xref: /openbmc/qemu/accel/tcg/user-exec.c (revision a675ca4c)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "qemu/rcu.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/translate-all.h"
28 #include "exec/helper-proto.h"
29 #include "qemu/atomic128.h"
30 #include "trace/trace-root.h"
31 #include "tcg/tcg-ldst.h"
32 #include "internal.h"
33 
34 __thread uintptr_t helper_retaddr;
35 
36 //#define DEBUG_SIGNAL
37 
38 /*
39  * Adjust the pc to pass to cpu_restore_state; return the memop type.
40  */
41 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
42 {
43     switch (helper_retaddr) {
44     default:
45         /*
46          * Fault during host memory operation within a helper function.
47          * The helper's host return address, saved here, gives us a
48          * pointer into the generated code that will unwind to the
49          * correct guest pc.
50          */
51         *pc = helper_retaddr;
52         break;
53 
54     case 0:
55         /*
56          * Fault during host memory operation within generated code.
57          * (Or, a unrelated bug within qemu, but we can't tell from here).
58          *
59          * We take the host pc from the signal frame.  However, we cannot
60          * use that value directly.  Within cpu_restore_state_from_tb, we
61          * assume PC comes from GETPC(), as used by the helper functions,
62          * so we adjust the address by -GETPC_ADJ to form an address that
63          * is within the call insn, so that the address does not accidentally
64          * match the beginning of the next guest insn.  However, when the
65          * pc comes from the signal frame it points to the actual faulting
66          * host memory insn and not the return from a call insn.
67          *
68          * Therefore, adjust to compensate for what will be done later
69          * by cpu_restore_state_from_tb.
70          */
71         *pc += GETPC_ADJ;
72         break;
73 
74     case 1:
75         /*
76          * Fault during host read for translation, or loosely, "execution".
77          *
78          * The guest pc is already pointing to the start of the TB for which
79          * code is being generated.  If the guest translator manages the
80          * page crossings correctly, this is exactly the correct address
81          * (and if the translator doesn't handle page boundaries correctly
82          * there's little we can do about that here).  Therefore, do not
83          * trigger the unwinder.
84          */
85         *pc = 0;
86         return MMU_INST_FETCH;
87     }
88 
89     return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
90 }
91 
92 /**
93  * handle_sigsegv_accerr_write:
94  * @cpu: the cpu context
95  * @old_set: the sigset_t from the signal ucontext_t
96  * @host_pc: the host pc, adjusted for the signal
97  * @guest_addr: the guest address of the fault
98  *
99  * Return true if the write fault has been handled, and should be re-tried.
100  *
101  * Note that it is important that we don't call page_unprotect() unless
102  * this is really a "write to nonwritable page" fault, because
103  * page_unprotect() assumes that if it is called for an access to
104  * a page that's writable this means we had two threads racing and
105  * another thread got there first and already made the page writable;
106  * so we will retry the access. If we were to call page_unprotect()
107  * for some other kind of fault that should really be passed to the
108  * guest, we'd end up in an infinite loop of retrying the faulting access.
109  */
110 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
111                                  uintptr_t host_pc, abi_ptr guest_addr)
112 {
113     switch (page_unprotect(guest_addr, host_pc)) {
114     case 0:
115         /*
116          * Fault not caused by a page marked unwritable to protect
117          * cached translations, must be the guest binary's problem.
118          */
119         return false;
120     case 1:
121         /*
122          * Fault caused by protection of cached translation; TBs
123          * invalidated, so resume execution.
124          */
125         return true;
126     case 2:
127         /*
128          * Fault caused by protection of cached translation, and the
129          * currently executing TB was modified and must be exited immediately.
130          */
131         sigprocmask(SIG_SETMASK, old_set, NULL);
132         cpu_loop_exit_noexc(cpu);
133         /* NORETURN */
134     default:
135         g_assert_not_reached();
136     }
137 }
138 
139 typedef struct PageFlagsNode {
140     struct rcu_head rcu;
141     IntervalTreeNode itree;
142     int flags;
143 } PageFlagsNode;
144 
145 static IntervalTreeRoot pageflags_root;
146 
147 static PageFlagsNode *pageflags_find(target_ulong start, target_ulong last)
148 {
149     IntervalTreeNode *n;
150 
151     n = interval_tree_iter_first(&pageflags_root, start, last);
152     return n ? container_of(n, PageFlagsNode, itree) : NULL;
153 }
154 
155 static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
156                                      target_ulong last)
157 {
158     IntervalTreeNode *n;
159 
160     n = interval_tree_iter_next(&p->itree, start, last);
161     return n ? container_of(n, PageFlagsNode, itree) : NULL;
162 }
163 
164 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
165 {
166     IntervalTreeNode *n;
167     int rc = 0;
168 
169     mmap_lock();
170     for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
171          n != NULL;
172          n = interval_tree_iter_next(n, 0, -1)) {
173         PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
174 
175         rc = fn(priv, n->start, n->last + 1, p->flags);
176         if (rc != 0) {
177             break;
178         }
179     }
180     mmap_unlock();
181 
182     return rc;
183 }
184 
185 static int dump_region(void *priv, target_ulong start,
186                        target_ulong end, unsigned long prot)
187 {
188     FILE *f = (FILE *)priv;
189 
190     fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
191             start, end, end - start,
192             ((prot & PAGE_READ) ? 'r' : '-'),
193             ((prot & PAGE_WRITE) ? 'w' : '-'),
194             ((prot & PAGE_EXEC) ? 'x' : '-'));
195     return 0;
196 }
197 
198 /* dump memory mappings */
199 void page_dump(FILE *f)
200 {
201     const int length = sizeof(target_ulong) * 2;
202 
203     fprintf(f, "%-*s %-*s %-*s %s\n",
204             length, "start", length, "end", length, "size", "prot");
205     walk_memory_regions(f, dump_region);
206 }
207 
208 int page_get_flags(target_ulong address)
209 {
210     PageFlagsNode *p = pageflags_find(address, address);
211 
212     /*
213      * See util/interval-tree.c re lockless lookups: no false positives but
214      * there are false negatives.  If we find nothing, retry with the mmap
215      * lock acquired.
