xref: /openbmc/qemu/accel/tcg/user-exec.c (revision c73bdb35)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/translate-all.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/atomic128.h"
29 #include "trace/trace-root.h"
30 #include "trace/mem.h"
31 
32 #undef EAX
33 #undef ECX
34 #undef EDX
35 #undef EBX
36 #undef ESP
37 #undef EBP
38 #undef ESI
39 #undef EDI
40 #undef EIP
41 #ifdef __linux__
42 #include <sys/ucontext.h>
43 #endif
44 
45 __thread uintptr_t helper_retaddr;
46 
47 //#define DEBUG_SIGNAL
48 
49 /* exit the current TB from a signal handler. The host registers are
50    restored in a state compatible with the CPU emulator
51  */
52 static void QEMU_NORETURN cpu_exit_tb_from_sighandler(CPUState *cpu,
53                                                       sigset_t *old_set)
54 {
55     /* XXX: use siglongjmp ? */
56     sigprocmask(SIG_SETMASK, old_set, NULL);
57     cpu_loop_exit_noexc(cpu);
58 }
59 
60 /* 'pc' is the host PC at which the exception was raised. 'address' is
61    the effective address of the memory exception. 'is_write' is 1 if a
62    write caused the exception and otherwise 0'. 'old_set' is the
63    signal set which should be restored */
64 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info,
65                                     int is_write, sigset_t *old_set)
66 {
67     CPUState *cpu = current_cpu;
68     CPUClass *cc;
69     unsigned long address = (unsigned long)info->si_addr;
70     MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
71 
72     switch (helper_retaddr) {
73     default:
74         /*
75          * Fault during host memory operation within a helper function.
76          * The helper's host return address, saved here, gives us a
77          * pointer into the generated code that will unwind to the
78          * correct guest pc.
79          */
80         pc = helper_retaddr;
81         break;
82 
83     case 0:
84         /*
85          * Fault during host memory operation within generated code.
86          * (Or, a unrelated bug within qemu, but we can't tell from here).
87          *
88          * We take the host pc from the signal frame.  However, we cannot
89          * use that value directly.  Within cpu_restore_state_from_tb, we
90          * assume PC comes from GETPC(), as used by the helper functions,
91          * so we adjust the address by -GETPC_ADJ to form an address that
92          * is within the call insn, so that the address does not accidentally
93          * match the beginning of the next guest insn.  However, when the
94          * pc comes from the signal frame it points to the actual faulting
95          * host memory insn and not the return from a call insn.
96          *
97          * Therefore, adjust to compensate for what will be done later
98          * by cpu_restore_state_from_tb.
99          */
100         pc += GETPC_ADJ;
101         break;
102 
103     case 1:
104         /*
105          * Fault during host read for translation, or loosely, "execution".
106          *
107          * The guest pc is already pointing to the start of the TB for which
108          * code is being generated.  If the guest translator manages the
109          * page crossings correctly, this is exactly the correct address
110          * (and if the translator doesn't handle page boundaries correctly
111          * there's little we can do about that here).  Therefore, do not
112          * trigger the unwinder.
113          *
114          * Like tb_gen_code, release the memory lock before cpu_loop_exit.
115          */
116         pc = 0;
117         access_type = MMU_INST_FETCH;
118         mmap_unlock();
119         break;
120     }
121 
122     /* For synchronous signals we expect to be coming from the vCPU
123      * thread (so current_cpu should be valid) and either from running
124      * code or during translation which can fault as we cross pages.
125      *
126      * If neither is true then something has gone wrong and we should
127      * abort rather than try and restart the vCPU execution.
128      */
129     if (!cpu || !cpu->running) {
130         printf("qemu:%s received signal outside vCPU context @ pc=0x%"
131                PRIxPTR "\n",  __func__, pc);
132         abort();
133     }
134 
135 #if defined(DEBUG_SIGNAL)
136     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
137            pc, address, is_write, *(unsigned long *)old_set);
138 #endif
139     /* XXX: locking issue */
140     /* Note that it is important that we don't call page_unprotect() unless
141      * this is really a "write to nonwriteable page" fault, because
142      * page_unprotect() assumes that if it is called for an access to
143      * a page that's writeable this means we had two threads racing and
144      * another thread got there first and already made the page writeable;
145      * so we will retry the access. If we were to call page_unprotect()
146      * for some other kind of fault that should really be passed to the
147      * guest, we'd end up in an infinite loop of retrying the faulting
148      * access.
149      */
150     if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR &&
151         h2g_valid(address)) {
152         switch (page_unprotect(h2g(address), pc)) {
153         case 0:
154             /* Fault not caused by a page marked unwritable to protect
155              * cached translations, must be the guest binary's problem.
