrv_get_geometry(bs, &size); 4005 size *= 512; 4006 4007 snprintf(buf, sizeof(buf), "%" PRId64, size); 4008 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4009 } else { 4010 error_report("Image creation needs a size parameter"); 4011 ret = -EINVAL; 4012 goto out; 4013 } 4014 } 4015 4016 printf("Formatting '%s', fmt=%s ", filename, fmt); 4017 print_option_parameters(param); 4018 puts(""); 4019 4020 ret = bdrv_create(drv, filename, param); 4021 4022 if (ret < 0) { 4023 if (ret == -ENOTSUP) { 4024 error_report("Formatting or formatting option not supported for " 4025 "file format '%s'", fmt); 4026 } else if (ret == -EFBIG) { 4027 error_report("The image size is too large for file format '%s'", 4028 fmt); 4029 } else { 4030 error_report("%s: error while creating %s: %s", filename, fmt, 4031 strerror(-ret)); 4032 } 4033 } 4034 4035 out: 4036 free_option_parameters(create_options); 4037 free_option_parameters(param); 4038 4039 if (bs) { 4040 bdrv_delete(bs); 4041 } 4042 4043 return ret; 4044 } 4045 4046 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs, 4047 int64_t speed, BlockDriverCompletionFunc *cb, 4048 void *opaque, Error **errp) 4049 { 4050 BlockJob *job; 4051 4052 if (bs->job || bdrv_in_use(bs)) { 4053 error_set(errp, QERR_DEVICE_IN_USE, bdrv_get_device_name(bs)); 4054 return NULL; 4055 } 4056 bdrv_set_in_use(bs, 1); 4057 4058 job = g_malloc0(job_type->instance_size); 4059 job->job_type = job_type; 4060 job->bs = bs; 4061 job->cb = cb; 4062 job->opaque = opaque; 4063 job->busy = true; 4064 bs->job = job; 4065 4066 /* Only set speed when necessary to avoid NotSupported error */ 4067 if (speed != 0) { 4068 Error *local_err = NULL; 4069 4070 block_job_set_speed(job, speed, &local_err); 4071 if (error_is_set(&local_err)) { 4072 bs->job = NULL; 4073 g_free(job); 4074 bdrv_set_in_use(bs, 0); 4075 error_propagate(errp, local_err); 4076 return NULL; 4077 } 4078 } 4079 return job; 4080 } 4081 4082 void block_job_complete(BlockJob *job, int ret) 4083 { 4084 BlockDriverState *bs = job->bs; 4085 4086 assert(bs->job == job); 4087 job->cb(job->opaque, ret); 4088 bs->job = NULL; 4089 g_free(job); 4090 bdrv_set_in_use(bs, 0); 4091 } 4092 4093 void block_job_set_speed(BlockJob *job, int64_t speed, Error **errp) 4094 { 4095 Error *local_err = NULL; 4096 4097 if (!job->job_type->set_speed) { 4098 error_set(errp, QERR_NOT_SUPPORTED); 4099 return; 4100 } 4101 job->job_type->set_speed(job, speed, &local_err); 4102 if (error_is_set(&local_err)) { 4103 error_propagate(errp, local_err); 4104 return; 4105 } 4106 4107 job->speed = speed; 4108 } 4109 4110 void block_job_cancel(BlockJob *job) 4111 { 4112 job->cancelled = true; 4113 if (job->co && !job->busy) { 4114 qemu_coroutine_enter(job->co, NULL); 4115 } 4116 } 4117 4118 bool block_job_is_cancelled(BlockJob *job) 4119 { 4120 return job->cancelled; 4121 } 4122 4123 struct BlockCancelData { 4124 BlockJob *job; 4125 BlockDriverCompletionFunc *cb; 4126 void *opaque; 4127 bool cancelled; 4128 int ret; 4129 }; 4130 4131 static void block_job_cancel_cb(void *opaque, int ret) 4132 { 4133 struct BlockCancelData *data = opaque; 4134 4135 data->cancelled = block_job_is_cancelled(data->job); 4136 data->ret = ret; 4137 data->cb(data->opaque, ret); 4138 } 4139 4140 int block_job_cancel_sync(BlockJob *job) 4141 { 4142 struct BlockCancelData data; 4143 BlockDriverState *bs = job->bs; 4144 4145 assert(bs->job == job); 4146 4147 /* Set up our own callback to store the result and chain to 4148 * the original callback. 4149 */ 4150 data.job = job; 4151 data.cb = job->cb; 4152 data.opaque = job->opaque; 4153 data.ret = -EINPROGRESS; 4154 job->cb = block_job_cancel_cb; 4155 job->opaque = &data; 4156 block_job_cancel(job); 4157 while (data.ret == -EINPROGRESS) { 4158 qemu_aio_wait(); 4159 } 4160 return (data.cancelled && data.ret == 0) ? -ECANCELED : data.ret; 4161 } 4162 4163 void block_job_sleep_ns(BlockJob *job, QEMUClock *clock, int64_t ns) 4164 { 4165 /* Check cancellation *before* setting busy = false, too! */ 4166 if (!block_job_is_cancelled(job)) { 4167 job->busy = false; 4168 co_sleep_ns(clock, ns); 4169 job->busy = true; 4170 } 4171 } 4172