xref: /openbmc/qemu/accel/tcg/user-exec.c (revision 9c255cb5)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "qemu/rcu.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/translate-all.h"
28 #include "exec/helper-proto.h"
29 #include "qemu/atomic128.h"
30 #include "trace/trace-root.h"
31 #include "tcg/tcg-ldst.h"
32 #include "internal.h"
33 
34 __thread uintptr_t helper_retaddr;
35 
36 //#define DEBUG_SIGNAL
37 
38 /*
39  * Adjust the pc to pass to cpu_restore_state; return the memop type.
40  */
41 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
42 {
43     switch (helper_retaddr) {
44     default:
45         /*
46          * Fault during host memory operation within a helper function.
47          * The helper's host return address, saved here, gives us a
48          * pointer into the generated code that will unwind to the
49          * correct guest pc.
50          */
51         *pc = helper_retaddr;
52         break;
53 
54     case 0:
55         /*
56          * Fault during host memory operation within generated code.
57          * (Or, a unrelated bug within qemu, but we can't tell from here).
58          *
59          * We take the host pc from the signal frame.  However, we cannot
60          * use that value directly.  Within cpu_restore_state_from_tb, we
61          * assume PC comes from GETPC(), as used by the helper functions,
62          * so we adjust the address by -GETPC_ADJ to form an address that
63          * is within the call insn, so that the address does not accidentally
64          * match the beginning of the next guest insn.  However, when the
65          * pc comes from the signal frame it points to the actual faulting
66          * host memory insn and not the return from a call insn.
67          *
68          * Therefore, adjust to compensate for what will be done later
69          * by cpu_restore_state_from_tb.
70          */
71         *pc += GETPC_ADJ;
72         break;
73 
74     case 1:
75         /*
76          * Fault during host read for translation, or loosely, "execution".
77          *
78          * The guest pc is already pointing to the start of the TB for which
79          * code is being generated.  If the guest translator manages the
80          * page crossings correctly, this is exactly the correct address
81          * (and if the translator doesn't handle page boundaries correctly
82          * there's little we can do about that here).  Therefore, do not
83          * trigger the unwinder.
84          */
85         *pc = 0;
86         return MMU_INST_FETCH;
87     }
88 
89     return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
90 }
91 
92 /**
93  * handle_sigsegv_accerr_write:
94  * @cpu: the cpu context
95  * @old_set: the sigset_t from the signal ucontext_t
96  * @host_pc: the host pc, adjusted for the signal
97  * @guest_addr: the guest address of the fault
98  *
99  * Return true if the write fault has been handled, and should be re-tried.
100  *
101  * Note that it is important that we don't call page_unprotect() unless
102  * this is really a "write to nonwritable page" fault, because
103  * page_unprotect() assumes that if it is called for an access to
104  * a page that's writable this means we had two threads racing and
105  * another thread got there first and already made the page writable;
106  * so we will retry the access. If we were to call page_unprotect()
107  * for some other kind of fault that should really be passed to the
108  * guest, we'd end up in an infinite loop of retrying the faulting access.
109  */
110 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
111                                  uintptr_t host_pc, abi_ptr guest_addr)
112 {
113     switch (page_unprotect(guest_addr, host_pc)) {
114     case 0:
115         /*
116          * Fault not caused by a page marked unwritable to protect
117          * cached translations, must be the guest binary's problem.
118          */
119         return false;
120     case 1:
121         /*
122          * Fault caused by protection of cached translation; TBs
123          * invalidated, so resume execution.
124          */
125         return true;
126     case 2:
127         /*
128          * Fault caused by protection of cached translation, and the
129          * currently executing TB was modified and must be exited immediately.
130          */
131         sigprocmask(SIG_SETMASK, old_set, NULL);
132         cpu_loop_exit_noexc(cpu);
133         /* NORETURN */
134     default:
135         g_assert_not_reached();
136     }
137 }
138 
139 typedef struct PageFlagsNode {
140     struct rcu_head rcu;
141     IntervalTreeNode itree;
142     int flags;
143 } PageFlagsNode;
144 
145 static IntervalTreeRoot pageflags_root;
146 
147 static PageFlagsNode *pageflags_find(target_ulong start, target_long last)
148 {
149     IntervalTreeNode *n;
150 
151     n = interval_tree_iter_first(&pageflags_root, start, last);
152     return n ? container_of(n, PageFlagsNode, itree) : NULL;
153 }
154 
155 static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
156                                      target_long last)
157 {
158     IntervalTreeNode *n;
159 
160     n = interval_tree_iter_next(&p->itree, start, last);
161     return n ? container_of(n, PageFlagsNode, itree) : NULL;
162 }
163 
164 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
165 {
166     IntervalTreeNode *n;
167     int rc = 0;
168 
169     mmap_lock();
170     for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
171          n != NULL;
172          n = interval_tree_iter_next(n, 0, -1)) {
173         PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
174 
175         rc = fn(priv, n->start, n->last + 1, p->flags);
176         if (rc != 0) {
177             break;
178         }
179     }
180     mmap_unlock();
181 
182     return rc;
183 }
184 
185 static int dump_region(void *priv, target_ulong start,
186                        target_ulong end, unsigned long prot)
187 {
188     FILE *f = (FILE *)priv;
189 
190     fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
191             start, end, end - start,
192             ((prot & PAGE_READ) ? 'r' : '-'),
193             ((prot & PAGE_WRITE) ? 'w' : '-'),
194             ((prot & PAGE_EXEC) ? 'x' : '-'));
195     return 0;
196 }
197 
198 /* dump memory mappings */
199 void page_dump(FILE *f)
200 {
201     const int length = sizeof(target_ulong) * 2;
202 
203     fprintf(f, "%-*s %-*s %-*s %s\n",
204             length, "start", length, "end", length, "size", "prot");
205     walk_memory_regions(f, dump_region);
206 }
207 
208 int page_get_flags(target_ulong address)
209 {
210     PageFlagsNode *p = pageflags_find(address, address);
211 
212     /*
213      * See util/interval-tree.c re lockless lookups: no false positives but
214      * there are false negatives.  If we find nothing, retry with the mmap
215      * lock acquired.