156              */
157             break;
158         case 1:
159             /* Fault caused by protection of cached translation; TBs
160              * invalidated, so resume execution.  Retain helper_retaddr
161              * for a possible second fault.
162              */
163             return 1;
164         case 2:
165             /* Fault caused by protection of cached translation, and the
166              * currently executing TB was modified and must be exited
167              * immediately.  Clear helper_retaddr for next execution.
168              */
169             clear_helper_retaddr();
170             cpu_exit_tb_from_sighandler(cpu, old_set);
171             /* NORETURN */
172 
173         default:
174             g_assert_not_reached();
175         }
176     }
177 
178     /* Convert forcefully to guest address space, invalid addresses
179        are still valid segv ones */
180     address = h2g_nocheck(address);
181 
182     /*
183      * There is no way the target can handle this other than raising
184      * an exception.  Undo signal and retaddr state prior to longjmp.
185      */
186     sigprocmask(SIG_SETMASK, old_set, NULL);
187     clear_helper_retaddr();
188 
189     cc = CPU_GET_CLASS(cpu);
190     cc->tcg_ops.tlb_fill(cpu, address, 0, access_type,
191                          MMU_USER_IDX, false, pc);
192     g_assert_not_reached();
193 }
194 
195 static int probe_access_internal(CPUArchState *env, target_ulong addr,
196                                  int fault_size, MMUAccessType access_type,
197                                  bool nonfault, uintptr_t ra)
198 {
199     int flags;
200 
201     switch (access_type) {
202     case MMU_DATA_STORE:
203         flags = PAGE_WRITE;
204         break;
205     case MMU_DATA_LOAD:
206         flags = PAGE_READ;
207         break;
208     case MMU_INST_FETCH:
209         flags = PAGE_EXEC;
210         break;
211     default:
212         g_assert_not_reached();
213     }
214 
215     if (!guest_addr_valid(addr) || page_check_range(addr, 1, flags) < 0) {
216         if (nonfault) {
217             return TLB_INVALID_MASK;
218         } else {
219             CPUState *cpu = env_cpu(env);
220             CPUClass *cc = CPU_GET_CLASS(cpu);
221             cc->tcg_ops.tlb_fill(cpu, addr, fault_size, access_type,
222                                  MMU_USER_IDX, false, ra);
223             g_assert_not_reached();
224         }
225     }
226     return 0;
227 }
228 
229 int probe_access_flags(CPUArchState *env, target_ulong addr,
230                        MMUAccessType access_type, int mmu_idx,
231                        bool nonfault, void **phost, uintptr_t ra)
232 {
233     int flags;
234 
235     flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
236     *phost = flags ? NULL : g2h(addr);
237     return flags;
238 }
239 
240 void *probe_access(CPUArchState *env, target_ulong addr, int size,
241                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
242 {
243     int flags;
244 
245     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
246     flags = probe_access_internal(env, addr, size, access_type, false, ra);
247     g_assert(flags == 0);
248 
249     return size ? g2h(addr) : NULL;
250 }
251 
252 #if defined(__i386__)
253 
254 #if defined(__NetBSD__)
255 #include <ucontext.h>
256 
257 #define EIP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_EIP])
258 #define TRAP_sig(context)    ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
259 #define ERROR_sig(context)   ((context)->uc_mcontext.__gregs[_REG_ERR])
260 #define MASK_sig(context)    ((context)->uc_sigmask)
261 #elif defined(__FreeBSD__) || defined(__DragonFly__)
262 #include <ucontext.h>
263 
264 #define EIP_sig(context)  (*((unsigned long *)&(context)->uc_mcontext.mc_eip))
265 #define TRAP_sig(context)    ((context)->uc_mcontext.mc_trapno)
266 #define ERROR_sig(context)   ((context)->uc_mcontext.mc_err)
267 #define MASK_sig(context)    ((context)->uc_sigmask)
268 #elif defined(__OpenBSD__)
269 #define EIP_sig(context)     ((context)->sc_eip)
270 #define TRAP_sig(context)    ((context)->sc_trapno)
271 #define ERROR_sig(context)   ((context)->sc_err)
272 #define MASK_sig(context)    ((context)->sc_mask)
273 #else
274 #define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
275 #define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
276 #define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
277 #define MASK_sig(context)    ((context)->uc_sigmask)
278 #endif
279 
280 int cpu_signal_handler(int host_signum, void *pinfo,
281                        void *puc)
282 {
283     siginfo_t *info = pinfo;
284 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
