xref: /openbmc/qemu/accel/tcg/user-exec.c (revision 2d1bf258)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "qemu/rcu.h"
26 #include "exec/cpu_ldst.h"
27 #include "qemu/main-loop.h"
28 #include "exec/translate-all.h"
29 #include "exec/page-protection.h"
30 #include "exec/helper-proto.h"
31 #include "qemu/atomic128.h"
32 #include "trace/trace-root.h"
33 #include "tcg/tcg-ldst.h"
34 #include "internal-common.h"
35 #include "internal-target.h"
36 
37 __thread uintptr_t helper_retaddr;
38 
39 //#define DEBUG_SIGNAL
40 
41 void cpu_interrupt(CPUState *cpu, int mask)
42 {
43     g_assert(bql_locked());
44     cpu->interrupt_request |= mask;
45     qatomic_set(&cpu->neg.icount_decr.u16.high, -1);
46 }
47 
48 /*
49  * Adjust the pc to pass to cpu_restore_state; return the memop type.
50  */
51 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
52 {
53     switch (helper_retaddr) {
54     default:
55         /*
56          * Fault during host memory operation within a helper function.
57          * The helper's host return address, saved here, gives us a
58          * pointer into the generated code that will unwind to the
59          * correct guest pc.
60          */
61         *pc = helper_retaddr;
62         break;
63 
64     case 0:
65         /*
66          * Fault during host memory operation within generated code.
67          * (Or, a unrelated bug within qemu, but we can't tell from here).
68          *
69          * We take the host pc from the signal frame.  However, we cannot
70          * use that value directly.  Within cpu_restore_state_from_tb, we
71          * assume PC comes from GETPC(), as used by the helper functions,
72          * so we adjust the address by -GETPC_ADJ to form an address that
73          * is within the call insn, so that the address does not accidentally
74          * match the beginning of the next guest insn.  However, when the
75          * pc comes from the signal frame it points to the actual faulting
76          * host memory insn and not the return from a call insn.
77          *
78          * Therefore, adjust to compensate for what will be done later
79          * by cpu_restore_state_from_tb.
80          */
81         *pc += GETPC_ADJ;
82         break;
83 
84     case 1:
85         /*
86          * Fault during host read for translation, or loosely, "execution".
87          *
88          * The guest pc is already pointing to the start of the TB for which
89          * code is being generated.  If the guest translator manages the
90          * page crossings correctly, this is exactly the correct address
91          * (and if the translator doesn't handle page boundaries correctly
92          * there's little we can do about that here).  Therefore, do not
93          * trigger the unwinder.
94          */
95         *pc = 0;
96         return MMU_INST_FETCH;
97     }
98 
99     return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
100 }
101 
102 /**
103  * handle_sigsegv_accerr_write:
104  * @cpu: the cpu context
105  * @old_set: the sigset_t from the signal ucontext_t
106  * @host_pc: the host pc, adjusted for the signal
107  * @guest_addr: the guest address of the fault
108  *
109  * Return true if the write fault has been handled, and should be re-tried.
110  *
111  * Note that it is important that we don't call page_unprotect() unless
112  * this is really a "write to nonwritable page" fault, because
113  * page_unprotect() assumes that if it is called for an access to
114  * a page that's writable this means we had two threads racing and
115  * another thread got there first and already made the page writable;
116  * so we will retry the access. If we were to call page_unprotect()
117  * for some other kind of fault that should really be passed to the
118  * guest, we'd end up in an infinite loop of retrying the faulting access.
119  */
120 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
121                                  uintptr_t host_pc, abi_ptr guest_addr)
122 {
123     switch (page_unprotect(guest_addr, host_pc)) {
124     case 0:
125         /*
126          * Fault not caused by a page marked unwritable to protect
127          * cached translations, must be the guest binary's problem.
128          */
129         return false;
130     case 1:
131         /*
132          * Fault caused by protection of cached translation; TBs
133          * invalidated, so resume execution.
134          */
135         return true;
136     case 2:
137         /*
138          * Fault caused by protection of cached translation, and the
139          * currently executing TB was modified and must be exited immediately.
