xref: /openbmc/qemu/accel/tcg/user-exec.c (revision 78271684)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "hw/core/tcg-cpu-ops.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg/tcg.h"
25 #include "qemu/bitops.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/translate-all.h"
28 #include "exec/helper-proto.h"
29 #include "qemu/atomic128.h"
30 #include "trace/trace-root.h"
31 #include "trace/mem.h"
32 
33 #undef EAX
34 #undef ECX
35 #undef EDX
36 #undef EBX
37 #undef ESP
38 #undef EBP
39 #undef ESI
40 #undef EDI
41 #undef EIP
42 #ifdef __linux__
43 #include <sys/ucontext.h>
44 #endif
45 
46 __thread uintptr_t helper_retaddr;
47 
48 //#define DEBUG_SIGNAL
49 
50 /* exit the current TB from a signal handler. The host registers are
51    restored in a state compatible with the CPU emulator
52  */
53 static void QEMU_NORETURN cpu_exit_tb_from_sighandler(CPUState *cpu,
54                                                       sigset_t *old_set)
55 {
56     /* XXX: use siglongjmp ? */
57     sigprocmask(SIG_SETMASK, old_set, NULL);
58     cpu_loop_exit_noexc(cpu);
59 }
60 
61 /* 'pc' is the host PC at which the exception was raised. 'address' is
62    the effective address of the memory exception. 'is_write' is 1 if a
63    write caused the exception and otherwise 0'. 'old_set' is the
64    signal set which should be restored */
65 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info,
66                                     int is_write, sigset_t *old_set)
67 {
68     CPUState *cpu = current_cpu;
69     CPUClass *cc;
70     unsigned long address = (unsigned long)info->si_addr;
71     MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
72 
73     switch (helper_retaddr) {
74     default:
75         /*
76          * Fault during host memory operation within a helper function.
77          * The helper's host return address, saved here, gives us a
78          * pointer into the generated code that will unwind to the
79          * correct guest pc.
80          */
81         pc = helper_retaddr;
82         break;
83 
84     case 0:
85         /*
86          * Fault during host memory operation within generated code.
87          * (Or, a unrelated bug within qemu, but we can't tell from here).
88          *
89          * We take the host pc from the signal frame.  However, we cannot
90          * use that value directly.  Within cpu_restore_state_from_tb, we
91          * assume PC comes from GETPC(), as used by the helper functions,
92          * so we adjust the address by -GETPC_ADJ to form an address that
93          * is within the call insn, so that the address does not accidentally
94          * match the beginning of the next guest insn.  However, when the
95          * pc comes from the signal frame it points to the actual faulting
96          * host memory insn and not the return from a call insn.
97          *
98          * Therefore, adjust to compensate for what will be done later
99          * by cpu_restore_state_from_tb.
100          */
101         pc += GETPC_ADJ;
102         break;
103 
104     case 1:
105         /*
106          * Fault during host read for translation, or loosely, "execution".
107          *
108          * The guest pc is already pointing to the start of the TB for which
109          * code is being generated.  If the guest translator manages the
110          * page crossings correctly, this is exactly the correct address
111          * (and if the translator doesn't handle page boundaries correctly
112          * there's little we can do about that here).  Therefore, do not
113          * trigger the unwinder.
114          *
115          * Like tb_gen_code, release the memory lock before cpu_loop_exit.
116          */
117         pc = 0;
118         access_type = MMU_INST_FETCH;
119         mmap_unlock();
120         break;
121     }
122 
123     /* For synchronous signals we expect to be coming from the vCPU
124      * thread (so current_cpu should be valid) and either from running
125      * code or during translation which can fault as we cross pages.
126      *
127      * If neither is true then something has gone wrong and we should
128      * abort rather than try and restart the vCPU execution.
129      */
130     if (!cpu || !cpu->running) {
131         printf("qemu:%s received signal outside vCPU context @ pc=0x%"
132                PRIxPTR "\n",  __func__, pc);
133         abort();
134     }
135 
136 #if defined(DEBUG_SIGNAL)
137     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
138            pc, address, is_write, *(unsigned long *)old_set);
139 #endif
140     /* XXX: locking issue */
141     /* Note that it is important that we don't call page_unprotect() unless
142      * this is really a "write to nonwriteable page" fault, because
143      * page_unprotect() assumes that if it is called for an access to
144      * a page that's writeable this means we had two threads racing and
145      * another thread got there first and already made the page writeable;
146      * so we will retry the access. If we were to call page_unprotect()
147      * for some other kind of fault that should really be passed to the
148      * guest, we'd end up in an infinite loop of retrying the faulting
149      * access.
