xref: /openbmc/qemu/accel/tcg/user-exec.c (revision 853d9a4b)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "exec/cpu_ldst.h"
26 #include "translate-all.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/atomic128.h"
29 #include "trace-root.h"
30 #include "trace/mem.h"
31 
32 #undef EAX
33 #undef ECX
34 #undef EDX
35 #undef EBX
36 #undef ESP
37 #undef EBP
38 #undef ESI
39 #undef EDI
40 #undef EIP
41 #ifdef __linux__
42 #include <sys/ucontext.h>
43 #endif
44 
45 __thread uintptr_t helper_retaddr;
46 
47 //#define DEBUG_SIGNAL
48 
49 /* exit the current TB from a signal handler. The host registers are
50    restored in a state compatible with the CPU emulator
51  */
52 static void cpu_exit_tb_from_sighandler(CPUState *cpu, sigset_t *old_set)
53 {
54     /* XXX: use siglongjmp ? */
55     sigprocmask(SIG_SETMASK, old_set, NULL);
56     cpu_loop_exit_noexc(cpu);
57 }
58 
59 /* 'pc' is the host PC at which the exception was raised. 'address' is
60    the effective address of the memory exception. 'is_write' is 1 if a
61    write caused the exception and otherwise 0'. 'old_set' is the
62    signal set which should be restored */
63 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info,
64                                     int is_write, sigset_t *old_set)
65 {
66     CPUState *cpu = current_cpu;
67     CPUClass *cc;
68     unsigned long address = (unsigned long)info->si_addr;
69     MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
70 
71     switch (helper_retaddr) {
72     default:
73         /*
74          * Fault during host memory operation within a helper function.
75          * The helper's host return address, saved here, gives us a
76          * pointer into the generated code that will unwind to the
77          * correct guest pc.
78          */
79         pc = helper_retaddr;
80         break;
81 
82     case 0:
83         /*
84          * Fault during host memory operation within generated code.
85          * (Or, a unrelated bug within qemu, but we can't tell from here).
86          *
87          * We take the host pc from the signal frame.  However, we cannot
88          * use that value directly.  Within cpu_restore_state_from_tb, we
89          * assume PC comes from GETPC(), as used by the helper functions,
90          * so we adjust the address by -GETPC_ADJ to form an address that
91          * is within the call insn, so that the address does not accidentially
92          * match the beginning of the next guest insn.  However, when the
93          * pc comes from the signal frame it points to the actual faulting
94          * host memory insn and not the return from a call insn.
95          *
96          * Therefore, adjust to compensate for what will be done later
97          * by cpu_restore_state_from_tb.
98          */
99         pc += GETPC_ADJ;
100         break;
101 
102     case 1:
103         /*
104          * Fault during host read for translation, or loosely, "execution".
105          *
106          * The guest pc is already pointing to the start of the TB for which
107          * code is being generated.  If the guest translator manages the
108          * page crossings correctly, this is exactly the correct address
109          * (and if the translator doesn't handle page boundaries correctly
110          * there's little we can do about that here).  Therefore, do not
111          * trigger the unwinder.
112          *
113          * Like tb_gen_code, release the memory lock before cpu_loop_exit.
114          */
115         pc = 0;
116         access_type = MMU_INST_FETCH;
117         mmap_unlock();
118         break;
119     }
120 
121     /* For synchronous signals we expect to be coming from the vCPU
122      * thread (so current_cpu should be valid) and either from running
123      * code or during translation which can fault as we cross pages.
124      *
125      * If neither is true then something has gone wrong and we should
126      * abort rather than try and restart the vCPU execution.
127      */
128     if (!cpu || !cpu->running) {
129         printf("qemu:%s received signal outside vCPU context @ pc=0x%"
130                PRIxPTR "\n",  __func__, pc);
131         abort();
132     }
133 
134 #if defined(DEBUG_SIGNAL)
135     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
136            pc, address, is_write, *(unsigned long *)old_set);
137 #endif
138     /* XXX: locking issue */
139     /* Note that it is important that we don't call page_unprotect() unless
140      * this is really a "write to nonwriteable page" fault, because
141      * page_unprotect() assumes that if it is called for an access to
142      * a page that's writeable this means we had two threads racing and
143      * another thread got there first and already made the page writeable;
144      * so we will retry the access. If we were to call page_unprotect()
145      * for some other kind of fault that should really be passed to the
146      * guest, we'd end up in an infinite loop of retrying the faulting
147      * access.
