1 /* 2 * User emulator execution 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "disas/disas.h" 22 #include "exec/exec-all.h" 23 #include "tcg/tcg.h" 24 #include "qemu/bitops.h" 25 #include "exec/cpu_ldst.h" 26 #include "translate-all.h" 27 #include "exec/helper-proto.h" 28 #include "qemu/atomic128.h" 29 #include "trace/trace-root.h" 30 #include "trace/mem.h" 31 32 #undef EAX 33 #undef ECX 34 #undef EDX 35 #undef EBX 36 #undef ESP 37 #undef EBP 38 #undef ESI 39 #undef EDI 40 #undef EIP 41 #ifdef __linux__ 42 #include <sys/ucontext.h> 43 #endif 44 45 __thread uintptr_t helper_retaddr; 46 47 //#define DEBUG_SIGNAL 48 49 /* exit the current TB from a signal handler. The host registers are 50 restored in a state compatible with the CPU emulator 51 */ 52 static void cpu_exit_tb_from_sighandler(CPUState *cpu, sigset_t *old_set) 53 { 54 /* XXX: use siglongjmp ? */ 55 sigprocmask(SIG_SETMASK, old_set, NULL); 56 cpu_loop_exit_noexc(cpu); 57 } 58 59 /* 'pc' is the host PC at which the exception was raised. 'address' is 60 the effective address of the memory exception. 'is_write' is 1 if a 61 write caused the exception and otherwise 0'. 'old_set' is the 62 signal set which should be restored */ 63 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info, 64 int is_write, sigset_t *old_set) 65 { 66 CPUState *cpu = current_cpu; 67 CPUClass *cc; 68 unsigned long address = (unsigned long)info->si_addr; 69 MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD; 70 71 switch (helper_retaddr) { 72 default: 73 /* 74 * Fault during host memory operation within a helper function. 75 * The helper's host return address, saved here, gives us a 76 * pointer into the generated code that will unwind to the 77 * correct guest pc. 78 */ 79 pc = helper_retaddr; 80 break; 81 82 case 0: 83 /* 84 * Fault during host memory operation within generated code. 85 * (Or, a unrelated bug within qemu, but we can't tell from here). 86 * 87 * We take the host pc from the signal frame. However, we cannot 88 * use that value directly. Within cpu_restore_state_from_tb, we 89 * assume PC comes from GETPC(), as used by the helper functions, 90 * so we adjust the address by -GETPC_ADJ to form an address that 91 * is within the call insn, so that the address does not accidentially 92 * match the beginning of the next guest insn. However, when the 93 * pc comes from the signal frame it points to the actual faulting 94 * host memory insn and not the return from a call insn. 95 * 96 * Therefore, adjust to compensate for what will be done later 97 * by cpu_restore_state_from_tb. 98 */ 99 pc += GETPC_ADJ; 100 break; 101 102 case 1: 103 /* 104 * Fault during host read for translation, or loosely, "execution". 105 * 106 * The guest pc is already pointing to the start of the TB for which 107 * code is being generated. If the guest translator manages the 108 * page crossings correctly, this is exactly the correct address 109 * (and if the translator doesn't handle page boundaries correctly 110 * there's little we can do about that here). Therefore, do not 111 * trigger the unwinder. 112 * 113 * Like tb_gen_code, release the memory lock before cpu_loop_exit. 114 */ 115 pc = 0; 116 access_type = MMU_INST_FETCH; 117 mmap_unlock(); 118 break; 119 } 120 121 /* For synchronous signals we expect to be coming from the vCPU 122 * thread (so current_cpu should be valid) and either from running 123 * code or during translation which can fault as we cross pages. 124 * 125 * If neither is true then something has gone wrong and we should 126 * abort rather than try and restart the vCPU execution. 127 */ 128 if (!cpu || !cpu->running) { 129 printf("qemu:%s received signal outside vCPU context @ pc=0x%" 130 PRIxPTR "\n", __func__, pc); 131 abort(); 132 } 133 134 #if defined(DEBUG_SIGNAL) 135 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 136 pc, address, is_write, *(unsigned long *)old_set); 137 #endif 138 /* XXX: locking issue */ 139 /* Note that it is important that we don't call page_unprotect() unless 140 * this is really a "write to nonwriteable page" fault, because 141 * page_unprotect() assumes that if it is called for an access to 142 * a page that's writeable this means we had two threads racing and 143 * another thread got there first and already made the page writeable; 144 * so we will retry the access. If we were to call page_unprotect() 145 * for some other kind of fault that should really be passed to the 146 * guest, we'd end up in an infinite loop of retrying the faulting 147 * access. 