1 /* 2 * User emulator execution 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "hw/core/tcg-cpu-ops.h" 21 #include "disas/disas.h" 22 #include "exec/exec-all.h" 23 #include "tcg/tcg.h" 24 #include "qemu/bitops.h" 25 #include "qemu/rcu.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/translate-all.h" 28 #include "exec/helper-proto.h" 29 #include "qemu/atomic128.h" 30 #include "trace/trace-root.h" 31 #include "tcg/tcg-ldst.h" 32 #include "internal.h" 33 34 __thread uintptr_t helper_retaddr; 35 36 //#define DEBUG_SIGNAL 37 38 /* 39 * Adjust the pc to pass to cpu_restore_state; return the memop type. 40 */ 41 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write) 42 { 43 switch (helper_retaddr) { 44 default: 45 /* 46 * Fault during host memory operation within a helper function. 47 * The helper's host return address, saved here, gives us a 48 * pointer into the generated code that will unwind to the 49 * correct guest pc. 50 */ 51 *pc = helper_retaddr; 52 break; 53 54 case 0: 55 /* 56 * Fault during host memory operation within generated code. 57 * (Or, a unrelated bug within qemu, but we can't tell from here). 58 * 59 * We take the host pc from the signal frame. However, we cannot 60 * use that value directly. Within cpu_restore_state_from_tb, we 61 * assume PC comes from GETPC(), as used by the helper functions, 62 * so we adjust the address by -GETPC_ADJ to form an address that 63 * is within the call insn, so that the address does not accidentally 64 * match the beginning of the next guest insn. However, when the 65 * pc comes from the signal frame it points to the actual faulting 66 * host memory insn and not the return from a call insn. 67 * 68 * Therefore, adjust to compensate for what will be done later 69 * by cpu_restore_state_from_tb. 70 */ 71 *pc += GETPC_ADJ; 72 break; 73 74 case 1: 75 /* 76 * Fault during host read for translation, or loosely, "execution". 77 * 78 * The guest pc is already pointing to the start of the TB for which 79 * code is being generated. If the guest translator manages the 80 * page crossings correctly, this is exactly the correct address 81 * (and if the translator doesn't handle page boundaries correctly 82 * there's little we can do about that here). Therefore, do not 83 * trigger the unwinder. 84 */ 85 *pc = 0; 86 return MMU_INST_FETCH; 87 } 88 89 return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD; 90 } 91 92 /** 93 * handle_sigsegv_accerr_write: 94 * @cpu: the cpu context 95 * @old_set: the sigset_t from the signal ucontext_t 96 * @host_pc: the host pc, adjusted for the signal 97 * @guest_addr: the guest address of the fault 98 * 99 * Return true if the write fault has been handled, and should be re-tried. 100 * 101 * Note that it is important that we don't call page_unprotect() unless 102 * this is really a "write to nonwritable page" fault, because 103 * page_unprotect() assumes that if it is called for an access to 104 * a page that's writable this means we had two threads racing and 105 * another thread got there first and already made the page writable; 106 * so we will retry the access. If we were to call page_unprotect() 107 * for some other kind of fault that should really be passed to the 108 * guest, we'd end up in an infinite loop of retrying the faulting access. 109 */ 110 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set, 111 uintptr_t host_pc, abi_ptr guest_addr) 112 { 113 switch (page_unprotect(guest_addr, host_pc)) { 114 case 0: 115 /* 116 * Fault not caused by a page marked unwritable to protect 117 * cached translations, must be the guest binary's problem. 118 */ 119 return false; 120 case 1: 121 /* 122 * Fault caused by protection of cached translation; TBs 123 * invalidated, so resume execution. 124 */ 125 return true; 126 case 2: 127 /* 128 * Fault caused by protection of cached translation, and the 129 * currently executing TB was modified and must be exited immediately. 130 */ 131 sigprocmask(SIG_SETMASK, old_set, NULL); 132 cpu_loop_exit_noexc(cpu); 133 /* NORETURN */ 134 default: 135 g_assert_not_reached(); 136 } 137 } 138 139 typedef struct PageFlagsNode { 140 struct rcu_head rcu; 141 IntervalTreeNode itree; 142 int flags; 143 } PageFlagsNode; 144 145 static IntervalTreeRoot pageflags_root; 146 147 static PageFlagsNode *pageflags_find(target_ulong start, target_ulong last) 148 { 149 IntervalTreeNode *n; 150 151 n = interval_tree_iter_first(&pageflags_root, start, last); 152 return n ? container_of(n, PageFlagsNode, itree) : NULL; 153 } 154 155 static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start, 156 target_ulong last) 157 { 158 IntervalTreeNode *n; 159 160 n = interval_tree_iter_next(&p->itree, start, last); 161 return n ? container_of(n, PageFlagsNode, itree) : NULL; 162 } 163 164 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 165 { 166 IntervalTreeNode *n; 167 int rc = 0; 168 169 mmap_lock(); 170 for (n = interval_tree_iter_first(&pageflags_root, 0, -1); 171 n != NULL; 172 n = interval_tree_iter_next(n, 0, -1)) { 173 PageFlagsNode *p = container_of(n, PageFlagsNode, itree); 174 175 rc = fn(priv, n->start, n->last + 1, p->flags); 176 if (rc != 0) { 177 break; 178 } 179 } 180 mmap_unlock(); 181 182 return rc; 183 } 184 185 static int dump_region(void *priv, target_ulong start, 186 target_ulong end, unsigned long prot) 187 { 188 FILE *f = (FILE *)priv; 189 190 fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n", 191 start, end, end - start, 192 ((prot & PAGE_READ) ? 