140          */
141         sigprocmask(SIG_SETMASK, old_set, NULL);
142         cpu_loop_exit_noexc(cpu);
143         /* NORETURN */
144     default:
145         g_assert_not_reached();
146     }
147 }
148 
149 typedef struct PageFlagsNode {
150     struct rcu_head rcu;
151     IntervalTreeNode itree;
152     int flags;
153 } PageFlagsNode;
154 
155 static IntervalTreeRoot pageflags_root;
156 
157 static PageFlagsNode *pageflags_find(target_ulong start, target_ulong last)
158 {
159     IntervalTreeNode *n;
160 
161     n = interval_tree_iter_first(&pageflags_root, start, last);
162     return n ? container_of(n, PageFlagsNode, itree) : NULL;
163 }
164 
165 static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
166                                      target_ulong last)
167 {
168     IntervalTreeNode *n;
169 
170     n = interval_tree_iter_next(&p->itree, start, last);
171     return n ? container_of(n, PageFlagsNode, itree) : NULL;
172 }
173 
174 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
175 {
176     IntervalTreeNode *n;
177     int rc = 0;
178 
179     mmap_lock();
180     for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
181          n != NULL;
182          n = interval_tree_iter_next(n, 0, -1)) {
183         PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
184 
185         rc = fn(priv, n->start, n->last + 1, p->flags);
186         if (rc != 0) {
187             break;
188         }
189     }
190     mmap_unlock();
191 
192     return rc;
193 }
194 
195 static int dump_region(void *priv, target_ulong start,
196                        target_ulong end, unsigned long prot)
197 {
198     FILE *f = (FILE *)priv;
199 
200     fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
201             start, end, end - start,
202             ((prot & PAGE_READ) ? 'r' : '-'),
203             ((prot & PAGE_WRITE) ? 'w' : '-'),
204             ((prot & PAGE_EXEC) ? 'x' : '-'));
205     return 0;
206 }
207 
208 /* dump memory mappings */
209 void page_dump(FILE *f)
210 {
211     const int length = sizeof(target_ulong) * 2;
212 
213     fprintf(f, "%-*s %-*s %-*s %s\n",
214             length, "start", length, "end", length, "size", "prot");
215     walk_memory_regions(f, dump_region);
216 }
217 
218 int page_get_flags(target_ulong address)
219 {
220     PageFlagsNode *p = pageflags_find(address, address);
221 
222     /*
223      * See util/interval-tree.c re lockless lookups: no false positives but
224      * there are false negatives.  If we find nothing, retry with the mmap
225      * lock acquired.
226      */
227     if (p) {
228         return p->flags;
229     }
230     if (have_mmap_lock()) {
231         return 0;
232     }
233 
234     mmap_lock();
235     p = pageflags_find(address, address);
236     mmap_unlock();
237     return p ? p->flags : 0;
238 }
239 
240 /* A subroutine of page_set_flags: insert a new node for [start,last]. */
241 static void pageflags_create(target_ulong start, target_ulong last, int flags)
242 {
243     PageFlagsNode *p = g_new(PageFlagsNode, 1);
244 
245     p->itree.start = start;
246     p->itree.last = last;
247     p->flags = flags;
248     interval_tree_insert(&p->itree, &pageflags_root);
249 }
250 
251 /* A subroutine of page_set_flags: remove everything in [start,last]. */
252 static bool pageflags_unset(target_ulong start, target_ulong last)
253 {
254     bool inval_tb = false;
255 
256     while (true) {
257         PageFlagsNode *p = pageflags_find(start, last);
258         target_ulong p_last;
259 
260         if (!p) {
261             break;
262         }
263 
264         if (p->flags & PAGE_EXEC) {
265             inval_tb = true;
266         }
267 
268         interval_tree_remove(&p->itree, &pageflags_root);
269         p_last = p->itree.last;
270 
271         if (p->itree.start < start) {
272             /* Truncate the node from the end, or split out the middle. */
273             p->itree.last = start - 1;
274             interval_tree_insert(&p->itree, &pageflags_root);
275             if (last < p_last) {
276                 pageflags_create(last + 1, p_last, p->flags);
277                 break;
278             }
279         } else if (p_last <= last) {
280             /* Range completely covers node -- remove it. */
281             g_free_rcu(p, rcu);
282         } else {
283             /* Truncate the node from the start. */
284             p->itree.start = last + 1;
285             interval_tree_insert(&p->itree, &pageflags_root);
286             break;
287         }
288     }
289 
290     return inval_tb;
291 }
292 
293 /*
294  * A subroutine of page_set_flags: nothing overlaps [start,last],
295  * but check adjacent mappings and maybe merge into a single range.
296  */
297 static void pageflags_create_merge(target_ulong start, target_ulong last,
298                                    int flags)
299 {
300     PageFlagsNode *next = NULL, *prev = NULL;
301 
302     if (start > 0) {
303         prev = pageflags_find(start - 1, start - 1);
304         if (prev) {
305             if (prev->flags == flags) {
306                 interval_tree_remove(&prev->itree, &pageflags_root);
307             } else {
308                 prev = NULL;
309             }
310         }
311     }
312     if (last + 1 != 0) {
313         next = pageflags_find(last + 1, last + 1);
314         if (next) {
315             if (next->flags == flags) {
316                 interval_tree_remove(&next->itree, &pageflags_root);
317             } else {
318                 next = NULL;
319             }
320         }
321     }
322 
323     if (prev) {
324         if (next) {
325             prev->itree.last = next->itree.last;
326             g_free_rcu(next, rcu);
327         } else {
328             prev->itree.last = last;
329         }
330         interval_tree_insert(&prev->itree, &pageflags_root);
331     } else if (next) {
332         next->itree.start = start;
333         interval_tree_insert(&next->itree, &pageflags_root);
334     } else {
335         pageflags_create(start, last, flags);
336     }
337 }
338 
339 /*
340  * Allow the target to decide if PAGE_TARGET_[12] may be reset.
