xref: /openbmc/qemu/accel/tcg/user-exec.c (revision 1da79ecc)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/translate-all.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/atomic128.h"
29 #include "trace/trace-root.h"
30 #include "trace/mem.h"
31 
32 #undef EAX
33 #undef ECX
34 #undef EDX
35 #undef EBX
36 #undef ESP
37 #undef EBP
38 #undef ESI
39 #undef EDI
40 #undef EIP
41 #ifdef __linux__
42 #include <sys/ucontext.h>
43 #endif
44 
45 __thread uintptr_t helper_retaddr;
46 
47 //#define DEBUG_SIGNAL
48 
49 /* exit the current TB from a signal handler. The host registers are
50    restored in a state compatible with the CPU emulator
51  */
52 static void QEMU_NORETURN cpu_exit_tb_from_sighandler(CPUState *cpu,
53                                                       sigset_t *old_set)
54 {
55     /* XXX: use siglongjmp ? */
56     sigprocmask(SIG_SETMASK, old_set, NULL);
57     cpu_loop_exit_noexc(cpu);
58 }
59 
60 /* 'pc' is the host PC at which the exception was raised. 'address' is
61    the effective address of the memory exception. 'is_write' is 1 if a
62    write caused the exception and otherwise 0'. 'old_set' is the
63    signal set which should be restored */
64 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info,
65                                     int is_write, sigset_t *old_set)
66 {
67     CPUState *cpu = current_cpu;
68     CPUClass *cc;
69     unsigned long address = (unsigned long)info->si_addr;
70     MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
71 
72     switch (helper_retaddr) {
73     default:
74         /*
75          * Fault during host memory operation within a helper function.
76          * The helper's host return address, saved here, gives us a
77          * pointer into the generated code that will unwind to the
78          * correct guest pc.
79          */
80         pc = helper_retaddr;
81         break;
82 
83     case 0:
84         /*
85          * Fault during host memory operation within generated code.
86          * (Or, a unrelated bug within qemu, but we can't tell from here).
87          *
88          * We take the host pc from the signal frame.  However, we cannot
89          * use that value directly.  Within cpu_restore_state_from_tb, we
90          * assume PC comes from GETPC(), as used by the helper functions,
91          * so we adjust the address by -GETPC_ADJ to form an address that
92          * is within the call insn, so that the address does not accidentally
93          * match the beginning of the next guest insn.  However, when the
94          * pc comes from the signal frame it points to the actual faulting
95          * host memory insn and not the return from a call insn.
96          *
97          * Therefore, adjust to compensate for what will be done later
98          * by cpu_restore_state_from_tb.
99          */
100         pc += GETPC_ADJ;
101         break;
102 
103     case 1:
104         /*
105          * Fault during host read for translation, or loosely, "execution".
106          *
107          * The guest pc is already pointing to the start of the TB for which
108          * code is being generated.  If the guest translator manages the
109          * page crossings correctly, this is exactly the correct address
110          * (and if the translator doesn't handle page boundaries correctly
111          * there's little we can do about that here).  Therefore, do not
112          * trigger the unwinder.
113          *
114          * Like tb_gen_code, release the memory lock before cpu_loop_exit.
115          */
116         pc = 0;
117         access_type = MMU_INST_FETCH;
118         mmap_unlock();
119         break;
120     }
121 
122     /* For synchronous signals we expect to be coming from the vCPU
123      * thread (so current_cpu should be valid) and either from running
124      * code or during translation which can fault as we cross pages.
125      *
126      * If neither is true then something has gone wrong and we should
127      * abort rather than try and restart the vCPU execution.
128      */
129     if (!cpu || !cpu->running) {
130         printf("qemu:%s received signal outside vCPU context @ pc=0x%"
131                PRIxPTR "\n",  __func__, pc);
132         abort();
133     }
134 
135 #if defined(DEBUG_SIGNAL)
136     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
137            pc, address, is_write, *(unsigned long *)old_set);
138 #endif
139     /* XXX: locking issue */
140     /* Note that it is important that we don't call page_unprotect() unless
141      * this is really a "write to nonwriteable page" fault, because
142      * page_unprotect() assumes that if it is called for an access to
143      * a page that's writeable this means we had two threads racing and
144      * another thread got there first and already made the page writeable;
145      * so we will retry the access. If we were to call page_unprotect()
146      * for some other kind of fault that should really be passed to the
147      * guest, we'd end up in an infinite loop of retrying the faulting
148      * access.