148 */ 149 if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR && 150 h2g_valid(address)) { 151 switch (page_unprotect(h2g(address), pc)) { 152 case 0: 153 /* Fault not caused by a page marked unwritable to protect 154 * cached translations, must be the guest binary's problem. 155 */ 156 break; 157 case 1: 158 /* Fault caused by protection of cached translation; TBs 159 * invalidated, so resume execution. Retain helper_retaddr 160 * for a possible second fault. 161 */ 162 return 1; 163 case 2: 164 /* Fault caused by protection of cached translation, and the 165 * currently executing TB was modified and must be exited 166 * immediately. Clear helper_retaddr for next execution. 167 */ 168 clear_helper_retaddr(); 169 cpu_exit_tb_from_sighandler(cpu, old_set); 170 /* NORETURN */ 171 172 default: 173 g_assert_not_reached(); 174 } 175 } 176 177 /* Convert forcefully to guest address space, invalid addresses 178 are still valid segv ones */ 179 address = h2g_nocheck(address); 180 181 /* 182 * There is no way the target can handle this other than raising 183 * an exception. Undo signal and retaddr state prior to longjmp. 184 */ 185 sigprocmask(SIG_SETMASK, old_set, NULL); 186 clear_helper_retaddr(); 187 188 cc = CPU_GET_CLASS(cpu); 189 cc->tlb_fill(cpu, address, 0, access_type, MMU_USER_IDX, false, pc); 190 g_assert_not_reached(); 191 } 192 193 static int probe_access_internal(CPUArchState *env, target_ulong addr, 194 int fault_size, MMUAccessType access_type, 195 bool nonfault, uintptr_t ra) 196 { 197 int flags; 198 199 switch (access_type) { 200 case MMU_DATA_STORE: 201 flags = PAGE_WRITE; 202 break; 203 case MMU_DATA_LOAD: 204 flags = PAGE_READ; 205 break; 206 case MMU_INST_FETCH: 207 flags = PAGE_EXEC; 208 break; 209 default: 210 g_assert_not_reached(); 211 } 212 213 if (!guest_addr_valid(addr) || page_check_range(addr, 1, flags) < 0) { 214 if (nonfault) { 215 return TLB_INVALID_MASK; 216 } else { 217 CPUState *cpu = env_cpu(env); 218 CPUClass *cc = CPU_GET_CLASS(cpu); 219 cc->tlb_fill(cpu, addr, fault_size, access_type, 220 MMU_USER_IDX, false, ra); 221 g_assert_not_reached(); 222 } 223 } 224 return 0; 225 } 226 227 int probe_access_flags(CPUArchState *env, target_ulong addr, 228 MMUAccessType access_type, int mmu_idx, 229 bool nonfault, void **phost, uintptr_t ra) 230 { 231 int flags; 232 233 flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra); 234 *phost = flags ? NULL : g2h(addr); 235 return flags; 236 } 237 238 void *probe_access(CPUArchState *env, target_ulong addr, int size, 239 MMUAccessType access_type, int mmu_idx, uintptr_t ra) 240 { 241 int flags; 242 243 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 244 flags = probe_access_internal(env, addr, size, access_type, false, ra); 245 g_assert(flags == 0); 246 247 return size ? g2h(addr) : NULL; 248 } 249 250 #if defined(__i386__) 251 252 #if defined(__NetBSD__) 253 #include <ucontext.h> 254 255 #define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP]) 256 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) 257 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) 258 #define MASK_sig(context) ((context)->uc_sigmask) 259 #elif defined(__FreeBSD__) || defined(__DragonFly__) 260 #include <ucontext.h> 261 262 #define EIP_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_eip)) 263 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) 264 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err) 265 #define MASK_sig(context) ((context)->uc_sigmask) 266 #elif defined(__OpenBSD__) 267 #define EIP_sig(context) ((context)->sc_eip) 268 #define TRAP_sig(context) ((context)->sc_trapno) 269 #define ERROR_sig(context) ((context)->sc_err) 270 #define MASK_sig(context) ((context)->sc_mask) 271 #else 272 #define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) 273 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) 274 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) 275 #define MASK_sig(context) ((context)->uc_sigmask) 276 #endif 277 278 int cpu_signal_handler(int host_signum, void *pinfo, 279 void *puc) 280 { 281 siginfo_t *info = pinfo; 282 