150      */
151     if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR &&
152         h2g_valid(address)) {
153         switch (page_unprotect(h2g(address), pc)) {
154         case 0:
155             /* Fault not caused by a page marked unwritable to protect
156              * cached translations, must be the guest binary's problem.
157              */
158             break;
159         case 1:
160             /* Fault caused by protection of cached translation; TBs
161              * invalidated, so resume execution.  Retain helper_retaddr
162              * for a possible second fault.
163              */
164             return 1;
165         case 2:
166             /* Fault caused by protection of cached translation, and the
167              * currently executing TB was modified and must be exited
168              * immediately.  Clear helper_retaddr for next execution.
169              */
170             clear_helper_retaddr();
171             cpu_exit_tb_from_sighandler(cpu, old_set);
172             /* NORETURN */
173 
174         default:
175             g_assert_not_reached();
176         }
177     }
178 
179     /* Convert forcefully to guest address space, invalid addresses
180        are still valid segv ones */
181     address = h2g_nocheck(address);
182 
183     /*
184      * There is no way the target can handle this other than raising
185      * an exception.  Undo signal and retaddr state prior to longjmp.
186      */
187     sigprocmask(SIG_SETMASK, old_set, NULL);
188     clear_helper_retaddr();
189 
190     cc = CPU_GET_CLASS(cpu);
191     cc->tcg_ops->tlb_fill(cpu, address, 0, access_type,
192                           MMU_USER_IDX, false, pc);
193     g_assert_not_reached();
194 }
195 
196 static int probe_access_internal(CPUArchState *env, target_ulong addr,
197                                  int fault_size, MMUAccessType access_type,
198                                  bool nonfault, uintptr_t ra)
199 {
200     int flags;
201 
202     switch (access_type) {
203     case MMU_DATA_STORE:
204         flags = PAGE_WRITE;
205         break;
206     case MMU_DATA_LOAD:
207         flags = PAGE_READ;
208         break;
209     case MMU_INST_FETCH:
210         flags = PAGE_EXEC;
211         break;
212     default:
213         g_assert_not_reached();
214     }
215 
216     if (!guest_addr_valid(addr) || page_check_range(addr, 1, flags) < 0) {
217         if (nonfault) {
218             return TLB_INVALID_MASK;
219         } else {
220             CPUState *cpu = env_cpu(env);
221             CPUClass *cc = CPU_GET_CLASS(cpu);
222             cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type,
223                                   MMU_USER_IDX, false, ra);
224             g_assert_not_reached();
225         }
226     }
227     return 0;
228 }
229 
230 int probe_access_flags(CPUArchState *env, target_ulong addr,
231                        MMUAccessType access_type, int mmu_idx,
232                        bool nonfault, void **phost, uintptr_t ra)
233 {
234     int flags;
235 
236     flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
237     *phost = flags ? NULL : g2h(addr);
238     return flags;
239 }
240 
241 void *probe_access(CPUArchState *env, target_ulong addr, int size,
242                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
243 {
244     int flags;
245 
246     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
247     flags = probe_access_internal(env, addr, size, access_type, false, ra);
248     g_assert(flags == 0);
249 
250     return size ? g2h(addr) : NULL;
251 }
252 
253 #if defined(__i386__)
254 
255 #if defined(__NetBSD__)
256 #include <ucontext.h>
257 
258 #define EIP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_EIP])
259 #define TRAP_sig(context)    ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
260 #define ERROR_sig(context)   ((context)->uc_mcontext.__gregs[_REG_ERR])
261 #define MASK_sig(context)    ((context)->uc_sigmask)
262 #elif defined(__FreeBSD__) || defined(__DragonFly__)
263 #include <ucontext.h>
264 
265 #define EIP_sig(context)  (*((unsigned long *)&(context)->uc_mcontext.mc_eip))
266 #define TRAP_sig(context)    ((context)->uc_mcontext.mc_trapno)
267 #define ERROR_sig(context)   ((context)->uc_mcontext.mc_err)
268 #define MASK_sig(context)    ((context)->uc_sigmask)
269 #elif defined(__OpenBSD__)
270 #define EIP_sig(context)     ((context)->sc_eip)
271 #define TRAP_sig(context)    ((context)->sc_trapno)
272 #define ERROR_sig(context)   ((context)->sc_err)
273 #define MASK_sig(context)    ((context)->sc_mask)
274 #else
275 #define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
276 #define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
277 #define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
