1 /* 2 * QEMU Mixing engine 3 * 4 * Copyright (c) 2004-2005 Vassili Karpov (malc) 5 * Copyright (c) 1998 Fabrice Bellard 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "qemu/osdep.h" 26 #include "qemu/bswap.h" 27 #include "qemu/error-report.h" 28 #include "audio.h" 29 30 #define AUDIO_CAP "mixeng" 31 #include "audio_int.h" 32 33 /* 8 bit */ 34 #define ENDIAN_CONVERSION natural 35 #define ENDIAN_CONVERT(v) (v) 36 37 /* Signed 8 bit */ 38 #define BSIZE 8 39 #define ITYPE int 40 #define IN_MIN SCHAR_MIN 41 #define IN_MAX SCHAR_MAX 42 #define SIGNED 43 #define SHIFT 8 44 #include "mixeng_template.h" 45 #undef SIGNED 46 #undef IN_MAX 47 #undef IN_MIN 48 #undef BSIZE 49 #undef ITYPE 50 #undef SHIFT 51 52 /* Unsigned 8 bit */ 53 #define BSIZE 8 54 #define ITYPE uint 55 #define IN_MIN 0 56 #define IN_MAX UCHAR_MAX 57 #define SHIFT 8 58 #include "mixeng_template.h" 59 #undef IN_MAX 60 #undef IN_MIN 61 #undef BSIZE 62 #undef ITYPE 63 #undef SHIFT 64 65 #undef ENDIAN_CONVERT 66 #undef ENDIAN_CONVERSION 67 68 /* Signed 16 bit */ 69 #define BSIZE 16 70 #define ITYPE int 71 #define IN_MIN SHRT_MIN 72 #define IN_MAX SHRT_MAX 73 #define SIGNED 74 #define SHIFT 16 75 #define ENDIAN_CONVERSION natural 76 #define ENDIAN_CONVERT(v) (v) 77 #include "mixeng_template.h" 78 #undef ENDIAN_CONVERT 79 #undef ENDIAN_CONVERSION 80 #define ENDIAN_CONVERSION swap 81 #define ENDIAN_CONVERT(v) bswap16 (v) 82 #include "mixeng_template.h" 83 #undef ENDIAN_CONVERT 84 #undef ENDIAN_CONVERSION 85 #undef SIGNED 86 #undef IN_MAX 87 #undef IN_MIN 88 #undef BSIZE 89 #undef ITYPE 90 #undef SHIFT 91 92 /* Unsigned 16 bit */ 93 #define BSIZE 16 94 #define ITYPE uint 95 #define IN_MIN 0 96 #define IN_MAX USHRT_MAX 97 #define SHIFT 16 98 #define ENDIAN_CONVERSION natural 99 #define ENDIAN_CONVERT(v) (v) 100 #include "mixeng_template.h" 101 #undef ENDIAN_CONVERT 102 #undef ENDIAN_CONVERSION 103 #define ENDIAN_CONVERSION swap 104 #define ENDIAN_CONVERT(v) bswap16 (v) 105 #include "mixeng_template.h" 106 #undef ENDIAN_CONVERT 107 #undef ENDIAN_CONVERSION 108 #undef IN_MAX 109 #undef IN_MIN 110 #undef BSIZE 111 #undef ITYPE 112 #undef SHIFT 113 114 /* Signed 32 bit */ 115 #define BSIZE 32 116 #define ITYPE int 117 #define IN_MIN INT32_MIN 118 #define IN_MAX INT32_MAX 119 #define SIGNED 120 #define SHIFT 32 121 #define ENDIAN_CONVERSION natural 122 #define ENDIAN_CONVERT(v) (v) 123 #include "mixeng_template.h" 124 #undef ENDIAN_CONVERT 125 #undef ENDIAN_CONVERSION 126 #define ENDIAN_CONVERSION swap 127 #define ENDIAN_CONVERT(v) bswap32 (v) 128 #include "mixeng_template.h" 129 #undef ENDIAN_CONVERT 130 #undef ENDIAN_CONVERSION 131 #undef SIGNED 132 #undef IN_MAX 133 #undef IN_MIN 134 #undef BSIZE 135 #undef ITYPE 136 #undef SHIFT 137 138 /* Unsigned 32 bit */ 139 #define BSIZE 32 140 #define ITYPE uint 141 #define IN_MIN 0 142 #define IN_MAX UINT32_MAX 143 #define SHIFT 32 144 #define ENDIAN_CONVERSION natural 145 #define ENDIAN_CONVERT(v) (v) 146 #include "mixeng_template.h" 147 #undef ENDIAN_CONVERT 148 #undef ENDIAN_CONVERSION 149 #define ENDIAN_CONVERSION swap 150 #define ENDIAN_CONVERT(v) bswap32 (v) 151 #include "mixeng_template.h" 152 #undef ENDIAN_CONVERT 153 #undef ENDIAN_CONVERSION 154 #undef IN_MAX 155 #undef IN_MIN 156 #undef