149      */
150     if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR &&
151         h2g_valid(address)) {
152         switch (page_unprotect(h2g(address), pc)) {
153         case 0:
154             /* Fault not caused by a page marked unwritable to protect
155              * cached translations, must be the guest binary's problem.
156              */
157             break;
158         case 1:
159             /* Fault caused by protection of cached translation; TBs
160              * invalidated, so resume execution.  Retain helper_retaddr
161              * for a possible second fault.
162              */
163             return 1;
164         case 2:
165             /* Fault caused by protection of cached translation, and the
166              * currently executing TB was modified and must be exited
167              * immediately.  Clear helper_retaddr for next execution.
168              */
169             clear_helper_retaddr();
170             cpu_exit_tb_from_sighandler(cpu, old_set);
171             /* NORETURN */
172 
173         default:
174             g_assert_not_reached();
175         }
176     }
177 
178     /* Convert forcefully to guest address space, invalid addresses
179        are still valid segv ones */
180     address = h2g_nocheck(address);
181 
182     /*
183      * There is no way the target can handle this other than raising
184      * an exception.  Undo signal and retaddr state prior to longjmp.
185      */
186     sigprocmask(SIG_SETMASK, old_set, NULL);
187     clear_helper_retaddr();
188 
189     cc = CPU_GET_CLASS(cpu);
190     cc->tlb_fill(cpu, address, 0, access_type, MMU_USER_IDX, false, pc);
191     g_assert_not_reached();
192 }
193 
194 static int probe_access_internal(CPUArchState *env, target_ulong addr,
195                                  int fault_size, MMUAccessType access_type,
196                                  bool nonfault, uintptr_t ra)
197 {
198     int flags;
199 
200     switch (access_type) {
201     case MMU_DATA_STORE:
202         flags = PAGE_WRITE;
203         break;
204     case MMU_DATA_LOAD:
205         flags = PAGE_READ;
206         break;
207     case MMU_INST_FETCH:
208         flags = PAGE_EXEC;
209         break;
210     default:
211         g_assert_not_reached();
212     }
213 
214     if (!guest_addr_valid(addr) || page_check_range(addr, 1, flags) < 0) {
215         if (nonfault) {
216             return TLB_INVALID_MASK;
217         } else {
218             CPUState *cpu = env_cpu(env);
219             CPUClass *cc = CPU_GET_CLASS(cpu);
220             cc->tlb_fill(cpu, addr, fault_size, access_type,
221                          MMU_USER_IDX, false, ra);
222             g_assert_not_reached();
223         }
224     }
225     return 0;
226 }
227 
228 int probe_access_flags(CPUArchState *env, target_ulong addr,
229                        MMUAccessType access_type, int mmu_idx,
230                        bool nonfault, void **phost, uintptr_t ra)
231 {
232     int flags;
233 
234     flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
235     *phost = flags ? NULL : g2h(addr);
236     return flags;
237 }
238 
239 void *probe_access(CPUArchState *env, target_ulong addr, int size,
240                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
241 {
242     int flags;
243 
244     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
245     flags = probe_access_internal(env, addr, size, access_type, false, ra);
246     g_assert(flags == 0);
247 
248     return size ? g2h(addr) : NULL;
249 }
250 
251 #if defined(__i386__)
252 
253 #if defined(__NetBSD__)
254 #include <ucontext.h>
255 
256 #define EIP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_EIP])
257 #define TRAP_sig(context)    ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
258 #define ERROR_sig(context)   ((context)->uc_mcontext.__gregs[_REG_ERR])
259 #define MASK_sig(context)    ((context)->uc_sigmask)
260 #elif defined(__FreeBSD__) || defined(__DragonFly__)
261 #include <ucontext.h>
262 
263 #define EIP_sig(context)  (*((unsigned long *)&(context)->uc_mcontext.mc_eip))
264 #define TRAP_sig(context)    ((context)->uc_mcontext.mc_trapno)