216      */
217     if (p) {
218         return p->flags;
219     }
220     if (have_mmap_lock()) {
221         return 0;
222     }
223 
224     mmap_lock();
225     p = pageflags_find(address, address);
226     mmap_unlock();
227     return p ? p->flags : 0;
228 }
229 
230 /* A subroutine of page_set_flags: insert a new node for [start,last]. */
231 static void pageflags_create(target_ulong start, target_ulong last, int flags)
232 {
233     PageFlagsNode *p = g_new(PageFlagsNode, 1);
234 
235     p->itree.start = start;
236     p->itree.last = last;
237     p->flags = flags;
238     interval_tree_insert(&p->itree, &pageflags_root);
239 }
240 
241 /* A subroutine of page_set_flags: remove everything in [start,last]. */
242 static bool pageflags_unset(target_ulong start, target_ulong last)
243 {
244     bool inval_tb = false;
245 
246     while (true) {
247         PageFlagsNode *p = pageflags_find(start, last);
248         target_ulong p_last;
249 
250         if (!p) {
251             break;
252         }
253 
254         if (p->flags & PAGE_EXEC) {
255             inval_tb = true;
256         }
257 
258         interval_tree_remove(&p->itree, &pageflags_root);
259         p_last = p->itree.last;
260 
261         if (p->itree.start < start) {
262             /* Truncate the node from the end, or split out the middle. */
263             p->itree.last = start - 1;
264             interval_tree_insert(&p->itree, &pageflags_root);
265             if (last < p_last) {
266                 pageflags_create(last + 1, p_last, p->flags);
267                 break;
268             }
269         } else if (p_last <= last) {
270             /* Range completely covers node -- remove it. */
271             g_free_rcu(p, rcu);
272         } else {
273             /* Truncate the node from the start. */
274             p->itree.start = last + 1;
275             interval_tree_insert(&p->itree, &pageflags_root);
276             break;
277         }
278     }
279 
280     return inval_tb;
281 }
282 
283 /*
284  * A subroutine of page_set_flags: nothing overlaps [start,last],
285  * but check adjacent mappings and maybe merge into a single range.
286  */
287 static void pageflags_create_merge(target_ulong start, target_ulong last,
288                                    int flags)
289 {
290     PageFlagsNode *next = NULL, *prev = NULL;
291 
292     if (start > 0) {
293         prev = pageflags_find(start - 1, start - 1);
294         if (prev) {
295             if (prev->flags == flags) {
296                 interval_tree_remove(&prev->itree, &pageflags_root);
297             } else {
298                 prev = NULL;
299             }
300         }
301     }
302     if (last + 1 != 0) {
303         next = pageflags_find(last + 1, last + 1);
304         if (next) {
305             if (next->flags == flags) {
306                 interval_tree_remove(&next->itree, &pageflags_root);
307             } else {
308                 next = NULL;
309             }
310         }
311     }
312 
313     if (prev) {
314         if (next) {
315             prev->itree.last = next->itree.last;
316             g_free_rcu(next, rcu);
317         } else {
318             prev->itree.last = last;
319         }
320         interval_tree_insert(&prev->itree, &pageflags_root);
321     } else if (next) {
322         next->itree.start = start;
323         interval_tree_insert(&next->itree, &pageflags_root);
324     } else {
325         pageflags_create(start, last, flags);
326     }
327 }
328 
329 /*
330  * Allow the target to decide if PAGE_TARGET_[12] may be reset.
331  * By default, they are not kept.
332  */
333 #ifndef PAGE_TARGET_STICKY
334 #define PAGE_TARGET_STICKY  0
335 #endif
336 #define PAGE_STICKY  (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
337 
338 /* A subroutine of page_set_flags: add flags to [start,last]. */
339 static bool pageflags_set_clear(target_ulong start, target_ulong last,
340                                 int set_flags, int clear_flags)
341 {
342     PageFlagsNode *p;
343     target_ulong p_start, p_last;
344     int p_flags, merge_flags;
345     bool inval_tb = false;
346 
347  restart:
348     p = pageflags_find(start, last);
349     if (!p) {
350         if (set_flags) {
351             pageflags_create_merge(start, last, set_flags);
352         }
353         goto done;
354     }
355 
356     p_start = p->itree.start;
357     p_last = p->itree.last;
358     p_flags = p->flags;
359     /* Using mprotect on a page does not change sticky bits. */
360     merge_flags = (p_flags & ~clear_flags) | set_flags;
361 
362     /*
363      * Need to flush if an overlapping executable region
364      * removes exec, or adds write.