341  * By default, they are not kept.
342  */
343 #ifndef PAGE_TARGET_STICKY
344 #define PAGE_TARGET_STICKY  0
345 #endif
346 #define PAGE_STICKY  (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
347 
348 /* A subroutine of page_set_flags: add flags to [start,last]. */
349 static bool pageflags_set_clear(target_ulong start, target_ulong last,
350                                 int set_flags, int clear_flags)
351 {
352     PageFlagsNode *p;
353     target_ulong p_start, p_last;
354     int p_flags, merge_flags;
355     bool inval_tb = false;
356 
357  restart:
358     p = pageflags_find(start, last);
359     if (!p) {
360         if (set_flags) {
361             pageflags_create_merge(start, last, set_flags);
362         }
363         goto done;
364     }
365 
366     p_start = p->itree.start;
367     p_last = p->itree.last;
368     p_flags = p->flags;
369     /* Using mprotect on a page does not change sticky bits. */
370     merge_flags = (p_flags & ~clear_flags) | set_flags;
371 
372     /*
373      * Need to flush if an overlapping executable region
374      * removes exec, or adds write.
375      */
376     if ((p_flags & PAGE_EXEC)
377         && (!(merge_flags & PAGE_EXEC)
378             || (merge_flags & ~p_flags & PAGE_WRITE))) {
379         inval_tb = true;
380     }
381 
382     /*
383      * If there is an exact range match, update and return without
384      * attempting to merge with adjacent regions.
385      */
386     if (start == p_start && last == p_last) {
387         if (merge_flags) {
388             p->flags = merge_flags;
389         } else {
390             interval_tree_remove(&p->itree, &pageflags_root);
391             g_free_rcu(p, rcu);
392         }
393         goto done;
394     }
395 
396     /*
397      * If sticky bits affect the original mapping, then we must be more
398      * careful about the existing intervals and the separate flags.
399      */
400     if (set_flags != merge_flags) {
401         if (p_start < start) {
402             interval_tree_remove(&p->itree, &pageflags_root);
403             p->itree.last = start - 1;
404             interval_tree_insert(&p->itree, &pageflags_root);
405 
406             if (last < p_last) {
407                 if (merge_flags) {
408                     pageflags_create(start, last, merge_flags);
409                 }
410                 pageflags_create(last + 1, p_last, p_flags);
411             } else {
412                 if (merge_flags) {
413                     pageflags_create(start, p_last, merge_flags);
414                 }
415                 if (p_last < last) {
416                     start = p_last + 1;
417                     goto restart;
418                 }
419             }
420         } else {
421             if (start < p_start && set_flags) {
422                 pageflags_create(start, p_start - 1, set_flags);
423             }
424             if (last < p_last) {
425                 interval_tree_remove(&p->itree, &pageflags_root);
426                 p->itree.start = last + 1;
427                 interval_tree_insert(&p->itree, &pageflags_root);
428                 if (merge_flags) {
429                     pageflags_create(start, last, merge_flags);
430                 }
431             } else {
432                 if (merge_flags) {
433                     p->flags = merge_flags;
434                 } else {
435                     interval_tree_remove(&p->itree, &pageflags_root);
436                     g_free_rcu(p, rcu);
437                 }
438                 if (p_last < last) {
439                     start = p_last + 1;
440                     goto restart;
441                 }
442             }
443         }
444         goto done;
445     }
446 
447     /* If flags are not changing for this range, incorporate it. */
448     if (set_flags == p_flags) {
449         if (start < p_start) {
450             interval_tree_remove(&p->itree, &pageflags_root);
451             p->itree.start = start;
452             interval_tree_insert(&p->itree, &pageflags_root);
453         }
454         if (p_last < last) {
455             start = p_last + 1;
456             goto restart;
457         }
458         goto done;
459     }
460 
461     /* Maybe split out head and/or tail ranges with the original flags. */
462     interval_tree_remove(&p->itree, &pageflags_root);
463     if (p_start < start) {
464         p->itree.last = start - 1;
465         interval_tree_insert(&p->itree, &pageflags_root);
466 
467         if (p_last < last) {
468             goto restart;
469         }
470         if (last < p_last) {
471             pageflags_create(last + 1, p_last, p_flags);
472         }
473     } else if (last < p_last) {
474         p->itree.start = last + 1;
475         interval_tree_insert(&p->itree, &pageflags_root);
476     } else {
477         g_free_rcu(p, rcu);
478         goto restart;
479     }
480     if (set_flags) {
481         pageflags_create(start, last, set_flags);
482     }
483 
484  done:
485     return inval_tb;
486 }
487 
488 /*
489  * Modify the flags of a page and invalidate the code if necessary.