285     ucontext_t *uc = puc;
286 #elif defined(__OpenBSD__)
287     struct sigcontext *uc = puc;
288 #else
289     ucontext_t *uc = puc;
290 #endif
291     unsigned long pc;
292     int trapno;
293 
294 #ifndef REG_EIP
295 /* for glibc 2.1 */
296 #define REG_EIP    EIP
297 #define REG_ERR    ERR
298 #define REG_TRAPNO TRAPNO
299 #endif
300     pc = EIP_sig(uc);
301     trapno = TRAP_sig(uc);
302     return handle_cpu_signal(pc, info,
303                              trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
304                              &MASK_sig(uc));
305 }
306 
307 #elif defined(__x86_64__)
308 
309 #ifdef __NetBSD__
310 #define PC_sig(context)       _UC_MACHINE_PC(context)
311 #define TRAP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
312 #define ERROR_sig(context)    ((context)->uc_mcontext.__gregs[_REG_ERR])
313 #define MASK_sig(context)     ((context)->uc_sigmask)
314 #elif defined(__OpenBSD__)
315 #define PC_sig(context)       ((context)->sc_rip)
316 #define TRAP_sig(context)     ((context)->sc_trapno)
317 #define ERROR_sig(context)    ((context)->sc_err)
318 #define MASK_sig(context)     ((context)->sc_mask)
319 #elif defined(__FreeBSD__) || defined(__DragonFly__)
320 #include <ucontext.h>
321 
322 #define PC_sig(context)  (*((unsigned long *)&(context)->uc_mcontext.mc_rip))
323 #define TRAP_sig(context)     ((context)->uc_mcontext.mc_trapno)
324 #define ERROR_sig(context)    ((context)->uc_mcontext.mc_err)
325 #define MASK_sig(context)     ((context)->uc_sigmask)
326 #else
327 #define PC_sig(context)       ((context)->uc_mcontext.gregs[REG_RIP])
328 #define TRAP_sig(context)     ((context)->uc_mcontext.gregs[REG_TRAPNO])
329 #define ERROR_sig(context)    ((context)->uc_mcontext.gregs[REG_ERR])
330 #define MASK_sig(context)     ((context)->uc_sigmask)
331 #endif
332 
333 int cpu_signal_handler(int host_signum, void *pinfo,
334                        void *puc)
335 {
336     siginfo_t *info = pinfo;
337     unsigned long pc;
338 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
339     ucontext_t *uc = puc;
340 #elif defined(__OpenBSD__)
341     struct sigcontext *uc = puc;
342 #else
343     ucontext_t *uc = puc;
344 #endif
345 
346     pc = PC_sig(uc);
347     return handle_cpu_signal(pc, info,
348                              TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
349                              &MASK_sig(uc));
350 }
351 
352 #elif defined(_ARCH_PPC)
353 
354 /***********************************************************************
355  * signal context platform-specific definitions
356  * From Wine
357  */
358 #ifdef linux
359 /* All Registers access - only for local access */
360 #define REG_sig(reg_name, context)              \
361     ((context)->uc_mcontext.regs->reg_name)
362 /* Gpr Registers access  */
363 #define GPR_sig(reg_num, context)              REG_sig(gpr[reg_num], context)
364 /* Program counter */
365 #define IAR_sig(context)                       REG_sig(nip, context)
366 /* Machine State Register (Supervisor) */
367 #define MSR_sig(context)                       REG_sig(msr, context)
368 /* Count register */
369 #define CTR_sig(context)                       REG_sig(ctr, context)
370 /* User's integer exception register */
371 #define XER_sig(context)                       REG_sig(xer, context)
372 /* Link register */
373 #define LR_sig(context)                        REG_sig(link, context)
374 /* Condition register */
375 #define CR_sig(context)                        REG_sig(ccr, context)
376 
377 /* Float Registers access  */
378 #define FLOAT_sig(reg_num, context)                                     \
379     (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num])
380 #define FPSCR_sig(context) \
381     (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4)))
382 /* Exception Registers access */
383 #define DAR_sig(context)                       REG_sig(dar, context)
384 #define DSISR_sig(context)                     REG_sig(dsisr, context)
385 #define TRAP_sig(context)                      REG_sig(trap, context)
386 #endif /* linux */
387 
388 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
389 #include <ucontext.h>
390 #define IAR_sig(context)               ((context)->uc_mcontext.mc_srr0)
391 #define MSR_sig(context)               ((context)->uc_mcontext.mc_srr1)
392 #define CTR_sig(context)               ((context)->uc_mcontext.mc_ctr)
393 #define XER_sig(context)               ((context)->uc_mcontext.mc_xer)
394 #define LR_sig(context)                ((context)->uc_mcontext.mc_lr)
395 #define CR_sig(context)                ((context)->uc_mcontext.mc_cr)
396 /* Exception Registers access */
