1 /* 2 * User emulator execution 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "hw/core/tcg-cpu-ops.h" 21 #include "disas/disas.h" 22 #include "exec/exec-all.h" 23 #include "tcg/tcg.h" 24 #include "qemu/bitops.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/translate-all.h" 27 #include "exec/helper-proto.h" 28 #include "qemu/atomic128.h" 29 #include "trace/trace-root.h" 30 #include "tcg/tcg-ldst.h" 31 #include "internal.h" 32 33 __thread uintptr_t helper_retaddr; 34 35 //#define DEBUG_SIGNAL 36 37 /* 38 * Adjust the pc to pass to cpu_restore_state; return the memop type. 39 */ 40 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write) 41 { 42 switch (helper_retaddr) { 43 default: 44 /* 45 * Fault during host memory operation within a helper function. 46 * The helper's host return address, saved here, gives us a 47 * pointer into the generated code that will unwind to the 48 * correct guest pc. 49 */ 50 *pc = helper_retaddr; 51 break; 52 53 case 0: 54 /* 55 * Fault during host memory operation within generated code. 56 * (Or, a unrelated bug within qemu, but we can't tell from here). 57 * 58 * We take the host pc from the signal frame. However, we cannot 59 * use that value directly. Within cpu_restore_state_from_tb, we 60 * assume PC comes from GETPC(), as used by the helper functions, 61 * so we adjust the address by -GETPC_ADJ to form an address that 62 * is within the call insn, so that the address does not accidentally 63 * match the beginning of the next guest insn. However, when the 64 * pc comes from the signal frame it points to the actual faulting 65 * host memory insn and not the return from a call insn. 66 * 67 * Therefore, adjust to compensate for what will be done later 68 * by cpu_restore_state_from_tb. 69 */ 70 *pc += GETPC_ADJ; 71 break; 72 73 case 1: 74 /* 75 * Fault during host read for translation, or loosely, "execution". 76 * 77 * The guest pc is already pointing to the start of the TB for which 78 * code is being generated. If the guest translator manages the 79 * page crossings correctly, this is exactly the correct address 80 * (and if the translator doesn't handle page boundaries correctly 81 * there's little we can do about that here). Therefore, do not 82 * trigger the unwinder. 83 */ 84 *pc = 0; 85 return MMU_INST_FETCH; 86 } 87 88 return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD; 89 } 90 91 /** 92 * handle_sigsegv_accerr_write: 93 * @cpu: the cpu context 94 * @old_set: the sigset_t from the signal ucontext_t 95 * @host_pc: the host pc, adjusted for the signal 96 * @guest_addr: the guest address of the fault 97 * 98 * Return true if the write fault has been handled, and should be re-tried. 99 * 100 * Note that it is important that we don't call page_unprotect() unless 101 * this is really a "write to nonwritable page" fault, because 102 * page_unprotect() assumes that if it is called for an access to 103 * a page that's writable this means we had two threads racing and 104 * another thread got there first and already made the page writable; 105 * so we will retry the access. If we were to call page_unprotect() 106 * for some other kind of fault that should really be passed to the 107 * guest, we'd end up in an infinite loop of retrying the faulting access. 108 */ 109 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set, 110 uintptr_t host_pc, abi_ptr guest_addr) 111 { 112 switch (page_unprotect(guest_addr, host_pc)) { 113 case 0: 114 /* 115 * Fault not caused by a page marked unwritable to protect 116 * cached translations, must be the guest binary's problem. 117 */ 118 return false; 119 case 1: 120 /* 121 * Fault caused by protection of cached translation; TBs 122 * invalidated, so resume execution. 123 */ 124 return true; 125 case 2: 126 /* 127 * Fault caused by protection of cached translation, and the 128 * currently executing TB was modified and must be exited immediately. 129 */ 130 sigprocmask(SIG_SETMASK, old_set, NULL); 131 cpu_loop_exit_noexc(cpu); 132 /* NORETURN */ 133 default: 134 g_assert_not_reached(); 135 } 136 } 137 138 static int probe_access_internal(CPUArchState *env, target_ulong addr, 139 int fault_size, MMUAccessType access_type, 140 bool nonfault, uintptr_t ra) 141 { 142 int acc_flag; 143 bool maperr; 144 145 switch (access_type) { 146 case MMU_DATA_STORE: 147 acc_flag = PAGE_WRITE_ORG; 148 break; 149 case MMU_DATA_LOAD: 150 acc_flag = PAGE_READ; 151 break; 152 case MMU_INST_FETCH: 153 acc_flag = PAGE_EXEC; 154 break; 155 default: 156 g_assert_not_reached(); 157 } 158 159 if (guest_addr_valid_untagged(addr)) { 160 int page_flags = page_get_flags(addr); 161 if (page_flags & acc_flag) { 162 return 0; /* success */ 163 } 164 maperr = !