BSIZE 157 #undef ITYPE 158 #undef SHIFT 159 160 t_sample *mixeng_conv[2][2][2][3] = { 161 { 162 { 163 { 164 conv_natural_uint8_t_to_mono, 165 conv_natural_uint16_t_to_mono, 166 conv_natural_uint32_t_to_mono 167 }, 168 { 169 conv_natural_uint8_t_to_mono, 170 conv_swap_uint16_t_to_mono, 171 conv_swap_uint32_t_to_mono, 172 } 173 }, 174 { 175 { 176 conv_natural_int8_t_to_mono, 177 conv_natural_int16_t_to_mono, 178 conv_natural_int32_t_to_mono 179 }, 180 { 181 conv_natural_int8_t_to_mono, 182 conv_swap_int16_t_to_mono, 183 conv_swap_int32_t_to_mono 184 } 185 } 186 }, 187 { 188 { 189 { 190 conv_natural_uint8_t_to_stereo, 191 conv_natural_uint16_t_to_stereo, 192 conv_natural_uint32_t_to_stereo 193 }, 194 { 195 conv_natural_uint8_t_to_stereo, 196 conv_swap_uint16_t_to_stereo, 197 conv_swap_uint32_t_to_stereo 198 } 199 }, 200 { 201 { 202 conv_natural_int8_t_to_stereo, 203 conv_natural_int16_t_to_stereo, 204 conv_natural_int32_t_to_stereo 205 }, 206 { 207 conv_natural_int8_t_to_stereo, 208 conv_swap_int16_t_to_stereo, 209 conv_swap_int32_t_to_stereo, 210 } 211 } 212 } 213 }; 214 215 f_sample *mixeng_clip[2][2][2][3] = { 216 { 217 { 218 { 219 clip_natural_uint8_t_from_mono, 220 clip_natural_uint16_t_from_mono, 221 clip_natural_uint32_t_from_mono 222 }, 223 { 224 clip_natural_uint8_t_from_mono, 225 clip_swap_uint16_t_from_mono, 226 clip_swap_uint32_t_from_mono 227 } 228 }, 229 { 230 { 231 clip_natural_int8_t_from_mono, 232 clip_natural_int16_t_from_mono, 233 clip_natural_int32_t_from_mono 234 }, 235 { 236 clip_natural_int8_t_from_mono, 237 clip_swap_int16_t_from_mono, 238 clip_swap_int32_t_from_mono 239 } 240 } 241 }, 242 { 243 { 244 { 245 clip_natural_uint8_t_from_stereo, 246 clip_natural_uint16_t_from_stereo, 247 clip_natural_uint32_t_from_stereo 248 }, 249 { 250 clip_natural_uint8_t_from_stereo, 251 clip_swap_uint16_t_from_stereo, 252 clip_swap_uint32_t_from_stereo 253 } 254 }, 255 { 256 { 257 clip_natural_int8_t_from_stereo, 258 clip_natural_int16_t_from_stereo, 259 clip_natural_int32_t_from_stereo 260 }, 261 { 262 clip_natural_int8_t_from_stereo, 263 clip_swap_int16_t_from_stereo, 264 clip_swap_int32_t_from_stereo 265 } 266 } 267 } 268 }; 269 270 #ifdef FLOAT_MIXENG 271 #define CONV_NATURAL_FLOAT(x) (x) 272 #define CLIP_NATURAL_FLOAT(x) (x) 273 #else 274 /* macros to map [-1.f, 1.f] <-> [INT32_MIN, INT32_MAX + 1] */ 275 static const float float_scale = (int64_t)INT32_MAX + 1; 276 #define CONV_NATURAL_FLOAT(x) ((x) * float_scale) 277 278 #ifdef RECIPROCAL 279 static const float float_scale_reciprocal = 1.f / ((int64_t)INT32_MAX + 1); 280 #define CLIP_NATURAL_FLOAT(x) ((x) * float_scale_reciprocal) 281 #else 282 #define CLIP_NATURAL_FLOAT(x) ((x) / float_scale) 283 #endif 284 #endif 285 286 static void conv_natural_float_to_mono(struct st_sample *dst, const void *src, 287 int samples) 288 { 289 float *in = (float *)src; 290 291 while (samples--) { 292 dst->r = dst->l = CONV_NATURAL_FLOAT(*in++); 293 dst++; 294 } 295 } 296 297 static void conv_natural_float_to_stereo(struct st_sample *dst, const void *src, 298 int samples) 299 { 300 float *in = (float *)src; 301 302 while (samples--) { 303 dst->l = CONV_NATURAL_FLOAT(*in++); 304 dst->r = CONV_NATURAL_FLOAT(*in++); 305 dst++; 306 } 307 } 308 309 