278 #define MASK_sig(context)    ((context)->uc_sigmask)
279 #endif
280 
281 int cpu_signal_handler(int host_signum, void *pinfo,
282                        void *puc)
283 {
284     siginfo_t *info = pinfo;
285 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
286     ucontext_t *uc = puc;
287 #elif defined(__OpenBSD__)
288     struct sigcontext *uc = puc;
289 #else
290     ucontext_t *uc = puc;
291 #endif
292     unsigned long pc;
293     int trapno;
294 
295 #ifndef REG_EIP
296 /* for glibc 2.1 */
297 #define REG_EIP    EIP
298 #define REG_ERR    ERR
299 #define REG_TRAPNO TRAPNO
300 #endif
301     pc = EIP_sig(uc);
302     trapno = TRAP_sig(uc);
303     return handle_cpu_signal(pc, info,
304                              trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
305                              &MASK_sig(uc));
306 }
307 
308 #elif defined(__x86_64__)
309 
310 #ifdef __NetBSD__
311 #define PC_sig(context)       _UC_MACHINE_PC(context)
312 #define TRAP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
313 #define ERROR_sig(context)    ((context)->uc_mcontext.__gregs[_REG_ERR])
314 #define MASK_sig(context)     ((context)->uc_sigmask)
315 #elif defined(__OpenBSD__)
316 #define PC_sig(context)       ((context)->sc_rip)
317 #define TRAP_sig(context)     ((context)->sc_trapno)
318 #define ERROR_sig(context)    ((context)->sc_err)
319 #define MASK_sig(context)     ((context)->sc_mask)
320 #elif defined(__FreeBSD__) || defined(__DragonFly__)
321 #include <ucontext.h>
322 
323 #define PC_sig(context)  (*((unsigned long *)&(context)->uc_mcontext.mc_rip))
324 #define TRAP_sig(context)     ((context)->uc_mcontext.mc_trapno)
325 #define ERROR_sig(context)    ((context)->uc_mcontext.mc_err)
326 #define MASK_sig(context)     ((context)->uc_sigmask)
327 #else
328 #define PC_sig(context)       ((context)->uc_mcontext.gregs[REG_RIP])
329 #define TRAP_sig(context)     ((context)->uc_mcontext.gregs[REG_TRAPNO])
330 #define ERROR_sig(context)    ((context)->uc_mcontext.gregs[REG_ERR])
331 #define MASK_sig(context)     ((context)->uc_sigmask)
332 #endif
333 
334 int cpu_signal_handler(int host_signum, void *pinfo,
335                        void *puc)
336 {
337     siginfo_t *info = pinfo;
338     unsigned long pc;
339 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
340     ucontext_t *uc = puc;
341 #elif defined(__OpenBSD__)
342     struct sigcontext *uc = puc;
343 #else
344     ucontext_t *uc = puc;
345 #endif
346 
347     pc = PC_sig(uc);
348     return handle_cpu_signal(pc, info,
349                              TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
350                              &MASK_sig(uc));
351 }
352 
353 #elif defined(_ARCH_PPC)
354 
355 /***********************************************************************
356  * signal context platform-specific definitions
357  * From Wine
358  */
359 #ifdef linux
360 /* All Registers access - only for local access */
361 #define REG_sig(reg_name, context)              \
362     ((context)->uc_mcontext.regs->reg_name)
363 /* Gpr Registers access  */
364 #define GPR_sig(reg_num, context)              REG_sig(gpr[reg_num], context)
365 /* Program counter */
366 #define IAR_sig(context)                       REG_sig(nip, context)
367 /* Machine State Register (Supervisor) */
368 #define MSR_sig(context)                       REG_sig(msr, context)
369 /* Count register */
370 #define CTR_sig(context)                       REG_sig(ctr, context)
371 /* User's integer exception register */
372 #define XER_sig(context)                       REG_sig(xer, context)
373 /* Link register */
374 #define LR_sig(context)                        REG_sig(link, context)
375 /* Condition register */
376 #define CR_sig(context)                        REG_sig(ccr, context)
377 
378 /* Float Registers access  */
379 #define FLOAT_sig(reg_num, context)                                     \
380     (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num])
381 #define FPSCR_sig(context) \
382     (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4)))
383 /* Exception Registers access */
384 #define DAR_sig(context)                       REG_sig(dar, context)
385 #define DSISR_sig(context)                     REG_sig(dsisr, context)
386 #define TRAP_sig(context)                      REG_sig(trap, context)
387 #endif /* linux */
388 
389 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
390 #include <ucontext.h>
391 #define IAR_sig(context)               ((context)->uc_mcontext.mc_srr0)
392 #define MSR_sig(context)               ((context)->uc_mcontext.mc_srr1)
393 #define CTR_sig(context)               ((context)->uc_mcontext.mc_ctr)
394 #define XER_sig(context)               ((context)->uc_mcontext.mc_xer)
395 #define LR_sig(context)                ((context)->uc_mcontext.mc_lr)
