xref: /openbmc/qemu/accel/tcg/user-exec.c (revision 7c08eefc)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "qemu/rcu.h"
26 #include "exec/cpu_ldst.h"
27 #include "qemu/main-loop.h"
28 #include "exec/translate-all.h"
29 #include "exec/page-protection.h"
30 #include "exec/helper-proto.h"
31 #include "qemu/atomic128.h"
32 #include "trace/trace-root.h"
33 #include "tcg/tcg-ldst.h"
34 #include "internal-common.h"
35 #include "internal-target.h"
36 #include "user-retaddr.h"
37 
38 __thread uintptr_t helper_retaddr;
39 
40 //#define DEBUG_SIGNAL
41 
42 void cpu_interrupt(CPUState *cpu, int mask)
43 {
44     g_assert(bql_locked());
45     cpu->interrupt_request |= mask;
46     qatomic_set(&cpu->neg.icount_decr.u16.high, -1);
47 }
48 
49 /*
50  * Adjust the pc to pass to cpu_restore_state; return the memop type.
51  */
52 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
53 {
54     switch (helper_retaddr) {
55     default:
56         /*
57          * Fault during host memory operation within a helper function.
58          * The helper's host return address, saved here, gives us a
59          * pointer into the generated code that will unwind to the
60          * correct guest pc.
61          */
62         *pc = helper_retaddr;
63         break;
64 
65     case 0:
66         /*
67          * Fault during host memory operation within generated code.
68          * (Or, a unrelated bug within qemu, but we can't tell from here).
69          *
70          * We take the host pc from the signal frame.  However, we cannot
71          * use that value directly.  Within cpu_restore_state_from_tb, we
72          * assume PC comes from GETPC(), as used by the helper functions,
73          * so we adjust the address by -GETPC_ADJ to form an address that
74          * is within the call insn, so that the address does not accidentally
75          * match the beginning of the next guest insn.  However, when the
76          * pc comes from the signal frame it points to the actual faulting
77          * host memory insn and not the return from a call insn.
78          *
79          * Therefore, adjust to compensate for what will be done later
80          * by cpu_restore_state_from_tb.
81          */
82         *pc += GETPC_ADJ;
83         break;
84 
85     case 1:
86         /*
87          * Fault during host read for translation, or loosely, "execution".
88          *
89          * The guest pc is already pointing to the start of the TB for which
90          * code is being generated.  If the guest translator manages the
91          * page crossings correctly, this is exactly the correct address
92          * (and if the translator doesn't handle page boundaries correctly
93          * there's little we can do about that here).  Therefore, do not
94          * trigger the unwinder.
95          */
96         *pc = 0;
97         return MMU_INST_FETCH;
98     }
99 
100     return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
101 }
102 
103 /**
104  * handle_sigsegv_accerr_write:
105  * @cpu: the cpu context
106  * @old_set: the sigset_t from the signal ucontext_t
107  * @host_pc: the host pc, adjusted for the signal
108  * @guest_addr: the guest address of the fault
109  *
110  * Return true if the write fault has been handled, and should be re-tried.
111  *
112  * Note that it is important that we don't call page_unprotect() unless
113  * this is really a "write to nonwritable page" fault, because
114  * page_unprotect() assumes that if it is called for an access to
115  * a page that's writable this means we had two threads racing and
116  * another thread got there first and already made the page writable;
117  * so we will retry the access. If we were to call page_unprotect()
118  * for some other kind of fault that should really be passed to the
119  * guest, we'd end up in an infinite loop of retrying the faulting access.
120  */
121 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
122                                  uintptr_t host_pc, abi_ptr guest_addr)
123 {
124     switch (page_unprotect(guest_addr, host_pc)) {
125     case 0:
126         /*
127          * Fault not caused by a page marked unwritable to protect
128          * cached translations, must be the guest binary's problem.
129          */
130         return false;
131     case 1:
132         /*
133          * Fault caused by protection of cached translation; TBs
134          * invalidated, so resume execution.
135          */
136         return true;
137     case 2:
138         /*
139          * Fault caused by protection of cached translation, and the
140          * currently executing TB was modified and must be exited immediately.