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__) 283 ucontext_t *uc = puc; 284 #elif defined(__OpenBSD__) 285 struct sigcontext *uc = puc; 286 #else 287 ucontext_t *uc = puc; 288 #endif 289 unsigned long pc; 290 int trapno; 291 292 #ifndef REG_EIP 293 /* for glibc 2.1 */ 294 #define REG_EIP EIP 295 #define REG_ERR ERR 296 #define REG_TRAPNO TRAPNO 297 #endif 298 pc = EIP_sig(uc); 299 trapno = TRAP_sig(uc); 300 return handle_cpu_signal(pc, info, 301 trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0, 302 &MASK_sig(uc)); 303 } 304 305 #elif defined(__x86_64__) 306 307 #ifdef __NetBSD__ 308 #define PC_sig(context) _UC_MACHINE_PC(context) 309 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) 310 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) 311 #define MASK_sig(context) ((context)->uc_sigmask) 312 #elif defined(__OpenBSD__) 313 #define PC_sig(context) ((context)->sc_rip) 314 #define TRAP_sig(context) ((context)->sc_trapno) 315 #define ERROR_sig(context) ((context)->sc_err) 316 #define MASK_sig(context) ((context)->sc_mask) 317 #elif defined(__FreeBSD__) || defined(__DragonFly__) 318 #include <ucontext.h> 319 320 #define PC_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_rip)) 321 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) 322 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err) 323 #define MASK_sig(context) ((context)->uc_sigmask) 324 #else 325 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP]) 326 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) 327 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) 328 #define MASK_sig(context) ((context)->uc_sigmask) 329 #endif 330 331 int cpu_signal_handler(int host_signum, void *pinfo, 332 void *puc) 333 { 334 siginfo_t *info = pinfo; 335 unsigned long pc; 336 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__) 337 ucontext_t *uc = puc; 338 #elif defined(__OpenBSD__) 339 struct sigcontext *uc = puc; 340 #else 341 ucontext_t *uc = puc; 342 #endif 343 344 pc = PC_sig(uc); 345 return handle_cpu_signal(pc, info, 346 TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0, 347 &MASK_sig(uc)); 348 } 349 350 #elif defined(_ARCH_PPC) 351 352 /*********************************************************************** 353 * signal context platform-specific definitions 354 * From Wine 355 */ 356 #ifdef linux 357 /* All Registers access - only for local access */ 358 #define REG_sig(reg_name, context) \ 359 ((context)->uc_mcontext.regs->reg_name) 360 /* Gpr Registers access */ 361 #define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) 362 /* Program counter */ 363 #define IAR_sig(context) REG_sig(nip, context) 364 /* Machine State Register (Supervisor) */ 365 #define MSR_sig(context) REG_sig(msr, context) 366 /* Count register */ 367 #define CTR_sig(context) REG_sig(ctr, context) 368 /* User's integer exception register */ 369 #define XER_sig(context) REG_sig(xer, context) 370 /* Link register */ 371 #define LR_sig(context) REG_sig(link, context) 372 /* Condition register */ 373 #define CR_sig(context) REG_sig(ccr, context) 374 375 /* Float Registers access */ 376 #define FLOAT_sig(reg_num, context) \ 377 (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num]) 378 #define FPSCR_sig(context) \ 379 (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4))) 380 /* Exception Registers access */ 381 #define DAR_sig(context) REG_sig(dar, context) 382 #define DSISR_sig(context) REG_sig(dsisr, context) 383 #define TRAP_sig(context) REG_sig(trap, context) 384 #endif /* linux */ 385 386 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 387 #include <ucontext.h> 388 #define IAR_sig(context) ((context)->uc_mcontext.mc_srr0) 389 #define MSR_sig(context) ((context)->uc_mcontext.mc_srr1) 390 #define CTR_sig(context) ((context)->uc_mcontext.mc_ctr) 391 #define XER_sig(context) ((context)->uc_mcontext.mc_xer) 392 #define LR_sig(context) ((context)->uc_mcontext.mc_lr) 393 #define CR_sig(context) ((context)->uc_mcontext.mc_cr) 394 /* Exception Registers access */ 395 #define DAR_sig(context) ((context)->uc_mcontext.mc_dar) 396 #define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr) 397 #define TRAP_sig(context) ((context)->uc_mcontext.mc_exc) 398 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */ 399 400 int cpu_signal_handler(int host_signum, void *pinfo, 