396 #define CR_sig(context)                ((context)->uc_mcontext.mc_cr)
397 /* Exception Registers access */
398 #define DAR_sig(context)               ((context)->uc_mcontext.mc_dar)
399 #define DSISR_sig(context)             ((context)->uc_mcontext.mc_dsisr)
400 #define TRAP_sig(context)              ((context)->uc_mcontext.mc_exc)
401 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
402 
403 int cpu_signal_handler(int host_signum, void *pinfo,
404                        void *puc)
405 {
406     siginfo_t *info = pinfo;
407 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
408     ucontext_t *uc = puc;
409 #else
410     ucontext_t *uc = puc;
411 #endif
412     unsigned long pc;
413     int is_write;
414 
415     pc = IAR_sig(uc);
416     is_write = 0;
417 #if 0
418     /* ppc 4xx case */
419     if (DSISR_sig(uc) & 0x00800000) {
420         is_write = 1;
421     }
422 #else
423     if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) {
424         is_write = 1;
425     }
426 #endif
427     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
428 }
429 
430 #elif defined(__alpha__)
431 
432 int cpu_signal_handler(int host_signum, void *pinfo,
433                            void *puc)
434 {
435     siginfo_t *info = pinfo;
436     ucontext_t *uc = puc;
437     uint32_t *pc = uc->uc_mcontext.sc_pc;
438     uint32_t insn = *pc;
439     int is_write = 0;
440 
441     /* XXX: need kernel patch to get write flag faster */
442     switch (insn >> 26) {
443     case 0x0d: /* stw */
444     case 0x0e: /* stb */
445     case 0x0f: /* stq_u */
446     case 0x24: /* stf */
447     case 0x25: /* stg */
448     case 0x26: /* sts */
449     case 0x27: /* stt */
450     case 0x2c: /* stl */
451     case 0x2d: /* stq */
452     case 0x2e: /* stl_c */
453     case 0x2f: /* stq_c */
454         is_write = 1;
455     }
456 
457     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
458 }
459 #elif defined(__sparc__)
460 
461 int cpu_signal_handler(int host_signum, void *pinfo,
462                        void *puc)
463 {
464     siginfo_t *info = pinfo;
465     int is_write;
466     uint32_t insn;
467 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
468     uint32_t *regs = (uint32_t *)(info + 1);
469     void *sigmask = (regs + 20);
470     /* XXX: is there a standard glibc define ? */
471     unsigned long pc = regs[1];
472 #else
473 #ifdef __linux__
474     struct sigcontext *sc = puc;
475     unsigned long pc = sc->sigc_regs.tpc;
476     void *sigmask = (void *)sc->sigc_mask;
477 #elif defined(__OpenBSD__)
478     struct sigcontext *uc = puc;
479     unsigned long pc = uc->sc_pc;
480     void *sigmask = (void *)(long)uc->sc_mask;
481 #elif defined(__NetBSD__)
482     ucontext_t *uc = puc;
483     unsigned long pc = _UC_MACHINE_PC(uc);
484     void *sigmask = (void *)&uc->uc_sigmask;
485 #endif
486 #endif
487 
488     /* XXX: need kernel patch to get write flag faster */
489     is_write = 0;
490     insn = *(uint32_t *)pc;
491     if ((insn >> 30) == 3) {
492         switch ((insn >> 19) & 0x3f) {
493         case 0x05: /* stb */
494         case 0x15: /* stba */
495         case 0x06: /* sth */
496         case 0x16: /* stha */
497         case 0x04: /* st */
498         case 0x14: /* sta */
499         case 0x07: /* std */
500         case 0x17: /* stda */
501         case 0x0e: /* stx */
502         case 0x1e: /* stxa */
503         case 0x24: /* stf */
504         case 0x34: /* stfa */
505         case 0x27: /* stdf */
506         case 0x37: /* stdfa */
507         case 0x26: /* stqf */
508         case 0x36: /* stqfa */
509         case 0x25: /* stfsr */
510         case 0x3c: /* casa */
511         case 0x3e: /* casxa */
512             is_write = 1;
513             break;
514         }
515     }
516     return handle_cpu_signal(pc, info, is_write, sigmask);
517 }
518 
519 #elif defined(__arm__)
520 
521 #if defined(__NetBSD__)
522 #include <ucontext.h>
523 #include <sys/siginfo.h>
524 #endif
525 
526 int cpu_signal_handler(int host_signum, void *pinfo,
527                        void *puc)
528 {
529     siginfo_t *info = pinfo;
530 #if defined(__NetBSD__)
531     ucontext_t *uc = puc;
532     siginfo_t *si = pinfo;
533 #else
534     ucontext_t *uc = puc;
535 #endif
536     unsigned long pc;
537     uint32_t fsr;
538     int is_write;
539 
540 #if defined(__NetBSD__)
541     pc = uc->uc_mcontext.__gregs[_REG_R15];
542 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
543     pc = uc->uc_mcontext.gregs[R15];
544 #else
545     pc = uc->uc_mcontext.arm_pc;
546 #endif
547 
548 #ifdef __NetBSD__
549     fsr = si->si_trap;
550 #else
551     fsr = uc->uc_mcontext.error_code;
552 #endif
553     /*
554      * In the FSR, bit 11 is WnR, assuming a v6 or
555      * later processor.  On v5 we will always report
556      * this as a read, which will fail later.