141          */
142         sigprocmask(SIG_SETMASK, old_set, NULL);
143         cpu_loop_exit_noexc(cpu);
144         /* NORETURN */
145     default:
146         g_assert_not_reached();
147     }
148 }
149 
150 typedef struct PageFlagsNode {
151     struct rcu_head rcu;
152     IntervalTreeNode itree;
153     int flags;
154 } PageFlagsNode;
155 
156 static IntervalTreeRoot pageflags_root;
157 
158 static PageFlagsNode *pageflags_find(target_ulong start, target_ulong last)
159 {
160     IntervalTreeNode *n;
161 
162     n = interval_tree_iter_first(&pageflags_root, start, last);
163     return n ? container_of(n, PageFlagsNode, itree) : NULL;
164 }
165 
166 static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
167                                      target_ulong last)
168 {
169     IntervalTreeNode *n;
170 
171     n = interval_tree_iter_next(&p->itree, start, last);
172     return n ? container_of(n, PageFlagsNode, itree) : NULL;
173 }
174 
175 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
176 {
177     IntervalTreeNode *n;
178     int rc = 0;
179 
180     mmap_lock();
181     for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
182          n != NULL;
183          n = interval_tree_iter_next(n, 0, -1)) {
184         PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
185 
186         rc = fn(priv, n->start, n->last + 1, p->flags);
187         if (rc != 0) {
188             break;
189         }
190     }
191     mmap_unlock();
192 
193     return rc;
194 }
195 
196 static int dump_region(void *priv, target_ulong start,
197                        target_ulong end, unsigned long prot)
198 {
199     FILE *f = (FILE *)priv;
200 
201     fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
202             start, end, end - start,
203             ((prot & PAGE_READ) ? 'r' : '-'),
204             ((prot & PAGE_WRITE) ? 'w' : '-'),
205             ((prot & PAGE_EXEC) ? 'x' : '-'));
206     return 0;
207 }
208 
209 /* dump memory mappings */
210 void page_dump(FILE *f)
211 {
212     const int length = sizeof(target_ulong) * 2;
213 
214     fprintf(f, "%-*s %-*s %-*s %s\n",
215             length, "start", length, "end", length, "size", "prot");
216     walk_memory_regions(f, dump_region);
217 }
218 
219 int page_get_flags(target_ulong address)
220 {
221     PageFlagsNode *p = pageflags_find(address, address);
222 
223     /*
224      * See util/interval-tree.c re lockless lookups: no false positives but
225      * there are false negatives.  If we find nothing, retry with the mmap
226      * lock acquired.
227      */
228     if (p) {
229         return p->flags;
230     }
231     if (have_mmap_lock()) {
232         return 0;
233     }
234 
235     mmap_lock();
236     p = pageflags_find(address, address);
237     mmap_unlock();
238     return p ? p->flags : 0;
239 }
240 
241 /* A subroutine of page_set_flags: insert a new node for [start,last]. */
242 static void pageflags_create(target_ulong start, target_ulong last, int flags)
243 {
244     PageFlagsNode *p = g_new(PageFlagsNode, 1);
245 
246     p->itree.start = start;
247     p->itree.last = last;
248     p->flags = flags;
249     interval_tree_insert(&p->itree, &pageflags_root);
250 }
251 
252 /* A subroutine of page_set_flags: remove everything in [start,last]. */
253 static bool pageflags_unset(target_ulong start, target_ulong last)
254 {
255     bool inval_tb = false;
256 
257     while (true) {
258         PageFlagsNode *p = pageflags_find(start, last);
259         target_ulong p_last;
260 
261         if (!p) {
262             break;
263         }
264 
265         if (p->flags & PAGE_EXEC) {
266             inval_tb = true;
267         }
268 
269         interval_tree_remove(&p->itree, &pageflags_root);
270         p_last = p->itree.last;
271 
272         if (p->itree.start < start) {
273             /* Truncate the node from the end, or split out the middle. */
274             p->itree.last = start - 1;
275             interval_tree_insert(&p->itree, &pageflags_root);
276             if (last < p_last) {
277                 pageflags_create(last + 1, p_last, p->flags);
278                 break;
279             }
280         } else if (p_last <= last) {
281             /* Range completely covers node -- remove it. */
282             g_free_rcu(p, rcu);
283         } else {
284             /* Truncate the node from the start. */
285             p->itree.start = last + 1;
286             interval_tree_insert(&p->itree, &pageflags_root);
287             break;
288         }
289     }
290 
291     return inval_tb;
292 }
293 
294 /*
295  * A subroutine of page_set_flags: nothing overlaps [start,last],
296  * but check adjacent mappings and maybe merge into a single range.
297  */
298 static void pageflags_create_merge(target_ulong start, target_ulong last,
299                                    int flags)
300 {
301     PageFlagsNode *next = NULL, *prev = NULL;
302 
303     if (start > 0) {
304         prev = pageflags_find(start - 1, start - 1);
305         if (prev) {
306             if (prev->flags == flags) {
307                 interval_tree_remove(&prev->itree, &pageflags_root);
308             } else {
309                 prev = NULL;
310             }
311         }
312     }
313     if (last + 1 != 0) {
314         next = pageflags_find(last + 1, last + 1);
315         if (next) {
316             if (next->flags == flags) {
317                 interval_tree_remove(&next->itree, &pageflags_root);
318             } else {
319                 next = NULL;
320             }
321         }
322     }
323 
324     if (prev) {
325         if (next) {
326             prev->itree.last = next->itree.last;
327             g_free_rcu(next, rcu);
328         } else {
329             prev->itree.last = last;
330         }
331         interval_tree_insert(&prev->itree, &pageflags_root);
332     } else if (next) {
333         next->itree.start = start;
334         interval_tree_insert(&next->itree, &pageflags_root);
335     } else {
336         pageflags_create(start, last, flags);
337     }
338 }
339 
340 /*
341  * Allow the target to decide if PAGE_TARGET_[12] may be reset.