365      */
366     if ((p_flags & PAGE_EXEC)
367         && (!(merge_flags & PAGE_EXEC)
368             || (merge_flags & ~p_flags & PAGE_WRITE))) {
369         inval_tb = true;
370     }
371 
372     /*
373      * If there is an exact range match, update and return without
374      * attempting to merge with adjacent regions.
375      */
376     if (start == p_start && last == p_last) {
377         if (merge_flags) {
378             p->flags = merge_flags;
379         } else {
380             interval_tree_remove(&p->itree, &pageflags_root);
381             g_free_rcu(p, rcu);
382         }
383         goto done;
384     }
385 
386     /*
387      * If sticky bits affect the original mapping, then we must be more
388      * careful about the existing intervals and the separate flags.
389      */
390     if (set_flags != merge_flags) {
391         if (p_start < start) {
392             interval_tree_remove(&p->itree, &pageflags_root);
393             p->itree.last = start - 1;
394             interval_tree_insert(&p->itree, &pageflags_root);
395 
396             if (last < p_last) {
397                 if (merge_flags) {
398                     pageflags_create(start, last, merge_flags);
399                 }
400                 pageflags_create(last + 1, p_last, p_flags);
401             } else {
402                 if (merge_flags) {
403                     pageflags_create(start, p_last, merge_flags);
404                 }
405                 if (p_last < last) {
406                     start = p_last + 1;
407                     goto restart;
408                 }
409             }
410         } else {
411             if (start < p_start && set_flags) {
412                 pageflags_create(start, p_start - 1, set_flags);
413             }
414             if (last < p_last) {
415                 interval_tree_remove(&p->itree, &pageflags_root);
416                 p->itree.start = last + 1;
417                 interval_tree_insert(&p->itree, &pageflags_root);
418                 if (merge_flags) {
419                     pageflags_create(start, last, merge_flags);
420                 }
421             } else {
422                 if (merge_flags) {
423                     p->flags = merge_flags;
424                 } else {
425                     interval_tree_remove(&p->itree, &pageflags_root);
426                     g_free_rcu(p, rcu);
427                 }
428                 if (p_last < last) {
429                     start = p_last + 1;
430                     goto restart;
431                 }
432             }
433         }
434         goto done;
435     }
436 
437     /* If flags are not changing for this range, incorporate it. */
438     if (set_flags == p_flags) {
439         if (start < p_start) {
440             interval_tree_remove(&p->itree, &pageflags_root);
441             p->itree.start = start;
442             interval_tree_insert(&p->itree, &pageflags_root);
443         }
444         if (p_last < last) {
445             start = p_last + 1;
446             goto restart;
447         }
448         goto done;
449     }
450 
451     /* Maybe split out head and/or tail ranges with the original flags. */
452     interval_tree_remove(&p->itree, &pageflags_root);
453     if (p_start < start) {
454         p->itree.last = start - 1;
455         interval_tree_insert(&p->itree, &pageflags_root);
456 
457         if (p_last < last) {
458             goto restart;
459         }
460         if (last < p_last) {
461             pageflags_create(last + 1, p_last, p_flags);
462         }
463     } else if (last < p_last) {
464         p->itree.start = last + 1;
465         interval_tree_insert(&p->itree, &pageflags_root);
466     } else {
467         g_free_rcu(p, rcu);
468         goto restart;
469     }
470     if (set_flags) {
471         pageflags_create(start, last, set_flags);
472     }
473 
474  done:
475     return inval_tb;
476 }
477 
478 /*
479  * Modify the flags of a page and invalidate the code if necessary.
480  * The flag PAGE_WRITE_ORG is positioned automatically depending
481  * on PAGE_WRITE.  The mmap_lock should already be held.
482  */
483 void page_set_flags(target_ulong start, target_ulong last, int flags)
484 {
485     bool reset = false;
486     bool inval_tb = false;
487 
488     /* This function should never be called with addresses outside the
489        guest address space.  If this assert fires, it probably indicates
490        a missing call to h2g_valid.  */
491     assert(start <= last);
492     assert(last <= GUEST_ADDR_MAX);
493     /* Only set PAGE_ANON with new mappings. */
494     assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
495     assert_memory_lock();
496 
497     start &= TARGET_PAGE_MASK;
498     last |= ~TARGET_PAGE_MASK;
499 
500     if (!(flags & PAGE_VALID)) {
501         flags = 0;
502     } else {
503         reset = flags & PAGE_RESET;
504         flags &= ~PAGE_RESET;
505         if (flags & PAGE_WRITE) {
506             flags |= PAGE_WRITE_ORG;
507         }
508     }
509 
510     if (!flags || reset) {
511         page_reset_target_data(start, last);
512         inval_tb |= pageflags_unset(start, last);
513     }
514     if (flags) {
515         inval_tb |= pageflags_set_clear(start, last, flags,
516                                         ~(reset ? 0 : PAGE_STICKY));
517     }
518     if (inval_tb) {
519         tb_invalidate_phys_range(start, last);
520     }
521 }
522 
523 int page_check_range(target_ulong start, target_ulong len, int flags)
524 {
525     target_ulong last;
526     int locked;  /* tri-state: =0: unlocked, +1: global, -1: local */
527     int ret;
528 
529     if (len == 0) {
530         return 0;  /* trivial length */
531     }
532 
533     last = start + len - 1;
534     if (last < start) {
535         return -1; /* wrap around */
536     }
537 
538     locked = have_mmap_lock();
539     while (true) {
540         PageFlagsNode *p = pageflags_find(start, last);
541         int missing;
542 
543         if (!p) {
544             if (!locked) {
545                 /*
546                  * Lockless lookups have false negatives.