148      */
149     if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR &&
150         h2g_valid(address)) {
151         switch (page_unprotect(h2g(address), pc)) {
152         case 0:
153             /* Fault not caused by a page marked unwritable to protect
154              * cached translations, must be the guest binary's problem.
155              */
156             break;
157         case 1:
158             /* Fault caused by protection of cached translation; TBs
159              * invalidated, so resume execution.  Retain helper_retaddr
160              * for a possible second fault.
161              */
162             return 1;
163         case 2:
164             /* Fault caused by protection of cached translation, and the
165              * currently executing TB was modified and must be exited
166              * immediately.  Clear helper_retaddr for next execution.
167              */
168             clear_helper_retaddr();
169             cpu_exit_tb_from_sighandler(cpu, old_set);
170             /* NORETURN */
171 
172         default:
173             g_assert_not_reached();
174         }
175     }
176 
177     /* Convert forcefully to guest address space, invalid addresses
178        are still valid segv ones */
179     address = h2g_nocheck(address);
180 
181     /*
182      * There is no way the target can handle this other than raising
183      * an exception.  Undo signal and retaddr state prior to longjmp.
184      */
185     sigprocmask(SIG_SETMASK, old_set, NULL);
186     clear_helper_retaddr();
187 
188     cc = CPU_GET_CLASS(cpu);
189     cc->tlb_fill(cpu, address, 0, access_type, MMU_USER_IDX, false, pc);
190     g_assert_not_reached();
191 }
192 
193 static int probe_access_internal(CPUArchState *env, target_ulong addr,
194                                  int fault_size, MMUAccessType access_type,
195                                  bool nonfault, uintptr_t ra)
196 {
197     int flags;
198 
199     switch (access_type) {
200     case MMU_DATA_STORE:
201         flags = PAGE_WRITE;
202         break;
203     case MMU_DATA_LOAD:
204         flags = PAGE_READ;
205         break;
206     case MMU_INST_FETCH:
207         flags = PAGE_EXEC;
208         break;
209     default:
210         g_assert_not_reached();
211     }
212 
213     if (!guest_addr_valid(addr) || page_check_range(addr, 1, flags) < 0) {
214         if (nonfault) {
215             return TLB_INVALID_MASK;
216         } else {
217             CPUState *cpu = env_cpu(env);
218             CPUClass *cc = CPU_GET_CLASS(cpu);
219             cc->tlb_fill(cpu, addr, fault_size, access_type,
220                          MMU_USER_IDX, false, ra);
221             g_assert_not_reached();
222         }
223     }
224     return 0;
225 }
226 
227 int probe_access_flags(CPUArchState *env, target_ulong addr,
228                        MMUAccessType access_type, int mmu_idx,
229                        bool nonfault, void **phost, uintptr_t ra)
230 {
231     int flags;
232 
233     flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
234     *phost = flags ? NULL : g2h(addr);
235     return flags;
236 }
237 
238 void *probe_access(CPUArchState *env, target_ulong addr, int size,
239                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
240 {
241     int flags;
242 
243     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
244     flags = probe_access_internal(env, addr, size, access_type, false, ra);
245     g_assert(flags == 0);
246 
247     return size ? g2h(addr) : NULL;
248 }
249 
250 #if defined(__i386__)
251 
252 #if defined(__NetBSD__)
253 #include <ucontext.h>
254 
255 #define EIP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_EIP])
256 #define TRAP_sig(context)    ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
257 #define ERROR_sig(context)   ((context)->uc_mcontext.__gregs[_REG_ERR])
258 #define MASK_sig(context)    ((context)->uc_sigmask)
259 #elif defined(__FreeBSD__) || defined(__DragonFly__)
260 #include <ucontext.h>
261 
262 #define EIP_sig(context)  (*((unsigned long *)&(context)->uc_mcontext.mc_eip))
263 #define TRAP_sig(context)    ((context)->uc_mcontext.mc_trapno)
264 #define ERROR_sig(context)   ((context)->uc_mcontext.mc_err)
265 #define MASK_sig(context)    ((context)->uc_sigmask)
266 #elif defined(__OpenBSD__)
267 #define EIP_sig(context)     ((context)->sc_eip)
268 #define TRAP_sig(context)    ((context)->sc_trapno)