216      */
217     if (p) {
218         return p->flags;
219     }
220     if (have_mmap_lock()) {
221         return 0;
222     }
223 
224     mmap_lock();
225     p = pageflags_find(address, address);
226     mmap_unlock();
227     return p ? p->flags : 0;
228 }
229 
230 /* A subroutine of page_set_flags: insert a new node for [start,last]. */
231 static void pageflags_create(target_ulong start, target_ulong last, int flags)
232 {
233     PageFlagsNode *p = g_new(PageFlagsNode, 1);
234 
235     p->itree.start = start;
236     p->itree.last = last;
237     p->flags = flags;
238     interval_tree_insert(&p->itree, &pageflags_root);
239 }
240 
241 /* A subroutine of page_set_flags: remove everything in [start,last]. */
242 static bool pageflags_unset(target_ulong start, target_ulong last)
243 {
244     bool inval_tb = false;
245 
246     while (true) {
247         PageFlagsNode *p = pageflags_find(start, last);
248         target_ulong p_last;
249 
250         if (!p) {
251             break;
252         }
253 
254         if (p->flags & PAGE_EXEC) {
255             inval_tb = true;
256         }
257 
258         interval_tree_remove(&p->itree, &pageflags_root);
259         p_last = p->itree.last;
260 
261         if (p->itree.start < start) {
262             /* Truncate the node from the end, or split out the middle. */
263             p->itree.last = start - 1;
264             interval_tree_insert(&p->itree, &pageflags_root);
265             if (last < p_last) {
266                 pageflags_create(last + 1, p_last, p->flags);
267                 break;
268             }
269         } else if (p_last <= last) {
270             /* Range completely covers node -- remove it. */
271             g_free_rcu(p, rcu);
272         } else {
273             /* Truncate the node from the start. */
274             p->itree.start = last + 1;
275             interval_tree_insert(&p->itree, &pageflags_root);
276             break;
277         }
278     }
279 
280     return inval_tb;
281 }
282 
283 /*
284  * A subroutine of page_set_flags: nothing overlaps [start,last],
285  * but check adjacent mappings and maybe merge into a single range.
286  */
287 static void pageflags_create_merge(target_ulong start, target_ulong last,
288                                    int flags)
289 {
290     PageFlagsNode *next = NULL, *prev = NULL;
291 
292     if (start > 0) {
293         prev = pageflags_find(start - 1, start - 1);
294         if (prev) {
295             if (prev->flags == flags) {
296                 interval_tree_remove(&prev->itree, &pageflags_root);
297             } else {
298                 prev = NULL;
299             }
300         }
301     }
302     if (last + 1 != 0) {
303         next = pageflags_find(last + 1, last + 1);
304         if (next) {
305             if (next->flags == flags) {
306                 interval_tree_remove(&next->itree, &pageflags_root);
307             } else {
308                 next = NULL;
309             }
310         }
311     }
312 
313     if (prev) {
314         if (next) {
315             prev->itree.last = next->itree.last;
316             g_free_rcu(next, rcu);
317         } else {
318             prev->itree.last = last;
319         }
320         interval_tree_insert(&prev->itree, &pageflags_root);
321     } else if (next) {
322         next->itree.start = start;
323         interval_tree_insert(&next->itree, &pageflags_root);
324     } else {
325         pageflags_create(start, last, flags);
326     }
327 }
328 
329 /*
330  * Allow the target to decide if PAGE_TARGET_[12] may be reset.
331  * By default, they are not kept.
332  */
333 #ifndef PAGE_TARGET_STICKY
334 #define PAGE_TARGET_STICKY  0
335 #endif
336 #define PAGE_STICKY  (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
337 
338 /* A subroutine of page_set_flags: add flags to [start,last]. */
339 static bool pageflags_set_clear(target_ulong start, target_ulong last,
340                                 int set_flags, int clear_flags)
341 {
342     PageFlagsNode *p;
343     target_ulong p_start, p_last;
344     int p_flags, merge_flags;
345     bool inval_tb = false;
346 
347  restart:
348     p = pageflags_find(start, last);
349     if (!p) {
350         if (set_flags) {
351             pageflags_create_merge(start, last, set_flags);
352         }
353         goto done;
354     }
355 
356     p_start = p->itree.start;
357     p_last = p->itree.last;
358     p_flags = p->flags;
359     /* Using mprotect on a page does not change sticky bits. */
360     merge_flags = (p_flags & ~clear_flags) | set_flags;
361 
362     /*
363      * Need to flush if an overlapping executable region
364      * removes exec, or adds write.
