xref: /openbmc/qemu/accel/tcg/user-exec.c (revision b14df228)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/translate-all.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/atomic128.h"
29 #include "trace/trace-root.h"
30 #include "tcg/tcg-ldst.h"
31 #include "internal.h"
32 
33 __thread uintptr_t helper_retaddr;
34 
35 //#define DEBUG_SIGNAL
36 
37 /*
38  * Adjust the pc to pass to cpu_restore_state; return the memop type.
39  */
40 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
41 {
42     switch (helper_retaddr) {
43     default:
44         /*
45          * Fault during host memory operation within a helper function.
46          * The helper's host return address, saved here, gives us a
47          * pointer into the generated code that will unwind to the
48          * correct guest pc.
49          */
50         *pc = helper_retaddr;
51         break;
52 
53     case 0:
54         /*
55          * Fault during host memory operation within generated code.
56          * (Or, a unrelated bug within qemu, but we can't tell from here).
57          *
58          * We take the host pc from the signal frame.  However, we cannot
59          * use that value directly.  Within cpu_restore_state_from_tb, we
60          * assume PC comes from GETPC(), as used by the helper functions,
61          * so we adjust the address by -GETPC_ADJ to form an address that
62          * is within the call insn, so that the address does not accidentally
63          * match the beginning of the next guest insn.  However, when the
64          * pc comes from the signal frame it points to the actual faulting
65          * host memory insn and not the return from a call insn.
66          *
67          * Therefore, adjust to compensate for what will be done later
68          * by cpu_restore_state_from_tb.
69          */
70         *pc += GETPC_ADJ;
71         break;
72 
73     case 1:
74         /*
75          * Fault during host read for translation, or loosely, "execution".
76          *
77          * The guest pc is already pointing to the start of the TB for which
78          * code is being generated.  If the guest translator manages the
79          * page crossings correctly, this is exactly the correct address
80          * (and if the translator doesn't handle page boundaries correctly
81          * there's little we can do about that here).  Therefore, do not
82          * trigger the unwinder.
83          *
84          * Like tb_gen_code, release the memory lock before cpu_loop_exit.
85          */
86         mmap_unlock();
87         *pc = 0;
88         return MMU_INST_FETCH;
89     }
90 
91     return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
92 }
93 
94 /**
95  * handle_sigsegv_accerr_write:
96  * @cpu: the cpu context
97  * @old_set: the sigset_t from the signal ucontext_t
98  * @host_pc: the host pc, adjusted for the signal
99  * @guest_addr: the guest address of the fault
100  *
101  * Return true if the write fault has been handled, and should be re-tried.
102  *
103  * Note that it is important that we don't call page_unprotect() unless
104  * this is really a "write to nonwritable page" fault, because
105  * page_unprotect() assumes that if it is called for an access to
106  * a page that's writable this means we had two threads racing and
107  * another thread got there first and already made the page writable;
108  * so we will retry the access. If we were to call page_unprotect()
109  * for some other kind of fault that should really be passed to the
110  * guest, we'd end up in an infinite loop of retrying the faulting access.
111  */
112 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
113                                  uintptr_t host_pc, abi_ptr guest_addr)
114 {
115     switch (page_unprotect(guest_addr, host_pc)) {
116     case 0:
117         /*
118          * Fault not caused by a page marked unwritable to protect
119          * cached translations, must be the guest binary's problem.
120          */
121         return false;
122     case 1:
123         /*
124          * Fault caused by protection of cached translation; TBs
125          * invalidated, so resume execution.
126          */
127         return true;
128     case 2:
129         /*
130          * Fault caused by protection of cached translation, and the
131          * currently executing TB was modified and must be exited immediately.