269 #define ERROR_sig(context)   ((context)->sc_err)
270 #define MASK_sig(context)    ((context)->sc_mask)
271 #else
272 #define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
273 #define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
274 #define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
275 #define MASK_sig(context)    ((context)->uc_sigmask)
276 #endif
277 
278 int cpu_signal_handler(int host_signum, void *pinfo,
279                        void *puc)
280 {
281     siginfo_t *info = pinfo;
282 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
283     ucontext_t *uc = puc;
284 #elif defined(__OpenBSD__)
285     struct sigcontext *uc = puc;
286 #else
287     ucontext_t *uc = puc;
288 #endif
289     unsigned long pc;
290     int trapno;
291 
292 #ifndef REG_EIP
293 /* for glibc 2.1 */
294 #define REG_EIP    EIP
295 #define REG_ERR    ERR
296 #define REG_TRAPNO TRAPNO
297 #endif
298     pc = EIP_sig(uc);
299     trapno = TRAP_sig(uc);
300     return handle_cpu_signal(pc, info,
301                              trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
302                              &MASK_sig(uc));
303 }
304 
305 #elif defined(__x86_64__)
306 
307 #ifdef __NetBSD__
308 #define PC_sig(context)       _UC_MACHINE_PC(context)
309 #define TRAP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
310 #define ERROR_sig(context)    ((context)->uc_mcontext.__gregs[_REG_ERR])
311 #define MASK_sig(context)     ((context)->uc_sigmask)
312 #elif defined(__OpenBSD__)
313 #define PC_sig(context)       ((context)->sc_rip)
314 #define TRAP_sig(context)     ((context)->sc_trapno)
315 #define ERROR_sig(context)    ((context)->sc_err)
316 #define MASK_sig(context)     ((context)->sc_mask)
317 #elif defined(__FreeBSD__) || defined(__DragonFly__)
318 #include <ucontext.h>
319 
320 #define PC_sig(context)  (*((unsigned long *)&(context)->uc_mcontext.mc_rip))
321 #define TRAP_sig(context)     ((context)->uc_mcontext.mc_trapno)
322 #define ERROR_sig(context)    ((context)->uc_mcontext.mc_err)
323 #define MASK_sig(context)     ((context)->uc_sigmask)
324 #else
325 #define PC_sig(context)       ((context)->uc_mcontext.gregs[REG_RIP])
326 #define TRAP_sig(context)     ((context)->uc_mcontext.gregs[REG_TRAPNO])
327 #define ERROR_sig(context)    ((context)->uc_mcontext.gregs[REG_ERR])
328 #define MASK_sig(context)     ((context)->uc_sigmask)
329 #endif
330 
331 int cpu_signal_handler(int host_signum, void *pinfo,
332                        void *puc)
333 {
334     siginfo_t *info = pinfo;
335     unsigned long pc;
336 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
337     ucontext_t *uc = puc;
338 #elif defined(__OpenBSD__)
339     struct sigcontext *uc = puc;
340 #else
341     ucontext_t *uc = puc;
342 #endif
343 
344     pc = PC_sig(uc);
345     return handle_cpu_signal(pc, info,
346                              TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
347                              &MASK_sig(uc));
348 }
349 
350 #elif defined(_ARCH_PPC)
351 
352 /***********************************************************************
353  * signal context platform-specific definitions
354  * From Wine
355  */
356 #ifdef linux
357 /* All Registers access - only for local access */
358 #define REG_sig(reg_name, context)              \
359     ((context)->uc_mcontext.regs->reg_name)
360 /* Gpr Registers access  */
361 #define GPR_sig(reg_num, context)              REG_sig(gpr[reg_num], context)
362 /* Program counter */
363 #define IAR_sig(context)                       REG_sig(nip, context)
364 /* Machine State Register (Supervisor) */
365 #define MSR_sig(context)                       REG_sig(msr, context)
366 /* Count register */
367 #define CTR_sig(context)                       REG_sig(ctr, context)
368 /* User's integer exception register */
369 #define XER_sig(context)                       REG_sig(xer, context)
370 /* Link register */
371 #define LR_sig(context)                        REG_sig(link, context)
372 /* Condition register */
373 #define CR_sig(context)                        REG_sig(ccr, context)
374 
375 /* Float Registers access  */
376 #define FLOAT_sig(reg_num, context)                                     \
377     (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num])
378 #define FPSCR_sig(context) \
379     (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4)))