490  * The flag PAGE_WRITE_ORG is positioned automatically depending
491  * on PAGE_WRITE.  The mmap_lock should already be held.
492  */
493 void page_set_flags(target_ulong start, target_ulong last, int flags)
494 {
495     bool reset = false;
496     bool inval_tb = false;
497 
498     /* This function should never be called with addresses outside the
499        guest address space.  If this assert fires, it probably indicates
500        a missing call to h2g_valid.  */
501     assert(start <= last);
502     assert(last <= GUEST_ADDR_MAX);
503     /* Only set PAGE_ANON with new mappings. */
504     assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
505     assert_memory_lock();
506 
507     start &= TARGET_PAGE_MASK;
508     last |= ~TARGET_PAGE_MASK;
509 
510     if (!(flags & PAGE_VALID)) {
511         flags = 0;
512     } else {
513         reset = flags & PAGE_RESET;
514         flags &= ~PAGE_RESET;
515         if (flags & PAGE_WRITE) {
516             flags |= PAGE_WRITE_ORG;
517         }
518     }
519 
520     if (!flags || reset) {
521         page_reset_target_data(start, last);
522         inval_tb |= pageflags_unset(start, last);
523     }
524     if (flags) {
525         inval_tb |= pageflags_set_clear(start, last, flags,
526                                         ~(reset ? 0 : PAGE_STICKY));
527     }
528     if (inval_tb) {
529         tb_invalidate_phys_range(start, last);
530     }
531 }
532 
533 bool page_check_range(target_ulong start, target_ulong len, int flags)
534 {
535     target_ulong last;
536     int locked;  /* tri-state: =0: unlocked, +1: global, -1: local */
537     bool ret;
538 
539     if (len == 0) {
540         return true;  /* trivial length */
541     }
542 
543     last = start + len - 1;
544     if (last < start) {
545         return false; /* wrap around */
546     }
547 
548     locked = have_mmap_lock();
549     while (true) {
550         PageFlagsNode *p = pageflags_find(start, last);
551         int missing;
552 
553         if (!p) {
554             if (!locked) {
555                 /*
556                  * Lockless lookups have false negatives.
557                  * Retry with the lock held.
558                  */
559                 mmap_lock();
560                 locked = -1;
561                 p = pageflags_find(start, last);
562             }
563             if (!p) {
564                 ret = false; /* entire region invalid */
565                 break;
566             }
567         }
568         if (start < p->itree.start) {
569             ret = false; /* initial bytes invalid */
570             break;
571         }
572 
573         missing = flags & ~p->flags;
574         if (missing & ~PAGE_WRITE) {
575             ret = false; /* page doesn't match */
576             break;
577         }
578         if (missing & PAGE_WRITE) {
579             if (!(p->flags & PAGE_WRITE_ORG)) {
580                 ret = false; /* page not writable */
581                 break;
582             }
583             /* Asking about writable, but has been protected: undo. */
584             if (!page_unprotect(start, 0)) {
585                 ret = false;
586                 break;
587             }
588             /* TODO: page_unprotect should take a range, not a single page. */
589             if (last - start < TARGET_PAGE_SIZE) {
590                 ret = true; /* ok */
591                 break;
592             }
593             start += TARGET_PAGE_SIZE;
594             continue;
595         }
596 
597         if (last <= p->itree.last) {
598             ret = true; /* ok */
599             break;
600         }
601         start = p->itree.last + 1;
602     }
603 
604     /* Release the lock if acquired locally. */
605     if (locked < 0) {
606         mmap_unlock();
607     }
608     return ret;
609 }
610 
611 bool page_check_range_empty(target_ulong start, target_ulong last)
612 {
613     assert(last >= start);
614     assert_memory_lock();
615     return pageflags_find(start, last) == NULL;
616 }
617 
618 target_ulong page_find_range_empty(target_ulong min, target_ulong max,
619                                    target_ulong len, target_ulong align)
620 {
621     target_ulong len_m1, align_m1;
622 
623     assert(min <= max);
624     assert(max <= GUEST_ADDR_MAX);
625     assert(len != 0);
626     assert(is_power_of_2(align));
627     assert_memory_lock();
628 
629     len_m1 = len - 1;
630     align_m1 = align - 1;
631 
632     /* Iteratively narrow the search region. */
633     while (1) {
634         PageFlagsNode *p;
635 
636         /* Align min and double-check there's enough space remaining. */