'r' : '-'), 193 ((prot & PAGE_WRITE) ? 'w' : '-'), 194 ((prot & PAGE_EXEC) ? 'x' : '-')); 195 return 0; 196 } 197 198 /* dump memory mappings */ 199 void page_dump(FILE *f) 200 { 201 const int length = sizeof(target_ulong) * 2; 202 203 fprintf(f, "%-*s %-*s %-*s %s\n", 204 length, "start", length, "end", length, "size", "prot"); 205 walk_memory_regions(f, dump_region); 206 } 207 208 int page_get_flags(target_ulong address) 209 { 210 PageFlagsNode *p = pageflags_find(address, address); 211 212 /* 213 * See util/interval-tree.c re lockless lookups: no false positives but 214 * there are false negatives. If we find nothing, retry with the mmap 215 * lock acquired. 216 */ 217 if (p) { 218 return p->flags; 219 } 220 if (have_mmap_lock()) { 221 return 0; 222 } 223 224 mmap_lock(); 225 p = pageflags_find(address, address); 226 mmap_unlock(); 227 return p ? p->flags : 0; 228 } 229 230 /* A subroutine of page_set_flags: insert a new node for [start,last]. */ 231 static void pageflags_create(target_ulong start, target_ulong last, int flags) 232 { 233 PageFlagsNode *p = g_new(PageFlagsNode, 1); 234 235 p->itree.start = start; 236 p->itree.last = last; 237 p->flags = flags; 238 interval_tree_insert(&p->itree, &pageflags_root); 239 } 240 241 /* A subroutine of page_set_flags: remove everything in [start,last]. */ 242 static bool pageflags_unset(target_ulong start, target_ulong last) 243 { 244 bool inval_tb = false; 245 246 while (true) { 247 PageFlagsNode *p = pageflags_find(start, last); 248 target_ulong p_last; 249 250 if (!p) { 251 break; 252 } 253 254 if (p->flags & PAGE_EXEC) { 255 inval_tb = true; 256 } 257 258 interval_tree_remove(&p->itree, &pageflags_root); 259 p_last = p->itree.last; 260 261 if (p->itree.start < start) { 262 /* Truncate the node from the end, or split out the middle. */ 263 p->itree.last = start - 1; 264 interval_tree_insert(&p->itree, &pageflags_root); 265 if (last < p_last) { 266 pageflags_create(last + 1, p_last, p->flags); 267 break; 268 } 269 } else if (p_last <= last) { 270 /* Range completely covers node -- remove it. */ 271 g_free_rcu(p, rcu); 272 } else { 273 /* Truncate the node from the start. */ 274 p->itree.start = last + 1; 275 interval_tree_insert(&p->itree, &pageflags_root); 276 break; 277 } 278 } 279 280 return inval_tb; 281 } 282 283 /* 284 * A subroutine of page_set_flags: nothing overlaps [start,last], 285 * but check adjacent mappings and maybe merge into a single range. 286 */ 287 static void pageflags_create_merge(target_ulong start, target_ulong last, 288 int flags) 289 { 290 PageFlagsNode *next = NULL, *prev = NULL; 291 292 if (start > 0) { 293 prev = pageflags_find(start - 1, start - 1); 294 if (prev) { 295 if (prev->flags == flags) { 296 interval_tree_remove(&prev->itree, &pageflags_root); 297 } else { 298 prev = NULL; 299 } 300 } 301 } 302 if (last + 1 != 0) { 303 next = pageflags_find(last + 1, last + 1); 304 if (next) { 305 if (next->flags == flags) { 306 interval_tree_remove(&next->itree, &pageflags_root); 307 } else { 308 next = NULL; 309 } 310 } 311 } 312 313 if (prev) { 314 if (next) { 315 prev->itree.last = next->itree.last; 316 g_free_rcu(next, rcu); 317 } else { 318 prev->itree.last = last; 319 } 320 interval_tree_insert(&prev->itree, &pageflags_root); 321 } else if (next) { 322 next->itree.start = start; 323 interval_tree_insert(&next->itree, &pageflags_root); 324 } else { 325 pageflags_create(start, last, flags); 326 } 327 } 328 329 /* 330 * Allow the target to decide if PAGE_TARGET_[12] may be reset. 331 * By default, they are not kept. 332 */ 333 #ifndef PAGE_TARGET_STICKY 334 #define PAGE_TARGET_STICKY 0 335 #endif 336 #define PAGE_STICKY (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY) 337 338 /* A subroutine of page_set_flags: add flags to [start,last]. */ 339 static bool pageflags_set_clear(target_ulong start, target_ulong last, 340 int set_flags, int clear_flags) 341 { 342 PageFlagsNode *p; 343 target_ulong p_start, p_last; 344 int p_flags, merge_flags; 345 bool inval_tb = false; 346 347 restart: 348 p = pageflags_find(start, last); 349 if (!p) { 350 if (set_flags) { 351 pageflags_create_merge(start, last, set_flags); 352 } 353 goto done; 354 } 355 356 p_start = p->itree.start; 357 p_last = p->itree.last; 358 p_flags = p->flags; 359 /* Using mprotect on a page does not change sticky bits. */ 360 merge_flags = (p_flags & ~clear_flags) | set_flags; 361 362 /* 363 * Need to flush if an overlapping executable region 364 * removes exec, or adds write. 