380 /* Exception Registers access */
381 #define DAR_sig(context)                       REG_sig(dar, context)
382 #define DSISR_sig(context)                     REG_sig(dsisr, context)
383 #define TRAP_sig(context)                      REG_sig(trap, context)
384 #endif /* linux */
385 
386 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
387 #include <ucontext.h>
388 #define IAR_sig(context)               ((context)->uc_mcontext.mc_srr0)
389 #define MSR_sig(context)               ((context)->uc_mcontext.mc_srr1)
390 #define CTR_sig(context)               ((context)->uc_mcontext.mc_ctr)
391 #define XER_sig(context)               ((context)->uc_mcontext.mc_xer)
392 #define LR_sig(context)                ((context)->uc_mcontext.mc_lr)
393 #define CR_sig(context)                ((context)->uc_mcontext.mc_cr)
394 /* Exception Registers access */
395 #define DAR_sig(context)               ((context)->uc_mcontext.mc_dar)
396 #define DSISR_sig(context)             ((context)->uc_mcontext.mc_dsisr)
397 #define TRAP_sig(context)              ((context)->uc_mcontext.mc_exc)
398 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
399 
400 int cpu_signal_handler(int host_signum, void *pinfo,
401                        void *puc)
402 {
403     siginfo_t *info = pinfo;
404 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
405     ucontext_t *uc = puc;
406 #else
407     ucontext_t *uc = puc;
408 #endif
409     unsigned long pc;
410     int is_write;
411 
412     pc = IAR_sig(uc);
413     is_write = 0;
414 #if 0
415     /* ppc 4xx case */
416     if (DSISR_sig(uc) & 0x00800000) {
417         is_write = 1;
418     }
419 #else
420     if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) {
421         is_write = 1;
422     }
423 #endif
424     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
425 }
426 
427 #elif defined(__alpha__)
428 
429 int cpu_signal_handler(int host_signum, void *pinfo,
430                            void *puc)
431 {
432     siginfo_t *info = pinfo;
433     ucontext_t *uc = puc;
434     uint32_t *pc = uc->uc_mcontext.sc_pc;
435     uint32_t insn = *pc;
436     int is_write = 0;
437 
438     /* XXX: need kernel patch to get write flag faster */
439     switch (insn >> 26) {
440     case 0x0d: /* stw */
441     case 0x0e: /* stb */
442     case 0x0f: /* stq_u */
443     case 0x24: /* stf */
444     case 0x25: /* stg */
445     case 0x26: /* sts */
446     case 0x27: /* stt */
447     case 0x2c: /* stl */
448     case 0x2d: /* stq */
449     case 0x2e: /* stl_c */
450     case 0x2f: /* stq_c */
451         is_write = 1;
452     }
453 
454     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
455 }
456 #elif defined(__sparc__)
457 
458 int cpu_signal_handler(int host_signum, void *pinfo,
459                        void *puc)
460 {
461     siginfo_t *info = pinfo;
462     int is_write;
463     uint32_t insn;
464 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
465     uint32_t *regs = (uint32_t *)(info + 1);
466     void *sigmask = (regs + 20);
467     /* XXX: is there a standard glibc define ? */
468     unsigned long pc = regs[1];
469 #else
470 #ifdef __linux__
471     struct sigcontext *sc = puc;
472     unsigned long pc = sc->sigc_regs.tpc;
473     void *sigmask = (void *)sc->sigc_mask;
474 #elif defined(__OpenBSD__)
475     struct sigcontext *uc = puc;
476     unsigned long pc = uc->sc_pc;
477     void *sigmask = (void *)(long)uc->sc_mask;
478 #elif defined(__NetBSD__)
479     ucontext_t *uc = puc;
480     unsigned long pc = _UC_MACHINE_PC(uc);
481     void *sigmask = (void *)&uc->uc_sigmask;
482 #endif
483 #endif
484 
485     /* XXX: need kernel patch to get write flag faster */
486     is_write = 0;
487     insn = *(uint32_t *)pc;
488     if ((insn >> 30) == 3) {
489         switch ((insn >> 19) & 0x3f) {
490         case 0x05: /* stb */
491         case 0x15: /* stba */
492         case 0x06: /* sth */
493         case 0x16: /* stha */
494         case 0x04: /* st */
495         case 0x14: /* sta */
496         case 0x07: /* std */
497         case 0x17: /* stda */
498         case 0x0e: /* stx */
499         case 0x1e: /* stxa */
500         case 0x24: /* stf */
501         case 0x34: /* stfa */
502         case 0x27: /* stdf */
503         case 0x37: /* stdfa */
504         case 0x26: /* stqf */
505         case 0x36: /* stqfa */
506         case 0x25: /* stfsr */
507         case 0x3c: /* casa */