365      */
366     if ((p_flags & PAGE_EXEC)
367         && (!(merge_flags & PAGE_EXEC)
368             || (merge_flags & ~p_flags & PAGE_WRITE))) {
369         inval_tb = true;
370     }
371 
372     /*
373      * If there is an exact range match, update and return without
374      * attempting to merge with adjacent regions.
375      */
376     if (start == p_start && last == p_last) {
377         if (merge_flags) {
378             p->flags = merge_flags;
379         } else {
380             interval_tree_remove(&p->itree, &pageflags_root);
381             g_free_rcu(p, rcu);
382         }
383         goto done;
384     }
385 
386     /*
387      * If sticky bits affect the original mapping, then we must be more
388      * careful about the existing intervals and the separate flags.
389      */
390     if (set_flags != merge_flags) {
391         if (p_start < start) {
392             interval_tree_remove(&p->itree, &pageflags_root);
393             p->itree.last = start - 1;
394             interval_tree_insert(&p->itree, &pageflags_root);
395 
396             if (last < p_last) {
397                 if (merge_flags) {
398                     pageflags_create(start, last, merge_flags);
399                 }
400                 pageflags_create(last + 1, p_last, p_flags);
401             } else {
402                 if (merge_flags) {
403                     pageflags_create(start, p_last, merge_flags);
404                 }
405                 if (p_last < last) {
406                     start = p_last + 1;
407                     goto restart;
408                 }
409             }
410         } else {
411             if (start < p_start && set_flags) {
412                 pageflags_create(start, p_start - 1, set_flags);
413             }
414             if (last < p_last) {
415                 interval_tree_remove(&p->itree, &pageflags_root);
416                 p->itree.start = last + 1;
417                 interval_tree_insert(&p->itree, &pageflags_root);
418                 if (merge_flags) {
419                     pageflags_create(start, last, merge_flags);
420                 }
421             } else {
422                 if (merge_flags) {
423                     p->flags = merge_flags;
424                 } else {
425                     interval_tree_remove(&p->itree, &pageflags_root);
426                     g_free_rcu(p, rcu);
427                 }
428                 if (p_last < last) {
429                     start = p_last + 1;
430                     goto restart;
431                 }
432             }
433         }
434         goto done;
435     }
436 
437     /* If flags are not changing for this range, incorporate it. */
438     if (set_flags == p_flags) {
439         if (start < p_start) {
440             interval_tree_remove(&p->itree, &pageflags_root);
441             p->itree.start = start;
442             interval_tree_insert(&p->itree, &pageflags_root);
443         }
444         if (p_last < last) {
445             start = p_last + 1;
446             goto restart;
447         }
448         goto done;
449     }
450 
451     /* Maybe split out head and/or tail ranges with the original flags. */
452     interval_tree_remove(&p->itree, &pageflags_root);
453     if (p_start < start) {
454         p->itree.last = start - 1;
455         interval_tree_insert(&p->itree, &pageflags_root);
456 
457         if (p_last < last) {
458             goto restart;
459         }
460         if (last < p_last) {
461             pageflags_create(last + 1, p_last, p_flags);
462         }
463     } else if (last < p_last) {
464         p->itree.start = last + 1;
465         interval_tree_insert(&p->itree, &pageflags_root);
466     } else {
467         g_free_rcu(p, rcu);
468         goto restart;
469     }
470     if (set_flags) {
471         pageflags_create(start, last, set_flags);
472     }
473 
474  done:
475     return inval_tb;
476 }
477 
478 /*
479  * Modify the flags of a page and invalidate the code if necessary.
480  * The flag PAGE_WRITE_ORG is positioned automatically depending
481  * on PAGE_WRITE.  The mmap_lock should already be held.
482  */
483 void page_set_flags(target_ulong start, target_ulong last, int flags)
484 {
485     bool reset = false;
486     bool inval_tb = false;
487 
488     /* This function should never be called with addresses outside the
489        guest address space.  If this assert fires, it probably indicates
490        a missing call to h2g_valid.  */
491     assert(start <= last);
492     assert(last <= GUEST_ADDR_MAX);
493     /* Only set PAGE_ANON with new mappings. */
494     assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
495     assert_memory_lock();
496 
497     start &= TARGET_PAGE_MASK;
498     last |= ~TARGET_PAGE_MASK;
499 
500     if (!(flags & PAGE_VALID)) {
501         flags = 0;
502     } else {
503         reset = flags & PAGE_RESET;
504         flags &= ~PAGE_RESET;
505         if (flags & PAGE_WRITE) {
506             flags |= PAGE_WRITE_ORG;
507         }
508     }
509 
510     if (!flags || reset) {
511         page_reset_target_data(start, last);
512         inval_tb |= pageflags_unset(start, last);
513     }
514     if (flags) {
515         inval_tb |= pageflags_set_clear(start, last, flags,
516                                         ~(reset ? 0 : PAGE_STICKY));
517     }
518     if (inval_tb) {
519         tb_invalidate_phys_range(start, last);
520     }
521 }
522 
523 bool page_check_range(target_ulong start, target_ulong len, int flags)
524 {
525     target_ulong last;
526     int locked;  /* tri-state: =0: unlocked, +1: global, -1: local */
527     bool ret;
528 
529     if (len == 0) {
530         return true;  /* trivial length */
531     }
532 
533     last = start + len - 1;
534     if (last < start) {
535         return false; /* wrap around */
536     }
537 
538     locked = have_mmap_lock();
539     while (true) {
540         PageFlagsNode *p = pageflags_find(start, last);
541         int missing;
542 
543         if (!p) {
544             if (!locked) {
545                 /*
546                  * Lockless lookups have false negatives.