265 #define ERROR_sig(context)   ((context)->uc_mcontext.mc_err)
266 #define MASK_sig(context)    ((context)->uc_sigmask)
267 #elif defined(__OpenBSD__)
268 #define EIP_sig(context)     ((context)->sc_eip)
269 #define TRAP_sig(context)    ((context)->sc_trapno)
270 #define ERROR_sig(context)   ((context)->sc_err)
271 #define MASK_sig(context)    ((context)->sc_mask)
272 #else
273 #define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
274 #define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
275 #define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
276 #define MASK_sig(context)    ((context)->uc_sigmask)
277 #endif
278 
279 int cpu_signal_handler(int host_signum, void *pinfo,
280                        void *puc)
281 {
282     siginfo_t *info = pinfo;
283 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
284     ucontext_t *uc = puc;
285 #elif defined(__OpenBSD__)
286     struct sigcontext *uc = puc;
287 #else
288     ucontext_t *uc = puc;
289 #endif
290     unsigned long pc;
291     int trapno;
292 
293 #ifndef REG_EIP
294 /* for glibc 2.1 */
295 #define REG_EIP    EIP
296 #define REG_ERR    ERR
297 #define REG_TRAPNO TRAPNO
298 #endif
299     pc = EIP_sig(uc);
300     trapno = TRAP_sig(uc);
301     return handle_cpu_signal(pc, info,
302                              trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
303                              &MASK_sig(uc));
304 }
305 
306 #elif defined(__x86_64__)
307 
308 #ifdef __NetBSD__
309 #define PC_sig(context)       _UC_MACHINE_PC(context)
310 #define TRAP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
311 #define ERROR_sig(context)    ((context)->uc_mcontext.__gregs[_REG_ERR])
312 #define MASK_sig(context)     ((context)->uc_sigmask)
313 #elif defined(__OpenBSD__)
314 #define PC_sig(context)       ((context)->sc_rip)
315 #define TRAP_sig(context)     ((context)->sc_trapno)
316 #define ERROR_sig(context)    ((context)->sc_err)
317 #define MASK_sig(context)     ((context)->sc_mask)
318 #elif defined(__FreeBSD__) || defined(__DragonFly__)
319 #include <ucontext.h>
320 
321 #define PC_sig(context)  (*((unsigned long *)&(context)->uc_mcontext.mc_rip))
322 #define TRAP_sig(context)     ((context)->uc_mcontext.mc_trapno)
323 #define ERROR_sig(context)    ((context)->uc_mcontext.mc_err)
324 #define MASK_sig(context)     ((context)->uc_sigmask)
325 #else
326 #define PC_sig(context)       ((context)->uc_mcontext.gregs[REG_RIP])
327 #define TRAP_sig(context)     ((context)->uc_mcontext.gregs[REG_TRAPNO])
328 #define ERROR_sig(context)    ((context)->uc_mcontext.gregs[REG_ERR])
329 #define MASK_sig(context)     ((context)->uc_sigmask)
330 #endif
331 
332 int cpu_signal_handler(int host_signum, void *pinfo,
333                        void *puc)
334 {
335     siginfo_t *info = pinfo;
336     unsigned long pc;
337 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
338     ucontext_t *uc = puc;
339 #elif defined(__OpenBSD__)
340     struct sigcontext *uc = puc;
341 #else
342     ucontext_t *uc = puc;
343 #endif
344 
345     pc = PC_sig(uc);
346     return handle_cpu_signal(pc, info,
347                              TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
348                              &MASK_sig(uc));
349 }
350 
351 #elif defined(_ARCH_PPC)
352 
353 /***********************************************************************
354  * signal context platform-specific definitions
355  * From Wine
356  */
357 #ifdef linux
358 /* All Registers access - only for local access */
359 #define REG_sig(reg_name, context)              \
360     ((context)->uc_mcontext.regs->reg_name)
361 /* Gpr Registers access  */
362 #define GPR_sig(reg_num, context)              REG_sig(gpr[reg_num], context)
363 /* Program counter */
364 #define IAR_sig(context)                       REG_sig(nip, context)
365 /* Machine State Register (Supervisor) */
366 #define MSR_sig(context)                       REG_sig(msr, context)
367 /* Count register */
368 #define CTR_sig(context)                       REG_sig(ctr, context)
369 /* User's integer exception register */
370 #define XER_sig(context)                       REG_sig(xer, context)