547                  * Retry with the lock held.
548                  */
549                 mmap_lock();
550                 locked = -1;
551                 p = pageflags_find(start, last);
552             }
553             if (!p) {
554                 ret = -1; /* entire region invalid */
555                 break;
556             }
557         }
558         if (start < p->itree.start) {
559             ret = -1; /* initial bytes invalid */
560             break;
561         }
562 
563         missing = flags & ~p->flags;
564         if (missing & PAGE_READ) {
565             ret = -1; /* page not readable */
566             break;
567         }
568         if (missing & PAGE_WRITE) {
569             if (!(p->flags & PAGE_WRITE_ORG)) {
570                 ret = -1; /* page not writable */
571                 break;
572             }
573             /* Asking about writable, but has been protected: undo. */
574             if (!page_unprotect(start, 0)) {
575                 ret = -1;
576                 break;
577             }
578             /* TODO: page_unprotect should take a range, not a single page. */
579             if (last - start < TARGET_PAGE_SIZE) {
580                 ret = 0; /* ok */
581                 break;
582             }
583             start += TARGET_PAGE_SIZE;
584             continue;
585         }
586 
587         if (last <= p->itree.last) {
588             ret = 0; /* ok */
589             break;
590         }
591         start = p->itree.last + 1;
592     }
593 
594     /* Release the lock if acquired locally. */
595     if (locked < 0) {
596         mmap_unlock();
597     }
598     return ret;
599 }
600 
601 bool page_check_range_empty(target_ulong start, target_ulong last)
602 {
603     assert(last >= start);
604     assert_memory_lock();
605     return pageflags_find(start, last) == NULL;
606 }
607 
608 void page_protect(tb_page_addr_t address)
609 {
610     PageFlagsNode *p;
611     target_ulong start, last;
612     int prot;
613 
614     assert_memory_lock();
615 
616     if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
617         start = address & TARGET_PAGE_MASK;
618         last = start + TARGET_PAGE_SIZE - 1;
619     } else {
620         start = address & qemu_host_page_mask;
621         last = start + qemu_host_page_size - 1;
622     }
623 
624     p = pageflags_find(start, last);
625     if (!p) {
626         return;
627     }
628     prot = p->flags;
629 
630     if (unlikely(p->itree.last < last)) {
631         /* More than one protection region covers the one host page. */
632         assert(TARGET_PAGE_SIZE < qemu_host_page_size);
633         while ((p = pageflags_next(p, start, last)) != NULL) {
634             prot |= p->flags;
635         }
636     }
637 
638     if (prot & PAGE_WRITE) {
639         pageflags_set_clear(start, last, 0, PAGE_WRITE);
640         mprotect(g2h_untagged(start), qemu_host_page_size,
641                  prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
642     }
643 }
644 
645 /*
646  * Called from signal handler: invalidate the code and unprotect the
647  * page. Return 0 if the fault was not handled, 1 if it was handled,
648  * and 2 if it was handled but the caller must cause the TB to be
649  * immediately exited. (We can only return 2 if the 'pc' argument is
650  * non-zero.)
651  */
652 int page_unprotect(target_ulong address, uintptr_t pc)
653 {
654     PageFlagsNode *p;
655     bool current_tb_invalidated;
656 
657     /*
658      * Technically this isn't safe inside a signal handler.  However we
659      * know this only ever happens in a synchronous SEGV handler, so in
660      * practice it seems to be ok.
661      */
662     mmap_lock();
663 
664     p = pageflags_find(address, address);
665 
666     /* If this address was not really writable, nothing to do. */
667     if (!p || !(p->flags & PAGE_WRITE_ORG)) {
668         mmap_unlock();
669         return 0;
670     }
671 
672     current_tb_invalidated = false;
673     if (p->flags & PAGE_WRITE) {
674         /*
675          * If the page is actually marked WRITE then assume this is because
676          * this thread raced with another one which got here first and
677          * set the page to PAGE_WRITE and did the TB invalidate for us.
678          */
679 #ifdef TARGET_HAS_PRECISE_SMC
680         TranslationBlock *current_tb = tcg_tb_lookup(pc);
681         if (current_tb) {
682             current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
683         }
684 #endif
685     } else {
686         target_ulong start, len, i;
687         int prot;
688 
689         if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
690             start = address & TARGET_PAGE_MASK;
691             len = TARGET_PAGE_SIZE;
692             prot = p->flags | PAGE_WRITE;
693             pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
694             current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
695         } else {
696             start = address & qemu_host_page_mask;
697             len = qemu_host_page_size;
698             prot = 0;
699 
700             for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
701                 target_ulong addr = start + i;
702 
703                 p = pageflags_find(addr, addr);
704                 if (p) {
705                     prot |= p->flags;
706                     if (p->flags & PAGE_WRITE_ORG) {
707                         prot |= PAGE_WRITE;
708                         pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
709                                             PAGE_WRITE, 0);
710                     }
711                 }
712                 /*
713                  * Since the content will be modified, we must invalidate
714                  * the corresponding translated code.