401 void *puc) 402 { 403 siginfo_t *info = pinfo; 404 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 405 ucontext_t *uc = puc; 406 #else 407 ucontext_t *uc = puc; 408 #endif 409 unsigned long pc; 410 int is_write; 411 412 pc = IAR_sig(uc); 413 is_write = 0; 414 #if 0 415 /* ppc 4xx case */ 416 if (DSISR_sig(uc) & 0x00800000) { 417 is_write = 1; 418 } 419 #else 420 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) { 421 is_write = 1; 422 } 423 #endif 424 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 425 } 426 427 #elif defined(__alpha__) 428 429 int cpu_signal_handler(int host_signum, void *pinfo, 430 void *puc) 431 { 432 siginfo_t *info = pinfo; 433 ucontext_t *uc = puc; 434 uint32_t *pc = uc->uc_mcontext.sc_pc; 435 uint32_t insn = *pc; 436 int is_write = 0; 437 438 /* XXX: need kernel patch to get write flag faster */ 439 switch (insn >> 26) { 440 case 0x0d: /* stw */ 441 case 0x0e: /* stb */ 442 case 0x0f: /* stq_u */ 443 case 0x24: /* stf */ 444 case 0x25: /* stg */ 445 case 0x26: /* sts */ 446 case 0x27: /* stt */ 447 case 0x2c: /* stl */ 448 case 0x2d: /* stq */ 449 case 0x2e: /* stl_c */ 450 case 0x2f: /* stq_c */ 451 is_write = 1; 452 } 453 454 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 455 } 456 #elif defined(__sparc__) 457 458 int cpu_signal_handler(int host_signum, void *pinfo, 459 void *puc) 460 { 461 siginfo_t *info = pinfo; 462 int is_write; 463 uint32_t insn; 464 #if !defined(__arch64__) || defined(CONFIG_SOLARIS) 465 uint32_t *regs = (uint32_t *)(info + 1); 466 void *sigmask = (regs + 20); 467 /* XXX: is there a standard glibc define ? */ 468 unsigned long pc = regs[1]; 469 #else 470 #ifdef __linux__ 471 struct sigcontext *sc = puc; 472 unsigned long pc = sc->sigc_regs.tpc; 473 void *sigmask = (void *)sc->sigc_mask; 474 #elif defined(__OpenBSD__) 475 struct sigcontext *uc = puc; 476 unsigned long pc = uc->sc_pc; 477 void *sigmask = (void *)(long)uc->sc_mask; 478 #elif defined(__NetBSD__) 479 ucontext_t *uc = puc; 480 unsigned long pc = _UC_MACHINE_PC(uc); 481 void *sigmask = (void *)&uc->uc_sigmask; 482 #endif 483 #endif 484 485 /* XXX: need kernel patch to get write flag faster */ 486 is_write = 0; 487 insn = *(uint32_t *)pc; 488 if ((insn >> 30) == 3) { 489 switch ((insn >> 19) & 0x3f) { 490 case 0x05: /* stb */ 491 case 0x15: /* stba */ 492 case 0x06: /* sth */ 493 case 0x16: /* stha */ 494 case 0x04: /* st */ 495 case 0x14: /* sta */ 496 case 0x07: /* std */ 497 case 0x17: /* stda */ 498 case 0x0e: /* stx */ 499 case 0x1e: /* stxa */ 500 case 0x24: /* stf */ 501 case 0x34: /* stfa */ 502 case 0x27: /* stdf */ 503 case 0x37: /* stdfa */ 504 case 0x26: /* stqf */ 505 case 0x36: /* stqfa */ 506 case 0x25: /* stfsr */ 507 case 0x3c: /* casa */ 508 case 0x3e: /* casxa */ 509 is_write = 1; 510 break; 511 } 512 } 513 return handle_cpu_signal(pc, info, is_write, sigmask); 514 } 515 516 #elif defined(__arm__) 517 518 #if defined(__NetBSD__) 519 #include <ucontext.h> 520 #include <sys/siginfo.h> 521 #endif 522 523 int cpu_signal_handler(int host_signum, void *pinfo, 524 void *puc) 525 { 526 siginfo_t *info = pinfo; 527 #if defined(__NetBSD__) 528 ucontext_t *uc = puc; 529 siginfo_t *si = pinfo; 530 #else 531 ucontext_t *uc = puc; 532 #endif 533 unsigned long pc; 534 uint32_t fsr; 535 int is_write; 536 537 #if defined(__NetBSD__) 538 pc = uc->uc_mcontext.__gregs[_REG_R15]; 539 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) 540 pc = uc->uc_mcontext.gregs[R15]; 541 #else 542 pc = uc->uc_mcontext.arm_pc; 543 #endif 544 545 #ifdef __NetBSD__ 546 fsr = si->si_trap; 547 #else 548 fsr = uc->uc_mcontext.error_code; 549 #endif 550 /* 551 * In the FSR, bit 11 is WnR, assuming a v6 or 552 * later processor. On v5 we will always report 553 * this as a read, which will fail later. 554 */ 555 is_write = extract32(fsr, 11, 1); 556 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 557 } 558 559 #elif defined(__aarch64__) 560 561 #if defined(__NetBSD__) 562 563 #include <ucontext.h> 564 #include <sys/siginfo.h> 565 566 int cpu_signal_handler(int host_signum, void *pinfo, void *puc) 567 { 568 ucontext_t *uc = puc; 569 siginfo_t *si = pinfo; 570 unsigned long pc; 571 int is_write; 572 uint32_t esr; 573 574 pc = uc->uc_mcontext.