547                  * Retry with the lock held.
548                  */
549                 mmap_lock();
550                 locked = -1;
551                 p = pageflags_find(start, last);
552             }
553             if (!p) {
554                 ret = false; /* entire region invalid */
555                 break;
556             }
557         }
558         if (start < p->itree.start) {
559             ret = false; /* initial bytes invalid */
560             break;
561         }
562 
563         missing = flags & ~p->flags;
564         if (missing & ~PAGE_WRITE) {
565             ret = false; /* page doesn't match */
566             break;
567         }
568         if (missing & PAGE_WRITE) {
569             if (!(p->flags & PAGE_WRITE_ORG)) {
570                 ret = false; /* page not writable */
571                 break;
572             }
573             /* Asking about writable, but has been protected: undo. */
574             if (!page_unprotect(start, 0)) {
575                 ret = false;
576                 break;
577             }
578             /* TODO: page_unprotect should take a range, not a single page. */
579             if (last - start < TARGET_PAGE_SIZE) {
580                 ret = true; /* ok */
581                 break;
582             }
583             start += TARGET_PAGE_SIZE;
584             continue;
585         }
586 
587         if (last <= p->itree.last) {
588             ret = true; /* ok */
589             break;
590         }
591         start = p->itree.last + 1;
592     }
593 
594     /* Release the lock if acquired locally. */
595     if (locked < 0) {
596         mmap_unlock();
597     }
598     return ret;
599 }
600 
601 bool page_check_range_empty(target_ulong start, target_ulong last)
602 {
603     assert(last >= start);
604     assert_memory_lock();
605     return pageflags_find(start, last) == NULL;
606 }
607 
608 target_ulong page_find_range_empty(target_ulong min, target_ulong max,
609                                    target_ulong len, target_ulong align)
610 {
611     target_ulong len_m1, align_m1;
612 
613     assert(min <= max);
614     assert(max <= GUEST_ADDR_MAX);
615     assert(len != 0);
616     assert(is_power_of_2(align));
617     assert_memory_lock();
618 
619     len_m1 = len - 1;
620     align_m1 = align - 1;
621 
622     /* Iteratively narrow the search region. */
623     while (1) {
624         PageFlagsNode *p;
625 
626         /* Align min and double-check there's enough space remaining. */
627         min = (min + align_m1) & ~align_m1;
628         if (min > max) {
629             return -1;
630         }
631         if (len_m1 > max - min) {
632             return -1;
633         }
634 
635         p = pageflags_find(min, min + len_m1);
636         if (p == NULL) {
637             /* Found! */
638             return min;
639         }
640         if (max <= p->itree.last) {
641             /* Existing allocation fills the remainder of the search region. */
642             return -1;
643         }
644         /* Skip across existing allocation. */
645         min = p->itree.last + 1;
646     }
647 }
648 
649 void page_protect(tb_page_addr_t address)
650 {
651     PageFlagsNode *p;
652     target_ulong start, last;
653     int prot;
654 
655     assert_memory_lock();
656 
657     if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
658         start = address & TARGET_PAGE_MASK;
659         last = start + TARGET_PAGE_SIZE - 1;
660     } else {
661         start = address & qemu_host_page_mask;
662         last = start + qemu_host_page_size - 1;
663     }
664 
665     p = pageflags_find(start, last);
666     if (!p) {
667         return;
668     }
669     prot = p->flags;
670 
671     if (unlikely(p->itree.last < last)) {
672         /* More than one protection region covers the one host page. */
673         assert(TARGET_PAGE_SIZE < qemu_host_page_size);
674         while ((p = pageflags_next(p, start, last)) != NULL) {
675             prot |= p->flags;
676         }
677     }
678 
679     if (prot & PAGE_WRITE) {
680         pageflags_set_clear(start, last, 0, PAGE_WRITE);
681         mprotect(g2h_untagged(start), qemu_host_page_size,
682                  prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
683     }
684 }
685 
686 /*
687  * Called from signal handler: invalidate the code and unprotect the
688  * page. Return 0 if the fault was not handled, 1 if it was handled,
689  * and 2 if it was handled but the caller must cause the TB to be
690  * immediately exited. (We can only return 2 if the 'pc' argument is
691  * non-zero.)
692  */
693 int page_unprotect(target_ulong address, uintptr_t pc)
694 {
695     PageFlagsNode *p;
696     bool current_tb_invalidated;
697 
698     /*
699      * Technically this isn't safe inside a signal handler.  However we
700      * know this only ever happens in a synchronous SEGV handler, so in
701      * practice it seems to be ok.
702      */
703     mmap_lock();
704 
705     p = pageflags_find(address, address);
706 
707     /* If this address was not really writable, nothing to do. */
708     if (!p || !(p->flags & PAGE_WRITE_ORG)) {
709         mmap_unlock();
710         return 0;
711     }
712 
713     current_tb_invalidated = false;
714     if (p->flags & PAGE_WRITE) {
715         /*
716          * If the page is actually marked WRITE then assume this is because
717          * this thread raced with another one which got here first and
718          * set the page to PAGE_WRITE and did the TB invalidate for us.