342  * By default, they are not kept.
343  */
344 #ifndef PAGE_TARGET_STICKY
345 #define PAGE_TARGET_STICKY  0
346 #endif
347 #define PAGE_STICKY  (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
348 
349 /* A subroutine of page_set_flags: add flags to [start,last]. */
350 static bool pageflags_set_clear(target_ulong start, target_ulong last,
351                                 int set_flags, int clear_flags)
352 {
353     PageFlagsNode *p;
354     target_ulong p_start, p_last;
355     int p_flags, merge_flags;
356     bool inval_tb = false;
357 
358  restart:
359     p = pageflags_find(start, last);
360     if (!p) {
361         if (set_flags) {
362             pageflags_create_merge(start, last, set_flags);
363         }
364         goto done;
365     }
366 
367     p_start = p->itree.start;
368     p_last = p->itree.last;
369     p_flags = p->flags;
370     /* Using mprotect on a page does not change sticky bits. */
371     merge_flags = (p_flags & ~clear_flags) | set_flags;
372 
373     /*
374      * Need to flush if an overlapping executable region
375      * removes exec, or adds write.
376      */
377     if ((p_flags & PAGE_EXEC)
378         && (!(merge_flags & PAGE_EXEC)
379             || (merge_flags & ~p_flags & PAGE_WRITE))) {
380         inval_tb = true;
381     }
382 
383     /*
384      * If there is an exact range match, update and return without
385      * attempting to merge with adjacent regions.
386      */
387     if (start == p_start && last == p_last) {
388         if (merge_flags) {
389             p->flags = merge_flags;
390         } else {
391             interval_tree_remove(&p->itree, &pageflags_root);
392             g_free_rcu(p, rcu);
393         }
394         goto done;
395     }
396 
397     /*
398      * If sticky bits affect the original mapping, then we must be more
399      * careful about the existing intervals and the separate flags.
400      */
401     if (set_flags != merge_flags) {
402         if (p_start < start) {
403             interval_tree_remove(&p->itree, &pageflags_root);
404             p->itree.last = start - 1;
405             interval_tree_insert(&p->itree, &pageflags_root);
406 
407             if (last < p_last) {
408                 if (merge_flags) {
409                     pageflags_create(start, last, merge_flags);
410                 }
411                 pageflags_create(last + 1, p_last, p_flags);
412             } else {
413                 if (merge_flags) {
414                     pageflags_create(start, p_last, merge_flags);
415                 }
416                 if (p_last < last) {
417                     start = p_last + 1;
418                     goto restart;
419                 }
420             }
421         } else {
422             if (start < p_start && set_flags) {
423                 pageflags_create(start, p_start - 1, set_flags);
424             }
425             if (last < p_last) {
426                 interval_tree_remove(&p->itree, &pageflags_root);
427                 p->itree.start = last + 1;
428                 interval_tree_insert(&p->itree, &pageflags_root);
429                 if (merge_flags) {
430                     pageflags_create(start, last, merge_flags);
431                 }
432             } else {
433                 if (merge_flags) {
434                     p->flags = merge_flags;
435                 } else {
436                     interval_tree_remove(&p->itree, &pageflags_root);
437                     g_free_rcu(p, rcu);
438                 }
439                 if (p_last < last) {
440                     start = p_last + 1;
441                     goto restart;
442                 }
443             }
444         }
445         goto done;
446     }
447 
448     /* If flags are not changing for this range, incorporate it. */
449     if (set_flags == p_flags) {
450         if (start < p_start) {
451             interval_tree_remove(&p->itree, &pageflags_root);
452             p->itree.start = start;
453             interval_tree_insert(&p->itree, &pageflags_root);
454         }
455         if (p_last < last) {
456             start = p_last + 1;
457             goto restart;
458         }
459         goto done;
460     }
461 
462     /* Maybe split out head and/or tail ranges with the original flags. */
463     interval_tree_remove(&p->itree, &pageflags_root);
464     if (p_start < start) {
465         p->itree.last = start - 1;
466         interval_tree_insert(&p->itree, &pageflags_root);
467 
468         if (p_last < last) {
469             goto restart;
470         }
471         if (last < p_last) {
472             pageflags_create(last + 1, p_last, p_flags);
473         }
474     } else if (last < p_last) {
475         p->itree.start = last + 1;
476         interval_tree_insert(&p->itree, &pageflags_root);
477     } else {
478         g_free_rcu(p, rcu);
479         goto restart;
480     }
481     if (set_flags) {
482         pageflags_create(start, last, set_flags);
483     }
484 
485  done:
486     return inval_tb;
487 }
488 
489 /*
490  * Modify the flags of a page and invalidate the code if necessary.