508         case 0x3e: /* casxa */
509             is_write = 1;
510             break;
511         }
512     }
513     return handle_cpu_signal(pc, info, is_write, sigmask);
514 }
515 
516 #elif defined(__arm__)
517 
518 #if defined(__NetBSD__)
519 #include <ucontext.h>
520 #include <sys/siginfo.h>
521 #endif
522 
523 int cpu_signal_handler(int host_signum, void *pinfo,
524                        void *puc)
525 {
526     siginfo_t *info = pinfo;
527 #if defined(__NetBSD__)
528     ucontext_t *uc = puc;
529     siginfo_t *si = pinfo;
530 #else
531     ucontext_t *uc = puc;
532 #endif
533     unsigned long pc;
534     uint32_t fsr;
535     int is_write;
536 
537 #if defined(__NetBSD__)
538     pc = uc->uc_mcontext.__gregs[_REG_R15];
539 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
540     pc = uc->uc_mcontext.gregs[R15];
541 #else
542     pc = uc->uc_mcontext.arm_pc;
543 #endif
544 
545 #ifdef __NetBSD__
546     fsr = si->si_trap;
547 #else
548     fsr = uc->uc_mcontext.error_code;
549 #endif
550     /*
551      * In the FSR, bit 11 is WnR, assuming a v6 or
552      * later processor.  On v5 we will always report
553      * this as a read, which will fail later.
554      */
555     is_write = extract32(fsr, 11, 1);
556     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
557 }
558 
559 #elif defined(__aarch64__)
560 
561 #ifndef ESR_MAGIC
562 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */
563 #define ESR_MAGIC 0x45535201
564 struct esr_context {
565     struct _aarch64_ctx head;
566     uint64_t esr;
567 };
568 #endif
569 
570 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc)
571 {
572     return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved;
573 }
574 
575 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr)
576 {
577     return (struct _aarch64_ctx *)((char *)hdr + hdr->size);
578 }
579 
580 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
581 {
582     siginfo_t *info = pinfo;
583     ucontext_t *uc = puc;
584     uintptr_t pc = uc->uc_mcontext.pc;
585     bool is_write;
586     struct _aarch64_ctx *hdr;
587     struct esr_context const *esrctx = NULL;
588 
589     /* Find the esr_context, which has the WnR bit in it */
590     for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) {
591         if (hdr->magic == ESR_MAGIC) {
592             esrctx = (struct esr_context const *)hdr;
593             break;
594         }
595     }
596 
597     if (esrctx) {
598         /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */
599         uint64_t esr = esrctx->esr;
600         is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
601     } else {
602         /*
603          * Fall back to parsing instructions; will only be needed
604          * for really ancient (pre-3.16) kernels.
605          */
606         uint32_t insn = *(uint32_t *)pc;
607 
608         is_write = ((insn & 0xbfff0000) == 0x0c000000   /* C3.3.1 */
609                     || (insn & 0xbfe00000) == 0x0c800000   /* C3.3.2 */
610                     || (insn & 0xbfdf0000) == 0x0d000000   /* C3.3.3 */
611                     || (insn & 0xbfc00000) == 0x0d800000   /* C3.3.4 */
612                     || (insn & 0x3f400000) == 0x08000000   /* C3.3.6 */
613                     || (insn & 0x3bc00000) == 0x39000000   /* C3.3.13 */
614                     || (insn & 0x3fc00000) == 0x3d800000   /* ... 128bit */
615                     /* Ignore bits 10, 11 & 21, controlling indexing.  */
616                     || (insn & 0x3bc00000) == 0x38000000   /* C3.3.8-12 */
617                     || (insn & 0x3fe00000) == 0x3c800000   /* ... 128bit */
618                     /* Ignore bits 23 & 24, controlling indexing.  */
619                     || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */
620     }
621     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
622 }
623 
624 #elif defined(__s390__)
625 
626 int cpu_signal_handler(int host_signum, void *pinfo,
627                        void *puc)
628 {
629     siginfo_t *info = pinfo;
630     ucontext_t *uc = puc;
631     unsigned long pc;
632     uint16_t *pinsn;
633     int is_write = 0;
634 
635     pc = uc->uc_mcontext.psw.addr;
636 
637     /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
638        of the normal 2 arguments.  The 3rd argument contains the "int_code"
639        from the hardware which does in fact contain the is_write value.