371 /* Link register */
372 #define LR_sig(context)                        REG_sig(link, context)
373 /* Condition register */
374 #define CR_sig(context)                        REG_sig(ccr, context)
375 
376 /* Float Registers access  */
377 #define FLOAT_sig(reg_num, context)                                     \
378     (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num])
379 #define FPSCR_sig(context) \
380     (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4)))
381 /* Exception Registers access */
382 #define DAR_sig(context)                       REG_sig(dar, context)
383 #define DSISR_sig(context)                     REG_sig(dsisr, context)
384 #define TRAP_sig(context)                      REG_sig(trap, context)
385 #endif /* linux */
386 
387 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
388 #include <ucontext.h>
389 #define IAR_sig(context)               ((context)->uc_mcontext.mc_srr0)
390 #define MSR_sig(context)               ((context)->uc_mcontext.mc_srr1)
391 #define CTR_sig(context)               ((context)->uc_mcontext.mc_ctr)
392 #define XER_sig(context)               ((context)->uc_mcontext.mc_xer)
393 #define LR_sig(context)                ((context)->uc_mcontext.mc_lr)
394 #define CR_sig(context)                ((context)->uc_mcontext.mc_cr)
395 /* Exception Registers access */
396 #define DAR_sig(context)               ((context)->uc_mcontext.mc_dar)
397 #define DSISR_sig(context)             ((context)->uc_mcontext.mc_dsisr)
398 #define TRAP_sig(context)              ((context)->uc_mcontext.mc_exc)
399 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
400 
401 int cpu_signal_handler(int host_signum, void *pinfo,
402                        void *puc)
403 {
404     siginfo_t *info = pinfo;
405 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
406     ucontext_t *uc = puc;
407 #else
408     ucontext_t *uc = puc;
409 #endif
410     unsigned long pc;
411     int is_write;
412 
413     pc = IAR_sig(uc);
414     is_write = 0;
415 #if 0
416     /* ppc 4xx case */
417     if (DSISR_sig(uc) & 0x00800000) {
418         is_write = 1;
419     }
420 #else
421     if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) {
422         is_write = 1;
423     }
424 #endif
425     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
426 }
427 
428 #elif defined(__alpha__)
429 
430 int cpu_signal_handler(int host_signum, void *pinfo,
431                            void *puc)
432 {
433     siginfo_t *info = pinfo;
434     ucontext_t *uc = puc;
435     uint32_t *pc = uc->uc_mcontext.sc_pc;
436     uint32_t insn = *pc;
437     int is_write = 0;
438 
439     /* XXX: need kernel patch to get write flag faster */
440     switch (insn >> 26) {
441     case 0x0d: /* stw */
442     case 0x0e: /* stb */
443     case 0x0f: /* stq_u */
444     case 0x24: /* stf */
445     case 0x25: /* stg */
446     case 0x26: /* sts */
447     case 0x27: /* stt */
448     case 0x2c: /* stl */
449     case 0x2d: /* stq */
450     case 0x2e: /* stl_c */
451     case 0x2f: /* stq_c */
452         is_write = 1;
453     }
454 
455     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
456 }
457 #elif defined(__sparc__)
458 
459 int cpu_signal_handler(int host_signum, void *pinfo,
460                        void *puc)
461 {
462     siginfo_t *info = pinfo;
463     int is_write;
464     uint32_t insn;
465 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
466     uint32_t *regs = (uint32_t *)(info + 1);
467     void *sigmask = (regs + 20);
468     /* XXX: is there a standard glibc define ? */
469     unsigned long pc = regs[1];
470 #else
471 #ifdef __linux__
472     struct sigcontext *sc = puc;
473     unsigned long pc = sc->sigc_regs.tpc;
474     void *sigmask = (void *)sc->sigc_mask;
475 #elif defined(__OpenBSD__)
476     struct sigcontext *uc = puc;
477     unsigned long pc = uc->sc_pc;
478     void *sigmask = (void *)(long)uc->sc_mask;
479 #elif defined(__NetBSD__)
480     ucontext_t *uc = puc;
481     unsigned long pc = _UC_MACHINE_PC(uc);
482     void *sigmask = (void *)&uc->uc_sigmask;
483 #endif
484 #endif
485 
486     /* XXX: need kernel patch to get write flag faster */
487     is_write = 0;