637         min = (min + align_m1) & ~align_m1;
638         if (min > max) {
639             return -1;
640         }
641         if (len_m1 > max - min) {
642             return -1;
643         }
644 
645         p = pageflags_find(min, min + len_m1);
646         if (p == NULL) {
647             /* Found! */
648             return min;
649         }
650         if (max <= p->itree.last) {
651             /* Existing allocation fills the remainder of the search region. */
652             return -1;
653         }
654         /* Skip across existing allocation. */
655         min = p->itree.last + 1;
656     }
657 }
658 
659 void page_protect(tb_page_addr_t address)
660 {
661     PageFlagsNode *p;
662     target_ulong start, last;
663     int host_page_size = qemu_real_host_page_size();
664     int prot;
665 
666     assert_memory_lock();
667 
668     if (host_page_size <= TARGET_PAGE_SIZE) {
669         start = address & TARGET_PAGE_MASK;
670         last = start + TARGET_PAGE_SIZE - 1;
671     } else {
672         start = address & -host_page_size;
673         last = start + host_page_size - 1;
674     }
675 
676     p = pageflags_find(start, last);
677     if (!p) {
678         return;
679     }
680     prot = p->flags;
681 
682     if (unlikely(p->itree.last < last)) {
683         /* More than one protection region covers the one host page. */
684         assert(TARGET_PAGE_SIZE < host_page_size);
685         while ((p = pageflags_next(p, start, last)) != NULL) {
686             prot |= p->flags;
687         }
688     }
689 
690     if (prot & PAGE_WRITE) {
691         pageflags_set_clear(start, last, 0, PAGE_WRITE);
692         mprotect(g2h_untagged(start), last - start + 1,
693                  prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
694     }
695 }
696 
697 /*
698  * Called from signal handler: invalidate the code and unprotect the
699  * page. Return 0 if the fault was not handled, 1 if it was handled,
700  * and 2 if it was handled but the caller must cause the TB to be
701  * immediately exited. (We can only return 2 if the 'pc' argument is
702  * non-zero.)
703  */
704 int page_unprotect(target_ulong address, uintptr_t pc)
705 {
706     PageFlagsNode *p;
707     bool current_tb_invalidated;
708 
709     /*
710      * Technically this isn't safe inside a signal handler.  However we
711      * know this only ever happens in a synchronous SEGV handler, so in
712      * practice it seems to be ok.
713      */
714     mmap_lock();
715 
716     p = pageflags_find(address, address);
717 
718     /* If this address was not really writable, nothing to do. */
719     if (!p || !(p->flags & PAGE_WRITE_ORG)) {
720         mmap_unlock();
721         return 0;
722     }
723 
724     current_tb_invalidated = false;
725     if (p->flags & PAGE_WRITE) {
726         /*
727          * If the page is actually marked WRITE then assume this is because
728          * this thread raced with another one which got here first and
729          * set the page to PAGE_WRITE and did the TB invalidate for us.
730          */
731 #ifdef TARGET_HAS_PRECISE_SMC
732         TranslationBlock *current_tb = tcg_tb_lookup(pc);
733         if (current_tb) {
734             current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
735         }
736 #endif
737     } else {
738         int host_page_size = qemu_real_host_page_size();
739         target_ulong start, len, i;
740         int prot;
741 
742         if (host_page_size <= TARGET_PAGE_SIZE) {
743             start = address & TARGET_PAGE_MASK;
744             len = TARGET_PAGE_SIZE;
745             prot = p->flags | PAGE_WRITE;
746             pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
747             current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
748         } else {
749             start = address & -host_page_size;
750             len = host_page_size;
751             prot = 0;
752 
753             for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
754                 target_ulong addr = start + i;
755 
756                 p = pageflags_find(addr, addr);
757                 if (p) {
758                     prot |= p->flags;
759                     if (p->flags & PAGE_WRITE_ORG) {
760                         prot |= PAGE_WRITE;
761                         pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
762                                             PAGE_WRITE, 0);
763                     }
764                 }
765                 /*
766                  * Since the content will be modified, we must invalidate
767                  * the corresponding translated code.