(page_flags & PAGE_VALID); 165 } else { 166 maperr = true; 167 } 168 169 if (nonfault) { 170 return TLB_INVALID_MASK; 171 } 172 173 cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra); 174 } 175 176 int probe_access_flags(CPUArchState *env, target_ulong addr, 177 MMUAccessType access_type, int mmu_idx, 178 bool nonfault, void **phost, uintptr_t ra) 179 { 180 int flags; 181 182 flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra); 183 *phost = flags ? NULL : g2h(env_cpu(env), addr); 184 return flags; 185 } 186 187 void *probe_access(CPUArchState *env, target_ulong addr, int size, 188 MMUAccessType access_type, int mmu_idx, uintptr_t ra) 189 { 190 int flags; 191 192 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 193 flags = probe_access_internal(env, addr, size, access_type, false, ra); 194 g_assert(flags == 0); 195 196 return size ? g2h(env_cpu(env), addr) : NULL; 197 } 198 199 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 200 void **hostp) 201 { 202 int flags; 203 204 flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0); 205 g_assert(flags == 0); 206 207 if (hostp) { 208 *hostp = g2h_untagged(addr); 209 } 210 return addr; 211 } 212 213 /* The softmmu versions of these helpers are in cputlb.c. */ 214 215 /* 216 * Verify that we have passed the correct MemOp to the correct function. 217 * 218 * We could present one function to target code, and dispatch based on 219 * the MemOp, but so far we have worked hard to avoid an indirect function 220 * call along the memory path. 221 */ 222 static void validate_memop(MemOpIdx oi, MemOp expected) 223 { 224 #ifdef CONFIG_DEBUG_TCG 225 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); 226 assert(have == expected); 227 #endif 228 } 229 230 void helper_unaligned_ld(CPUArchState *env, target_ulong addr) 231 { 232 cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_LOAD, GETPC()); 233 } 234 235 void helper_unaligned_st(CPUArchState *env, target_ulong addr) 236 { 237 cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, GETPC()); 238 } 239 240 static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr, 241 MemOpIdx oi, uintptr_t ra, MMUAccessType type) 242 { 243 MemOp mop = get_memop(oi); 244 int a_bits = get_alignment_bits(mop); 245 void *ret; 246 247 /* Enforce guest required alignment. */ 248 if (unlikely(addr & ((1 << a_bits) - 1))) { 249 cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra); 250 } 251 252 ret = g2h(env_cpu(env), addr); 253 set_helper_retaddr(ra); 254 return ret; 255 } 256 257 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, 258 MemOpIdx oi, uintptr_t ra) 259 { 260 void *haddr; 261 uint8_t ret; 262 263 validate_memop(oi, MO_UB); 264 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); 265 ret = ldub_p(haddr); 266 clear_helper_retaddr(); 267 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 268 return ret; 269 } 270 271 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, 272 MemOpIdx oi, uintptr_t ra) 273 { 274 void *haddr; 275 uint16_t ret; 276 277 validate_memop(oi, MO_BEUW); 278 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); 279 ret = lduw_be_p(haddr); 280 clear_helper_retaddr(); 281 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 282 return ret; 283 } 284 285 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, 286 MemOpIdx oi, uintptr_t ra) 287 { 288 void *haddr; 289 uint32_t ret; 290 291 validate_memop(oi, MO_BEUL); 292 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); 293 ret = ldl_be_p(haddr); 294 clear_helper_retaddr(); 295 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 296 return ret; 297 } 298 299 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, 300 MemOpIdx oi, uintptr_t ra) 301 { 302 void *haddr; 303 uint64_t ret; 304 305 validate_memop(oi, MO_BEUQ); 306 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); 307 ret = ldq_be_p(haddr); 308 clear_helper_retaddr(); 309 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 310 return ret; 311 } 312 313 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, 314 MemOpIdx oi, uintptr_t ra) 315 { 316 void *haddr; 317 uint16_t ret; 318 319 validate_memop(oi, MO_LEUW); 320 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); 321 ret = lduw_le_p(haddr); 322 clear_helper_retaddr(); 323 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 324 return ret; 325 } 326 327 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, 328 MemOpIdx oi, uintptr_t ra) 329 { 330 void *haddr; 331 uint32_t ret; 332 333 validate_memop(oi, MO_LEUL); 334 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); 335 ret = ldl_le_p(haddr); 336 clear_helper_retaddr(); 337 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 338 return ret; 339 } 340 341 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, 342 MemOpIdx oi, uintptr_t ra) 343 { 344 void *haddr; 345 uint64_t ret; 346 347 validate_memop(oi, MO_LEUQ); 348 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); 349 ret = ldq_le_p(haddr); 350 clear_helper_retaddr(); 351 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 