__gregs[_REG_PC]; 575 esr = si->si_trap; 576 577 /* 578 * siginfo_t::si_trap is the ESR value, for data aborts ESR.EC 579 * is 0b10010x: then bit 6 is the WnR bit 580 */ 581 is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1; 582 return handle_cpu_signal(pc, si, is_write, &uc->uc_sigmask); 583 } 584 585 #else 586 587 #ifndef ESR_MAGIC 588 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */ 589 #define ESR_MAGIC 0x45535201 590 struct esr_context { 591 struct _aarch64_ctx head; 592 uint64_t esr; 593 }; 594 #endif 595 596 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc) 597 { 598 return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved; 599 } 600 601 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr) 602 { 603 return (struct _aarch64_ctx *)((char *)hdr + hdr->size); 604 } 605 606 int cpu_signal_handler(int host_signum, void *pinfo, void *puc) 607 { 608 siginfo_t *info = pinfo; 609 ucontext_t *uc = puc; 610 uintptr_t pc = uc->uc_mcontext.pc; 611 bool is_write; 612 struct _aarch64_ctx *hdr; 613 struct esr_context const *esrctx = NULL; 614 615 /* Find the esr_context, which has the WnR bit in it */ 616 for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) { 617 if (hdr->magic == ESR_MAGIC) { 618 esrctx = (struct esr_context const *)hdr; 619 break; 620 } 621 } 622 623 if (esrctx) { 624 /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */ 625 uint64_t esr = esrctx->esr; 626 is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1; 627 } else { 628 /* 629 * Fall back to parsing instructions; will only be needed 630 * for really ancient (pre-3.16) kernels. 631 */ 632 uint32_t insn = *(uint32_t *)pc; 633 634 is_write = ((insn & 0xbfff0000) == 0x0c000000 /* C3.3.1 */ 635 || (insn & 0xbfe00000) == 0x0c800000 /* C3.3.2 */ 636 || (insn & 0xbfdf0000) == 0x0d000000 /* C3.3.3 */ 637 || (insn & 0xbfc00000) == 0x0d800000 /* C3.3.4 */ 638 || (insn & 0x3f400000) == 0x08000000 /* C3.3.6 */ 639 || (insn & 0x3bc00000) == 0x39000000 /* C3.3.13 */ 640 || (insn & 0x3fc00000) == 0x3d800000 /* ... 128bit */ 641 /* Ignore bits 10, 11 & 21, controlling indexing. */ 642 || (insn & 0x3bc00000) == 0x38000000 /* C3.3.8-12 */ 643 || (insn & 0x3fe00000) == 0x3c800000 /* ... 128bit */ 644 /* Ignore bits 23 & 24, controlling indexing. */ 645 || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */ 646 } 647 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 648 } 649 #endif 650 651 #elif defined(__s390__) 652 653 int cpu_signal_handler(int host_signum, void *pinfo, 654 void *puc) 655 { 656 siginfo_t *info = pinfo; 657 ucontext_t *uc = puc; 658 unsigned long pc; 659 uint16_t *pinsn; 660 int is_write = 0; 661 662 pc = uc->uc_mcontext.psw.addr; 663 664 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead 665 of the normal 2 arguments. The 3rd argument contains the "int_code" 666 from the hardware which does in fact contain the is_write value. 667 The rt signal handler, as far as I can tell, does not give this value 668 at all. Not that we could get to it from here even if it were. */ 669 /* ??? This is not even close to complete, since it ignores all 670 of the read-modify-write instructions. */ 671 pinsn = (uint16_t *)pc; 672 switch (pinsn[0] >> 8) { 673 case 0x50: /* ST */ 674 case 0x42: /* STC */ 675 case 0x40: /* STH */ 676 is_write = 1; 677 break; 678 case 0xc4: /* RIL format insns */ 679 switch (pinsn[0] & 0xf) { 680 case 0xf: /* STRL */ 681 case 0xb: /* STGRL */ 682 case 0x7: /* STHRL */ 683 is_write = 1; 684 } 685 break; 686 case 0xe3: /* RXY format insns */ 687 switch (pinsn[2] & 0xff) { 688 case 0x50: /* STY */ 689 case 0x24: /* STG */ 690 case 0x72: /* STCY */ 691 case 0x70: /* STHY */ 692 case 0x8e: /* STPQ */ 693 case 0x3f: /* STRVH */ 694 case 0x3e: /* STRV */ 695 case 0x2f: /* STRVG */ 696 is_write = 1; 697 } 698 break; 699 } 700 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 701 } 702 703 #elif defined(__mips__) 704 705 int cpu_signal_handler(int host_signum, void *pinfo, 706 void *puc) 707 { 708 siginfo_t *info = pinfo; 709 ucontext_t *uc = puc; 710 greg_t pc = uc->uc_mcontext.pc; 711 int is_write; 712 713 /* XXX: compute is_write */ 714 is_write = 0; 715 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 716 } 717 718 #elif defined(__riscv) 719 720 int cpu_signal_handler(int host_signum, void *pinfo, 721 void *puc) 722 { 723 siginfo_t *info = pinfo; 724 ucontext_t *uc = puc; 725 greg_t pc = uc->uc_mcontext.