768                  */
769                 current_tb_invalidated |=
770                     tb_invalidate_phys_page_unwind(addr, pc);
771             }
772         }
773         if (prot & PAGE_EXEC) {
774             prot = (prot & ~PAGE_EXEC) | PAGE_READ;
775         }
776         mprotect((void *)g2h_untagged(start), len, prot & PAGE_RWX);
777     }
778     mmap_unlock();
779 
780     /* If current TB was invalidated return to main loop */
781     return current_tb_invalidated ? 2 : 1;
782 }
783 
784 static int probe_access_internal(CPUArchState *env, vaddr addr,
785                                  int fault_size, MMUAccessType access_type,
786                                  bool nonfault, uintptr_t ra)
787 {
788     int acc_flag;
789     bool maperr;
790 
791     switch (access_type) {
792     case MMU_DATA_STORE:
793         acc_flag = PAGE_WRITE_ORG;
794         break;
795     case MMU_DATA_LOAD:
796         acc_flag = PAGE_READ;
797         break;
798     case MMU_INST_FETCH:
799         acc_flag = PAGE_EXEC;
800         break;
801     default:
802         g_assert_not_reached();
803     }
804 
805     if (guest_addr_valid_untagged(addr)) {
806         int page_flags = page_get_flags(addr);
807         if (page_flags & acc_flag) {
808             if ((acc_flag == PAGE_READ || acc_flag == PAGE_WRITE)
809                 && cpu_plugin_mem_cbs_enabled(env_cpu(env))) {
810                 return TLB_MMIO;
811             }
812             return 0; /* success */
813         }
814         maperr = !(page_flags & PAGE_VALID);
815     } else {
816         maperr = true;
817     }
818 
819     if (nonfault) {
820         return TLB_INVALID_MASK;
821     }
822 
823     cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
824 }
825 
826 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
827                        MMUAccessType access_type, int mmu_idx,
828                        bool nonfault, void **phost, uintptr_t ra)
829 {
830     int flags;
831 
832     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
833     flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
834     *phost = (flags & TLB_INVALID_MASK) ? NULL : g2h(env_cpu(env), addr);
835     return flags;
836 }
837 
838 void *probe_access(CPUArchState *env, vaddr addr, int size,
839                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
840 {
841     int flags;
842 
843     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
844     flags = probe_access_internal(env, addr, size, access_type, false, ra);
845     g_assert((flags & ~TLB_MMIO) == 0);
846 
847     return size ? g2h(env_cpu(env), addr) : NULL;
848 }
849 
850 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
851                                         void **hostp)
852 {
853     int flags;
854 
855     flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
856     g_assert(flags == 0);
857 
858     if (hostp) {
859         *hostp = g2h_untagged(addr);
860     }
861     return addr;
862 }
863 
864 #ifdef TARGET_PAGE_DATA_SIZE
865 /*
866  * Allocate chunks of target data together.  For the only current user,
867  * if we allocate one hunk per page, we have overhead of 40/128 or 40%.
868  * Therefore, allocate memory for 64 pages at a time for overhead < 1%.
869  */
870 #define TPD_PAGES  64
871 #define TBD_MASK   (TARGET_PAGE_MASK * TPD_PAGES)
872 
873 typedef struct TargetPageDataNode {
874     struct rcu_head rcu;
875     IntervalTreeNode itree;
876     char data[] __attribute__((aligned));
877 } TargetPageDataNode;
878 
879 static IntervalTreeRoot targetdata_root;
880 
881 void page_reset_target_data(target_ulong start, target_ulong last)
882 {
883     IntervalTreeNode *n, *next;
884 
885     assert_memory_lock();
886 
887     start &= TARGET_PAGE_MASK;
888     last |= ~TARGET_PAGE_MASK;
889 
890     for (n = interval_tree_iter_first(&targetdata_root, start, last),
891          next = n ? interval_tree_iter_next(n, start, last) : NULL;
892          n != NULL;
893          n = next,
894          next = next ? interval_tree_iter_next(n, start, last) : NULL) {
895         target_ulong n_start, n_last, p_ofs, p_len;
896         TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
897 
898         if (n->start >= start && n->last <= last) {
899             interval_tree_remove(n, &targetdata_root);
900             g_free_rcu(t, rcu);
901             continue;
902         }
903 
904         if (n->start < start) {
905             n_start = start;
906             p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
907         } else {
908             n_start = n->start;
909             p_ofs = 0;
910         }
911         n_last = MIN(last, n->last);
912         p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
913 
914         memset(t->data + p_ofs * TARGET_PAGE_DATA_SIZE, 0,
915                p_len * TARGET_PAGE_DATA_SIZE);
916     }
917 }
918 
919 void *page_get_target_data(target_ulong address)
920 {
921     IntervalTreeNode *n;
922     TargetPageDataNode *t;
923     target_ulong page, region, p_ofs;
924 
925     page = address & TARGET_PAGE_MASK;
926     region = address & TBD_MASK;
927 
928     n = interval_tree_iter_first(&targetdata_root, page, page);
929     if (!n) {
930         /*
931          * See util/interval-tree.c re lockless lookups: no false positives
932          * but there are false negatives.  If we find nothing, retry with
933          * the mmap lock acquired.  We also need the lock for the
934          * allocation + insert.