t_sample *mixeng_conv_float[2] = { 310 conv_natural_float_to_mono, 311 conv_natural_float_to_stereo, 312 }; 313 314 static void clip_natural_float_from_mono(void *dst, const struct st_sample *src, 315 int samples) 316 { 317 float *out = (float *)dst; 318 319 while (samples--) { 320 *out++ = CLIP_NATURAL_FLOAT(src->l + src->r); 321 src++; 322 } 323 } 324 325 static void clip_natural_float_from_stereo( 326 void *dst, const struct st_sample *src, int samples) 327 { 328 float *out = (float *)dst; 329 330 while (samples--) { 331 *out++ = CLIP_NATURAL_FLOAT(src->l); 332 *out++ = CLIP_NATURAL_FLOAT(src->r); 333 src++; 334 } 335 } 336 337 f_sample *mixeng_clip_float[2] = { 338 clip_natural_float_from_mono, 339 clip_natural_float_from_stereo, 340 }; 341 342 void audio_sample_to_uint64(const void *samples, int pos, 343 uint64_t *left, uint64_t *right) 344 { 345 #ifdef FLOAT_MIXENG 346 error_report( 347 "Coreaudio and floating point samples are not supported by replay yet"); 348 abort(); 349 #else 350 const struct st_sample *sample = samples; 351 sample += pos; 352 *left = sample->l; 353 *right = sample->r; 354 #endif 355 } 356 357 void audio_sample_from_uint64(void *samples, int pos, 358 uint64_t left, uint64_t right) 359 { 360 #ifdef FLOAT_MIXENG 361 error_report( 362 "Coreaudio and floating point samples are not supported by replay yet"); 363 abort(); 364 #else 365 struct st_sample *sample = samples; 366 sample += pos; 367 sample->l = left; 368 sample->r = right; 369 #endif 370 } 371 372 /* 373 * August 21, 1998 374 * Copyright 1998 Fabrice Bellard. 375 * 376 * [Rewrote completely the code of Lance Norskog And Sundry 377 * Contributors with a more efficient algorithm.] 378 * 379 * This source code is freely redistributable and may be used for 380 * any purpose. This copyright notice must be maintained. 381 * Lance Norskog And Sundry Contributors are not responsible for 382 * the consequences of using this software. 383 */ 384 385 /* 386 * Sound Tools rate change effect file. 387 */ 388 /* 389 * Linear Interpolation. 390 * 391 * The use of fractional increment allows us to use no buffer. It 392 * avoid the problems at the end of the buffer we had with the old 393 * method which stored a possibly big buffer of size 394 * lcm(in_rate,out_rate). 395 * 396 * Limited to 16 bit samples and sampling frequency <= 65535 Hz. If 397 * the input & output frequencies are equal, a delay of one sample is 398 * introduced. Limited to processing 32-bit count worth of samples. 399 * 400 * 1 << FRAC_BITS evaluating to zero in several places. Changed with 401 * an (unsigned long) cast to make it safe. MarkMLl 2/1/99 402 */ 403 404 /* Private data */ 405 struct rate { 406 uint64_t opos; 407 uint64_t opos_inc; 408 uint32_t ipos; /* position in the input stream (integer) */ 409 struct st_sample ilast; /* last sample in the input stream */ 410 }; 411 412 /* 413 * Prepare processing. 