719          */
720 #ifdef TARGET_HAS_PRECISE_SMC
721         TranslationBlock *current_tb = tcg_tb_lookup(pc);
722         if (current_tb) {
723             current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
724         }
725 #endif
726     } else {
727         target_ulong start, len, i;
728         int prot;
729 
730         if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
731             start = address & TARGET_PAGE_MASK;
732             len = TARGET_PAGE_SIZE;
733             prot = p->flags | PAGE_WRITE;
734             pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
735             current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
736         } else {
737             start = address & qemu_host_page_mask;
738             len = qemu_host_page_size;
739             prot = 0;
740 
741             for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
742                 target_ulong addr = start + i;
743 
744                 p = pageflags_find(addr, addr);
745                 if (p) {
746                     prot |= p->flags;
747                     if (p->flags & PAGE_WRITE_ORG) {
748                         prot |= PAGE_WRITE;
749                         pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
750                                             PAGE_WRITE, 0);
751                     }
752                 }
753                 /*
754                  * Since the content will be modified, we must invalidate
755                  * the corresponding translated code.
756                  */
757                 current_tb_invalidated |=
758                     tb_invalidate_phys_page_unwind(addr, pc);
759             }
760         }
761         if (prot & PAGE_EXEC) {
762             prot = (prot & ~PAGE_EXEC) | PAGE_READ;
763         }
764         mprotect((void *)g2h_untagged(start), len, prot & PAGE_BITS);
765     }
766     mmap_unlock();
767 
768     /* If current TB was invalidated return to main loop */
769     return current_tb_invalidated ? 2 : 1;
770 }
771 
772 static int probe_access_internal(CPUArchState *env, vaddr addr,
773                                  int fault_size, MMUAccessType access_type,
774                                  bool nonfault, uintptr_t ra)
775 {
776     int acc_flag;
777     bool maperr;
778 
779     switch (access_type) {
780     case MMU_DATA_STORE:
781         acc_flag = PAGE_WRITE_ORG;
782         break;
783     case MMU_DATA_LOAD:
784         acc_flag = PAGE_READ;
785         break;
786     case MMU_INST_FETCH:
787         acc_flag = PAGE_EXEC;
788         break;
789     default:
790         g_assert_not_reached();
791     }
792 
793     if (guest_addr_valid_untagged(addr)) {
794         int page_flags = page_get_flags(addr);
795         if (page_flags & acc_flag) {
796             if ((acc_flag == PAGE_READ || acc_flag == PAGE_WRITE)
797                 && cpu_plugin_mem_cbs_enabled(env_cpu(env))) {
798                 return TLB_MMIO;
799             }
800             return 0; /* success */
801         }
802         maperr = !(page_flags & PAGE_VALID);
803     } else {
804         maperr = true;
805     }
806 
807     if (nonfault) {
808         return TLB_INVALID_MASK;
809     }
810 
811     cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
812 }
813 
814 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
815                        MMUAccessType access_type, int mmu_idx,
816                        bool nonfault, void **phost, uintptr_t ra)
817 {
818     int flags;
819 
820     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
821     flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
822     *phost = (flags & TLB_INVALID_MASK) ? NULL : g2h(env_cpu(env), addr);
823     return flags;
824 }
825 
826 void *probe_access(CPUArchState *env, vaddr addr, int size,
827                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
828 {
829     int flags;
830 
831     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
832     flags = probe_access_internal(env, addr, size, access_type, false, ra);
833     g_assert((flags & ~TLB_MMIO) == 0);
834 
835     return size ? g2h(env_cpu(env), addr) : NULL;
836 }
837 
838 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
839                                         void **hostp)
840 {
841     int flags;
842 
843     flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
844     g_assert(flags == 0);
845 
846     if (hostp) {
847         *hostp = g2h_untagged(addr);
848     }
849     return addr;
850 }
851 
852 #ifdef TARGET_PAGE_DATA_SIZE
853 /*
854  * Allocate chunks of target data together.  For the only current user,
855  * if we allocate one hunk per page, we have overhead of 40/128 or 40%.
856  * Therefore, allocate memory for 64 pages at a time for overhead < 1%.
857  */
858 #define TPD_PAGES  64
859 #define TBD_MASK   (TARGET_PAGE_MASK * TPD_PAGES)
860 
861 typedef struct TargetPageDataNode {
862     struct rcu_head rcu;
863     IntervalTreeNode itree;
864     char data[TPD_PAGES][TARGET_PAGE_DATA_SIZE] __attribute__((aligned));
865 } TargetPageDataNode;
866 
867 static IntervalTreeRoot targetdata_root;
868 
869 void page_reset_target_data(target_ulong start, target_ulong last)
870 {
871     IntervalTreeNode *n, *next;
872 
873     assert_memory_lock();
874 
875     start &= TARGET_PAGE_MASK;
876     last |= ~TARGET_PAGE_MASK;
877 
878     for (n = interval_tree_iter_first(&targetdata_root, start, last),
879          next = n ? interval_tree_iter_next(n, start, last) : NULL;
880          n != NULL;
881          n = next,
882          next = next ? interval_tree_iter_next(n, start, last) : NULL) {
883         target_ulong n_start, n_last, p_ofs, p_len;
884         TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
885 
886         if (n->start >= start && n->last <= last) {
887             interval_tree_remove(n, &targetdata_root);
888             g_free_rcu(t, rcu);
889             continue;
890         }
891 
892         if (n->start < start) {
893             n_start = start;
894             p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
895         } else {
896             n_start = n->start;
897             p_ofs = 0;
898         }
899         n_last = MIN(last, n->last);
900         p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
901 
902         memset(t->data[p_ofs], 0, p_len * TARGET_PAGE_DATA_SIZE);
903     }
904 }
905 
906 void *page_get_target_data(target_ulong address)
907 {
908     IntervalTreeNode *n;
909     TargetPageDataNode *t;
910     target_ulong page, region;
911 
912     page = address & TARGET_PAGE_MASK;
913     region = address & TBD_MASK;
914 
915     n = interval_tree_iter_first(&targetdata_root, page, page);
916     if (!n) {
917         /*
918          * See util/interval-tree.c re lockless lookups: no false positives
919          * but there are false negatives.  If we find nothing, retry with
920          * the mmap lock acquired.  We also need the lock for the
921          * allocation + insert.