365 */ 366 if ((p_flags & PAGE_EXEC) 367 && (!(merge_flags & PAGE_EXEC) 368 || (merge_flags & ~p_flags & PAGE_WRITE))) { 369 inval_tb = true; 370 } 371 372 /* 373 * If there is an exact range match, update and return without 374 * attempting to merge with adjacent regions. 375 */ 376 if (start == p_start && last == p_last) { 377 if (merge_flags) { 378 p->flags = merge_flags; 379 } else { 380 interval_tree_remove(&p->itree, &pageflags_root); 381 g_free_rcu(p, rcu); 382 } 383 goto done; 384 } 385 386 /* 387 * If sticky bits affect the original mapping, then we must be more 388 * careful about the existing intervals and the separate flags. 389 */ 390 if (set_flags != merge_flags) { 391 if (p_start < start) { 392 interval_tree_remove(&p->itree, &pageflags_root); 393 p->itree.last = start - 1; 394 interval_tree_insert(&p->itree, &pageflags_root); 395 396 if (last < p_last) { 397 if (merge_flags) { 398 pageflags_create(start, last, merge_flags); 399 } 400 pageflags_create(last + 1, p_last, p_flags); 401 } else { 402 if (merge_flags) { 403 pageflags_create(start, p_last, merge_flags); 404 } 405 if (p_last < last) { 406 start = p_last + 1; 407 goto restart; 408 } 409 } 410 } else { 411 if (start < p_start && set_flags) { 412 pageflags_create(start, p_start - 1, set_flags); 413 } 414 if (last < p_last) { 415 interval_tree_remove(&p->itree, &pageflags_root); 416 p->itree.start = last + 1; 417 interval_tree_insert(&p->itree, &pageflags_root); 418 if (merge_flags) { 419 pageflags_create(start, last, merge_flags); 420 } 421 } else { 422 if (merge_flags) { 423 p->flags = merge_flags; 424 } else { 425 interval_tree_remove(&p->itree, &pageflags_root); 426 g_free_rcu(p, rcu); 427 } 428 if (p_last < last) { 429 start = p_last + 1; 430 goto restart; 431 } 432 } 433 } 434 goto done; 435 } 436 437 /* If flags are not changing for this range, incorporate it. */ 438 if (set_flags == p_flags) { 439 if (start < p_start) { 440 interval_tree_remove(&p->itree, &pageflags_root); 441 p->itree.start = start; 442 interval_tree_insert(&p->itree, &pageflags_root); 443 } 444 if (p_last < last) { 445 start = p_last + 1; 446 goto restart; 447 } 448 goto done; 449 } 450 451 /* Maybe split out head and/or tail ranges with the original flags. */ 452 interval_tree_remove(&p->itree, &pageflags_root); 453 if (p_start < start) { 454 p->itree.last = start - 1; 455 interval_tree_insert(&p->itree, &pageflags_root); 456 457 if (p_last < last) { 458 goto restart; 459 } 460 if (last < p_last) { 461 pageflags_create(last + 1, p_last, p_flags); 462 } 463 } else if (last < p_last) { 464 p->itree.start = last + 1; 465 interval_tree_insert(&p->itree, &pageflags_root); 466 } else { 467 g_free_rcu(p, rcu); 468 goto restart; 469 } 470 if (set_flags) { 471 pageflags_create(start, last, set_flags); 472 } 473 474 done: 475 return inval_tb; 476 } 477 478 /* 479 * Modify the flags of a page and invalidate the code if necessary. 480 * The flag PAGE_WRITE_ORG is positioned automatically depending 481 * on PAGE_WRITE. The mmap_lock should already be held. 482 */ 483 void page_set_flags(target_ulong start, target_ulong last, int flags) 484 { 485 bool reset = false; 486 bool inval_tb = false; 487 488 /* This function should never be called with addresses outside the 489 guest address space. If this assert fires, it probably indicates 490 a missing call to h2g_valid. */ 491 assert(start <= last); 492 assert(last <= GUEST_ADDR_MAX); 493 /* Only set PAGE_ANON with new mappings. */ 494 assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET)); 495 assert_memory_lock(); 496 497 start &= TARGET_PAGE_MASK; 498 last |= ~TARGET_PAGE_MASK; 499 500 if (!(flags & PAGE_VALID)) { 501 flags = 0; 502 } else { 503 reset = flags & PAGE_RESET; 504 flags &= ~PAGE_RESET; 505 if (flags & PAGE_WRITE) { 506 flags |= PAGE_WRITE_ORG; 507 } 508 } 509 510 if (!flags || reset) { 511 page_reset_target_data(start, last); 512 inval_tb |= pageflags_unset(start, last); 513 } 514 if (flags) { 515 inval_tb |= pageflags_set_clear(start, last, flags, 516 ~(reset ? 0 : PAGE_STICKY)); 517 } 518 if (inval_tb) { 519 tb_invalidate_phys_range(start, last); 520 } 521 } 522 523 bool page_check_range(target_ulong start, target_ulong len, int flags) 524 { 525 target_ulong last; 526 int locked; /* tri-state: =0: unlocked, +1: global, -1: local */ 527 bool ret; 528 529 if (len == 0) { 530 return true; /* trivial length */ 531 } 532 533 last = start + len - 1; 534 if (last < start) { 535 return false; /* wrap around */ 536 } 537 538 locked = have_mmap_lock(); 539 while (true) { 540 PageFlagsNode *p = pageflags_find(start, last); 541 int missing; 542 543 if (!p) { 544 if (!locked) { 545 /* 546 * Lockless lookups have false negatives. 