397 #define DAR_sig(context)               ((context)->uc_mcontext.mc_dar)
398 #define DSISR_sig(context)             ((context)->uc_mcontext.mc_dsisr)
399 #define TRAP_sig(context)              ((context)->uc_mcontext.mc_exc)
400 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
401 
402 int cpu_signal_handler(int host_signum, void *pinfo,
403                        void *puc)
404 {
405     siginfo_t *info = pinfo;
406 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
407     ucontext_t *uc = puc;
408 #else
409     ucontext_t *uc = puc;
410 #endif
411     unsigned long pc;
412     int is_write;
413 
414     pc = IAR_sig(uc);
415     is_write = 0;
416 #if 0
417     /* ppc 4xx case */
418     if (DSISR_sig(uc) & 0x00800000) {
419         is_write = 1;
420     }
421 #else
422     if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) {
423         is_write = 1;
424     }
425 #endif
426     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
427 }
428 
429 #elif defined(__alpha__)
430 
431 int cpu_signal_handler(int host_signum, void *pinfo,
432                            void *puc)
433 {
434     siginfo_t *info = pinfo;
435     ucontext_t *uc = puc;
436     uint32_t *pc = uc->uc_mcontext.sc_pc;
437     uint32_t insn = *pc;
438     int is_write = 0;
439 
440     /* XXX: need kernel patch to get write flag faster */
441     switch (insn >> 26) {
442     case 0x0d: /* stw */
443     case 0x0e: /* stb */
444     case 0x0f: /* stq_u */
445     case 0x24: /* stf */
446     case 0x25: /* stg */
447     case 0x26: /* sts */
448     case 0x27: /* stt */
449     case 0x2c: /* stl */
450     case 0x2d: /* stq */
451     case 0x2e: /* stl_c */
452     case 0x2f: /* stq_c */
453         is_write = 1;
454     }
455 
456     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
457 }
458 #elif defined(__sparc__)
459 
460 int cpu_signal_handler(int host_signum, void *pinfo,
461                        void *puc)
462 {
463     siginfo_t *info = pinfo;
464     int is_write;
465     uint32_t insn;
466 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
467     uint32_t *regs = (uint32_t *)(info + 1);
468     void *sigmask = (regs + 20);
469     /* XXX: is there a standard glibc define ? */
470     unsigned long pc = regs[1];
471 #else
472 #ifdef __linux__
473     struct sigcontext *sc = puc;
474     unsigned long pc = sc->sigc_regs.tpc;
475     void *sigmask = (void *)sc->sigc_mask;
476 #elif defined(__OpenBSD__)
477     struct sigcontext *uc = puc;
478     unsigned long pc = uc->sc_pc;
479     void *sigmask = (void *)(long)uc->sc_mask;
480 #elif defined(__NetBSD__)
481     ucontext_t *uc = puc;
482     unsigned long pc = _UC_MACHINE_PC(uc);
483     void *sigmask = (void *)&uc->uc_sigmask;
484 #endif
485 #endif
486 
487     /* XXX: need kernel patch to get write flag faster */
488     is_write = 0;
489     insn = *(uint32_t *)pc;
490     if ((insn >> 30) == 3) {
491         switch ((insn >> 19) & 0x3f) {
492         case 0x05: /* stb */
493         case 0x15: /* stba */
494         case 0x06: /* sth */
495         case 0x16: /* stha */
496         case 0x04: /* st */
497         case 0x14: /* sta */
498         case 0x07: /* std */
499         case 0x17: /* stda */
500         case 0x0e: /* stx */
501         case 0x1e: /* stxa */
502         case 0x24: /* stf */
503         case 0x34: /* stfa */
504         case 0x27: /* stdf */
505         case 0x37: /* stdfa */
506         case 0x26: /* stqf */
507         case 0x36: /* stqfa */
508         case 0x25: /* stfsr */
509         case 0x3c: /* casa */
510         case 0x3e: /* casxa */
511             is_write = 1;
512             break;
513         }
514     }
515     return handle_cpu_signal(pc, info, is_write, sigmask);
516 }
517 
518 #elif defined(__arm__)
519 
520 #if defined(__NetBSD__)
521 #include <ucontext.h>
522 #include <sys/siginfo.h>
523 #endif
524 
525 int cpu_signal_handler(int host_signum, void *pinfo,
526                        void *puc)
527 {
528     siginfo_t *info = pinfo;
529 #if defined(__NetBSD__)
530     ucontext_t *uc = puc;
531     siginfo_t *si = pinfo;
532 #else
533     ucontext_t *uc = puc;
534 #endif
535     unsigned long pc;
536     uint32_t fsr;
537     int is_write;
538 
539 #if defined(__NetBSD__)
540     pc = uc->uc_mcontext.__gregs[_REG_R15];
541 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
542     pc = uc->uc_mcontext.gregs[R15];
543 #else
544     pc = uc->uc_mcontext.arm_pc;
545 #endif
546 
547 #ifdef __NetBSD__
548     fsr = si->si_trap;
549 #else
550     fsr = uc->uc_mcontext.error_code;
551 #endif
552     /*
553      * In the FSR, bit 11 is WnR, assuming a v6 or
554      * later processor.  On v5 we will always report
555      * this as a read, which will fail later.