557      */
558     is_write = extract32(fsr, 11, 1);
559     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
560 }
561 
562 #elif defined(__aarch64__)
563 
564 #if defined(__NetBSD__)
565 
566 #include <ucontext.h>
567 #include <sys/siginfo.h>
568 
569 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
570 {
571     ucontext_t *uc = puc;
572     siginfo_t *si = pinfo;
573     unsigned long pc;
574     int is_write;
575     uint32_t esr;
576 
577     pc = uc->uc_mcontext.__gregs[_REG_PC];
578     esr = si->si_trap;
579 
580     /*
581      * siginfo_t::si_trap is the ESR value, for data aborts ESR.EC
582      * is 0b10010x: then bit 6 is the WnR bit
583      */
584     is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
585     return handle_cpu_signal(pc, si, is_write, &uc->uc_sigmask);
586 }
587 
588 #else
589 
590 #ifndef ESR_MAGIC
591 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */
592 #define ESR_MAGIC 0x45535201
593 struct esr_context {
594     struct _aarch64_ctx head;
595     uint64_t esr;
596 };
597 #endif
598 
599 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc)
600 {
601     return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved;
602 }
603 
604 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr)
605 {
606     return (struct _aarch64_ctx *)((char *)hdr + hdr->size);
607 }
608 
609 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
610 {
611     siginfo_t *info = pinfo;
612     ucontext_t *uc = puc;
613     uintptr_t pc = uc->uc_mcontext.pc;
614     bool is_write;
615     struct _aarch64_ctx *hdr;
616     struct esr_context const *esrctx = NULL;
617 
618     /* Find the esr_context, which has the WnR bit in it */
619     for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) {
620         if (hdr->magic == ESR_MAGIC) {
621             esrctx = (struct esr_context const *)hdr;
622             break;
623         }
624     }
625 
626     if (esrctx) {
627         /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */
628         uint64_t esr = esrctx->esr;
629         is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
630     } else {
631         /*
632          * Fall back to parsing instructions; will only be needed
633          * for really ancient (pre-3.16) kernels.
634          */
635         uint32_t insn = *(uint32_t *)pc;
636 
637         is_write = ((insn & 0xbfff0000) == 0x0c000000   /* C3.3.1 */
638                     || (insn & 0xbfe00000) == 0x0c800000   /* C3.3.2 */
639                     || (insn & 0xbfdf0000) == 0x0d000000   /* C3.3.3 */
640                     || (insn & 0xbfc00000) == 0x0d800000   /* C3.3.4 */
641                     || (insn & 0x3f400000) == 0x08000000   /* C3.3.6 */
642                     || (insn & 0x3bc00000) == 0x39000000   /* C3.3.13 */
643                     || (insn & 0x3fc00000) == 0x3d800000   /* ... 128bit */
644                     /* Ignore bits 10, 11 & 21, controlling indexing.  */
645                     || (insn & 0x3bc00000) == 0x38000000   /* C3.3.8-12 */
646                     || (insn & 0x3fe00000) == 0x3c800000   /* ... 128bit */
647                     /* Ignore bits 23 & 24, controlling indexing.  */
648                     || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */
649     }
650     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
651 }
652 #endif
653 
654 #elif defined(__s390__)
655 
656 int cpu_signal_handler(int host_signum, void *pinfo,
657                        void *puc)
658 {
659     siginfo_t *info = pinfo;
660     ucontext_t *uc = puc;
661     unsigned long pc;
662     uint16_t *pinsn;
663     int is_write = 0;
664 
665     pc = uc->uc_mcontext.psw.addr;
666 
667     /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
668        of the normal 2 arguments.  The 3rd argument contains the "int_code"
669        from the hardware which does in fact contain the is_write value.