547 * Retry with the lock held. 548 */ 549 mmap_lock(); 550 locked = -1; 551 p = pageflags_find(start, last); 552 } 553 if (!p) { 554 ret = false; /* entire region invalid */ 555 break; 556 } 557 } 558 if (start < p->itree.start) { 559 ret = false; /* initial bytes invalid */ 560 break; 561 } 562 563 missing = flags & ~p->flags; 564 if (missing & ~PAGE_WRITE) { 565 ret = false; /* page doesn't match */ 566 break; 567 } 568 if (missing & PAGE_WRITE) { 569 if (!(p->flags & PAGE_WRITE_ORG)) { 570 ret = false; /* page not writable */ 571 break; 572 } 573 /* Asking about writable, but has been protected: undo. */ 574 if (!page_unprotect(start, 0)) { 575 ret = false; 576 break; 577 } 578 /* TODO: page_unprotect should take a range, not a single page. */ 579 if (last - start < TARGET_PAGE_SIZE) { 580 ret = true; /* ok */ 581 break; 582 } 583 start += TARGET_PAGE_SIZE; 584 continue; 585 } 586 587 if (last <= p->itree.last) { 588 ret = true; /* ok */ 589 break; 590 } 591 start = p->itree.last + 1; 592 } 593 594 /* Release the lock if acquired locally. */ 595 if (locked < 0) { 596 mmap_unlock(); 597 } 598 return ret; 599 } 600 601 bool page_check_range_empty(target_ulong start, target_ulong last) 602 { 603 assert(last >= start); 604 assert_memory_lock(); 605 return pageflags_find(start, last) == NULL; 606 } 607 608 target_ulong page_find_range_empty(target_ulong min, target_ulong max, 609 target_ulong len, target_ulong align) 610 { 611 target_ulong len_m1, align_m1; 612 613 assert(min <= max); 614 assert(max <= GUEST_ADDR_MAX); 615 assert(len != 0); 616 assert(is_power_of_2(align)); 617 assert_memory_lock(); 618 619 len_m1 = len - 1; 620 align_m1 = align - 1; 621 622 /* Iteratively narrow the search region. */ 623 while (1) { 624 PageFlagsNode *p; 625 626 /* Align min and double-check there's enough space remaining. */ 627 min = (min + align_m1) & ~align_m1; 628 if (min > max) { 629 return -1; 630 } 631 if (len_m1 > max - min) { 632 return -1; 633 } 634 635 p = pageflags_find(min, min + len_m1); 636 if (p == NULL) { 637 /* Found! */ 638 return min; 639 } 640 if (max <= p->itree.last) { 641 /* Existing allocation fills the remainder of the search region. */ 642 return -1; 643 } 644 /* Skip across existing allocation. */ 645 min = p->itree.last + 1; 646 } 647 } 648 649 void page_protect(tb_page_addr_t address) 650 { 651 PageFlagsNode *p; 652 target_ulong start, last; 653 int prot; 654 655 assert_memory_lock(); 656 657 if (qemu_host_page_size <= TARGET_PAGE_SIZE) { 658 start = address & TARGET_PAGE_MASK; 659 last = start + TARGET_PAGE_SIZE - 1; 660 } else { 661 start = address & qemu_host_page_mask; 662 last = start + qemu_host_page_size - 1; 663 } 664 665 p = pageflags_find(start, last); 666 if (!p) { 667 return; 668 } 669 prot = p->flags; 670 671 if (unlikely(p->itree.last < last)) { 672 /* More than one protection region covers the one host page. */ 673 assert(TARGET_PAGE_SIZE < qemu_host_page_size); 674 while ((p = pageflags_next(p, start, last)) != NULL) { 675 prot |= p->flags; 676 } 677 } 678 679 if (prot & PAGE_WRITE) { 680 pageflags_set_clear(start, last, 0, PAGE_WRITE); 681 mprotect(g2h_untagged(start), qemu_host_page_size, 682 prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE); 683 } 684 } 685 686 /* 687 * Called from signal handler: invalidate the code and unprotect the 688 * page. Return 0 if the fault was not handled, 1 if it was handled, 689 * and 2 if it was handled but the caller must cause the TB to be 690 * immediately exited. (We can only return 2 if the 'pc' argument is 691 * non-zero.) 692 */ 693 int page_unprotect(target_ulong address, uintptr_t pc) 694 { 695 PageFlagsNode *p; 696 bool current_tb_invalidated; 697 698 /* 699 * Technically this isn't safe inside a signal handler. However we 700 * know this only ever happens in a synchronous SEGV handler, so in 701 * practice it seems to be ok. 702 */ 703 mmap_lock(); 704 705 p = pageflags_find(address, address); 706 707 /* If this address was not really writable, nothing to do. */ 708 if (!p || !