715                  */
716                 current_tb_invalidated |=
717                     tb_invalidate_phys_page_unwind(addr, pc);
718             }
719         }
720         if (prot & PAGE_EXEC) {
721             prot = (prot & ~PAGE_EXEC) | PAGE_READ;
722         }
723         mprotect((void *)g2h_untagged(start), len, prot & PAGE_BITS);
724     }
725     mmap_unlock();
726 
727     /* If current TB was invalidated return to main loop */
728     return current_tb_invalidated ? 2 : 1;
729 }
730 
731 static int probe_access_internal(CPUArchState *env, vaddr addr,
732                                  int fault_size, MMUAccessType access_type,
733                                  bool nonfault, uintptr_t ra)
734 {
735     int acc_flag;
736     bool maperr;
737 
738     switch (access_type) {
739     case MMU_DATA_STORE:
740         acc_flag = PAGE_WRITE_ORG;
741         break;
742     case MMU_DATA_LOAD:
743         acc_flag = PAGE_READ;
744         break;
745     case MMU_INST_FETCH:
746         acc_flag = PAGE_EXEC;
747         break;
748     default:
749         g_assert_not_reached();
750     }
751 
752     if (guest_addr_valid_untagged(addr)) {
753         int page_flags = page_get_flags(addr);
754         if (page_flags & acc_flag) {
755             if ((acc_flag == PAGE_READ || acc_flag == PAGE_WRITE)
756                 && cpu_plugin_mem_cbs_enabled(env_cpu(env))) {
757                 return TLB_MMIO;
758             }
759             return 0; /* success */
760         }
761         maperr = !(page_flags & PAGE_VALID);
762     } else {
763         maperr = true;
764     }
765 
766     if (nonfault) {
767         return TLB_INVALID_MASK;
768     }
769 
770     cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
771 }
772 
773 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
774                        MMUAccessType access_type, int mmu_idx,
775                        bool nonfault, void **phost, uintptr_t ra)
776 {
777     int flags;
778 
779     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
780     flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
781     *phost = (flags & TLB_INVALID_MASK) ? NULL : g2h(env_cpu(env), addr);
782     return flags;
783 }
784 
785 void *probe_access(CPUArchState *env, vaddr addr, int size,
786                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
787 {
788     int flags;
789 
790     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
791     flags = probe_access_internal(env, addr, size, access_type, false, ra);
792     g_assert((flags & ~TLB_MMIO) == 0);
793 
794     return size ? g2h(env_cpu(env), addr) : NULL;
795 }
796 
797 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
798                                         void **hostp)
799 {
800     int flags;
801 
802     flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
803     g_assert(flags == 0);
804 
805     if (hostp) {
806         *hostp = g2h_untagged(addr);
807     }
808     return addr;
809 }
810 
811 #ifdef TARGET_PAGE_DATA_SIZE
812 /*
813  * Allocate chunks of target data together.  For the only current user,
814  * if we allocate one hunk per page, we have overhead of 40/128 or 40%.
815  * Therefore, allocate memory for 64 pages at a time for overhead < 1%.
816  */
817 #define TPD_PAGES  64
818 #define TBD_MASK   (TARGET_PAGE_MASK * TPD_PAGES)
819 
820 typedef struct TargetPageDataNode {
821     struct rcu_head rcu;
822     IntervalTreeNode itree;
823     char data[TPD_PAGES][TARGET_PAGE_DATA_SIZE] __attribute__((aligned));
824 } TargetPageDataNode;
825 
826 static IntervalTreeRoot targetdata_root;
827 
828 void page_reset_target_data(target_ulong start, target_ulong last)
829 {
830     IntervalTreeNode *n, *next;
831 
832     assert_memory_lock();
833 
834     start &= TARGET_PAGE_MASK;
835     last |= ~TARGET_PAGE_MASK;
836 
837     for (n = interval_tree_iter_first(&targetdata_root, start, last),
838          next = n ? interval_tree_iter_next(n, start, last) : NULL;
839          n != NULL;
840          n = next,
841          next = next ? interval_tree_iter_next(n, start, last) : NULL) {
842         target_ulong n_start, n_last, p_ofs, p_len;
843         TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
844 
845         if (n->start >= start && n->last <= last) {
846             interval_tree_remove(n, &targetdata_root);
847             g_free_rcu(t, rcu);
848             continue;
849         }
850 
851         if (n->start < start) {
852             n_start = start;
853             p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
854         } else {
855             n_start = n->start;
856             p_ofs = 0;
857         }
858         n_last = MIN(last, n->last);
859         p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
860 
861         memset(t->data[p_ofs], 0, p_len * TARGET_PAGE_DATA_SIZE);
862     }
863 }
864 
865 void *page_get_target_data(target_ulong address)
866 {
867     IntervalTreeNode *n;
868     TargetPageDataNode *t;
869     target_ulong page, region;
870 
871     page = address & TARGET_PAGE_MASK;
872     region = address & TBD_MASK;
873 
874     n = interval_tree_iter_first(&targetdata_root, page, page);
875     if (!n) {
876         /*
877          * See util/interval-tree.c re lockless lookups: no false positives
878          * but there are false negatives.  If we find nothing, retry with
879          * the mmap lock acquired.  We also need the lock for the
880          * allocation + insert.