132          */
133         sigprocmask(SIG_SETMASK, old_set, NULL);
134         cpu_loop_exit_noexc(cpu);
135         /* NORETURN */
136     default:
137         g_assert_not_reached();
138     }
139 }
140 
141 static int probe_access_internal(CPUArchState *env, target_ulong addr,
142                                  int fault_size, MMUAccessType access_type,
143                                  bool nonfault, uintptr_t ra)
144 {
145     int acc_flag;
146     bool maperr;
147 
148     switch (access_type) {
149     case MMU_DATA_STORE:
150         acc_flag = PAGE_WRITE_ORG;
151         break;
152     case MMU_DATA_LOAD:
153         acc_flag = PAGE_READ;
154         break;
155     case MMU_INST_FETCH:
156         acc_flag = PAGE_EXEC;
157         break;
158     default:
159         g_assert_not_reached();
160     }
161 
162     if (guest_addr_valid_untagged(addr)) {
163         int page_flags = page_get_flags(addr);
164         if (page_flags & acc_flag) {
165             return 0; /* success */
166         }
167         maperr = !(page_flags & PAGE_VALID);
168     } else {
169         maperr = true;
170     }
171 
172     if (nonfault) {
173         return TLB_INVALID_MASK;
174     }
175 
176     cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
177 }
178 
179 int probe_access_flags(CPUArchState *env, target_ulong addr,
180                        MMUAccessType access_type, int mmu_idx,
181                        bool nonfault, void **phost, uintptr_t ra)
182 {
183     int flags;
184 
185     flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
186     *phost = flags ? NULL : g2h(env_cpu(env), addr);
187     return flags;
188 }
189 
190 void *probe_access(CPUArchState *env, target_ulong addr, int size,
191                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
192 {
193     int flags;
194 
195     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
196     flags = probe_access_internal(env, addr, size, access_type, false, ra);
197     g_assert(flags == 0);
198 
199     return size ? g2h(env_cpu(env), addr) : NULL;
200 }
201 
202 /* The softmmu versions of these helpers are in cputlb.c.  */
203 
204 /*
205  * Verify that we have passed the correct MemOp to the correct function.
206  *
207  * We could present one function to target code, and dispatch based on
208  * the MemOp, but so far we have worked hard to avoid an indirect function
209  * call along the memory path.
210  */
211 static void validate_memop(MemOpIdx oi, MemOp expected)
212 {
213 #ifdef CONFIG_DEBUG_TCG
214     MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
215     assert(have == expected);
216 #endif
217 }
218 
219 void helper_unaligned_ld(CPUArchState *env, target_ulong addr)
220 {
221     cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_LOAD, GETPC());
222 }
223 
224 void helper_unaligned_st(CPUArchState *env, target_ulong addr)
225 {
226     cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, GETPC());
227 }
228 
229 static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr,
230                             MemOpIdx oi, uintptr_t ra, MMUAccessType type)
231 {
232     MemOp mop = get_memop(oi);
233     int a_bits = get_alignment_bits(mop);
234     void *ret;
235 
236     /* Enforce guest required alignment.  */
237     if (unlikely(addr & ((1 << a_bits) - 1))) {
238         cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
239     }
240 
241     ret = g2h(env_cpu(env), addr);
242     set_helper_retaddr(ra);
243     return ret;
244 }
245 
246 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
247                     MemOpIdx oi, uintptr_t ra)
248 {
249     void *haddr;
250     uint8_t ret;
251 
252     validate_memop(oi, MO_UB);
253     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
254     ret = ldub_p(haddr);
255     clear_helper_retaddr();
256     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
257     return ret;
258 }
259 
260 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
261                         MemOpIdx oi, uintptr_t ra)
262 {
263     void *haddr;
264     uint16_t ret;
265 
266     validate_memop(oi, MO_BEUW);
267     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
268     ret = lduw_be_p(haddr);
269     clear_helper_retaddr();
270     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
271     return ret;
272 }
273 
274 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
275                         MemOpIdx oi, uintptr_t ra)
276 {
277     void *haddr;
278     uint32_t ret;
279 
280     validate_memop(oi, MO_BEUL);
281     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
282     ret = ldl_be_p(haddr);
283     clear_helper_retaddr();
284     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
285     return ret;
286 }
287 
288 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
289                         MemOpIdx oi, uintptr_t ra)
290 {
291     void *haddr;
292     uint64_t ret;
293 
294     validate_memop(oi, MO_BEUQ);
295     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
296     ret = ldq_be_p(haddr);
297     clear_helper_retaddr();
298     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
299     return ret;
300 }
301 
302 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
303                         MemOpIdx oi, uintptr_t ra)
304 {
305     void *haddr;
306     uint16_t ret;
307 
308     validate_memop(oi, MO_LEUW);
309     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
310     ret = lduw_le_p(haddr);
311     clear_helper_retaddr();
312     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
313     return ret;
314 }
315 
316 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
317                         MemOpIdx oi, uintptr_t ra)
318 {
319     void *haddr;
320     uint32_t ret;
321 
322     validate_memop(oi, MO_LEUL);
323     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
324     ret = ldl_le_p(haddr);