556      */
557     is_write = extract32(fsr, 11, 1);
558     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
559 }
560 
561 #elif defined(__aarch64__)
562 
563 #if defined(__NetBSD__)
564 
565 #include <ucontext.h>
566 #include <sys/siginfo.h>
567 
568 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
569 {
570     ucontext_t *uc = puc;
571     siginfo_t *si = pinfo;
572     unsigned long pc;
573     int is_write;
574     uint32_t esr;
575 
576     pc = uc->uc_mcontext.__gregs[_REG_PC];
577     esr = si->si_trap;
578 
579     /*
580      * siginfo_t::si_trap is the ESR value, for data aborts ESR.EC
581      * is 0b10010x: then bit 6 is the WnR bit
582      */
583     is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
584     return handle_cpu_signal(pc, si, is_write, &uc->uc_sigmask);
585 }
586 
587 #else
588 
589 #ifndef ESR_MAGIC
590 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */
591 #define ESR_MAGIC 0x45535201
592 struct esr_context {
593     struct _aarch64_ctx head;
594     uint64_t esr;
595 };
596 #endif
597 
598 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc)
599 {
600     return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved;
601 }
602 
603 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr)
604 {
605     return (struct _aarch64_ctx *)((char *)hdr + hdr->size);
606 }
607 
608 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
609 {
610     siginfo_t *info = pinfo;
611     ucontext_t *uc = puc;
612     uintptr_t pc = uc->uc_mcontext.pc;
613     bool is_write;
614     struct _aarch64_ctx *hdr;
615     struct esr_context const *esrctx = NULL;
616 
617     /* Find the esr_context, which has the WnR bit in it */
618     for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) {
619         if (hdr->magic == ESR_MAGIC) {
620             esrctx = (struct esr_context const *)hdr;
621             break;
622         }
623     }
624 
625     if (esrctx) {
626         /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */
627         uint64_t esr = esrctx->esr;
628         is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
629     } else {
630         /*
631          * Fall back to parsing instructions; will only be needed
632          * for really ancient (pre-3.16) kernels.
633          */
634         uint32_t insn = *(uint32_t *)pc;
635 
636         is_write = ((insn & 0xbfff0000) == 0x0c000000   /* C3.3.1 */
637                     || (insn & 0xbfe00000) == 0x0c800000   /* C3.3.2 */
638                     || (insn & 0xbfdf0000) == 0x0d000000   /* C3.3.3 */
639                     || (insn & 0xbfc00000) == 0x0d800000   /* C3.3.4 */
640                     || (insn & 0x3f400000) == 0x08000000   /* C3.3.6 */
641                     || (insn & 0x3bc00000) == 0x39000000   /* C3.3.13 */
642                     || (insn & 0x3fc00000) == 0x3d800000   /* ... 128bit */
643                     /* Ignore bits 10, 11 & 21, controlling indexing.  */
644                     || (insn & 0x3bc00000) == 0x38000000   /* C3.3.8-12 */
645                     || (insn & 0x3fe00000) == 0x3c800000   /* ... 128bit */
646                     /* Ignore bits 23 & 24, controlling indexing.  */
647                     || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */
648     }
649     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
650 }
651 #endif
652 
653 #elif defined(__s390__)
654 
655 int cpu_signal_handler(int host_signum, void *pinfo,
656                        void *puc)
657 {
658     siginfo_t *info = pinfo;
659     ucontext_t *uc = puc;
660     unsigned long pc;
661     uint16_t *pinsn;
662     int is_write = 0;
663 
664     pc = uc->uc_mcontext.psw.addr;
665 
666     /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
667        of the normal 2 arguments.  The 3rd argument contains the "int_code"
668        from the hardware which does in fact contain the is_write value.