670        The rt signal handler, as far as I can tell, does not give this value
671        at all.  Not that we could get to it from here even if it were.  */
672     /* ??? This is not even close to complete, since it ignores all
673        of the read-modify-write instructions.  */
674     pinsn = (uint16_t *)pc;
675     switch (pinsn[0] >> 8) {
676     case 0x50: /* ST */
677     case 0x42: /* STC */
678     case 0x40: /* STH */
679         is_write = 1;
680         break;
681     case 0xc4: /* RIL format insns */
682         switch (pinsn[0] & 0xf) {
683         case 0xf: /* STRL */
684         case 0xb: /* STGRL */
685         case 0x7: /* STHRL */
686             is_write = 1;
687         }
688         break;
689     case 0xe3: /* RXY format insns */
690         switch (pinsn[2] & 0xff) {
691         case 0x50: /* STY */
692         case 0x24: /* STG */
693         case 0x72: /* STCY */
694         case 0x70: /* STHY */
695         case 0x8e: /* STPQ */
696         case 0x3f: /* STRVH */
697         case 0x3e: /* STRV */
698         case 0x2f: /* STRVG */
699             is_write = 1;
700         }
701         break;
702     }
703     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
704 }
705 
706 #elif defined(__mips__)
707 
708 #if defined(__misp16) || defined(__mips_micromips)
709 #error "Unsupported encoding"
710 #endif
711 
712 int cpu_signal_handler(int host_signum, void *pinfo,
713                        void *puc)
714 {
715     siginfo_t *info = pinfo;
716     ucontext_t *uc = puc;
717     uintptr_t pc = uc->uc_mcontext.pc;
718     uint32_t insn = *(uint32_t *)pc;
719     int is_write = 0;
720 
721     /* Detect all store instructions at program counter. */
722     switch((insn >> 26) & 077) {
723     case 050: /* SB */
724     case 051: /* SH */
725     case 052: /* SWL */
726     case 053: /* SW */
727     case 054: /* SDL */
728     case 055: /* SDR */
729     case 056: /* SWR */
730     case 070: /* SC */
731     case 071: /* SWC1 */
732     case 074: /* SCD */
733     case 075: /* SDC1 */
734     case 077: /* SD */
735 #if !defined(__mips_isa_rev) || __mips_isa_rev < 6
736     case 072: /* SWC2 */
737     case 076: /* SDC2 */
738 #endif
739         is_write = 1;
740         break;
741     case 023: /* COP1X */
742         /* Required in all versions of MIPS64 since
743            MIPS64r1 and subsequent versions of MIPS32r2. */
744         switch (insn & 077) {
745         case 010: /* SWXC1 */
746         case 011: /* SDXC1 */
747         case 015: /* SUXC1 */
748             is_write = 1;
749         }
750         break;
751     }
752 
753     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
754 }
755 
756 #elif defined(__riscv)
757 
758 int cpu_signal_handler(int host_signum, void *pinfo,
759                        void *puc)
760 {
761     siginfo_t *info = pinfo;
762     ucontext_t *uc = puc;
763     greg_t pc = uc->uc_mcontext.__gregs[REG_PC];
764     uint32_t insn = *(uint32_t *)pc;
765     int is_write = 0;
766 
767     /* Detect store by reading the instruction at the program
768        counter. Note: we currently only generate 32-bit
769        instructions so we thus only detect 32-bit stores */
770     switch (((insn >> 0) & 0b11)) {
771     case 3:
772         switch (((insn >> 2) & 0b11111)) {
773         case 8:
774             switch (((insn >> 12) & 0b111)) {
775             case 0: /* sb */
776             case 1: /* sh */
777             case 2: /* sw */
778             case 3: /* sd */
779             case 4: /* sq */
780                 is_write = 1;
781                 break;
782             default:
783                 break;
784             }
785             break;
786         case 9:
787             switch (((insn >> 12) & 0b111)) {
788             case 2: /* fsw */
789             case 3: /* fsd */
790             case 4: /* fsq */
791                 is_write = 1;
792                 break;
793             default:
794                 break;
795             }
796             break;
797         default:
798             break;
799         }
800     }
801 
802     /* Check for compressed instructions */
803     switch (((insn >> 13) & 0b111)) {
804     case 7:
805         switch (insn & 0b11) {
806         case 0: /*c.sd */
807         case 2: /* c.sdsp */
808             is_write = 1;
809             break;
810         default:
811             break;
812         }
813         break;
814     case 6:
815         switch (insn & 0b11) {
816         case 0: /* c.sw */
817         case 3: /* c.swsp */
818             is_write = 1;
819             break;
820         default:
821             break;
822         }
823         break;
824     default:
825         break;
826     }
827 
828     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
829 }
830 
831 #else
832 
833 #error host CPU specific signal handler needed
834 
835 #endif
836 
837 /* The softmmu versions of these helpers are in cputlb.c.  */
838 
839 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr)
840 {
841     uint32_t ret;
842     uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false);
843 
844     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
845     ret = ldub_p(g2h(ptr));
846     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
847     return ret;
848 }
849 
850 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr)
851 {
852     int ret;
853     uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false);
854 
855     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
856     ret = ldsb_p(g2h(ptr));
857     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
858     return ret;
859 }
860 
861 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr)
862 {
863     uint32_t ret;
864     uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false);
865 