352 return ret; 353 } 354 355 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val, 356 MemOpIdx oi, uintptr_t ra) 357 { 358 void *haddr; 359 360 validate_memop(oi, MO_UB); 361 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); 362 stb_p(haddr, val); 363 clear_helper_retaddr(); 364 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 365 } 366 367 void cpu_stw_be_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, 368 MemOpIdx oi, uintptr_t ra) 369 { 370 void *haddr; 371 372 validate_memop(oi, MO_BEUW); 373 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); 374 stw_be_p(haddr, val); 375 clear_helper_retaddr(); 376 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 377 } 378 379 void cpu_stl_be_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, 380 MemOpIdx oi, uintptr_t ra) 381 { 382 void *haddr; 383 384 validate_memop(oi, MO_BEUL); 385 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); 386 stl_be_p(haddr, val); 387 clear_helper_retaddr(); 388 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 389 } 390 391 void cpu_stq_be_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, 392 MemOpIdx oi, uintptr_t ra) 393 { 394 void *haddr; 395 396 validate_memop(oi, MO_BEUQ); 397 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); 398 stq_be_p(haddr, val); 399 clear_helper_retaddr(); 400 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 401 } 402 403 void cpu_stw_le_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, 404 MemOpIdx oi, uintptr_t ra) 405 { 406 void *haddr; 407 408 validate_memop(oi, MO_LEUW); 409 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); 410 stw_le_p(haddr, val); 411 clear_helper_retaddr(); 412 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 413 } 414 415 void cpu_stl_le_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, 416 MemOpIdx oi, uintptr_t ra) 417 { 418 void *haddr; 419 420 validate_memop(oi, MO_LEUL); 421 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); 422 stl_le_p(haddr, val); 423 clear_helper_retaddr(); 424 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 425 } 426 427 void cpu_stq_le_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, 428 MemOpIdx oi, uintptr_t ra) 429 { 430 void *haddr; 431 432 validate_memop(oi, MO_LEUQ); 433 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); 434 stq_le_p(haddr, val); 435 clear_helper_retaddr(); 436 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 437 } 438 439 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr) 440 { 441 uint32_t ret; 442 443 set_helper_retaddr(1); 444 ret = ldub_p(g2h_untagged(ptr)); 445 clear_helper_retaddr(); 446 return ret; 447 } 448 449 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr) 450 { 451 uint32_t ret; 452 453 set_helper_retaddr(1); 454 ret = lduw_p(g2h_untagged(ptr)); 455 clear_helper_retaddr(); 456 return ret; 457 } 458 459 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr) 460 { 461 uint32_t ret; 462 463 set_helper_retaddr(1); 464 ret = ldl_p(g2h_untagged(ptr)); 465 clear_helper_retaddr(); 466 return ret; 467 } 468 469 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr) 470 { 471 uint64_t ret; 472 473 set_helper_retaddr(1); 474 ret = ldq_p(g2h_untagged(ptr)); 475 clear_helper_retaddr(); 476 return ret; 477 } 478 479 #include "ldst_common.c.inc" 480 481 /* 482 * Do not allow unaligned operations to proceed. Return the host address. 483 * 484 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. 485 */ 486 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 487 MemOpIdx oi, int size, int prot, 488 uintptr_t retaddr) 489 { 490 MemOp mop = get_memop(oi); 491 int a_bits = get_alignment_bits(mop); 492 void *ret; 493 494 /* Enforce guest required alignment. */ 495 if (unlikely(addr & ((1 << a_bits) - 1))) { 496 MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE; 497 cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr); 498 } 499 500 /* Enforce qemu required alignment. */ 501 if (unlikely(addr & (size - 1))) { 502 cpu_loop_exit_atomic(env_cpu(env), retaddr); 503 } 504 505 ret = g2h(env_cpu(env), addr); 506 set_helper_retaddr(retaddr); 507 return ret; 508 } 509 510 #include "atomic_common.c.inc" 511 512 /* 513 * First set of functions passes in OI and RETADDR. 514 * This makes them callable from other helpers. 515 */ 516 517 #define ATOMIC_NAME(X) \ 518 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 519 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0) 520 521 #define DATA_SIZE 1 522 #include "atomic_template.h" 523 524 #define DATA_SIZE 2 525 #include "atomic_template.h" 526 527 #define DATA_SIZE 4 528 #include "atomic_template.h" 529 530 #ifdef CONFIG_ATOMIC64 531 #define DATA_SIZE 8 532 #include "atomic_template.h" 533 #endif 534 535 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128 536 #define DATA_SIZE 16 537 #include "atomic_template.h" 538 #endif 539