488     insn = *(uint32_t *)pc;
489     if ((insn >> 30) == 3) {
490         switch ((insn >> 19) & 0x3f) {
491         case 0x05: /* stb */
492         case 0x15: /* stba */
493         case 0x06: /* sth */
494         case 0x16: /* stha */
495         case 0x04: /* st */
496         case 0x14: /* sta */
497         case 0x07: /* std */
498         case 0x17: /* stda */
499         case 0x0e: /* stx */
500         case 0x1e: /* stxa */
501         case 0x24: /* stf */
502         case 0x34: /* stfa */
503         case 0x27: /* stdf */
504         case 0x37: /* stdfa */
505         case 0x26: /* stqf */
506         case 0x36: /* stqfa */
507         case 0x25: /* stfsr */
508         case 0x3c: /* casa */
509         case 0x3e: /* casxa */
510             is_write = 1;
511             break;
512         }
513     }
514     return handle_cpu_signal(pc, info, is_write, sigmask);
515 }
516 
517 #elif defined(__arm__)
518 
519 #if defined(__NetBSD__)
520 #include <ucontext.h>
521 #include <sys/siginfo.h>
522 #endif
523 
524 int cpu_signal_handler(int host_signum, void *pinfo,
525                        void *puc)
526 {
527     siginfo_t *info = pinfo;
528 #if defined(__NetBSD__)
529     ucontext_t *uc = puc;
530     siginfo_t *si = pinfo;
531 #else
532     ucontext_t *uc = puc;
533 #endif
534     unsigned long pc;
535     uint32_t fsr;
536     int is_write;
537 
538 #if defined(__NetBSD__)
539     pc = uc->uc_mcontext.__gregs[_REG_R15];
540 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
541     pc = uc->uc_mcontext.gregs[R15];
542 #else
543     pc = uc->uc_mcontext.arm_pc;
544 #endif
545 
546 #ifdef __NetBSD__
547     fsr = si->si_trap;
548 #else
549     fsr = uc->uc_mcontext.error_code;
550 #endif
551     /*
552      * In the FSR, bit 11 is WnR, assuming a v6 or
553      * later processor.  On v5 we will always report
554      * this as a read, which will fail later.
555      */
556     is_write = extract32(fsr, 11, 1);
557     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
558 }
559 
560 #elif defined(__aarch64__)
561 
562 #if defined(__NetBSD__)
563 
564 #include <ucontext.h>
565 #include <sys/siginfo.h>
566 
567 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
568 {
569     ucontext_t *uc = puc;
570     siginfo_t *si = pinfo;
571     unsigned long pc;
572     int is_write;
573     uint32_t esr;
574 
575     pc = uc->uc_mcontext.__gregs[_REG_PC];
576     esr = si->si_trap;
577 
578     /*
579      * siginfo_t::si_trap is the ESR value, for data aborts ESR.EC
580      * is 0b10010x: then bit 6 is the WnR bit
581      */
582     is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
583     return handle_cpu_signal(pc, si, is_write, &uc->uc_sigmask);
584 }
585 
586 #else
587 
588 #ifndef ESR_MAGIC
589 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */
590 #define ESR_MAGIC 0x45535201
591 struct esr_context {
592     struct _aarch64_ctx head;
593     uint64_t esr;
594 };
595 #endif
596 
597 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc)
598 {
599     return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved;
600 }
601 
602 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr)
603 {
604     return (struct _aarch64_ctx *)((char *)hdr + hdr->size);
605 }
606 
607 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
608 {
609     siginfo_t *info = pinfo;
610     ucontext_t *uc = puc;
611     uintptr_t pc = uc->uc_mcontext.pc;
612     bool is_write;
613     struct _aarch64_ctx *hdr;
614     struct esr_context const *esrctx = NULL;
615 
616     /* Find the esr_context, which has the WnR bit in it */
617     for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) {
618         if (hdr->magic == ESR_MAGIC) {
619             esrctx = (struct esr_context const *)hdr;
620             break;
621         }
622     }
623 
624     if (esrctx) {
625         /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */
626         uint64_t esr = esrctx->esr;
627         is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
628     } else {
629         /*
630          * Fall back to parsing instructions; will only be needed
631          * for really ancient (pre-3.16) kernels.