325     clear_helper_retaddr();
326     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
327     return ret;
328 }
329 
330 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
331                         MemOpIdx oi, uintptr_t ra)
332 {
333     void *haddr;
334     uint64_t ret;
335 
336     validate_memop(oi, MO_LEUQ);
337     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
338     ret = ldq_le_p(haddr);
339     clear_helper_retaddr();
340     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
341     return ret;
342 }
343 
344 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
345                  MemOpIdx oi, uintptr_t ra)
346 {
347     void *haddr;
348 
349     validate_memop(oi, MO_UB);
350     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
351     stb_p(haddr, val);
352     clear_helper_retaddr();
353     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
354 }
355 
356 void cpu_stw_be_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
357                     MemOpIdx oi, uintptr_t ra)
358 {
359     void *haddr;
360 
361     validate_memop(oi, MO_BEUW);
362     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
363     stw_be_p(haddr, val);
364     clear_helper_retaddr();
365     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
366 }
367 
368 void cpu_stl_be_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
369                     MemOpIdx oi, uintptr_t ra)
370 {
371     void *haddr;
372 
373     validate_memop(oi, MO_BEUL);
374     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
375     stl_be_p(haddr, val);
376     clear_helper_retaddr();
377     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
378 }
379 
380 void cpu_stq_be_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
381                     MemOpIdx oi, uintptr_t ra)
382 {
383     void *haddr;
384 
385     validate_memop(oi, MO_BEUQ);
386     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
387     stq_be_p(haddr, val);
388     clear_helper_retaddr();
389     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
390 }
391 
392 void cpu_stw_le_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
393                     MemOpIdx oi, uintptr_t ra)
394 {
395     void *haddr;
396 
397     validate_memop(oi, MO_LEUW);
398     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
399     stw_le_p(haddr, val);
400     clear_helper_retaddr();
401     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
402 }
403 
404 void cpu_stl_le_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
405                     MemOpIdx oi, uintptr_t ra)
406 {
407     void *haddr;
408 
409     validate_memop(oi, MO_LEUL);
410     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
411     stl_le_p(haddr, val);
412     clear_helper_retaddr();
413     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
414 }
415 
416 void cpu_stq_le_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
417                     MemOpIdx oi, uintptr_t ra)
418 {
419     void *haddr;
420 
421     validate_memop(oi, MO_LEUQ);
422     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
423     stq_le_p(haddr, val);
424     clear_helper_retaddr();
425     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
426 }
427 
428 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
429 {
430     uint32_t ret;
431 
432     set_helper_retaddr(1);
433     ret = ldub_p(g2h_untagged(ptr));
434     clear_helper_retaddr();
435     return ret;
436 }
437 
438 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
439 {
440     uint32_t ret;
441 
442     set_helper_retaddr(1);
443     ret = lduw_p(g2h_untagged(ptr));
444     clear_helper_retaddr();
445     return ret;
446 }
447 
448 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
449 {
450     uint32_t ret;
451 
452     set_helper_retaddr(1);
453     ret = ldl_p(g2h_untagged(ptr));
454     clear_helper_retaddr();
455     return ret;
456 }
457 
458 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
459 {
460     uint64_t ret;
461 
462     set_helper_retaddr(1);
463     ret = ldq_p(g2h_untagged(ptr));
464     clear_helper_retaddr();
465     return ret;
466 }
467 
468 #include "ldst_common.c.inc"
469 
470 /*
471  * Do not allow unaligned operations to proceed.  Return the host address.
472  *
473  * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
474  */
475 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
476                                MemOpIdx oi, int size, int prot,
477                                uintptr_t retaddr)
478 {
479     MemOp mop = get_memop(oi);
480     int a_bits = get_alignment_bits(mop);
481     void *ret;
482 
483     /* Enforce guest required alignment.  */
484     if (unlikely(addr & ((1 << a_bits) - 1))) {
485         MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE;
486         cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr);
487     }
488 
489     /* Enforce qemu required alignment.  */
490     if (unlikely(addr & (size - 1))) {
491         cpu_loop_exit_atomic(env_cpu(env), retaddr);
492     }
493 
494     ret = g2h(env_cpu(env), addr);
495     set_helper_retaddr(retaddr);
496     return ret;
497 }
498 
499 #include "atomic_common.c.inc"
500 
501 /*
502  * First set of functions passes in OI and RETADDR.
503  * This makes them callable from other helpers.
504  */
505 
506 #define ATOMIC_NAME(X) \
507     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
508 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
509 
510 #define DATA_SIZE 1
511 #include "atomic_template.h"
512 
513 #define DATA_SIZE 2
514 #include "atomic_template.h"
515 
516 #define DATA_SIZE 4
517 #include "atomic_template.h"
518 
519 #ifdef CONFIG_ATOMIC64
520 #define DATA_SIZE 8
521 #include "atomic_template.h"
522 #endif
523 
524 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
525 #define DATA_SIZE 16
526 #include "atomic_template.h"
527 #endif
528