(p->flags & PAGE_WRITE_ORG)) { 709 mmap_unlock(); 710 return 0; 711 } 712 713 current_tb_invalidated = false; 714 if (p->flags & PAGE_WRITE) { 715 /* 716 * If the page is actually marked WRITE then assume this is because 717 * this thread raced with another one which got here first and 718 * set the page to PAGE_WRITE and did the TB invalidate for us. 719 */ 720 #ifdef TARGET_HAS_PRECISE_SMC 721 TranslationBlock *current_tb = tcg_tb_lookup(pc); 722 if (current_tb) { 723 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 724 } 725 #endif 726 } else { 727 target_ulong start, len, i; 728 int prot; 729 730 if (qemu_host_page_size <= TARGET_PAGE_SIZE) { 731 start = address & TARGET_PAGE_MASK; 732 len = TARGET_PAGE_SIZE; 733 prot = p->flags | PAGE_WRITE; 734 pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0); 735 current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc); 736 } else { 737 start = address & qemu_host_page_mask; 738 len = qemu_host_page_size; 739 prot = 0; 740 741 for (i = 0; i < len; i += TARGET_PAGE_SIZE) { 742 target_ulong addr = start + i; 743 744 p = pageflags_find(addr, addr); 745 if (p) { 746 prot |= p->flags; 747 if (p->flags & PAGE_WRITE_ORG) { 748 prot |= PAGE_WRITE; 749 pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1, 750 PAGE_WRITE, 0); 751 } 752 } 753 /* 754 * Since the content will be modified, we must invalidate 755 * the corresponding translated code. 756 */ 757 current_tb_invalidated |= 758 tb_invalidate_phys_page_unwind(addr, pc); 759 } 760 } 761 if (prot & PAGE_EXEC) { 762 prot = (prot & ~PAGE_EXEC) | PAGE_READ; 763 } 764 mprotect((void *)g2h_untagged(start), len, prot & PAGE_BITS); 765 } 766 mmap_unlock(); 767 768 /* If current TB was invalidated return to main loop */ 769 return current_tb_invalidated ? 2 : 1; 770 } 771 772 static int probe_access_internal(CPUArchState *env, vaddr addr, 773 int fault_size, MMUAccessType access_type, 774 bool nonfault, uintptr_t ra) 775 { 776 int acc_flag; 777 bool maperr; 778 779 switch (access_type) { 780 case MMU_DATA_STORE: 781 acc_flag = PAGE_WRITE_ORG; 782 break; 783 case MMU_DATA_LOAD: 784 acc_flag = PAGE_READ; 785 break; 786 case MMU_INST_FETCH: 787 acc_flag = PAGE_EXEC; 788 break; 789 default: 790 g_assert_not_reached(); 791 } 792 793 if (guest_addr_valid_untagged(addr)) { 794 int page_flags = page_get_flags(addr); 795 if (page_flags & acc_flag) { 796 if ((acc_flag == PAGE_READ || acc_flag == PAGE_WRITE) 797 && cpu_plugin_mem_cbs_enabled(env_cpu(env))) { 798 return TLB_MMIO; 799 } 800 return 0; /* success */ 801 } 802 maperr = !(page_flags & PAGE_VALID); 803 } else { 804 maperr = true; 805 } 806 807 if (nonfault) { 808 return TLB_INVALID_MASK; 809 } 810 811 cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra); 812 } 813 814 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 815 MMUAccessType access_type, int mmu_idx, 816 bool nonfault, void **phost, uintptr_t ra) 817 { 818 int flags; 819 820 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 821 flags = probe_access_internal(env, addr, size, access_type, nonfault, ra); 822 *phost = (flags & TLB_INVALID_MASK) ? NULL : g2h(env_cpu(env), addr); 823 return flags; 824 } 825 826 void *probe_access(CPUArchState *env, vaddr addr, int size, 827 MMUAccessType access_type, int mmu_idx, uintptr_t ra) 828 { 829 int flags; 830 831 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 832 flags = probe_access_internal(env, addr, size, access_type, false, ra); 833 g_assert((flags & ~TLB_MMIO) == 0); 834 835 return size ? g2h(env_cpu(env), addr) : NULL; 836 } 837 838 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 839 void **hostp) 840 { 841 int flags; 842 843 flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0); 844 g_assert(flags == 0); 845 846 if (hostp) { 847 *hostp = g2h_untagged(addr); 848 } 849 return addr; 850 } 851 852 #ifdef TARGET_PAGE_DATA_SIZE 853 /* 854 * Allocate chunks of target data together. For the only current user, 855 * if we allocate one hunk per page, we have overhead of 40/128 or 40%. 856 * Therefore, allocate memory for 64 pages at a time for overhead < 1%. 857 */ 858 #define TPD_PAGES 64 859 #define TBD_MASK (TARGET_PAGE_MASK * TPD_PAGES) 860 861 typedef struct TargetPageDataNode { 862 struct rcu_head rcu; 863 IntervalTreeNode itree; 864 char data[TPD_PAGES][TARGET_PAGE_DATA_SIZE] __attribute__((aligned)); 865 } TargetPageDataNode; 866 867 static IntervalTreeRoot targetdata_root; 868 869 void page_reset_target_data(target_ulong start, target_ulong last) 870 { 871 IntervalTreeNode *n, *next; 872 873 assert_memory_lock(); 874 875 start &= TARGET_PAGE_MASK; 876 last |= ~TARGET_PAGE_MASK; 877 878 for (n = interval_tree_iter_first(&targetdata_root, start, last), 879 next = n ? interval_tree_iter_next(n, start, last) : NULL; 880 n != NULL; 881 n = next, 882 next = next ? interval_tree_iter_next(n, start, last) : NULL) { 883 target_ulong n_start, n_last, p_ofs, p_len; 884 TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree); 885 886 if (n->start >= start && n->last <= last) { 887 interval_tree_remove(n, &targetdata_root); 888 g_free_rcu(t, rcu); 889 continue; 890 } 891 892 if (n->start < start) { 893 n_start = start; 894 p_ofs = (start - n->start) >> TARGET_PAGE_BITS; 895 } else { 896 n_start = n->start; 897 p_ofs = 0; 898 } 899 n_last = MIN(last, n->last); 900 p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS; 901 902 memset(t->data[p_ofs], 0, p_len * TARGET_PAGE_DATA_SIZE); 903 } 904 } 905 906 void *page_get_target_data(target_ulong address) 907 { 908 IntervalTreeNode *n; 909 TargetPageDataNode *t; 910 target_ulong page, region; 911 912 page = address & TARGET_PAGE_MASK; 913 region = address & TBD_MASK; 914 915 n = interval_tree_iter_first(&targetdata_root, page, page); 916 if (!n) { 917 /* 918 * See util/interval-tree.c re lockless lookups: no false positives 919 * but there are false negatives. If we find nothing, retry with 920 * the mmap lock acquired. We also need the lock for the 921 * allocation + insert. 