669        The rt signal handler, as far as I can tell, does not give this value
670        at all.  Not that we could get to it from here even if it were.  */
671     /* ??? This is not even close to complete, since it ignores all
672        of the read-modify-write instructions.  */
673     pinsn = (uint16_t *)pc;
674     switch (pinsn[0] >> 8) {
675     case 0x50: /* ST */
676     case 0x42: /* STC */
677     case 0x40: /* STH */
678         is_write = 1;
679         break;
680     case 0xc4: /* RIL format insns */
681         switch (pinsn[0] & 0xf) {
682         case 0xf: /* STRL */
683         case 0xb: /* STGRL */
684         case 0x7: /* STHRL */
685             is_write = 1;
686         }
687         break;
688     case 0xe3: /* RXY format insns */
689         switch (pinsn[2] & 0xff) {
690         case 0x50: /* STY */
691         case 0x24: /* STG */
692         case 0x72: /* STCY */
693         case 0x70: /* STHY */
694         case 0x8e: /* STPQ */
695         case 0x3f: /* STRVH */
696         case 0x3e: /* STRV */
697         case 0x2f: /* STRVG */
698             is_write = 1;
699         }
700         break;
701     }
702     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
703 }
704 
705 #elif defined(__mips__)
706 
707 #if defined(__misp16) || defined(__mips_micromips)
708 #error "Unsupported encoding"
709 #endif
710 
711 int cpu_signal_handler(int host_signum, void *pinfo,
712                        void *puc)
713 {
714     siginfo_t *info = pinfo;
715     ucontext_t *uc = puc;
716     uintptr_t pc = uc->uc_mcontext.pc;
717     uint32_t insn = *(uint32_t *)pc;
718     int is_write = 0;
719 
720     /* Detect all store instructions at program counter. */
721     switch((insn >> 26) & 077) {
722     case 050: /* SB */
723     case 051: /* SH */
724     case 052: /* SWL */
725     case 053: /* SW */
726     case 054: /* SDL */
727     case 055: /* SDR */
728     case 056: /* SWR */
729     case 070: /* SC */
730     case 071: /* SWC1 */
731     case 074: /* SCD */
732     case 075: /* SDC1 */
733     case 077: /* SD */
734 #if !defined(__mips_isa_rev) || __mips_isa_rev < 6
735     case 072: /* SWC2 */
736     case 076: /* SDC2 */
737 #endif
738         is_write = 1;
739         break;
740     case 023: /* COP1X */
741         /* Required in all versions of MIPS64 since
742            MIPS64r1 and subsequent versions of MIPS32r2. */
743         switch (insn & 077) {
744         case 010: /* SWXC1 */
745         case 011: /* SDXC1 */
746         case 015: /* SUXC1 */
747             is_write = 1;
748         }
749         break;
750     }
751 
752     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
753 }
754 
755 #elif defined(__riscv)
756 
757 int cpu_signal_handler(int host_signum, void *pinfo,
758                        void *puc)
759 {
760     siginfo_t *info = pinfo;
761     ucontext_t *uc = puc;
762     greg_t pc = uc->uc_mcontext.__gregs[REG_PC];
763     uint32_t insn = *(uint32_t *)pc;
764     int is_write = 0;
765 
766     /* Detect store by reading the instruction at the program
767        counter. Note: we currently only generate 32-bit
768        instructions so we thus only detect 32-bit stores */
769     switch (((insn >> 0) & 0b11)) {
770     case 3:
771         switch (((insn >> 2) & 0b11111)) {
772         case 8:
773             switch (((insn >> 12) & 0b111)) {
774             case 0: /* sb */
775             case 1: /* sh */
776             case 2: /* sw */
777             case 3: /* sd */
778             case 4: /* sq */
779                 is_write = 1;
780                 break;
781             default:
782                 break;
783             }
784             break;
785         case 9:
786             switch (((insn >> 12) & 0b111)) {
787             case 2: /* fsw */
788             case 3: /* fsd */
789             case 4: /* fsq */
790                 is_write = 1;
791                 break;
792             default:
793                 break;
794             }
795             break;
796         default:
797             break;
798         }
799     }
800 
801     /* Check for compressed instructions */
802     switch (((insn >> 13) & 0b111)) {
803     case 7:
804         switch (insn & 0b11) {
805         case 0: /*c.sd */
806         case 2: /* c.sdsp */
807             is_write = 1;
808             break;
809         default:
810             break;
811         }
812         break;
813     case 6:
814         switch (insn & 0b11) {
815         case 0: /* c.sw */
816         case 3: /* c.swsp */
817             is_write = 1;
818             break;
819         default:
820             break;
821         }
822         break;
823     default:
824         break;
825     }
826 
827     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
828 }
829 
830 #else
831 
832 #error host CPU specific signal handler needed
833 
834 #endif
835 
836 /* The softmmu versions of these helpers are in cputlb.c.  */
837 
838 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr)
839 {
840     uint32_t ret;
841     uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false);
842 
843     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
844     ret = ldub_p(g2h(ptr));
845     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
846     return ret;
847 }
848 
849 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr)
850 {
851     int ret;
852     uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false);
853 
854     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
855     ret = ldsb_p(g2h(ptr));
856     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
857     return ret;
858 }
859 
860 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr)
861 {
862     uint32_t ret;
863     uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false);
864 