881          */
882         mmap_lock();
883         n = interval_tree_iter_first(&targetdata_root, page, page);
884         if (!n) {
885             t = g_new0(TargetPageDataNode, 1);
886             n = &t->itree;
887             n->start = region;
888             n->last = region | ~TBD_MASK;
889             interval_tree_insert(n, &targetdata_root);
890         }
891         mmap_unlock();
892     }
893 
894     t = container_of(n, TargetPageDataNode, itree);
895     return t->data[(page - region) >> TARGET_PAGE_BITS];
896 }
897 #else
898 void page_reset_target_data(target_ulong start, target_ulong last) { }
899 #endif /* TARGET_PAGE_DATA_SIZE */
900 
901 /* The softmmu versions of these helpers are in cputlb.c.  */
902 
903 static void *cpu_mmu_lookup(CPUArchState *env, vaddr addr,
904                             MemOp mop, uintptr_t ra, MMUAccessType type)
905 {
906     int a_bits = get_alignment_bits(mop);
907     void *ret;
908 
909     /* Enforce guest required alignment.  */
910     if (unlikely(addr & ((1 << a_bits) - 1))) {
911         cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
912     }
913 
914     ret = g2h(env_cpu(env), addr);
915     set_helper_retaddr(ra);
916     return ret;
917 }
918 
919 #include "ldst_atomicity.c.inc"
920 
921 static uint8_t do_ld1_mmu(CPUArchState *env, abi_ptr addr,
922                           MemOp mop, uintptr_t ra)
923 {
924     void *haddr;
925     uint8_t ret;
926 
927     tcg_debug_assert((mop & MO_SIZE) == MO_8);
928     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
929     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
930     ret = ldub_p(haddr);
931     clear_helper_retaddr();
932     return ret;
933 }
934 
935 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
936                                  MemOpIdx oi, uintptr_t ra)
937 {
938     return do_ld1_mmu(env, addr, get_memop(oi), ra);
939 }
940 
941 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
942                                  MemOpIdx oi, uintptr_t ra)
943 {
944     return (int8_t)do_ld1_mmu(env, addr, get_memop(oi), ra);
945 }
946 
947 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
948                     MemOpIdx oi, uintptr_t ra)
949 {
950     uint8_t ret = do_ld1_mmu(env, addr, get_memop(oi), ra);
951     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
952     return ret;
953 }
954 
955 static uint16_t do_ld2_mmu(CPUArchState *env, abi_ptr addr,
956                            MemOp mop, uintptr_t ra)
957 {
958     void *haddr;
959     uint16_t ret;
960 
961     tcg_debug_assert((mop & MO_SIZE) == MO_16);
962     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
963     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
964     ret = load_atom_2(env, ra, haddr, mop);
965     clear_helper_retaddr();
966 
967     if (mop & MO_BSWAP) {
968         ret = bswap16(ret);
969     }
970     return ret;
971 }
972 
973 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
974                                  MemOpIdx oi, uintptr_t ra)
975 {
976     return do_ld2_mmu(env, addr, get_memop(oi), ra);
977 }
978 
979 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
980                                  MemOpIdx oi, uintptr_t ra)
981 {
982     return (int16_t)do_ld2_mmu(env, addr, get_memop(oi), ra);
983 }
984 
985 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
986                      MemOpIdx oi, uintptr_t ra)
987 {
988     uint16_t ret = do_ld2_mmu(env, addr, get_memop(oi), ra);
989     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
990     return ret;
991 }
992 
993 static uint32_t do_ld4_mmu(CPUArchState *env, abi_ptr addr,
994                            MemOp mop, uintptr_t ra)
995 {
996     void *haddr;
997     uint32_t ret;
998 
999     tcg_debug_assert((mop & MO_SIZE) == MO_32);
1000     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1001     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1002     ret = load_atom_4(env, ra, haddr, mop);
1003     clear_helper_retaddr();
1004 
1005     if (mop & MO_BSWAP) {
1006         ret = bswap32(ret);
1007     }
1008     return ret;
1009 }
1010 
1011 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
1012                                  MemOpIdx oi, uintptr_t ra)
1013 {
1014     return do_ld4_mmu(env, addr, get_memop(oi), ra);
1015 }
1016 
1017 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
1018                                  MemOpIdx oi, uintptr_t ra)
1019 {
1020     return (int32_t)do_ld4_mmu(env, addr, get_memop(oi), ra);
1021 }
1022 
1023 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
1024                      MemOpIdx oi, uintptr_t ra)
1025 {
1026     uint32_t ret = do_ld4_mmu(env, addr, get_memop(oi), ra);
1027     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1028     return ret;
1029 }
1030 
1031 static uint64_t do_ld8_mmu(CPUArchState *env, abi_ptr addr,
1032                            MemOp mop, uintptr_t ra)
1033 {
1034     void *haddr;
1035     uint64_t ret;
1036 
1037     tcg_debug_assert((mop & MO_SIZE) == MO_64);
1038     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1039     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1040     ret = load_atom_8(env, ra, haddr, mop);
1041     clear_helper_retaddr();
1042 
1043     if (mop & MO_BSWAP) {
1044         ret = bswap64(ret);