922          */
923         mmap_lock();
924         n = interval_tree_iter_first(&targetdata_root, page, page);
925         if (!n) {
926             t = g_new0(TargetPageDataNode, 1);
927             n = &t->itree;
928             n->start = region;
929             n->last = region | ~TBD_MASK;
930             interval_tree_insert(n, &targetdata_root);
931         }
932         mmap_unlock();
933     }
934 
935     t = container_of(n, TargetPageDataNode, itree);
936     return t->data[(page - region) >> TARGET_PAGE_BITS];
937 }
938 #else
939 void page_reset_target_data(target_ulong start, target_ulong last) { }
940 #endif /* TARGET_PAGE_DATA_SIZE */
941 
942 /* The softmmu versions of these helpers are in cputlb.c.  */
943 
944 static void *cpu_mmu_lookup(CPUArchState *env, vaddr addr,
945                             MemOp mop, uintptr_t ra, MMUAccessType type)
946 {
947     int a_bits = get_alignment_bits(mop);
948     void *ret;
949 
950     /* Enforce guest required alignment.  */
951     if (unlikely(addr & ((1 << a_bits) - 1))) {
952         cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
953     }
954 
955     ret = g2h(env_cpu(env), addr);
956     set_helper_retaddr(ra);
957     return ret;
958 }
959 
960 #include "ldst_atomicity.c.inc"
961 
962 static uint8_t do_ld1_mmu(CPUArchState *env, abi_ptr addr,
963                           MemOp mop, uintptr_t ra)
964 {
965     void *haddr;
966     uint8_t ret;
967 
968     tcg_debug_assert((mop & MO_SIZE) == MO_8);
969     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
970     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
971     ret = ldub_p(haddr);
972     clear_helper_retaddr();
973     return ret;
974 }
975 
976 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
977                                  MemOpIdx oi, uintptr_t ra)
978 {
979     return do_ld1_mmu(env, addr, get_memop(oi), ra);
980 }
981 
982 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
983                                  MemOpIdx oi, uintptr_t ra)
984 {
985     return (int8_t)do_ld1_mmu(env, addr, get_memop(oi), ra);
986 }
987 
988 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
989                     MemOpIdx oi, uintptr_t ra)
990 {
991     uint8_t ret = do_ld1_mmu(env, addr, get_memop(oi), ra);
992     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
993     return ret;
994 }
995 
996 static uint16_t do_ld2_mmu(CPUArchState *env, abi_ptr addr,
997                            MemOp mop, uintptr_t ra)
998 {
999     void *haddr;
1000     uint16_t ret;
1001 
1002     tcg_debug_assert((mop & MO_SIZE) == MO_16);
1003     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1004     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1005     ret = load_atom_2(env, ra, haddr, mop);
1006     clear_helper_retaddr();
1007 
1008     if (mop & MO_BSWAP) {
1009         ret = bswap16(ret);
1010     }
1011     return ret;
1012 }
1013 
1014 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
1015                                  MemOpIdx oi, uintptr_t ra)
1016 {
1017     return do_ld2_mmu(env, addr, get_memop(oi), ra);
1018 }
1019 
1020 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
1021                                  MemOpIdx oi, uintptr_t ra)
1022 {
1023     return (int16_t)do_ld2_mmu(env, addr, get_memop(oi), ra);
1024 }
1025 
1026 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
1027                      MemOpIdx oi, uintptr_t ra)
1028 {
1029     uint16_t ret = do_ld2_mmu(env, addr, get_memop(oi), ra);
1030     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1031     return ret;
1032 }
1033 
1034 static uint32_t do_ld4_mmu(CPUArchState *env, abi_ptr addr,
1035                            MemOp mop, uintptr_t ra)
1036 {
1037     void *haddr;
1038     uint32_t ret;
1039 
1040     tcg_debug_assert((mop & MO_SIZE) == MO_32);
1041     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1042     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1043     ret = load_atom_4(env, ra, haddr, mop);
1044     clear_helper_retaddr();
1045 
1046     if (mop & MO_BSWAP) {
1047         ret = bswap32(ret);
1048     }
1049     return ret;
1050 }
1051 
1052 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
1053                                  MemOpIdx oi, uintptr_t ra)
1054 {
1055     return do_ld4_mmu(env, addr, get_memop(oi), ra);
1056 }
1057 
1058 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
1059                                  MemOpIdx oi, uintptr_t ra)
1060 {
1061     return (int32_t)do_ld4_mmu(env, addr, get_memop(oi), ra);
1062 }
1063 
1064 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
1065                      MemOpIdx oi, uintptr_t ra)
1066 {
1067     uint32_t ret = do_ld4_mmu(env, addr, get_memop(oi), ra);
1068     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1069     return ret;
1070 }
1071 
1072 static uint64_t do_ld8_mmu(CPUArchState *env, abi_ptr addr,
1073                            MemOp mop, uintptr_t ra)
1074 {
1075     void *haddr;
1076     uint64_t ret;
1077 
1078     tcg_debug_assert((mop & MO_SIZE) == MO_64);
1079     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1080     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1081     ret = load_atom_8(env, ra, haddr, mop);
1082     clear_helper_retaddr();
1083 
1084     if (mop & MO_BSWAP) {