865     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
866     ret = lduw_be_p(g2h(ptr));
867     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
868     return ret;
869 }
870 
871 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr)
872 {
873     int ret;
874     uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false);
875 
876     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
877     ret = ldsw_be_p(g2h(ptr));
878     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
879     return ret;
880 }
881 
882 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr)
883 {
884     uint32_t ret;
885     uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false);
886 
887     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
888     ret = ldl_be_p(g2h(ptr));
889     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
890     return ret;
891 }
892 
893 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr)
894 {
895     uint64_t ret;
896     uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false);
897 
898     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
899     ret = ldq_be_p(g2h(ptr));
900     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
901     return ret;
902 }
903 
904 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr)
905 {
906     uint32_t ret;
907     uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false);
908 
909     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
910     ret = lduw_le_p(g2h(ptr));
911     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
912     return ret;
913 }
914 
915 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr)
916 {
917     int ret;
918     uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false);
919 
920     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
921     ret = ldsw_le_p(g2h(ptr));
922     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
923     return ret;
924 }
925 
926 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr)
927 {
928     uint32_t ret;
929     uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false);
930 
931     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
932     ret = ldl_le_p(g2h(ptr));
933     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
934     return ret;
935 }
936 
937 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr)
938 {
939     uint64_t ret;
940     uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false);
941 
942     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
943     ret = ldq_le_p(g2h(ptr));
944     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
945     return ret;
946 }
947 
948 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
949 {
950     uint32_t ret;
951 
952     set_helper_retaddr(retaddr);
953     ret = cpu_ldub_data(env, ptr);
954     clear_helper_retaddr();
955     return ret;
956 }
957 
958 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
959 {
960     int ret;
961 
962     set_helper_retaddr(retaddr);
963     ret = cpu_ldsb_data(env, ptr);
964     clear_helper_retaddr();
965     return ret;
966 }
967 
968 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
969 {
970     uint32_t ret;
971 
972     set_helper_retaddr(retaddr);
973     ret = cpu_lduw_be_data(env, ptr);
974     clear_helper_retaddr();
975     return ret;
976 }
977 
978 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
979 {
980     int ret;
981 
982     set_helper_retaddr(retaddr);
983     ret = cpu_ldsw_be_data(env, ptr);
984     clear_helper_retaddr();
985     return ret;
986 }
987 
988 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
989 {
990     uint32_t ret;
991 
992     set_helper_retaddr(retaddr);
993     ret = cpu_ldl_be_data(env, ptr);
994     clear_helper_retaddr();
995     return ret;
996 }
997 
998 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
999 {
1000     uint64_t ret;
1001 
1002     set_helper_retaddr(retaddr);
1003     ret = cpu_ldq_be_data(env, ptr);
1004     clear_helper_retaddr();
1005     return ret;
1006 }
1007 
1008 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1009 {
1010     uint32_t ret;
1011 
1012     set_helper_retaddr(retaddr);
1013     ret = cpu_lduw_le_data(env, ptr);
1014     clear_helper_retaddr();
1015     return ret;
1016 }
1017 
1018 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1019 {
1020     int ret;
1021 
1022     set_helper_retaddr(retaddr);
1023     ret = cpu_ldsw_le_data(env, ptr);
1024     clear_helper_retaddr();
1025     return ret;
1026 }
1027 
1028 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1029 {
1030     uint32_t ret;
1031 
1032     set_helper_retaddr(retaddr);
1033     ret = cpu_ldl_le_data(env, ptr);
1034     clear_helper_retaddr();
1035     return ret;
1036 }
1037 
1038 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1039 {
1040     uint64_t ret;
1041 
1042     set_helper_retaddr(retaddr);
1043     ret = cpu_ldq_le_data(env, ptr);
1044     clear_helper_retaddr();
1045     return ret;
1046 }
1047 
1048 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1049 {
1050     uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true);
1051 
1052     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1053     stb_p(g2h(ptr), val);
1054     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1055 }
1056 
1057 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1058 {
1059     uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true);
1060 
1061     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1062     stw_be_p(g2h(ptr), val);
1063     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1064 }
1065 
1066 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1067 {
1068     uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true);
1069 
1070     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1071     stl_be_p(g2h(ptr), val);