632          */
633         uint32_t insn = *(uint32_t *)pc;
634 
635         is_write = ((insn & 0xbfff0000) == 0x0c000000   /* C3.3.1 */
636                     || (insn & 0xbfe00000) == 0x0c800000   /* C3.3.2 */
637                     || (insn & 0xbfdf0000) == 0x0d000000   /* C3.3.3 */
638                     || (insn & 0xbfc00000) == 0x0d800000   /* C3.3.4 */
639                     || (insn & 0x3f400000) == 0x08000000   /* C3.3.6 */
640                     || (insn & 0x3bc00000) == 0x39000000   /* C3.3.13 */
641                     || (insn & 0x3fc00000) == 0x3d800000   /* ... 128bit */
642                     /* Ignore bits 10, 11 & 21, controlling indexing.  */
643                     || (insn & 0x3bc00000) == 0x38000000   /* C3.3.8-12 */
644                     || (insn & 0x3fe00000) == 0x3c800000   /* ... 128bit */
645                     /* Ignore bits 23 & 24, controlling indexing.  */
646                     || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */
647     }
648     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
649 }
650 #endif
651 
652 #elif defined(__s390__)
653 
654 int cpu_signal_handler(int host_signum, void *pinfo,
655                        void *puc)
656 {
657     siginfo_t *info = pinfo;
658     ucontext_t *uc = puc;
659     unsigned long pc;
660     uint16_t *pinsn;
661     int is_write = 0;
662 
663     pc = uc->uc_mcontext.psw.addr;
664 
665     /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
666        of the normal 2 arguments.  The 3rd argument contains the "int_code"
667        from the hardware which does in fact contain the is_write value.
668        The rt signal handler, as far as I can tell, does not give this value
669        at all.  Not that we could get to it from here even if it were.  */
670     /* ??? This is not even close to complete, since it ignores all
671        of the read-modify-write instructions.  */
672     pinsn = (uint16_t *)pc;
673     switch (pinsn[0] >> 8) {
674     case 0x50: /* ST */
675     case 0x42: /* STC */
676     case 0x40: /* STH */
677         is_write = 1;
678         break;
679     case 0xc4: /* RIL format insns */
680         switch (pinsn[0] & 0xf) {
681         case 0xf: /* STRL */
682         case 0xb: /* STGRL */
683         case 0x7: /* STHRL */
684             is_write = 1;
685         }
686         break;
687     case 0xe3: /* RXY format insns */
688         switch (pinsn[2] & 0xff) {
689         case 0x50: /* STY */
690         case 0x24: /* STG */
691         case 0x72: /* STCY */
692         case 0x70: /* STHY */
693         case 0x8e: /* STPQ */
694         case 0x3f: /* STRVH */
695         case 0x3e: /* STRV */
696         case 0x2f: /* STRVG */
697             is_write = 1;
698         }
699         break;
700     }
701     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
702 }
703 
704 #elif defined(__mips__)
705 
706 #if defined(__misp16) || defined(__mips_micromips)
707 #error "Unsupported encoding"
708 #endif
709 
710 int cpu_signal_handler(int host_signum, void *pinfo,
711                        void *puc)
712 {
713     siginfo_t *info = pinfo;
714     ucontext_t *uc = puc;
715     uintptr_t pc = uc->uc_mcontext.pc;
716     uint32_t insn = *(uint32_t *)pc;
717     int is_write = 0;
718 
719     /* Detect all store instructions at program counter. */
720     switch((insn >> 26) & 077) {
721     case 050: /* SB */
722     case 051: /* SH */
723     case 052: /* SWL */
724     case 053: /* SW */
725     case 054: /* SDL */
726     case 055: /* SDR */
727     case 056: /* SWR */
728     case 070: /* SC */
729     case 071: /* SWC1 */
730     case 074: /* SCD */
731     case 075: /* SDC1 */
732     case 077: /* SD */
733 #if !defined(__mips_isa_rev) || __mips_isa_rev < 6
734     case 072: /* SWC2 */
735     case 076: /* SDC2 */
736 #endif
737         is_write = 1;
738         break;
739     case 023: /* COP1X */
740         /* Required in all versions of MIPS64 since
741            MIPS64r1 and subsequent versions of MIPS32r2. */
742         switch (insn & 077) {
743         case 010: /* SWXC1 */
744         case 011: /* SDXC1 */
745         case 015: /* SUXC1 */
746             is_write = 1;
747         }
748         break;
749     }
750 
751     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
752 }
753 
754 #elif defined(__riscv)
755 
756 int cpu_signal_handler(int host_signum, void *pinfo,
757                        void *puc)
758 {
759     siginfo_t *info = pinfo;
760     ucontext_t *uc = puc;
761     greg_t pc = uc->uc_mcontext.__gregs[REG_PC];
762     uint32_t insn = *(uint32_t *)pc;
763     int is_write = 0;
764 
765     /* Detect store by reading the instruction at the program
766        counter. Note: we currently only generate 32-bit
767        instructions so we thus only detect 32-bit stores */
768     switch (((insn >> 0) & 0b11)) {
769     case 3:
770         switch (((insn >> 2) & 0b11111)) {
771         case 8:
772             switch (((insn >> 12) & 0b111)) {
773             case 0: /* sb */
774             case 1: /* sh */
775             case 2: /* sw */
776             case 3: /* sd */
777             case 4: /* sq */
778                 is_write = 1;
779                 break;
780             default:
781                 break;
782             }
783             break;