866     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
867     ret = lduw_be_p(g2h(ptr));
868     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
869     return ret;
870 }
871 
872 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr)
873 {
874     int ret;
875     uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false);
876 
877     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
878     ret = ldsw_be_p(g2h(ptr));
879     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
880     return ret;
881 }
882 
883 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr)
884 {
885     uint32_t ret;
886     uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false);
887 
888     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
889     ret = ldl_be_p(g2h(ptr));
890     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
891     return ret;
892 }
893 
894 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr)
895 {
896     uint64_t ret;
897     uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false);
898 
899     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
900     ret = ldq_be_p(g2h(ptr));
901     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
902     return ret;
903 }
904 
905 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr)
906 {
907     uint32_t ret;
908     uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false);
909 
910     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
911     ret = lduw_le_p(g2h(ptr));
912     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
913     return ret;
914 }
915 
916 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr)
917 {
918     int ret;
919     uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false);
920 
921     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
922     ret = ldsw_le_p(g2h(ptr));
923     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
924     return ret;
925 }
926 
927 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr)
928 {
929     uint32_t ret;
930     uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false);
931 
932     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
933     ret = ldl_le_p(g2h(ptr));
934     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
935     return ret;
936 }
937 
938 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr)
939 {
940     uint64_t ret;
941     uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false);
942 
943     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
944     ret = ldq_le_p(g2h(ptr));
945     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
946     return ret;
947 }
948 
949 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
950 {
951     uint32_t ret;
952 
953     set_helper_retaddr(retaddr);
954     ret = cpu_ldub_data(env, ptr);
955     clear_helper_retaddr();
956     return ret;
957 }
958 
959 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
960 {
961     int ret;
962 
963     set_helper_retaddr(retaddr);
964     ret = cpu_ldsb_data(env, ptr);
965     clear_helper_retaddr();
966     return ret;
967 }
968 
969 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
970 {
971     uint32_t ret;
972 
973     set_helper_retaddr(retaddr);
974     ret = cpu_lduw_be_data(env, ptr);
975     clear_helper_retaddr();
976     return ret;
977 }
978 
979 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
980 {
981     int ret;
982 
983     set_helper_retaddr(retaddr);
984     ret = cpu_ldsw_be_data(env, ptr);
985     clear_helper_retaddr();
986     return ret;
987 }
988 
989 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
990 {
991     uint32_t ret;
992 
993     set_helper_retaddr(retaddr);
994     ret = cpu_ldl_be_data(env, ptr);
995     clear_helper_retaddr();
996     return ret;
997 }
998 
999 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1000 {
1001     uint64_t ret;
1002 
1003     set_helper_retaddr(retaddr);
1004     ret = cpu_ldq_be_data(env, ptr);
1005     clear_helper_retaddr();
1006     return ret;
1007 }
1008 
1009 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1010 {
1011     uint32_t ret;
1012 
1013     set_helper_retaddr(retaddr);
1014     ret = cpu_lduw_le_data(env, ptr);
1015     clear_helper_retaddr();
1016     return ret;
1017 }
1018 
1019 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1020 {
1021     int ret;
1022 
1023     set_helper_retaddr(retaddr);
1024     ret = cpu_ldsw_le_data(env, ptr);
1025     clear_helper_retaddr();
1026     return ret;
1027 }
1028 
1029 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1030 {
1031     uint32_t ret;
1032 
1033     set_helper_retaddr(retaddr);
1034     ret = cpu_ldl_le_data(env, ptr);
1035     clear_helper_retaddr();
1036     return ret;
1037 }
1038 
1039 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1040 {
1041     uint64_t ret;
1042 
1043     set_helper_retaddr(retaddr);
1044     ret = cpu_ldq_le_data(env, ptr);
1045     clear_helper_retaddr();
1046     return ret;
1047 }
1048 
1049 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1050 {
1051     uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true);
1052 
1053     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1054     stb_p(g2h(ptr), val);
1055     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1056 }
1057 
1058 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1059 {
1060     uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true);
1061 
1062     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1063     stw_be_p(g2h(ptr), val);
1064     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1065 }
1066 
1067 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1068 {
1069     uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true);
1070 
1071     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1072     stl_be_p(g2h(ptr), val);