640        The rt signal handler, as far as I can tell, does not give this value
641        at all.  Not that we could get to it from here even if it were.  */
642     /* ??? This is not even close to complete, since it ignores all
643        of the read-modify-write instructions.  */
644     pinsn = (uint16_t *)pc;
645     switch (pinsn[0] >> 8) {
646     case 0x50: /* ST */
647     case 0x42: /* STC */
648     case 0x40: /* STH */
649         is_write = 1;
650         break;
651     case 0xc4: /* RIL format insns */
652         switch (pinsn[0] & 0xf) {
653         case 0xf: /* STRL */
654         case 0xb: /* STGRL */
655         case 0x7: /* STHRL */
656             is_write = 1;
657         }
658         break;
659     case 0xe3: /* RXY format insns */
660         switch (pinsn[2] & 0xff) {
661         case 0x50: /* STY */
662         case 0x24: /* STG */
663         case 0x72: /* STCY */
664         case 0x70: /* STHY */
665         case 0x8e: /* STPQ */
666         case 0x3f: /* STRVH */
667         case 0x3e: /* STRV */
668         case 0x2f: /* STRVG */
669             is_write = 1;
670         }
671         break;
672     }
673     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
674 }
675 
676 #elif defined(__mips__)
677 
678 int cpu_signal_handler(int host_signum, void *pinfo,
679                        void *puc)
680 {
681     siginfo_t *info = pinfo;
682     ucontext_t *uc = puc;
683     greg_t pc = uc->uc_mcontext.pc;
684     int is_write;
685 
686     /* XXX: compute is_write */
687     is_write = 0;
688     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
689 }
690 
691 #elif defined(__riscv)
692 
693 int cpu_signal_handler(int host_signum, void *pinfo,
694                        void *puc)
695 {
696     siginfo_t *info = pinfo;
697     ucontext_t *uc = puc;
698     greg_t pc = uc->uc_mcontext.__gregs[REG_PC];
699     uint32_t insn = *(uint32_t *)pc;
700     int is_write = 0;
701 
702     /* Detect store by reading the instruction at the program
703        counter. Note: we currently only generate 32-bit
704        instructions so we thus only detect 32-bit stores */
705     switch (((insn >> 0) & 0b11)) {
706     case 3:
707         switch (((insn >> 2) & 0b11111)) {
708         case 8:
709             switch (((insn >> 12) & 0b111)) {
710             case 0: /* sb */
711             case 1: /* sh */
712             case 2: /* sw */
713             case 3: /* sd */
714             case 4: /* sq */
715                 is_write = 1;
716                 break;
717             default:
718                 break;
719             }
720             break;
721         case 9:
722             switch (((insn >> 12) & 0b111)) {
723             case 2: /* fsw */
724             case 3: /* fsd */
725             case 4: /* fsq */
726                 is_write = 1;
727                 break;
728             default:
729                 break;
730             }
731             break;
732         default:
733             break;
734         }
735     }
736 
737     /* Check for compressed instructions */
738     switch (((insn >> 13) & 0b111)) {
739     case 7:
740         switch (insn & 0b11) {
741         case 0: /*c.sd */
742         case 2: /* c.sdsp */
743             is_write = 1;
744             break;
745         default:
746             break;
747         }
748         break;
749     case 6:
750         switch (insn & 0b11) {
751         case 0: /* c.sw */
752         case 3: /* c.swsp */
753             is_write = 1;
754             break;
755         default:
756             break;
757         }
758         break;
759     default:
760         break;
761     }
762 
763     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
764 }
765 
766 #else
767 
768 #error host CPU specific signal handler needed
769 
770 #endif
771 
772 /* The softmmu versions of these helpers are in cputlb.c.  */
773 
774 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr)
775 {
776     uint32_t ret;
777     uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false);
778 
779     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
780     ret = ldub_p(g2h(ptr));
781     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
782     return ret;
783 }
784 
785 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr)
786 {
787     int ret;
788     uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false);
789 
790     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
791     ret = ldsb_p(g2h(ptr));
792     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
793     return ret;
794 }
795 
796 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr)
797 {
798     uint32_t ret;
799     uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false);
800 
801     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
802     ret = lduw_be_p(g2h(ptr));
803     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
804     return ret;
805 }
806 
807 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr)
808 {
809     int ret;
810     uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false);
811 
812     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
813     ret = ldsw_be_p(g2h(ptr));
814     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
815     return ret;
816 }
817 
818 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr)
819 {
820     uint32_t ret;
821     uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false);
822 