1072     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1073 }
1074 
1075 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1076 {
1077     uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true);
1078 
1079     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1080     stq_be_p(g2h(ptr), val);
1081     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1082 }
1083 
1084 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1085 {
1086     uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true);
1087 
1088     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1089     stw_le_p(g2h(ptr), val);
1090     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1091 }
1092 
1093 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1094 {
1095     uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true);
1096 
1097     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1098     stl_le_p(g2h(ptr), val);
1099     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1100 }
1101 
1102 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1103 {
1104     uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true);
1105 
1106     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1107     stq_le_p(g2h(ptr), val);
1108     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1109 }
1110 
1111 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
1112                      uint32_t val, uintptr_t retaddr)
1113 {
1114     set_helper_retaddr(retaddr);
1115     cpu_stb_data(env, ptr, val);
1116     clear_helper_retaddr();
1117 }
1118 
1119 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
1120                         uint32_t val, uintptr_t retaddr)
1121 {
1122     set_helper_retaddr(retaddr);
1123     cpu_stw_be_data(env, ptr, val);
1124     clear_helper_retaddr();
1125 }
1126 
1127 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
1128                         uint32_t val, uintptr_t retaddr)
1129 {
1130     set_helper_retaddr(retaddr);
1131     cpu_stl_be_data(env, ptr, val);
1132     clear_helper_retaddr();
1133 }
1134 
1135 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
1136                         uint64_t val, uintptr_t retaddr)
1137 {
1138     set_helper_retaddr(retaddr);
1139     cpu_stq_be_data(env, ptr, val);
1140     clear_helper_retaddr();
1141 }
1142 
1143 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
1144                         uint32_t val, uintptr_t retaddr)
1145 {
1146     set_helper_retaddr(retaddr);
1147     cpu_stw_le_data(env, ptr, val);
1148     clear_helper_retaddr();
1149 }
1150 
1151 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
1152                         uint32_t val, uintptr_t retaddr)
1153 {
1154     set_helper_retaddr(retaddr);
1155     cpu_stl_le_data(env, ptr, val);
1156     clear_helper_retaddr();
1157 }
1158 
1159 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
1160                         uint64_t val, uintptr_t retaddr)
1161 {
1162     set_helper_retaddr(retaddr);
1163     cpu_stq_le_data(env, ptr, val);
1164     clear_helper_retaddr();
1165 }
1166 
1167 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1168 {
1169     uint32_t ret;
1170 
1171     set_helper_retaddr(1);
1172     ret = ldub_p(g2h(ptr));
1173     clear_helper_retaddr();
1174     return ret;
1175 }
1176 
1177 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1178 {
1179     uint32_t ret;
1180 
1181     set_helper_retaddr(1);
1182     ret = lduw_p(g2h(ptr));
1183     clear_helper_retaddr();
1184     return ret;
1185 }
1186 
1187 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1188 {
1189     uint32_t ret;
1190 
1191     set_helper_retaddr(1);
1192     ret = ldl_p(g2h(ptr));
1193     clear_helper_retaddr();
1194     return ret;
1195 }
1196 
1197 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1198 {
1199     uint64_t ret;
1200 
1201     set_helper_retaddr(1);
1202     ret = ldq_p(g2h(ptr));
1203     clear_helper_retaddr();
1204     return ret;
1205 }
1206 
1207 /* Do not allow unaligned operations to proceed.  Return the host address.  */
1208 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1209                                int size, uintptr_t retaddr)
1210 {
1211     /* Enforce qemu required alignment.  */
1212     if (unlikely(addr & (size - 1))) {
1213         cpu_loop_exit_atomic(env_cpu(env), retaddr);
1214     }
1215     void *ret = g2h(addr);
1216     set_helper_retaddr(retaddr);
1217     return ret;
1218 }
1219 
1220 /* Macro to call the above, with local variables from the use context.  */
1221 #define ATOMIC_MMU_DECLS do {} while (0)
1222 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC())
1223 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1224 #define ATOMIC_MMU_IDX MMU_USER_IDX
1225 
1226 #define ATOMIC_NAME(X)   HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1227 #define EXTRA_ARGS
1228 
1229 #include "atomic_common.c.inc"
1230 
1231 #define DATA_SIZE 1
1232 #include "atomic_template.h"
1233 
1234 #define DATA_SIZE 2
1235 #include "atomic_template.h"
1236 
1237 #define DATA_SIZE 4
1238 #include "atomic_template.h"
1239 
1240 #ifdef CONFIG_ATOMIC64
1241 #define DATA_SIZE 8
1242 #include "atomic_template.h"
1243 #endif
1244 
1245 /* The following is only callable from other helpers, and matches up
1246    with the softmmu version.  */
1247 
1248 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
1249 
1250 #undef EXTRA_ARGS
1251 #undef ATOMIC_NAME
1252 #undef ATOMIC_MMU_LOOKUP
1253 
1254 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
1255 #define ATOMIC_NAME(X) \
1256     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1257 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr)
1258 
1259 #define DATA_SIZE 16
1260 #include "atomic_template.h"
1261 #endif
1262