__gregs[REG_PC]; 726 uint32_t insn = *(uint32_t *)pc; 727 int is_write = 0; 728 729 /* Detect store by reading the instruction at the program 730 counter. Note: we currently only generate 32-bit 731 instructions so we thus only detect 32-bit stores */ 732 switch (((insn >> 0) & 0b11)) { 733 case 3: 734 switch (((insn >> 2) & 0b11111)) { 735 case 8: 736 switch (((insn >> 12) & 0b111)) { 737 case 0: /* sb */ 738 case 1: /* sh */ 739 case 2: /* sw */ 740 case 3: /* sd */ 741 case 4: /* sq */ 742 is_write = 1; 743 break; 744 default: 745 break; 746 } 747 break; 748 case 9: 749 switch (((insn >> 12) & 0b111)) { 750 case 2: /* fsw */ 751 case 3: /* fsd */ 752 case 4: /* fsq */ 753 is_write = 1; 754 break; 755 default: 756 break; 757 } 758 break; 759 default: 760 break; 761 } 762 } 763 764 /* Check for compressed instructions */ 765 switch (((insn >> 13) & 0b111)) { 766 case 7: 767 switch (insn & 0b11) { 768 case 0: /*c.sd */ 769 case 2: /* c.sdsp */ 770 is_write = 1; 771 break; 772 default: 773 break; 774 } 775 break; 776 case 6: 777 switch (insn & 0b11) { 778 case 0: /* c.sw */ 779 case 3: /* c.swsp */ 780 is_write = 1; 781 break; 782 default: 783 break; 784 } 785 break; 786 default: 787 break; 788 } 789 790 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 791 } 792 793 #else 794 795 #error host CPU specific signal handler needed 796 797 #endif 798 799 /* The softmmu versions of these helpers are in cputlb.c. */ 800 801 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr) 802 { 803 uint32_t ret; 804 uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false); 805 806 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 807 ret = ldub_p(g2h(ptr)); 808 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 809 return ret; 810 } 811 812 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr) 813 { 814 int ret; 815 uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false); 816 817 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 818 ret = ldsb_p(g2h(ptr)); 819 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 820 return ret; 821 } 822 823 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr) 824 { 825 uint32_t ret; 826 uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false); 827 828 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 829 ret = lduw_be_p(g2h(ptr)); 830 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 831 return ret; 832 } 833 834 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr) 835 { 836 int ret; 837 uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false); 838 839 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 840 ret = ldsw_be_p(g2h(ptr)); 841 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 842 return ret; 843 } 844 845 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr) 846 { 847 uint32_t ret; 848 uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false); 849 850 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 851 ret = ldl_be_p(g2h(ptr)); 852 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 853 return ret; 854 } 855 856 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr) 857 { 858 uint64_t ret; 859 uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false); 860 861 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 862 ret = ldq_be_p(g2h(ptr)); 863 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 864 return ret; 865 } 866 867 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr) 868 { 869 uint32_t ret; 870 uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false); 871 872 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 873 ret = lduw_le_p(g2h(ptr)); 874 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 875 return ret; 876 } 877 878 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr) 879 { 880 int ret; 881 uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false); 882 883 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 884 ret = ldsw_le_p(g2h(ptr)); 885 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 886 return ret; 887 } 888 889 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr) 890 { 891 uint32_t ret; 892 uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false); 893 894 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 895 ret = ldl_le_p(g2h(ptr)); 896 