491  * The flag PAGE_WRITE_ORG is positioned automatically depending
492  * on PAGE_WRITE.  The mmap_lock should already be held.
493  */
494 void page_set_flags(target_ulong start, target_ulong last, int flags)
495 {
496     bool reset = false;
497     bool inval_tb = false;
498 
499     /* This function should never be called with addresses outside the
500        guest address space.  If this assert fires, it probably indicates
501        a missing call to h2g_valid.  */
502     assert(start <= last);
503     assert(last <= GUEST_ADDR_MAX);
504     /* Only set PAGE_ANON with new mappings. */
505     assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
506     assert_memory_lock();
507 
508     start &= TARGET_PAGE_MASK;
509     last |= ~TARGET_PAGE_MASK;
510 
511     if (!(flags & PAGE_VALID)) {
512         flags = 0;
513     } else {
514         reset = flags & PAGE_RESET;
515         flags &= ~PAGE_RESET;
516         if (flags & PAGE_WRITE) {
517             flags |= PAGE_WRITE_ORG;
518         }
519     }
520 
521     if (!flags || reset) {
522         page_reset_target_data(start, last);
523         inval_tb |= pageflags_unset(start, last);
524     }
525     if (flags) {
526         inval_tb |= pageflags_set_clear(start, last, flags,
527                                         ~(reset ? 0 : PAGE_STICKY));
528     }
529     if (inval_tb) {
530         tb_invalidate_phys_range(start, last);
531     }
532 }
533 
534 bool page_check_range(target_ulong start, target_ulong len, int flags)
535 {
536     target_ulong last;
537     int locked;  /* tri-state: =0: unlocked, +1: global, -1: local */
538     bool ret;
539 
540     if (len == 0) {
541         return true;  /* trivial length */
542     }
543 
544     last = start + len - 1;
545     if (last < start) {
546         return false; /* wrap around */
547     }
548 
549     locked = have_mmap_lock();
550     while (true) {
551         PageFlagsNode *p = pageflags_find(start, last);
552         int missing;
553 
554         if (!p) {
555             if (!locked) {
556                 /*
557                  * Lockless lookups have false negatives.
558                  * Retry with the lock held.
559                  */
560                 mmap_lock();
561                 locked = -1;
562                 p = pageflags_find(start, last);
563             }
564             if (!p) {
565                 ret = false; /* entire region invalid */
566                 break;
567             }
568         }
569         if (start < p->itree.start) {
570             ret = false; /* initial bytes invalid */
571             break;
572         }
573 
574         missing = flags & ~p->flags;
575         if (missing & ~PAGE_WRITE) {
576             ret = false; /* page doesn't match */
577             break;
578         }
579         if (missing & PAGE_WRITE) {
580             if (!(p->flags & PAGE_WRITE_ORG)) {
581                 ret = false; /* page not writable */
582                 break;
583             }
584             /* Asking about writable, but has been protected: undo. */
585             if (!page_unprotect(start, 0)) {
586                 ret = false;
587                 break;
588             }
589             /* TODO: page_unprotect should take a range, not a single page. */
590             if (last - start < TARGET_PAGE_SIZE) {
591                 ret = true; /* ok */
592                 break;
593             }
594             start += TARGET_PAGE_SIZE;
595             continue;
596         }
597 
598         if (last <= p->itree.last) {
599             ret = true; /* ok */
600             break;
601         }
602         start = p->itree.last + 1;
603     }
604 
605     /* Release the lock if acquired locally. */
606     if (locked < 0) {
607         mmap_unlock();
608     }
609     return ret;
610 }
611 
612 bool page_check_range_empty(target_ulong start, target_ulong last)
613 {
614     assert(last >= start);
615     assert_memory_lock();
616     return pageflags_find(start, last) == NULL;
617 }
618 
619 target_ulong page_find_range_empty(target_ulong min, target_ulong max,
620                                    target_ulong len, target_ulong align)
621 {
622     target_ulong len_m1, align_m1;
623 
624     assert(min <= max);
625     assert(max <= GUEST_ADDR_MAX);
626     assert(len != 0);
627     assert(is_power_of_2(align));
628     assert_memory_lock();
629 
630     len_m1 = len - 1;
631     align_m1 = align - 1;
632 
633     /* Iteratively narrow the search region. */
634     while (1) {
635         PageFlagsNode *p;
636 
637         /* Align min and double-check there's enough space remaining. */