1085         ret = bswap64(ret);
1086     }
1087     return ret;
1088 }
1089 
1090 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
1091                         MemOpIdx oi, uintptr_t ra)
1092 {
1093     return do_ld8_mmu(env, addr, get_memop(oi), ra);
1094 }
1095 
1096 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
1097                      MemOpIdx oi, uintptr_t ra)
1098 {
1099     uint64_t ret = do_ld8_mmu(env, addr, get_memop(oi), ra);
1100     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1101     return ret;
1102 }
1103 
1104 static Int128 do_ld16_mmu(CPUArchState *env, abi_ptr addr,
1105                           MemOp mop, uintptr_t ra)
1106 {
1107     void *haddr;
1108     Int128 ret;
1109 
1110     tcg_debug_assert((mop & MO_SIZE) == MO_128);
1111     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1112     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1113     ret = load_atom_16(env, ra, haddr, mop);
1114     clear_helper_retaddr();
1115 
1116     if (mop & MO_BSWAP) {
1117         ret = bswap128(ret);
1118     }
1119     return ret;
1120 }
1121 
1122 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
1123                        MemOpIdx oi, uintptr_t ra)
1124 {
1125     return do_ld16_mmu(env, addr, get_memop(oi), ra);
1126 }
1127 
1128 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, MemOpIdx oi)
1129 {
1130     return helper_ld16_mmu(env, addr, oi, GETPC());
1131 }
1132 
1133 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
1134                     MemOpIdx oi, uintptr_t ra)
1135 {
1136     Int128 ret = do_ld16_mmu(env, addr, get_memop(oi), ra);
1137     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1138     return ret;
1139 }
1140 
1141 static void do_st1_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
1142                        MemOp mop, uintptr_t ra)
1143 {
1144     void *haddr;
1145 
1146     tcg_debug_assert((mop & MO_SIZE) == MO_8);
1147     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1148     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1149     stb_p(haddr, val);
1150     clear_helper_retaddr();
1151 }
1152 
1153 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1154                     MemOpIdx oi, uintptr_t ra)
1155 {
1156     do_st1_mmu(env, addr, val, get_memop(oi), ra);
1157 }
1158 
1159 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
1160                  MemOpIdx oi, uintptr_t ra)
1161 {
1162     do_st1_mmu(env, addr, val, get_memop(oi), ra);
1163     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1164 }
1165 
1166 static void do_st2_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
1167                        MemOp mop, uintptr_t ra)
1168 {
1169     void *haddr;
1170 
1171     tcg_debug_assert((mop & MO_SIZE) == MO_16);
1172     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1173     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1174 
1175     if (mop & MO_BSWAP) {
1176         val = bswap16(val);
1177     }
1178     store_atom_2(env, ra, haddr, mop, val);
1179     clear_helper_retaddr();
1180 }
1181 
1182 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1183                     MemOpIdx oi, uintptr_t ra)
1184 {
1185     do_st2_mmu(env, addr, val, get_memop(oi), ra);
1186 }
1187 
1188 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
1189                     MemOpIdx oi, uintptr_t ra)
1190 {
1191     do_st2_mmu(env, addr, val, get_memop(oi), ra);
1192     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1193 }
1194 
1195 static void do_st4_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1196                        MemOp mop, uintptr_t ra)
1197 {
1198     void *haddr;
1199 
1200     tcg_debug_assert((mop & MO_SIZE) == MO_32);
1201     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1202     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1203 
1204     if (mop & MO_BSWAP) {
1205         val = bswap32(val);
1206     }
1207     store_atom_4(env, ra, haddr, mop, val);
1208     clear_helper_retaddr();
1209 }
1210 
1211 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1212                     MemOpIdx oi, uintptr_t ra)
1213 {
1214     do_st4_mmu(env, addr, val, get_memop(oi), ra);
1215 }
1216 
1217 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1218                  MemOpIdx oi, uintptr_t ra)
1219 {
1220     do_st4_mmu(env, addr, val, get_memop(oi), ra);
1221     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1222 }
1223 
1224 static void do_st8_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
1225                        MemOp mop, uintptr_t ra)
1226 {
1227     void *haddr;
1228 
1229     tcg_debug_assert((mop & MO_SIZE) == MO_64);
1230     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1231     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1232 
1233     if (mop & MO_BSWAP) {
1234         val = bswap64(val);
1235     }
1236     store_atom_8(env, ra, haddr, mop, val);
1237     clear_helper_retaddr();
1238 }
1239 
1240 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
1241                     MemOpIdx oi, uintptr_t ra)
1242 {
1243     do_st8_mmu(env, addr, val, get_memop(oi), ra);
1244 }
1245 
1246 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
1247                     MemOpIdx oi, uintptr_t ra)
1248 {
1249     do_st8_mmu(env, addr, val, get_memop(oi), ra);