1073     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1074 }
1075 
1076 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1077 {
1078     uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true);
1079 
1080     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1081     stq_be_p(g2h(ptr), val);
1082     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1083 }
1084 
1085 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1086 {
1087     uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true);
1088 
1089     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1090     stw_le_p(g2h(ptr), val);
1091     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1092 }
1093 
1094 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1095 {
1096     uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true);
1097 
1098     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1099     stl_le_p(g2h(ptr), val);
1100     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1101 }
1102 
1103 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1104 {
1105     uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true);
1106 
1107     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1108     stq_le_p(g2h(ptr), val);
1109     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1110 }
1111 
1112 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
1113                      uint32_t val, uintptr_t retaddr)
1114 {
1115     set_helper_retaddr(retaddr);
1116     cpu_stb_data(env, ptr, val);
1117     clear_helper_retaddr();
1118 }
1119 
1120 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
1121                         uint32_t val, uintptr_t retaddr)
1122 {
1123     set_helper_retaddr(retaddr);
1124     cpu_stw_be_data(env, ptr, val);
1125     clear_helper_retaddr();
1126 }
1127 
1128 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
1129                         uint32_t val, uintptr_t retaddr)
1130 {
1131     set_helper_retaddr(retaddr);
1132     cpu_stl_be_data(env, ptr, val);
1133     clear_helper_retaddr();
1134 }
1135 
1136 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
1137                         uint64_t val, uintptr_t retaddr)
1138 {
1139     set_helper_retaddr(retaddr);
1140     cpu_stq_be_data(env, ptr, val);
1141     clear_helper_retaddr();
1142 }
1143 
1144 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
1145                         uint32_t val, uintptr_t retaddr)
1146 {
1147     set_helper_retaddr(retaddr);
1148     cpu_stw_le_data(env, ptr, val);
1149     clear_helper_retaddr();
1150 }
1151 
1152 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
1153                         uint32_t val, uintptr_t retaddr)
1154 {
1155     set_helper_retaddr(retaddr);
1156     cpu_stl_le_data(env, ptr, val);
1157     clear_helper_retaddr();
1158 }
1159 
1160 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
1161                         uint64_t val, uintptr_t retaddr)
1162 {
1163     set_helper_retaddr(retaddr);
1164     cpu_stq_le_data(env, ptr, val);
1165     clear_helper_retaddr();
1166 }
1167 
1168 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1169 {
1170     uint32_t ret;
1171 
1172     set_helper_retaddr(1);
1173     ret = ldub_p(g2h(ptr));
1174     clear_helper_retaddr();
1175     return ret;
1176 }
1177 
1178 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1179 {
1180     uint32_t ret;
1181 
1182     set_helper_retaddr(1);
1183     ret = lduw_p(g2h(ptr));
1184     clear_helper_retaddr();
1185     return ret;
1186 }
1187 
1188 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1189 {
1190     uint32_t ret;
1191 
1192     set_helper_retaddr(1);
1193     ret = ldl_p(g2h(ptr));
1194     clear_helper_retaddr();
1195     return ret;
1196 }
1197 
1198 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1199 {
1200     uint64_t ret;
1201 
1202     set_helper_retaddr(1);
1203     ret = ldq_p(g2h(ptr));
1204     clear_helper_retaddr();
1205     return ret;
1206 }
1207 
1208 /* Do not allow unaligned operations to proceed.  Return the host address.  */
1209 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1210                                int size, uintptr_t retaddr)
1211 {
1212     /* Enforce qemu required alignment.  */
1213     if (unlikely(addr & (size - 1))) {
1214         cpu_loop_exit_atomic(env_cpu(env), retaddr);
1215     }
1216     void *ret = g2h(addr);
1217     set_helper_retaddr(retaddr);
1218     return ret;
1219 }
1220 
1221 /* Macro to call the above, with local variables from the use context.  */
1222 #define ATOMIC_MMU_DECLS do {} while (0)
1223 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC())
1224 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1225 #define ATOMIC_MMU_IDX MMU_USER_IDX
1226 
1227 #define ATOMIC_NAME(X)   HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1228 #define EXTRA_ARGS
1229 
1230 #include "atomic_common.c.inc"
1231 
1232 #define DATA_SIZE 1
1233 #include "atomic_template.h"
1234 
1235 #define DATA_SIZE 2
1236 #include "atomic_template.h"
1237 
1238 #define DATA_SIZE 4
1239 #include "atomic_template.h"
1240 
1241 #ifdef CONFIG_ATOMIC64
1242 #define DATA_SIZE 8
1243 #include "atomic_template.h"
1244 #endif
1245 
1246 /* The following is only callable from other helpers, and matches up
1247    with the softmmu version.  */
1248 
1249 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
1250 
1251 #undef EXTRA_ARGS
1252 #undef ATOMIC_NAME
1253 #undef ATOMIC_MMU_LOOKUP
1254 
1255 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
1256 #define ATOMIC_NAME(X) \
1257     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1258 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr)
1259 
1260 #define DATA_SIZE 16
1261 #include "atomic_template.h"
1262 #endif
1263