935          */
936         mmap_lock();
937         n = interval_tree_iter_first(&targetdata_root, page, page);
938         if (!n) {
939             t = g_malloc0(sizeof(TargetPageDataNode)
940                           + TPD_PAGES * TARGET_PAGE_DATA_SIZE);
941             n = &t->itree;
942             n->start = region;
943             n->last = region | ~TBD_MASK;
944             interval_tree_insert(n, &targetdata_root);
945         }
946         mmap_unlock();
947     }
948 
949     t = container_of(n, TargetPageDataNode, itree);
950     p_ofs = (page - region) >> TARGET_PAGE_BITS;
951     return t->data + p_ofs * TARGET_PAGE_DATA_SIZE;
952 }
953 #else
954 void page_reset_target_data(target_ulong start, target_ulong last) { }
955 #endif /* TARGET_PAGE_DATA_SIZE */
956 
957 /* The system-mode versions of these helpers are in cputlb.c.  */
958 
959 static void *cpu_mmu_lookup(CPUState *cpu, vaddr addr,
960                             MemOp mop, uintptr_t ra, MMUAccessType type)
961 {
962     int a_bits = get_alignment_bits(mop);
963     void *ret;
964 
965     /* Enforce guest required alignment.  */
966     if (unlikely(addr & ((1 << a_bits) - 1))) {
967         cpu_loop_exit_sigbus(cpu, addr, type, ra);
968     }
969 
970     ret = g2h(cpu, addr);
971     set_helper_retaddr(ra);
972     return ret;
973 }
974 
975 #include "ldst_atomicity.c.inc"
976 
977 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
978                           uintptr_t ra, MMUAccessType access_type)
979 {
980     void *haddr;
981     uint8_t ret;
982 
983     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
984     haddr = cpu_mmu_lookup(cpu, addr, get_memop(oi), ra, access_type);
985     ret = ldub_p(haddr);
986     clear_helper_retaddr();
987     return ret;
988 }
989 
990 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
991                            uintptr_t ra, MMUAccessType access_type)
992 {
993     void *haddr;
994     uint16_t ret;
995     MemOp mop = get_memop(oi);
996 
997     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
998     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
999     ret = load_atom_2(cpu, ra, haddr, mop);
1000     clear_helper_retaddr();
1001 
1002     if (mop & MO_BSWAP) {
1003         ret = bswap16(ret);
1004     }
1005     return ret;
1006 }
1007 
1008 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
1009                            uintptr_t ra, MMUAccessType access_type)
1010 {
1011     void *haddr;
1012     uint32_t ret;
1013     MemOp mop = get_memop(oi);
1014 
1015     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1016     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
1017     ret = load_atom_4(cpu, ra, haddr, mop);
1018     clear_helper_retaddr();
1019 
1020     if (mop & MO_BSWAP) {
1021         ret = bswap32(ret);
1022     }
1023     return ret;
1024 }
1025 
1026 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
1027                            uintptr_t ra, MMUAccessType access_type)
1028 {
1029     void *haddr;
1030     uint64_t ret;
1031     MemOp mop = get_memop(oi);
1032 
1033     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1034     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
1035     ret = load_atom_8(cpu, ra, haddr, mop);
1036     clear_helper_retaddr();
1037 
1038     if (mop & MO_BSWAP) {
1039         ret = bswap64(ret);
1040     }
1041     return ret;
1042 }
1043 
1044 static Int128 do_ld16_mmu(CPUState *cpu, abi_ptr addr,
1045                           MemOpIdx oi, uintptr_t ra)
1046 {
1047     void *haddr;
1048     Int128 ret;
1049     MemOp mop = get_memop(oi);
1050 
1051     tcg_debug_assert((mop & MO_SIZE) == MO_128);
1052     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1053     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_LOAD);
1054     ret = load_atom_16(cpu, ra, haddr, mop);
1055     clear_helper_retaddr();
1056 
1057     if (mop & MO_BSWAP) {
1058         ret = bswap128(ret);
1059     }
1060     return ret;
1061 }
1062 
1063 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
1064                        MemOpIdx oi, uintptr_t ra)
1065 {
1066     void *haddr;
1067 
1068     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1069     haddr = cpu_mmu_lookup(cpu, addr, get_memop(oi), ra, MMU_DATA_STORE);
1070     stb_p(haddr, val);
1071     clear_helper_retaddr();
1072 }
1073 
1074 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
1075                        MemOpIdx oi, uintptr_t ra)
1076 {
1077     void *haddr;
1078     MemOp mop = get_memop(oi);
1079 
1080     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1081     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1082 
1083     if (mop & MO_BSWAP) {
1084         val = bswap16(val);
1085     }
1086     store_atom_2(cpu, ra, haddr, mop, val);
1087     clear_helper_retaddr();
1088 }
1089 
1090 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
1091                        MemOpIdx oi, uintptr_t ra)
1092 {
1093     void *haddr;
1094     MemOp mop = get_memop(oi);
1095 
1096     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1097     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1098 
1099     if (mop & MO_BSWAP) {
1100         val = bswap32(val);