638         min = (min + align_m1) & ~align_m1;
639         if (min > max) {
640             return -1;
641         }
642         if (len_m1 > max - min) {
643             return -1;
644         }
645 
646         p = pageflags_find(min, min + len_m1);
647         if (p == NULL) {
648             /* Found! */
649             return min;
650         }
651         if (max <= p->itree.last) {
652             /* Existing allocation fills the remainder of the search region. */
653             return -1;
654         }
655         /* Skip across existing allocation. */
656         min = p->itree.last + 1;
657     }
658 }
659 
660 void page_protect(tb_page_addr_t address)
661 {
662     PageFlagsNode *p;
663     target_ulong start, last;
664     int host_page_size = qemu_real_host_page_size();
665     int prot;
666 
667     assert_memory_lock();
668 
669     if (host_page_size <= TARGET_PAGE_SIZE) {
670         start = address & TARGET_PAGE_MASK;
671         last = start + TARGET_PAGE_SIZE - 1;
672     } else {
673         start = address & -host_page_size;
674         last = start + host_page_size - 1;
675     }
676 
677     p = pageflags_find(start, last);
678     if (!p) {
679         return;
680     }
681     prot = p->flags;
682 
683     if (unlikely(p->itree.last < last)) {
684         /* More than one protection region covers the one host page. */
685         assert(TARGET_PAGE_SIZE < host_page_size);
686         while ((p = pageflags_next(p, start, last)) != NULL) {
687             prot |= p->flags;
688         }
689     }
690 
691     if (prot & PAGE_WRITE) {
692         pageflags_set_clear(start, last, 0, PAGE_WRITE);
693         mprotect(g2h_untagged(start), last - start + 1,
694                  prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
695     }
696 }
697 
698 /*
699  * Called from signal handler: invalidate the code and unprotect the
700  * page. Return 0 if the fault was not handled, 1 if it was handled,
701  * and 2 if it was handled but the caller must cause the TB to be
702  * immediately exited. (We can only return 2 if the 'pc' argument is
703  * non-zero.)
704  */
705 int page_unprotect(target_ulong address, uintptr_t pc)
706 {
707     PageFlagsNode *p;
708     bool current_tb_invalidated;
709 
710     /*
711      * Technically this isn't safe inside a signal handler.  However we
712      * know this only ever happens in a synchronous SEGV handler, so in
713      * practice it seems to be ok.
714      */
715     mmap_lock();
716 
717     p = pageflags_find(address, address);
718 
719     /* If this address was not really writable, nothing to do. */
720     if (!p || !(p->flags & PAGE_WRITE_ORG)) {
721         mmap_unlock();
722         return 0;
723     }
724 
725     current_tb_invalidated = false;
726     if (p->flags & PAGE_WRITE) {
727         /*
728          * If the page is actually marked WRITE then assume this is because
729          * this thread raced with another one which got here first and
730          * set the page to PAGE_WRITE and did the TB invalidate for us.
731          */
732 #ifdef TARGET_HAS_PRECISE_SMC
733         TranslationBlock *current_tb = tcg_tb_lookup(pc);
734         if (current_tb) {
735             current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
736         }
737 #endif
738     } else {
739         int host_page_size = qemu_real_host_page_size();
740         target_ulong start, len, i;
741         int prot;
742 
743         if (host_page_size <= TARGET_PAGE_SIZE) {
744             start = address & TARGET_PAGE_MASK;
745             len = TARGET_PAGE_SIZE;
746             prot = p->flags | PAGE_WRITE;
747             pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
748             current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
749         } else {
750             start = address & -host_page_size;
751             len = host_page_size;
752             prot = 0;
753 
754             for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
755                 target_ulong addr = start + i;
756 
757                 p = pageflags_find(addr, addr);
758                 if (p) {
759                     prot |= p->flags;
760                     if (p->flags & PAGE_WRITE_ORG) {
761                         prot |= PAGE_WRITE;
762                         pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
763                                             PAGE_WRITE, 0);
764                     }
765                 }
766                 /*
767                  * Since the content will be modified, we must invalidate
768                  * the corresponding translated code.