823     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
824     ret = ldl_be_p(g2h(ptr));
825     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
826     return ret;
827 }
828 
829 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr)
830 {
831     uint64_t ret;
832     uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false);
833 
834     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
835     ret = ldq_be_p(g2h(ptr));
836     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
837     return ret;
838 }
839 
840 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr)
841 {
842     uint32_t ret;
843     uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false);
844 
845     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
846     ret = lduw_le_p(g2h(ptr));
847     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
848     return ret;
849 }
850 
851 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr)
852 {
853     int ret;
854     uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false);
855 
856     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
857     ret = ldsw_le_p(g2h(ptr));
858     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
859     return ret;
860 }
861 
862 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr)
863 {
864     uint32_t ret;
865     uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false);
866 
867     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
868     ret = ldl_le_p(g2h(ptr));
869     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
870     return ret;
871 }
872 
873 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr)
874 {
875     uint64_t ret;
876     uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false);
877 
878     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
879     ret = ldq_le_p(g2h(ptr));
880     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
881     return ret;
882 }
883 
884 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
885 {
886     uint32_t ret;
887 
888     set_helper_retaddr(retaddr);
889     ret = cpu_ldub_data(env, ptr);
890     clear_helper_retaddr();
891     return ret;
892 }
893 
894 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
895 {
896     int ret;
897 
898     set_helper_retaddr(retaddr);
899     ret = cpu_ldsb_data(env, ptr);
900     clear_helper_retaddr();
901     return ret;
902 }
903 
904 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
905 {
906     uint32_t ret;
907 
908     set_helper_retaddr(retaddr);
909     ret = cpu_lduw_be_data(env, ptr);
910     clear_helper_retaddr();
911     return ret;
912 }
913 
914 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
915 {
916     int ret;
917 
918     set_helper_retaddr(retaddr);
919     ret = cpu_ldsw_be_data(env, ptr);
920     clear_helper_retaddr();
921     return ret;
922 }
923 
924 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
925 {
926     uint32_t ret;
927 
928     set_helper_retaddr(retaddr);
929     ret = cpu_ldl_be_data(env, ptr);
930     clear_helper_retaddr();
931     return ret;
932 }
933 
934 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
935 {
936     uint64_t ret;
937 
938     set_helper_retaddr(retaddr);
939     ret = cpu_ldq_be_data(env, ptr);
940     clear_helper_retaddr();
941     return ret;
942 }
943 
944 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
945 {
946     uint32_t ret;
947 
948     set_helper_retaddr(retaddr);
949     ret = cpu_lduw_le_data(env, ptr);
950     clear_helper_retaddr();
951     return ret;
952 }
953 
954 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
955 {
956     int ret;
957 
958     set_helper_retaddr(retaddr);
959     ret = cpu_ldsw_le_data(env, ptr);
960     clear_helper_retaddr();
961     return ret;
962 }
963 
964 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
965 {
966     uint32_t ret;
967 
968     set_helper_retaddr(retaddr);
969     ret = cpu_ldl_le_data(env, ptr);
970     clear_helper_retaddr();
971     return ret;
972 }
973 
974 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
975 {
976     uint64_t ret;
977 
978     set_helper_retaddr(retaddr);
979     ret = cpu_ldq_le_data(env, ptr);
980     clear_helper_retaddr();
981     return ret;
982 }
983 
984 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
985 {
986     uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true);
987 
988     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
989     stb_p(g2h(ptr), val);
990     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
991 }
992 
993 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
994 {
995     uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true);
996 
997     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
998     stw_be_p(g2h(ptr), val);
999     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1000 }
1001 
1002 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1003 {
1004     uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true);
1005 
1006     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1007     stl_be_p(g2h(ptr), val);
1008     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1009 }
1010 
1011 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1012 {
1013     uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true);
1014 
1015     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1016     stq_be_p(g2h(ptr), val);