922 */ 923 mmap_lock(); 924 n = interval_tree_iter_first(&targetdata_root, page, page); 925 if (!n) { 926 t = g_new0(TargetPageDataNode, 1); 927 n = &t->itree; 928 n->start = region; 929 n->last = region | ~TBD_MASK; 930 interval_tree_insert(n, &targetdata_root); 931 } 932 mmap_unlock(); 933 } 934 935 t = container_of(n, TargetPageDataNode, itree); 936 return t->data[(page - region) >> TARGET_PAGE_BITS]; 937 } 938 #else 939 void page_reset_target_data(target_ulong start, target_ulong last) { } 940 #endif /* TARGET_PAGE_DATA_SIZE */ 941 942 /* The softmmu versions of these helpers are in cputlb.c. */ 943 944 static void *cpu_mmu_lookup(CPUArchState *env, vaddr addr, 945 MemOp mop, uintptr_t ra, MMUAccessType type) 946 { 947 int a_bits = get_alignment_bits(mop); 948 void *ret; 949 950 /* Enforce guest required alignment. */ 951 if (unlikely(addr & ((1 << a_bits) - 1))) { 952 cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra); 953 } 954 955 ret = g2h(env_cpu(env), addr); 956 set_helper_retaddr(ra); 957 return ret; 958 } 959 960 #include "ldst_atomicity.c.inc" 961 962 static uint8_t do_ld1_mmu(CPUArchState *env, abi_ptr addr, 963 MemOp mop, uintptr_t ra) 964 { 965 void *haddr; 966 uint8_t ret; 967 968 tcg_debug_assert((mop & MO_SIZE) == MO_8); 969 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 970 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD); 971 ret = ldub_p(haddr); 972 clear_helper_retaddr(); 973 return ret; 974 } 975 976 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr, 977 MemOpIdx oi, uintptr_t ra) 978 { 979 return do_ld1_mmu(env, addr, get_memop(oi), ra); 980 } 981 982 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr, 983 MemOpIdx oi, uintptr_t ra) 984 { 985 return (int8_t)do_ld1_mmu(env, addr, get_memop(oi), ra); 986 } 987 988 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, 989 MemOpIdx oi, uintptr_t ra) 990 { 991 uint8_t ret = do_ld1_mmu(env, addr, get_memop(oi), ra); 992 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 993 return ret; 994 } 995 996 static uint16_t do_ld2_mmu(CPUArchState *env, abi_ptr addr, 997 MemOp mop, uintptr_t ra) 998 { 999 void *haddr; 1000 uint16_t ret; 1001 1002 tcg_debug_assert((mop & MO_SIZE) == MO_16); 1003 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 1004 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD); 1005 ret = load_atom_2(env, ra, haddr, mop); 1006 clear_helper_retaddr(); 1007 1008 if (mop & MO_BSWAP) { 1009 ret = bswap16(ret); 1010 } 1011 return ret; 1012 } 1013 1014 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr, 1015 MemOpIdx oi, uintptr_t ra) 1016 { 1017 return do_ld2_mmu(env, addr, get_memop(oi), ra); 1018 } 1019 1020 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr, 1021 MemOpIdx oi, uintptr_t ra) 1022 { 1023 return (int16_t)do_ld2_mmu(env, addr, get_memop(oi), ra); 1024 } 1025 1026 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr, 1027 MemOpIdx oi, uintptr_t ra) 1028 { 1029 uint16_t ret = do_ld2_mmu(env, addr, get_memop(oi), ra); 1030 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 1031 return ret; 1032 } 1033 1034 static uint32_t do_ld4_mmu(CPUArchState *env, abi_ptr addr, 1035 MemOp mop, uintptr_t ra) 1036 { 1037 void *haddr; 1038 uint32_t ret; 1039 1040 tcg_debug_assert((mop & MO_SIZE) == MO_32); 1041 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 1042 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD); 1043 ret = load_atom_4(env, ra, haddr, mop); 1044 clear_helper_retaddr(); 1045 1046 if (mop & MO_BSWAP) { 1047 ret = bswap32(ret); 1048 } 1049 return ret; 1050 } 1051 1052 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr, 1053 MemOpIdx oi, uintptr_t ra) 1054 { 1055 return do_ld4_mmu(env, addr, get_memop(oi), ra); 1056 } 1057 1058 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr, 1059 MemOpIdx oi, uintptr_t ra) 1060 { 1061 return (int32_t)do_ld4_mmu(env, addr, get_memop(oi), ra); 1062 } 1063 1064 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr, 1065 MemOpIdx oi, uintptr_t ra) 1066 { 1067 uint32_t ret = do_ld4_mmu(env, addr, get_memop(oi), ra); 1068 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 1069 return ret; 1070 } 1071 1072 static uint64_t do_ld8_mmu(CPUArchState *env, abi_ptr addr, 1073 MemOp mop, uintptr_t ra) 1074 { 1075 void *haddr; 1076 uint64_t ret; 1077 1078 tcg_debug_assert((mop & MO_SIZE) == MO_64); 1079 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 