414 */ 415 void *st_rate_start (int inrate, int outrate) 416 { 417 struct rate *rate = g_new0(struct rate, 1); 418 419 rate->opos = 0; 420 421 /* increment */ 422 rate->opos_inc = ((uint64_t) inrate << 32) / outrate; 423 424 rate->ipos = 0; 425 rate->ilast.l = 0; 426 rate->ilast.r = 0; 427 return rate; 428 } 429 430 #define NAME st_rate_flow_mix 431 #define OP(a, b) a += b 432 #include "rate_template.h" 433 434 #define NAME st_rate_flow 435 #define OP(a, b) a = b 436 #include "rate_template.h" 437 438 void st_rate_stop (void *opaque) 439 { 440 g_free (opaque); 441 } 442 443 /** 444 * st_rate_frames_out() - returns the number of frames the resampling code 445 * generates from frames_in frames 446 * 447 * @opaque: pointer to struct rate 448 * @frames_in: number of frames 449 * 450 * When upsampling, there may be more than one correct result. In this case, 451 * the function returns the maximum number of output frames the resampling 452 * code can generate. 453 */ 454 uint32_t st_rate_frames_out(void *opaque, uint32_t frames_in) 455 { 456 struct rate *rate = opaque; 457 uint64_t opos_end, opos_delta; 458 uint32_t ipos_end; 459 uint32_t frames_out; 460 461 if (rate->opos_inc == 1ULL << 32) { 462 return frames_in; 463 } 464 465 /* no output frame without at least one input frame */ 466 if (!frames_in) { 467 return 0; 468 } 469 470 /* last frame read was at rate->ipos - 1 */ 471 ipos_end = rate->ipos - 1 + frames_in; 472 opos_end = (uint64_t)ipos_end << 32; 473 474 /* last frame written was at rate->opos - rate->opos_inc */ 475 if (opos_end + rate->opos_inc <= rate->opos) { 476 return 0; 477 } 478 opos_delta = opos_end - rate->opos + rate->opos_inc; 479 frames_out = opos_delta / rate->opos_inc; 480 481 return opos_delta % rate->opos_inc ? frames_out : frames_out - 1; 482 } 483 484 /** 485 * st_rate_frames_in() - returns the number of frames needed to 486 * get frames_out frames after resampling 487 * 488 * @opaque: pointer to struct rate 489 * @frames_out: number of frames 490 * 491 * When downsampling, there may be more than one correct result. In this 492 * case, the function returns the maximum number of input frames needed. 493 */ 494 uint32_t st_rate_frames_in(void *opaque, uint32_t frames_out) 495 { 496 struct rate *rate = opaque; 497 uint64_t opos_start, opos_end; 498 uint32_t ipos_start, ipos_end; 499 500 if (rate->opos_inc == 1ULL << 32) { 501 return frames_out; 502 } 503 504 if (frames_out) { 505 opos_start = rate->opos; 506 ipos_start = rate->ipos; 507 } else { 508 uint64_t offset; 509 510 /* add offset = ceil(opos_inc) to opos and ipos to avoid an underflow */ 511 offset = (rate->opos_inc + (1ULL << 32) - 1) & ~((1ULL << 32) - 1); 512 opos_start = rate->opos + offset; 513 ipos_start = rate->ipos + (offset >> 32); 514 } 515 /* last frame written was at opos_start - rate->opos_inc */ 516 opos_end = opos_start - rate->opos_inc + rate->opos_inc * frames_out; 517 ipos_end = (opos_end >> 32) + 1; 518 519 /* last frame read was at ipos_start - 1 */ 520 return ipos_end + 1 > ipos_start ? ipos_end + 1 - ipos_start : 0; 521 } 522 523 void mixeng_clear (struct st_sample *buf, int len) 524 { 525 memset (buf, 0, len * sizeof (struct st_sample)); 526 } 527 528 void mixeng_volume (struct st_sample *buf, int len, struct mixeng_volume *vol) 529 { 530 if (vol->mute) { 531 mixeng_clear (buf, len); 532 return; 533 } 534 535 while (len--) { 536 #ifdef FLOAT_MIXENG 537 buf->l = buf->l * vol->l; 538 buf->r = buf->r * vol->r; 539 #else 540 buf->l = (buf->l * vol->l) >> 32; 541 buf->r = (buf->r * vol->r) >> 32; 542 #endif 543 buf += 1; 544 } 545 } 546