769                  */
770                 current_tb_invalidated |=
771                     tb_invalidate_phys_page_unwind(addr, pc);
772             }
773         }
774         if (prot & PAGE_EXEC) {
775             prot = (prot & ~PAGE_EXEC) | PAGE_READ;
776         }
777         mprotect((void *)g2h_untagged(start), len, prot & PAGE_RWX);
778     }
779     mmap_unlock();
780 
781     /* If current TB was invalidated return to main loop */
782     return current_tb_invalidated ? 2 : 1;
783 }
784 
785 static int probe_access_internal(CPUArchState *env, vaddr addr,
786                                  int fault_size, MMUAccessType access_type,
787                                  bool nonfault, uintptr_t ra)
788 {
789     int acc_flag;
790     bool maperr;
791 
792     switch (access_type) {
793     case MMU_DATA_STORE:
794         acc_flag = PAGE_WRITE_ORG;
795         break;
796     case MMU_DATA_LOAD:
797         acc_flag = PAGE_READ;
798         break;
799     case MMU_INST_FETCH:
800         acc_flag = PAGE_EXEC;
801         break;
802     default:
803         g_assert_not_reached();
804     }
805 
806     if (guest_addr_valid_untagged(addr)) {
807         int page_flags = page_get_flags(addr);
808         if (page_flags & acc_flag) {
809             if ((acc_flag == PAGE_READ || acc_flag == PAGE_WRITE)
810                 && cpu_plugin_mem_cbs_enabled(env_cpu(env))) {
811                 return TLB_MMIO;
812             }
813             return 0; /* success */
814         }
815         maperr = !(page_flags & PAGE_VALID);
816     } else {
817         maperr = true;
818     }
819 
820     if (nonfault) {
821         return TLB_INVALID_MASK;
822     }
823 
824     cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
825 }
826 
827 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
828                        MMUAccessType access_type, int mmu_idx,
829                        bool nonfault, void **phost, uintptr_t ra)
830 {
831     int flags;
832 
833     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
834     flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
835     *phost = (flags & TLB_INVALID_MASK) ? NULL : g2h(env_cpu(env), addr);
836     return flags;
837 }
838 
839 void *probe_access(CPUArchState *env, vaddr addr, int size,
840                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
841 {
842     int flags;
843 
844     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
845     flags = probe_access_internal(env, addr, size, access_type, false, ra);
846     g_assert((flags & ~TLB_MMIO) == 0);
847 
848     return size ? g2h(env_cpu(env), addr) : NULL;
849 }
850 
851 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
852                                         void **hostp)
853 {
854     int flags;
855 
856     flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
857     g_assert(flags == 0);
858 
859     if (hostp) {
860         *hostp = g2h_untagged(addr);
861     }
862     return addr;
863 }
864 
865 #ifdef TARGET_PAGE_DATA_SIZE
866 /*
867  * Allocate chunks of target data together.  For the only current user,
868  * if we allocate one hunk per page, we have overhead of 40/128 or 40%.
869  * Therefore, allocate memory for 64 pages at a time for overhead < 1%.
870  */
871 #define TPD_PAGES  64
872 #define TBD_MASK   (TARGET_PAGE_MASK * TPD_PAGES)
873 
874 typedef struct TargetPageDataNode {
875     struct rcu_head rcu;
876     IntervalTreeNode itree;
877     char data[] __attribute__((aligned));
878 } TargetPageDataNode;
879 
880 static IntervalTreeRoot targetdata_root;
881 
882 void page_reset_target_data(target_ulong start, target_ulong last)
883 {
884     IntervalTreeNode *n, *next;
885 
886     assert_memory_lock();
887 
888     start &= TARGET_PAGE_MASK;
889     last |= ~TARGET_PAGE_MASK;
890 
891     for (n = interval_tree_iter_first(&targetdata_root, start, last),
892          next = n ? interval_tree_iter_next(n, start, last) : NULL;
893          n != NULL;
894          n = next,
895          next = next ? interval_tree_iter_next(n, start, last) : NULL) {
896         target_ulong n_start, n_last, p_ofs, p_len;
897         TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
898 
899         if (n->start >= start && n->last <= last) {
900             interval_tree_remove(n, &targetdata_root);
901             g_free_rcu(t, rcu);
902             continue;
903         }
904 
905         if (n->start < start) {
906             n_start = start;
907             p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
908         } else {
909             n_start = n->start;
910             p_ofs = 0;
911         }
912         n_last = MIN(last, n->last);
913         p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
914 
915         memset(t->data + p_ofs * TARGET_PAGE_DATA_SIZE, 0,
916                p_len * TARGET_PAGE_DATA_SIZE);
917     }
918 }
919 
920 void *page_get_target_data(target_ulong address)
921 {
922     IntervalTreeNode *n;
923     TargetPageDataNode *t;
924     target_ulong page, region, p_ofs;
925 
926     page = address & TARGET_PAGE_MASK;
927     region = address & TBD_MASK;
928 
929     n = interval_tree_iter_first(&targetdata_root, page, page);
930     if (!n) {
931         /*
932          * See util/interval-tree.c re lockless lookups: no false positives
933          * but there are false negatives.  If we find nothing, retry with
934          * the mmap lock acquired.  We also need the lock for the
935          * allocation + insert.