1017     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1018 }
1019 
1020 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1021 {
1022     uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true);
1023 
1024     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1025     stw_le_p(g2h(ptr), val);
1026     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1027 }
1028 
1029 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1030 {
1031     uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true);
1032 
1033     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1034     stl_le_p(g2h(ptr), val);
1035     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1036 }
1037 
1038 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1039 {
1040     uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true);
1041 
1042     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1043     stq_le_p(g2h(ptr), val);
1044     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1045 }
1046 
1047 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
1048                      uint32_t val, uintptr_t retaddr)
1049 {
1050     set_helper_retaddr(retaddr);
1051     cpu_stb_data(env, ptr, val);
1052     clear_helper_retaddr();
1053 }
1054 
1055 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
1056                         uint32_t val, uintptr_t retaddr)
1057 {
1058     set_helper_retaddr(retaddr);
1059     cpu_stw_be_data(env, ptr, val);
1060     clear_helper_retaddr();
1061 }
1062 
1063 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
1064                         uint32_t val, uintptr_t retaddr)
1065 {
1066     set_helper_retaddr(retaddr);
1067     cpu_stl_be_data(env, ptr, val);
1068     clear_helper_retaddr();
1069 }
1070 
1071 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
1072                         uint64_t val, uintptr_t retaddr)
1073 {
1074     set_helper_retaddr(retaddr);
1075     cpu_stq_be_data(env, ptr, val);
1076     clear_helper_retaddr();
1077 }
1078 
1079 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
1080                         uint32_t val, uintptr_t retaddr)
1081 {
1082     set_helper_retaddr(retaddr);
1083     cpu_stw_le_data(env, ptr, val);
1084     clear_helper_retaddr();
1085 }
1086 
1087 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
1088                         uint32_t val, uintptr_t retaddr)
1089 {
1090     set_helper_retaddr(retaddr);
1091     cpu_stl_le_data(env, ptr, val);
1092     clear_helper_retaddr();
1093 }
1094 
1095 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
1096                         uint64_t val, uintptr_t retaddr)
1097 {
1098     set_helper_retaddr(retaddr);
1099     cpu_stq_le_data(env, ptr, val);
1100     clear_helper_retaddr();
1101 }
1102 
1103 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1104 {
1105     uint32_t ret;
1106 
1107     set_helper_retaddr(1);
1108     ret = ldub_p(g2h(ptr));
1109     clear_helper_retaddr();
1110     return ret;
1111 }
1112 
1113 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1114 {
1115     uint32_t ret;
1116 
1117     set_helper_retaddr(1);
1118     ret = lduw_p(g2h(ptr));
1119     clear_helper_retaddr();
1120     return ret;
1121 }
1122 
1123 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1124 {
1125     uint32_t ret;
1126 
1127     set_helper_retaddr(1);
1128     ret = ldl_p(g2h(ptr));
1129     clear_helper_retaddr();
1130     return ret;
1131 }
1132 
1133 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1134 {
1135     uint64_t ret;
1136 
1137     set_helper_retaddr(1);
1138     ret = ldq_p(g2h(ptr));
1139     clear_helper_retaddr();
1140     return ret;
1141 }
1142 
1143 /* Do not allow unaligned operations to proceed.  Return the host address.  */
1144 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1145                                int size, uintptr_t retaddr)
1146 {
1147     /* Enforce qemu required alignment.  */
1148     if (unlikely(addr & (size - 1))) {
1149         cpu_loop_exit_atomic(env_cpu(env), retaddr);
1150     }
1151     void *ret = g2h(addr);
1152     set_helper_retaddr(retaddr);
1153     return ret;
1154 }
1155 
1156 /* Macro to call the above, with local variables from the use context.  */
1157 #define ATOMIC_MMU_DECLS do {} while (0)
1158 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC())
1159 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1160 #define ATOMIC_MMU_IDX MMU_USER_IDX
1161 
1162 #define ATOMIC_NAME(X)   HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1163 #define EXTRA_ARGS
1164 
1165 #include "atomic_common.inc.c"
1166 
1167 #define DATA_SIZE 1
1168 #include "atomic_template.h"
1169 
1170 #define DATA_SIZE 2
1171 #include "atomic_template.h"
1172 
1173 #define DATA_SIZE 4
1174 #include "atomic_template.h"
1175 
1176 #ifdef CONFIG_ATOMIC64
1177 #define DATA_SIZE 8
1178 #include "atomic_template.h"
1179 #endif
1180 
1181 /* The following is only callable from other helpers, and matches up
1182    with the softmmu version.  */
1183 
1184 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
1185 
1186 #undef EXTRA_ARGS
1187 #undef ATOMIC_NAME
1188 #undef ATOMIC_MMU_LOOKUP
1189 
1190 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
1191 #define ATOMIC_NAME(X) \
1192     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1193 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr)
1194 
1195 #define DATA_SIZE 16
1196 #include "atomic_template.h"
1197 #endif
1198