1080 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD); 1081 ret = load_atom_8(env, ra, haddr, mop); 1082 clear_helper_retaddr(); 1083 1084 if (mop & MO_BSWAP) { 1085 ret = bswap64(ret); 1086 } 1087 return ret; 1088 } 1089 1090 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr, 1091 MemOpIdx oi, uintptr_t ra) 1092 { 1093 return do_ld8_mmu(env, addr, get_memop(oi), ra); 1094 } 1095 1096 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr, 1097 MemOpIdx oi, uintptr_t ra) 1098 { 1099 uint64_t ret = do_ld8_mmu(env, addr, get_memop(oi), ra); 1100 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 1101 return ret; 1102 } 1103 1104 static Int128 do_ld16_mmu(CPUArchState *env, abi_ptr addr, 1105 MemOp mop, uintptr_t ra) 1106 { 1107 void *haddr; 1108 Int128 ret; 1109 1110 tcg_debug_assert((mop & MO_SIZE) == MO_128); 1111 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 1112 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD); 1113 ret = load_atom_16(env, ra, haddr, mop); 1114 clear_helper_retaddr(); 1115 1116 if (mop & MO_BSWAP) { 1117 ret = bswap128(ret); 1118 } 1119 return ret; 1120 } 1121 1122 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr, 1123 MemOpIdx oi, uintptr_t ra) 1124 { 1125 return do_ld16_mmu(env, addr, get_memop(oi), ra); 1126 } 1127 1128 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, MemOpIdx oi) 1129 { 1130 return helper_ld16_mmu(env, addr, oi, GETPC()); 1131 } 1132 1133 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, 1134 MemOpIdx oi, uintptr_t ra) 1135 { 1136 Int128 ret = do_ld16_mmu(env, addr, get_memop(oi), ra); 1137 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 1138 return ret; 1139 } 1140 1141 static void do_st1_mmu(CPUArchState *env, abi_ptr addr, uint8_t val, 1142 MemOp mop, uintptr_t ra) 1143 { 1144 void *haddr; 1145 1146 tcg_debug_assert((mop & MO_SIZE) == MO_8); 1147 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 1148 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE); 1149 stb_p(haddr, val); 1150 clear_helper_retaddr(); 1151 } 1152 1153 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 1154 MemOpIdx oi, uintptr_t ra) 1155 { 1156 do_st1_mmu(env, addr, val, get_memop(oi), ra); 1157 } 1158 1159 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val, 1160 MemOpIdx oi, uintptr_t ra) 1161 { 1162 do_st1_mmu(env, addr, val, get_memop(oi), ra); 1163 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 1164 } 1165 1166 static void do_st2_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, 1167 MemOp mop, uintptr_t ra) 1168 { 1169 void *haddr; 1170 1171 tcg_debug_assert((mop & MO_SIZE) == MO_16); 1172 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 1173 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE); 1174 1175 if (mop & MO_BSWAP) { 1176 val = bswap16(val); 1177 } 1178 store_atom_2(env, ra, haddr, mop, val); 1179 clear_helper_retaddr(); 1180 } 1181 1182 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 1183 MemOpIdx oi, uintptr_t ra) 1184 { 1185 do_st2_mmu(env, addr, val, get_memop(oi), ra); 1186 } 1187 1188 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, 1189 MemOpIdx oi, uintptr_t ra) 1190 { 1191 do_st2_mmu(env, addr, val, get_memop(oi), ra); 1192 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 1193 } 1194 1195 static void do_st4_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, 1196 MemOp mop, uintptr_t ra) 1197 { 1198 void *haddr; 1199 1200 tcg_debug_assert((mop & MO_SIZE) == MO_32); 1201 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 1202 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE); 1203 1204 if (mop & MO_BSWAP) { 1205 val = bswap32(val); 1206 } 1207 store_atom_4(env, ra, haddr, mop, val); 1208 clear_helper_retaddr(); 1209 } 1210 1211 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 1212 MemOpIdx oi, uintptr_t ra) 1213 { 1214 do_st4_mmu(env, addr, val, get_memop(oi), ra); 1215 } 1216 1217 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, 1218 MemOpIdx oi, uintptr_t ra) 1219 { 1220 do_st4_mmu(env, addr, val, get_memop(oi), ra); 1221 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 1222 } 1223 1224 static void do_st8_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, 1225 MemOp mop, uintptr_t ra) 1226 { 1227 void *haddr; 1228 1229 tcg_debug_assert((mop & MO_SIZE) == MO_64); 1230 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 1231 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE); 1232 1233 if (mop & MO_BSWAP) { 1234 val = bswap64(val); 1235 } 1236 store_atom_8(env, ra, haddr, mop, val); 1237 clear_helper_retaddr(); 1238 } 1239 1240 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val, 1241 MemOpIdx oi, uintptr_t ra) 1242 { 1243 do_st8_mmu(env, addr, val, get_memop(oi), ra); 1244 } 1245 1246 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, 1247 MemOpIdx