936          */
937         mmap_lock();
938         n = interval_tree_iter_first(&targetdata_root, page, page);
939         if (!n) {
940             t = g_malloc0(sizeof(TargetPageDataNode)
941                           + TPD_PAGES * TARGET_PAGE_DATA_SIZE);
942             n = &t->itree;
943             n->start = region;
944             n->last = region | ~TBD_MASK;
945             interval_tree_insert(n, &targetdata_root);
946         }
947         mmap_unlock();
948     }
949 
950     t = container_of(n, TargetPageDataNode, itree);
951     p_ofs = (page - region) >> TARGET_PAGE_BITS;
952     return t->data + p_ofs * TARGET_PAGE_DATA_SIZE;
953 }
954 #else
955 void page_reset_target_data(target_ulong start, target_ulong last) { }
956 #endif /* TARGET_PAGE_DATA_SIZE */
957 
958 /* The system-mode versions of these helpers are in cputlb.c.  */
959 
960 static void *cpu_mmu_lookup(CPUState *cpu, vaddr addr,
961                             MemOp mop, uintptr_t ra, MMUAccessType type)
962 {
963     int a_bits = get_alignment_bits(mop);
964     void *ret;
965 
966     /* Enforce guest required alignment.  */
967     if (unlikely(addr & ((1 << a_bits) - 1))) {
968         cpu_loop_exit_sigbus(cpu, addr, type, ra);
969     }
970 
971     ret = g2h(cpu, addr);
972     set_helper_retaddr(ra);
973     return ret;
974 }
975 
976 #include "ldst_atomicity.c.inc"
977 
978 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
979                           uintptr_t ra, MMUAccessType access_type)
980 {
981     void *haddr;
982     uint8_t ret;
983 
984     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
985     haddr = cpu_mmu_lookup(cpu, addr, get_memop(oi), ra, access_type);
986     ret = ldub_p(haddr);
987     clear_helper_retaddr();
988     return ret;
989 }
990 
991 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
992                            uintptr_t ra, MMUAccessType access_type)
993 {
994     void *haddr;
995     uint16_t ret;
996     MemOp mop = get_memop(oi);
997 
998     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
999     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
1000     ret = load_atom_2(cpu, ra, haddr, mop);
1001     clear_helper_retaddr();
1002 
1003     if (mop & MO_BSWAP) {
1004         ret = bswap16(ret);
1005     }
1006     return ret;
1007 }
1008 
1009 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
1010                            uintptr_t ra, MMUAccessType access_type)
1011 {
1012     void *haddr;
1013     uint32_t ret;
1014     MemOp mop = get_memop(oi);
1015 
1016     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1017     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
1018     ret = load_atom_4(cpu, ra, haddr, mop);
1019     clear_helper_retaddr();
1020 
1021     if (mop & MO_BSWAP) {
1022         ret = bswap32(ret);
1023     }
1024     return ret;
1025 }
1026 
1027 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
1028                            uintptr_t ra, MMUAccessType access_type)
1029 {
1030     void *haddr;
1031     uint64_t ret;
1032     MemOp mop = get_memop(oi);
1033 
1034     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1035     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
1036     ret = load_atom_8(cpu, ra, haddr, mop);
1037     clear_helper_retaddr();
1038 
1039     if (mop & MO_BSWAP) {
1040         ret = bswap64(ret);
1041     }
1042     return ret;
1043 }
1044 
1045 static Int128 do_ld16_mmu(CPUState *cpu, abi_ptr addr,
1046                           MemOpIdx oi, uintptr_t ra)
1047 {
1048     void *haddr;
1049     Int128 ret;
1050     MemOp mop = get_memop(oi);
1051 
1052     tcg_debug_assert((mop & MO_SIZE) == MO_128);
1053     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1054     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_LOAD);
1055     ret = load_atom_16(cpu, ra, haddr, mop);
1056     clear_helper_retaddr();
1057 
1058     if (mop & MO_BSWAP) {
1059         ret = bswap128(ret);
1060     }
1061     return ret;
1062 }
1063 
1064 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
1065                        MemOpIdx oi, uintptr_t ra)
1066 {
1067     void *haddr;
1068 
1069     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1070     haddr = cpu_mmu_lookup(cpu, addr, get_memop(oi), ra, MMU_DATA_STORE);
1071     stb_p(haddr, val);
1072     clear_helper_retaddr();
1073 }
1074 
1075 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
1076                        MemOpIdx oi, uintptr_t ra)
1077 {
1078     void *haddr;
1079     MemOp mop = get_memop(oi);
1080 
1081     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1082     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1083 
1084     if (mop & MO_BSWAP) {
1085         val = bswap16(val);
1086     }
1087     store_atom_2(cpu, ra, haddr, mop, val);
1088     clear_helper_retaddr();
1089 }
1090 
1091 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
1092                        MemOpIdx oi, uintptr_t ra)
1093 {
1094     void *haddr;
1095     MemOp mop = get_memop(oi);
1096 
1097     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1098     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1099 
1100     if (mop & MO_BSWAP) {
1101         val = bswap32(val);