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 897 return ret; 898 } 899 900 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr) 901 { 902 uint64_t ret; 903 uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false); 904 905 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 906 ret = ldq_le_p(g2h(ptr)); 907 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 908 return ret; 909 } 910 911 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) 912 { 913 uint32_t ret; 914 915 set_helper_retaddr(retaddr); 916 ret = cpu_ldub_data(env, ptr); 917 clear_helper_retaddr(); 918 return ret; 919 } 920 921 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) 922 { 923 int ret; 924 925 set_helper_retaddr(retaddr); 926 ret = cpu_ldsb_data(env, ptr); 927 clear_helper_retaddr(); 928 return ret; 929 } 930 931 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) 932 { 933 uint32_t ret; 934 935 set_helper_retaddr(retaddr); 936 ret = cpu_lduw_be_data(env, ptr); 937 clear_helper_retaddr(); 938 return ret; 939 } 940 941 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) 942 { 943 int ret; 944 945 set_helper_retaddr(retaddr); 946 ret = cpu_ldsw_be_data(env, ptr); 947 clear_helper_retaddr(); 948 return ret; 949 } 950 951 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) 952 { 953 uint32_t ret; 954 955 set_helper_retaddr(retaddr); 956 ret = cpu_ldl_be_data(env, ptr); 957 clear_helper_retaddr(); 958 return ret; 959 } 960 961 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) 962 { 963 uint64_t ret; 964 965 set_helper_retaddr(retaddr); 966 ret = cpu_ldq_be_data(env, ptr); 967 clear_helper_retaddr(); 968 return ret; 969 } 970 971 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) 972 { 973 uint32_t ret; 974 975 set_helper_retaddr(retaddr); 976 ret = cpu_lduw_le_data(env, ptr); 977 clear_helper_retaddr(); 978 return ret; 979 } 980 981 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) 982 { 983 int ret; 984 985 set_helper_retaddr(retaddr); 986 ret = cpu_ldsw_le_data(env, ptr); 987 clear_helper_retaddr(); 988 return ret; 989 } 990 991 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) 992 { 993 uint32_t ret; 994 995 set_helper_retaddr(retaddr); 996 ret = cpu_ldl_le_data(env, ptr); 997 clear_helper_retaddr(); 998 return ret; 999 } 1000 1001 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr) 1002 { 1003 uint64_t ret; 1004 1005 set_helper_retaddr(retaddr); 1006 ret = cpu_ldq_le_data(env, ptr); 1007 clear_helper_retaddr(); 1008 return ret; 1009 } 1010 1011 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val) 1012 { 1013 uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true); 1014 1015 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 1016 stb_p(g2h(ptr), val); 1017 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 1018 } 1019 1020 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val) 1021 { 1022 uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true); 1023 1024 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 1025 stw_be_p(g2h(ptr), val); 1026 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 1027 } 1028 1029 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val) 1030 { 1031 uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true); 1032 1033 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 1034 stl_be_p(g2h(ptr), val); 1035 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 1036 } 1037 1038 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val) 1039 { 1040 uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true); 1041 1042 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 1043 stq_be_p(g2h(ptr), val); 1044 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 1045 } 1046 1047 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val) 1048 { 1049 uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true); 1050 1051 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 1052 stw_le_p(g2h(ptr), val); 1053 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 1054 } 1055 1056 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val) 1057 { 1058 uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true); 1059 1060 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 1061 stl_le_p(g2h(ptr), val); 1062 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 1063 } 1064 1065 