oi, uintptr_t ra) 1248 { 1249 do_st8_mmu(env, addr, val, get_memop(oi), ra); 1250 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 1251 } 1252 1253 static void do_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 1254 MemOp mop, uintptr_t ra) 1255 { 1256 void *haddr; 1257 1258 tcg_debug_assert((mop & MO_SIZE) == MO_128); 1259 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 1260 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE); 1261 1262 if (mop & MO_BSWAP) { 1263 val = bswap128(val); 1264 } 1265 store_atom_16(env, ra, haddr, mop, val); 1266 clear_helper_retaddr(); 1267 } 1268 1269 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val, 1270 MemOpIdx oi, uintptr_t ra) 1271 { 1272 do_st16_mmu(env, addr, val, get_memop(oi), ra); 1273 } 1274 1275 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi) 1276 { 1277 helper_st16_mmu(env, addr, val, oi, GETPC()); 1278 } 1279 1280 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, 1281 Int128 val, MemOpIdx oi, uintptr_t ra) 1282 { 1283 do_st16_mmu(env, addr, val, get_memop(oi), ra); 1284 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 1285 } 1286 1287 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr) 1288 { 1289 uint32_t ret; 1290 1291 set_helper_retaddr(1); 1292 ret = ldub_p(g2h_untagged(ptr)); 1293 clear_helper_retaddr(); 1294 return ret; 1295 } 1296 1297 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr) 1298 { 1299 uint32_t ret; 1300 1301 set_helper_retaddr(1); 1302 ret = lduw_p(g2h_untagged(ptr)); 1303 clear_helper_retaddr(); 1304 return ret; 1305 } 1306 1307 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr) 1308 { 1309 uint32_t ret; 1310 1311 set_helper_retaddr(1); 1312 ret = ldl_p(g2h_untagged(ptr)); 1313 clear_helper_retaddr(); 1314 return ret; 1315 } 1316 1317 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr) 1318 { 1319 uint64_t ret; 1320 1321 set_helper_retaddr(1); 1322 ret = ldq_p(g2h_untagged(ptr)); 1323 clear_helper_retaddr(); 1324 return ret; 1325 } 1326 1327 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 1328 MemOpIdx oi, uintptr_t ra) 1329 { 1330 void *haddr; 1331 uint8_t ret; 1332 1333 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH); 1334 ret = ldub_p(haddr); 1335 clear_helper_retaddr(); 1336 return ret; 1337 } 1338 1339 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 1340 MemOpIdx oi, uintptr_t ra) 1341 { 1342 void *haddr; 1343 uint16_t ret; 1344 1345 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH); 1346 ret = lduw_p(haddr); 1347 clear_helper_retaddr(); 1348 if (get_memop(oi) & MO_BSWAP) { 1349 ret = bswap16(ret); 1350 } 1351 return ret; 1352 } 1353 1354 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 1355 MemOpIdx oi, uintptr_t ra) 1356 { 1357 void *haddr; 1358 uint32_t ret; 1359 1360 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH); 1361 ret = ldl_p(haddr); 1362 clear_helper_retaddr(); 1363 if (get_memop(oi) & MO_BSWAP) { 1364 ret = bswap32(ret); 1365 } 1366 return ret; 1367 } 1368 1369 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 1370 MemOpIdx oi, uintptr_t ra) 1371 { 1372 void *haddr; 1373 uint64_t ret; 1374 1375 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); 1376 ret = ldq_p(haddr); 1377 clear_helper_retaddr(); 1378 if (get_memop(oi) & MO_BSWAP) { 1379 ret = bswap64(ret); 1380 } 1381 return ret; 1382 } 1383 1384 #include "ldst_common.c.inc" 1385 1386 /* 1387 * Do not allow unaligned operations to proceed. Return the host address. 1388 */ 1389 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1390 int size, uintptr_t retaddr) 1391 { 1392 MemOp mop = get_memop(oi); 1393 int a_bits = get_alignment_bits(mop); 1394 void *ret; 1395 1396 /* Enforce guest required alignment. */ 1397 if (unlikely(addr & ((1 << a_bits) - 1))) { 1398 cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, retaddr); 1399 } 1400 1401 /* Enforce qemu required alignment. */ 1402 if (unlikely(addr & (size - 1))) { 1403 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1404 } 1405 1406 ret = g2h(env_cpu(env), addr); 1407 set_helper_retaddr(retaddr); 1408 return ret; 1409 } 1410 1411 #include "atomic_common.c.inc" 1412 1413 /* 1414 * First set of functions passes in OI and RETADDR. 1415 * This makes them callable from other helpers. 1416 */ 1417 1418 #define ATOMIC_NAME(X) \ 1419 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 1420 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0) 1421 1422 #define DATA_SIZE 1 1423 #include "atomic_template.h" 1424 1425 #define DATA_SIZE 2 1426 #include "atomic_template.h" 1427 1428 #define DATA_SIZE 4 1429 #include "atomic_template.h" 1430 1431 #ifdef CONFIG_ATOMIC64 1432 #define DATA_SIZE 8 1433 #include "atomic_template.h" 1434 #endif 1435 1436 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 1437 #define DATA_SIZE 16 1438 #include "atomic_template.h" 1439 #endif 1440