1045     }
1046     return ret;
1047 }
1048 
1049 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
1050                         MemOpIdx oi, uintptr_t ra)
1051 {
1052     return do_ld8_mmu(env, addr, get_memop(oi), ra);
1053 }
1054 
1055 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
1056                      MemOpIdx oi, uintptr_t ra)
1057 {
1058     uint64_t ret = do_ld8_mmu(env, addr, get_memop(oi), ra);
1059     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1060     return ret;
1061 }
1062 
1063 static Int128 do_ld16_mmu(CPUArchState *env, abi_ptr addr,
1064                           MemOp mop, uintptr_t ra)
1065 {
1066     void *haddr;
1067     Int128 ret;
1068 
1069     tcg_debug_assert((mop & MO_SIZE) == MO_128);
1070     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1071     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1072     ret = load_atom_16(env, ra, haddr, mop);
1073     clear_helper_retaddr();
1074 
1075     if (mop & MO_BSWAP) {
1076         ret = bswap128(ret);
1077     }
1078     return ret;
1079 }
1080 
1081 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
1082                        MemOpIdx oi, uintptr_t ra)
1083 {
1084     return do_ld16_mmu(env, addr, get_memop(oi), ra);
1085 }
1086 
1087 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, MemOpIdx oi)
1088 {
1089     return helper_ld16_mmu(env, addr, oi, GETPC());
1090 }
1091 
1092 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
1093                     MemOpIdx oi, uintptr_t ra)
1094 {
1095     Int128 ret = do_ld16_mmu(env, addr, get_memop(oi), ra);
1096     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1097     return ret;
1098 }
1099 
1100 static void do_st1_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
1101                        MemOp mop, uintptr_t ra)
1102 {
1103     void *haddr;
1104 
1105     tcg_debug_assert((mop & MO_SIZE) == MO_8);
1106     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1107     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1108     stb_p(haddr, val);
1109     clear_helper_retaddr();
1110 }
1111 
1112 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1113                     MemOpIdx oi, uintptr_t ra)
1114 {
1115     do_st1_mmu(env, addr, val, get_memop(oi), ra);
1116 }
1117 
1118 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
1119                  MemOpIdx oi, uintptr_t ra)
1120 {
1121     do_st1_mmu(env, addr, val, get_memop(oi), ra);
1122     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1123 }
1124 
1125 static void do_st2_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
1126                        MemOp mop, uintptr_t ra)
1127 {
1128     void *haddr;
1129 
1130     tcg_debug_assert((mop & MO_SIZE) == MO_16);
1131     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1132     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1133 
1134     if (mop & MO_BSWAP) {
1135         val = bswap16(val);
1136     }
1137     store_atom_2(env, ra, haddr, mop, val);
1138     clear_helper_retaddr();
1139 }
1140 
1141 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1142                     MemOpIdx oi, uintptr_t ra)
1143 {
1144     do_st2_mmu(env, addr, val, get_memop(oi), ra);
1145 }
1146 
1147 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
1148                     MemOpIdx oi, uintptr_t ra)
1149 {
1150     do_st2_mmu(env, addr, val, get_memop(oi), ra);
1151     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1152 }
1153 
1154 static void do_st4_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1155                        MemOp mop, uintptr_t ra)
1156 {
1157     void *haddr;
1158 
1159     tcg_debug_assert((mop & MO_SIZE) == MO_32);
1160     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1161     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1162 
1163     if (mop & MO_BSWAP) {
1164         val = bswap32(val);
1165     }
1166     store_atom_4(env, ra, haddr, mop, val);
1167     clear_helper_retaddr();
1168 }
1169 
1170 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1171                     MemOpIdx oi, uintptr_t ra)
1172 {
1173     do_st4_mmu(env, addr, val, get_memop(oi), ra);
1174 }
1175 
1176 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1177                  MemOpIdx oi, uintptr_t ra)
1178 {
1179     do_st4_mmu(env, addr, val, get_memop(oi), ra);
1180     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1181 }
1182 
1183 static void do_st8_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
1184                        MemOp mop, uintptr_t ra)
1185 {
1186     void *haddr;
1187 
1188     tcg_debug_assert((mop & MO_SIZE) == MO_64);
1189     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1190     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1191 
1192     if (mop & MO_BSWAP) {
1193         val = bswap64(val);
1194     }
1195     store_atom_8(env, ra, haddr, mop, val);
1196     clear_helper_retaddr();
1197 }
1198 
1199 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
1200                     MemOpIdx oi, uintptr_t ra)
1201 {
1202     do_st8_mmu(env, addr, val, get_memop(oi), ra);
1203 }
1204 
1205 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
1206                     MemOpIdx oi, uintptr_t ra)
1207 {
1208     do_st8_mmu(env, addr, val, get_memop(oi), ra);