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val) 1066 { 1067 uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true); 1068 1069 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo); 1070 stq_le_p(g2h(ptr), val); 1071 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo); 1072 } 1073 1074 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr, 1075 uint32_t val, uintptr_t retaddr) 1076 { 1077 set_helper_retaddr(retaddr); 1078 cpu_stb_data(env, ptr, val); 1079 clear_helper_retaddr(); 1080 } 1081 1082 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr, 1083 uint32_t val, uintptr_t retaddr) 1084 { 1085 set_helper_retaddr(retaddr); 1086 cpu_stw_be_data(env, ptr, val); 1087 clear_helper_retaddr(); 1088 } 1089 1090 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr, 1091 uint32_t val, uintptr_t retaddr) 1092 { 1093 set_helper_retaddr(retaddr); 1094 cpu_stl_be_data(env, ptr, val); 1095 clear_helper_retaddr(); 1096 } 1097 1098 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr, 1099 uint64_t val, uintptr_t retaddr) 1100 { 1101 set_helper_retaddr(retaddr); 1102 cpu_stq_be_data(env, ptr, val); 1103 clear_helper_retaddr(); 1104 } 1105 1106 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr, 1107 uint32_t val, uintptr_t retaddr) 1108 { 1109 set_helper_retaddr(retaddr); 1110 cpu_stw_le_data(env, ptr, val); 1111 clear_helper_retaddr(); 1112 } 1113 1114 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr, 1115 uint32_t val, uintptr_t retaddr) 1116 { 1117 set_helper_retaddr(retaddr); 1118 cpu_stl_le_data(env, ptr, val); 1119 clear_helper_retaddr(); 1120 } 1121 1122 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr, 1123 uint64_t val, uintptr_t retaddr) 1124 { 1125 set_helper_retaddr(retaddr); 1126 cpu_stq_le_data(env, ptr, val); 1127 clear_helper_retaddr(); 1128 } 1129 1130 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr) 1131 { 1132 uint32_t ret; 1133 1134 set_helper_retaddr(1); 1135 ret = ldub_p(g2h(ptr)); 1136 clear_helper_retaddr(); 1137 return ret; 1138 } 1139 1140 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr) 1141 { 1142 uint32_t ret; 1143 1144 set_helper_retaddr(1); 1145 ret = lduw_p(g2h(ptr)); 1146 clear_helper_retaddr(); 1147 return ret; 1148 } 1149 1150 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr) 1151 { 1152 uint32_t ret; 1153 1154 set_helper_retaddr(1); 1155 ret = ldl_p(g2h(ptr)); 1156 clear_helper_retaddr(); 1157 return ret; 1158 } 1159 1160 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr) 1161 { 1162 uint64_t ret; 1163 1164 set_helper_retaddr(1); 1165 ret = ldq_p(g2h(ptr)); 1166 clear_helper_retaddr(); 1167 return ret; 1168 } 1169 1170 /* Do not allow unaligned operations to proceed. Return the host address. */ 1171 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1172 int size, uintptr_t retaddr) 1173 { 1174 /* Enforce qemu required alignment. */ 1175 if (unlikely(addr & (size - 1))) { 1176 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1177 } 1178 void *ret = g2h(addr); 1179 set_helper_retaddr(retaddr); 1180 return ret; 1181 } 1182 1183 /* Macro to call the above, with local variables from the use context. */ 1184 #define ATOMIC_MMU_DECLS do {} while (0) 1185 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC()) 1186 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0) 1187 #define ATOMIC_MMU_IDX MMU_USER_IDX 1188 1189 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) 1190 #define EXTRA_ARGS 1191 1192 #include "atomic_common.c.inc" 1193 1194 #define DATA_SIZE 1 1195 #include "atomic_template.h" 1196 1197 #define DATA_SIZE 2 1198 #include "atomic_template.h" 1199 1200 #define DATA_SIZE 4 1201 #include "atomic_template.h" 1202 1203 #ifdef CONFIG_ATOMIC64 1204 #define DATA_SIZE 8 1205 #include "atomic_template.h" 1206 #endif 1207 1208 /* The following is only callable from other helpers, and matches up 1209 with the softmmu version. */ 1210 1211 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128 1212 1213 #undef EXTRA_ARGS 1214 #undef ATOMIC_NAME 1215 #undef ATOMIC_MMU_LOOKUP 1216 1217 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr 1218 #define ATOMIC_NAME(X) \ 1219 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) 1220 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr) 1221 1222 #define DATA_SIZE 16 1223 #include "atomic_template.h" 1224 #endif 1225