1102     }
1103     store_atom_4(cpu, ra, haddr, mop, val);
1104     clear_helper_retaddr();
1105 }
1106 
1107 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
1108                        MemOpIdx oi, uintptr_t ra)
1109 {
1110     void *haddr;
1111     MemOp mop = get_memop(oi);
1112 
1113     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1114     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1115 
1116     if (mop & MO_BSWAP) {
1117         val = bswap64(val);
1118     }
1119     store_atom_8(cpu, ra, haddr, mop, val);
1120     clear_helper_retaddr();
1121 }
1122 
1123 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
1124                         MemOpIdx oi, uintptr_t ra)
1125 {
1126     void *haddr;
1127     MemOpIdx mop = get_memop(oi);
1128 
1129     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1130     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1131 
1132     if (mop & MO_BSWAP) {
1133         val = bswap128(val);
1134     }
1135     store_atom_16(cpu, ra, haddr, mop, val);
1136     clear_helper_retaddr();
1137 }
1138 
1139 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1140 {
1141     uint32_t ret;
1142 
1143     set_helper_retaddr(1);
1144     ret = ldub_p(g2h_untagged(ptr));
1145     clear_helper_retaddr();
1146     return ret;
1147 }
1148 
1149 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1150 {
1151     uint32_t ret;
1152 
1153     set_helper_retaddr(1);
1154     ret = lduw_p(g2h_untagged(ptr));
1155     clear_helper_retaddr();
1156     return ret;
1157 }
1158 
1159 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1160 {
1161     uint32_t ret;
1162 
1163     set_helper_retaddr(1);
1164     ret = ldl_p(g2h_untagged(ptr));
1165     clear_helper_retaddr();
1166     return ret;
1167 }
1168 
1169 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1170 {
1171     uint64_t ret;
1172 
1173     set_helper_retaddr(1);
1174     ret = ldq_p(g2h_untagged(ptr));
1175     clear_helper_retaddr();
1176     return ret;
1177 }
1178 
1179 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
1180                          MemOpIdx oi, uintptr_t ra)
1181 {
1182     void *haddr;
1183     uint8_t ret;
1184 
1185     haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1186     ret = ldub_p(haddr);
1187     clear_helper_retaddr();
1188     return ret;
1189 }
1190 
1191 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
1192                           MemOpIdx oi, uintptr_t ra)
1193 {
1194     void *haddr;
1195     uint16_t ret;
1196 
1197     haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1198     ret = lduw_p(haddr);
1199     clear_helper_retaddr();
1200     if (get_memop(oi) & MO_BSWAP) {
1201         ret = bswap16(ret);
1202     }
1203     return ret;
1204 }
1205 
1206 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
1207                           MemOpIdx oi, uintptr_t ra)
1208 {
1209     void *haddr;
1210     uint32_t ret;
1211 
1212     haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1213     ret = ldl_p(haddr);
1214     clear_helper_retaddr();
1215     if (get_memop(oi) & MO_BSWAP) {
1216         ret = bswap32(ret);
1217     }
1218     return ret;
1219 }
1220 
1221 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
1222                           MemOpIdx oi, uintptr_t ra)
1223 {
1224     void *haddr;
1225     uint64_t ret;
1226 
1227     haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_DATA_LOAD);
1228     ret = ldq_p(haddr);
1229     clear_helper_retaddr();
1230     if (get_memop(oi) & MO_BSWAP) {
1231         ret = bswap64(ret);
1232     }
1233     return ret;
1234 }
1235 
1236 #include "ldst_common.c.inc"
1237 
1238 /*
1239  * Do not allow unaligned operations to proceed.  Return the host address.
1240  */
1241 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1242                                int size, uintptr_t retaddr)
1243 {
1244     MemOp mop = get_memop(oi);
1245     int a_bits = get_alignment_bits(mop);
1246     void *ret;
1247 
1248     /* Enforce guest required alignment.  */
1249     if (unlikely(addr & ((1 << a_bits) - 1))) {
1250         cpu_loop_exit_sigbus(cpu, addr, MMU_DATA_STORE, retaddr);
1251     }
1252 
1253     /* Enforce qemu required alignment.  */
1254     if (unlikely(addr & (size - 1))) {
1255         cpu_loop_exit_atomic(cpu, retaddr);
1256     }
1257 
1258     ret = g2h(cpu, addr);
1259     set_helper_retaddr(retaddr);
1260     return ret;
1261 }
1262 
1263 #include "atomic_common.c.inc"
1264 
1265 /*
1266  * First set of functions passes in OI and RETADDR.
1267  * This makes them callable from other helpers.
1268  */
1269 
1270 #define ATOMIC_NAME(X) \
1271     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
1272 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1273 
1274 #define DATA_SIZE 1
1275 #include "atomic_template.h"
1276 
1277 #define DATA_SIZE 2
1278 #include "atomic_template.h"
1279 
1280 #define DATA_SIZE 4
1281 #include "atomic_template.h"
1282 
1283 #ifdef CONFIG_ATOMIC64
1284 #define DATA_SIZE 8
1285 #include "atomic_template.h"
1286 #endif
1287 
1288 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
1289 #define DATA_SIZE 16
1290 #include "atomic_template.h"
1291 #endif
1292