1250     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1251 }
1252 
1253 static void do_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
1254                         MemOp mop, uintptr_t ra)
1255 {
1256     void *haddr;
1257 
1258     tcg_debug_assert((mop & MO_SIZE) == MO_128);
1259     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1260     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1261 
1262     if (mop & MO_BSWAP) {
1263         val = bswap128(val);
1264     }
1265     store_atom_16(env, ra, haddr, mop, val);
1266     clear_helper_retaddr();
1267 }
1268 
1269 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
1270                      MemOpIdx oi, uintptr_t ra)
1271 {
1272     do_st16_mmu(env, addr, val, get_memop(oi), ra);
1273 }
1274 
1275 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
1276 {
1277     helper_st16_mmu(env, addr, val, oi, GETPC());
1278 }
1279 
1280 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr,
1281                   Int128 val, MemOpIdx oi, uintptr_t ra)
1282 {
1283     do_st16_mmu(env, addr, val, get_memop(oi), ra);
1284     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1285 }
1286 
1287 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1288 {
1289     uint32_t ret;
1290 
1291     set_helper_retaddr(1);
1292     ret = ldub_p(g2h_untagged(ptr));
1293     clear_helper_retaddr();
1294     return ret;
1295 }
1296 
1297 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1298 {
1299     uint32_t ret;
1300 
1301     set_helper_retaddr(1);
1302     ret = lduw_p(g2h_untagged(ptr));
1303     clear_helper_retaddr();
1304     return ret;
1305 }
1306 
1307 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1308 {
1309     uint32_t ret;
1310 
1311     set_helper_retaddr(1);
1312     ret = ldl_p(g2h_untagged(ptr));
1313     clear_helper_retaddr();
1314     return ret;
1315 }
1316 
1317 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1318 {
1319     uint64_t ret;
1320 
1321     set_helper_retaddr(1);
1322     ret = ldq_p(g2h_untagged(ptr));
1323     clear_helper_retaddr();
1324     return ret;
1325 }
1326 
1327 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
1328                          MemOpIdx oi, uintptr_t ra)
1329 {
1330     void *haddr;
1331     uint8_t ret;
1332 
1333     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1334     ret = ldub_p(haddr);
1335     clear_helper_retaddr();
1336     return ret;
1337 }
1338 
1339 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
1340                           MemOpIdx oi, uintptr_t ra)
1341 {
1342     void *haddr;
1343     uint16_t ret;
1344 
1345     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1346     ret = lduw_p(haddr);
1347     clear_helper_retaddr();
1348     if (get_memop(oi) & MO_BSWAP) {
1349         ret = bswap16(ret);
1350     }
1351     return ret;
1352 }
1353 
1354 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
1355                           MemOpIdx oi, uintptr_t ra)
1356 {
1357     void *haddr;
1358     uint32_t ret;
1359 
1360     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1361     ret = ldl_p(haddr);
1362     clear_helper_retaddr();
1363     if (get_memop(oi) & MO_BSWAP) {
1364         ret = bswap32(ret);
1365     }
1366     return ret;
1367 }
1368 
1369 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
1370                           MemOpIdx oi, uintptr_t ra)
1371 {
1372     void *haddr;
1373     uint64_t ret;
1374 
1375     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
1376     ret = ldq_p(haddr);
1377     clear_helper_retaddr();
1378     if (get_memop(oi) & MO_BSWAP) {
1379         ret = bswap64(ret);
1380     }
1381     return ret;
1382 }
1383 
1384 #include "ldst_common.c.inc"
1385 
1386 /*
1387  * Do not allow unaligned operations to proceed.  Return the host address.
1388  */
1389 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1390                                int size, uintptr_t retaddr)
1391 {
1392     MemOp mop = get_memop(oi);
1393     int a_bits = get_alignment_bits(mop);
1394     void *ret;
1395 
1396     /* Enforce guest required alignment.  */
1397     if (unlikely(addr & ((1 << a_bits) - 1))) {
1398         cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, retaddr);
1399     }
1400 
1401     /* Enforce qemu required alignment.  */
1402     if (unlikely(addr & (size - 1))) {
1403         cpu_loop_exit_atomic(env_cpu(env), retaddr);
1404     }
1405 
1406     ret = g2h(env_cpu(env), addr);
1407     set_helper_retaddr(retaddr);
1408     return ret;
1409 }
1410 
1411 #include "atomic_common.c.inc"
1412 
1413 /*
1414  * First set of functions passes in OI and RETADDR.
1415  * This makes them callable from other helpers.
1416  */
1417 
1418 #define ATOMIC_NAME(X) \
1419     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
1420 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1421 
1422 #define DATA_SIZE 1
1423 #include "atomic_template.h"
1424 
1425 #define DATA_SIZE 2
1426 #include "atomic_template.h"
1427 
1428 #define DATA_SIZE 4
1429 #include "atomic_template.h"
1430 
1431 #ifdef CONFIG_ATOMIC64
1432 #define DATA_SIZE 8
1433 #include "atomic_template.h"
1434 #endif
1435 
1436 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
1437 #define DATA_SIZE 16
1438 #include "atomic_template.h"
1439 #endif
1440