1101     }
1102     store_atom_4(cpu, ra, haddr, mop, val);
1103     clear_helper_retaddr();
1104 }
1105 
1106 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
1107                        MemOpIdx oi, uintptr_t ra)
1108 {
1109     void *haddr;
1110     MemOp mop = get_memop(oi);
1111 
1112     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1113     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1114 
1115     if (mop & MO_BSWAP) {
1116         val = bswap64(val);
1117     }
1118     store_atom_8(cpu, ra, haddr, mop, val);
1119     clear_helper_retaddr();
1120 }
1121 
1122 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
1123                         MemOpIdx oi, uintptr_t ra)
1124 {
1125     void *haddr;
1126     MemOpIdx mop = get_memop(oi);
1127 
1128     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1129     haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1130 
1131     if (mop & MO_BSWAP) {
1132         val = bswap128(val);
1133     }
1134     store_atom_16(cpu, ra, haddr, mop, val);
1135     clear_helper_retaddr();
1136 }
1137 
1138 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1139 {
1140     uint32_t ret;
1141 
1142     set_helper_retaddr(1);
1143     ret = ldub_p(g2h_untagged(ptr));
1144     clear_helper_retaddr();
1145     return ret;
1146 }
1147 
1148 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1149 {
1150     uint32_t ret;
1151 
1152     set_helper_retaddr(1);
1153     ret = lduw_p(g2h_untagged(ptr));
1154     clear_helper_retaddr();
1155     return ret;
1156 }
1157 
1158 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1159 {
1160     uint32_t ret;
1161 
1162     set_helper_retaddr(1);
1163     ret = ldl_p(g2h_untagged(ptr));
1164     clear_helper_retaddr();
1165     return ret;
1166 }
1167 
1168 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1169 {
1170     uint64_t ret;
1171 
1172     set_helper_retaddr(1);
1173     ret = ldq_p(g2h_untagged(ptr));
1174     clear_helper_retaddr();
1175     return ret;
1176 }
1177 
1178 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
1179                          MemOpIdx oi, uintptr_t ra)
1180 {
1181     void *haddr;
1182     uint8_t ret;
1183 
1184     haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1185     ret = ldub_p(haddr);
1186     clear_helper_retaddr();
1187     return ret;
1188 }
1189 
1190 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
1191                           MemOpIdx oi, uintptr_t ra)
1192 {
1193     void *haddr;
1194     uint16_t ret;
1195 
1196     haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1197     ret = lduw_p(haddr);
1198     clear_helper_retaddr();
1199     if (get_memop(oi) & MO_BSWAP) {
1200         ret = bswap16(ret);
1201     }
1202     return ret;
1203 }
1204 
1205 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
1206                           MemOpIdx oi, uintptr_t ra)
1207 {
1208     void *haddr;
1209     uint32_t ret;
1210 
1211     haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1212     ret = ldl_p(haddr);
1213     clear_helper_retaddr();
1214     if (get_memop(oi) & MO_BSWAP) {
1215         ret = bswap32(ret);
1216     }
1217     return ret;
1218 }
1219 
1220 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
1221                           MemOpIdx oi, uintptr_t ra)
1222 {
1223     void *haddr;
1224     uint64_t ret;
1225 
1226     haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_DATA_LOAD);
1227     ret = ldq_p(haddr);
1228     clear_helper_retaddr();
1229     if (get_memop(oi) & MO_BSWAP) {
1230         ret = bswap64(ret);
1231     }
1232     return ret;
1233 }
1234 
1235 #include "ldst_common.c.inc"
1236 
1237 /*
1238  * Do not allow unaligned operations to proceed.  Return the host address.
1239  */
1240 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1241                                int size, uintptr_t retaddr)
1242 {
1243     MemOp mop = get_memop(oi);
1244     int a_bits = get_alignment_bits(mop);
1245     void *ret;
1246 
1247     /* Enforce guest required alignment.  */
1248     if (unlikely(addr & ((1 << a_bits) - 1))) {
1249         cpu_loop_exit_sigbus(cpu, addr, MMU_DATA_STORE, retaddr);
1250     }
1251 
1252     /* Enforce qemu required alignment.  */
1253     if (unlikely(addr & (size - 1))) {
1254         cpu_loop_exit_atomic(cpu, retaddr);
1255     }
1256 
1257     ret = g2h(cpu, addr);
1258     set_helper_retaddr(retaddr);
1259     return ret;
1260 }
1261 
1262 #include "atomic_common.c.inc"
1263 
1264 /*
1265  * First set of functions passes in OI and RETADDR.
1266  * This makes them callable from other helpers.
1267  */
1268 
1269 #define ATOMIC_NAME(X) \
1270     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
1271 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1272 
1273 #define DATA_SIZE 1
1274 #include "atomic_template.h"
1275 
1276 #define DATA_SIZE 2
1277 #include "atomic_template.h"
1278 
1279 #define DATA_SIZE 4
1280 #include "atomic_template.h"
1281 
1282 #ifdef CONFIG_ATOMIC64
1283 #define DATA_SIZE 8
1284 #include "atomic_template.h"
1285 #endif
1286 
1287 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
1288 #define DATA_SIZE 16
1289 #include "atomic_template.h"
1290 #endif
1291