1209     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1210 }
1211 
1212 static void do_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
1213                         MemOp mop, uintptr_t ra)
1214 {
1215     void *haddr;
1216 
1217     tcg_debug_assert((mop & MO_SIZE) == MO_128);
1218     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1219     haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1220 
1221     if (mop & MO_BSWAP) {
1222         val = bswap128(val);
1223     }
1224     store_atom_16(env, ra, haddr, mop, val);
1225     clear_helper_retaddr();
1226 }
1227 
1228 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
1229                      MemOpIdx oi, uintptr_t ra)
1230 {
1231     do_st16_mmu(env, addr, val, get_memop(oi), ra);
1232 }
1233 
1234 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
1235 {
1236     helper_st16_mmu(env, addr, val, oi, GETPC());
1237 }
1238 
1239 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr,
1240                   Int128 val, MemOpIdx oi, uintptr_t ra)
1241 {
1242     do_st16_mmu(env, addr, val, get_memop(oi), ra);
1243     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1244 }
1245 
1246 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1247 {
1248     uint32_t ret;
1249 
1250     set_helper_retaddr(1);
1251     ret = ldub_p(g2h_untagged(ptr));
1252     clear_helper_retaddr();
1253     return ret;
1254 }
1255 
1256 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1257 {
1258     uint32_t ret;
1259 
1260     set_helper_retaddr(1);
1261     ret = lduw_p(g2h_untagged(ptr));
1262     clear_helper_retaddr();
1263     return ret;
1264 }
1265 
1266 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1267 {
1268     uint32_t ret;
1269 
1270     set_helper_retaddr(1);
1271     ret = ldl_p(g2h_untagged(ptr));
1272     clear_helper_retaddr();
1273     return ret;
1274 }
1275 
1276 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1277 {
1278     uint64_t ret;
1279 
1280     set_helper_retaddr(1);
1281     ret = ldq_p(g2h_untagged(ptr));
1282     clear_helper_retaddr();
1283     return ret;
1284 }
1285 
1286 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
1287                          MemOpIdx oi, uintptr_t ra)
1288 {
1289     void *haddr;
1290     uint8_t ret;
1291 
1292     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1293     ret = ldub_p(haddr);
1294     clear_helper_retaddr();
1295     return ret;
1296 }
1297 
1298 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
1299                           MemOpIdx oi, uintptr_t ra)
1300 {
1301     void *haddr;
1302     uint16_t ret;
1303 
1304     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1305     ret = lduw_p(haddr);
1306     clear_helper_retaddr();
1307     if (get_memop(oi) & MO_BSWAP) {
1308         ret = bswap16(ret);
1309     }
1310     return ret;
1311 }
1312 
1313 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
1314                           MemOpIdx oi, uintptr_t ra)
1315 {
1316     void *haddr;
1317     uint32_t ret;
1318 
1319     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1320     ret = ldl_p(haddr);
1321     clear_helper_retaddr();
1322     if (get_memop(oi) & MO_BSWAP) {
1323         ret = bswap32(ret);
1324     }
1325     return ret;
1326 }
1327 
1328 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
1329                           MemOpIdx oi, uintptr_t ra)
1330 {
1331     void *haddr;
1332     uint64_t ret;
1333 
1334     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
1335     ret = ldq_p(haddr);
1336     clear_helper_retaddr();
1337     if (get_memop(oi) & MO_BSWAP) {
1338         ret = bswap64(ret);
1339     }
1340     return ret;
1341 }
1342 
1343 #include "ldst_common.c.inc"
1344 
1345 /*
1346  * Do not allow unaligned operations to proceed.  Return the host address.
1347  */
1348 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1349                                int size, uintptr_t retaddr)
1350 {
1351     MemOp mop = get_memop(oi);
1352     int a_bits = get_alignment_bits(mop);
1353     void *ret;
1354 
1355     /* Enforce guest required alignment.  */
1356     if (unlikely(addr & ((1 << a_bits) - 1))) {
1357         cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, retaddr);
1358     }
1359 
1360     /* Enforce qemu required alignment.  */
1361     if (unlikely(addr & (size - 1))) {
1362         cpu_loop_exit_atomic(env_cpu(env), retaddr);
1363     }
1364 
1365     ret = g2h(env_cpu(env), addr);
1366     set_helper_retaddr(retaddr);
1367     return ret;
1368 }
1369 
1370 #include "atomic_common.c.inc"
1371 
1372 /*
1373  * First set of functions passes in OI and RETADDR.
1374  * This makes them callable from other helpers.
1375  */
1376 
1377 #define ATOMIC_NAME(X) \
1378     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
1379 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1380 
1381 #define DATA_SIZE 1
1382 #include "atomic_template.h"
1383 
1384 #define DATA_SIZE 2
1385 #include "atomic_template.h"
1386 
1387 #define DATA_SIZE 4
1388 #include "atomic_template.h"
1389 
1390 #ifdef CONFIG_ATOMIC64
1391 #define DATA_SIZE 8
1392 #include "atomic_template.h"
1393 #endif
1394 
1395 #if defined(CONFIG_ATOMIC128) || defined(CONFIG_CMPXCHG128)
1396 #define DATA_SIZE 16
1397 #include "atomic_template.h"
1398 #endif
1399