784         case 9:
785             switch (((insn >> 12) & 0b111)) {
786             case 2: /* fsw */
787             case 3: /* fsd */
788             case 4: /* fsq */
789                 is_write = 1;
790                 break;
791             default:
792                 break;
793             }
794             break;
795         default:
796             break;
797         }
798     }
799 
800     /* Check for compressed instructions */
801     switch (((insn >> 13) & 0b111)) {
802     case 7:
803         switch (insn & 0b11) {
804         case 0: /*c.sd */
805         case 2: /* c.sdsp */
806             is_write = 1;
807             break;
808         default:
809             break;
810         }
811         break;
812     case 6:
813         switch (insn & 0b11) {
814         case 0: /* c.sw */
815         case 3: /* c.swsp */
816             is_write = 1;
817             break;
818         default:
819             break;
820         }
821         break;
822     default:
823         break;
824     }
825 
826     return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
827 }
828 
829 #else
830 
831 #error host CPU specific signal handler needed
832 
833 #endif
834 
835 /* The softmmu versions of these helpers are in cputlb.c.  */
836 
837 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr)
838 {
839     uint32_t ret;
840     uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false);
841 
842     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
843     ret = ldub_p(g2h(ptr));
844     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
845     return ret;
846 }
847 
848 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr)
849 {
850     int ret;
851     uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false);
852 
853     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
854     ret = ldsb_p(g2h(ptr));
855     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
856     return ret;
857 }
858 
859 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr)
860 {
861     uint32_t ret;
862     uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false);
863 
864     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
865     ret = lduw_be_p(g2h(ptr));
866     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
867     return ret;
868 }
869 
870 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr)
871 {
872     int ret;
873     uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false);
874 
875     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
876     ret = ldsw_be_p(g2h(ptr));
877     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
878     return ret;
879 }
880 
881 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr)
882 {
883     uint32_t ret;
884     uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false);
885 
886     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
887     ret = ldl_be_p(g2h(ptr));
888     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
889     return ret;
890 }
891 
892 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr)
893 {
894     uint64_t ret;
895     uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false);
896 
897     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
898     ret = ldq_be_p(g2h(ptr));
899     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
900     return ret;
901 }
902 
903 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr)
904 {
905     uint32_t ret;
906     uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false);
907 
908     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
909     ret = lduw_le_p(g2h(ptr));
910     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
911     return ret;
912 }
913 
914 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr)
915 {
916     int ret;
917     uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false);
918 
919     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
920     ret = ldsw_le_p(g2h(ptr));
921     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
922     return ret;
923 }
924 
925 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr)
926 {
927     uint32_t ret;
928     uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false);
929 
930     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
931     ret = ldl_le_p(g2h(ptr));
932     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
933     return ret;
934 }
935 
936 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr)
937 {
938     uint64_t ret;
939     uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false);
940 
941     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
942     ret = ldq_le_p(g2h(ptr));
943     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
944     return ret;
945 }
946 
947 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
948 {
949     uint32_t ret;
950 
951     set_helper_retaddr(retaddr);
952     ret = cpu_ldub_data(env, ptr);
953     clear_helper_retaddr();
954     return ret;
955 }
956 
957 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
958 {
959     int ret;
960 
961     set_helper_retaddr(retaddr);
962     ret = cpu_ldsb_data(env, ptr);
963     clear_helper_retaddr();
964     return ret;
965 }
966 
967 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
968 {
969     uint32_t ret;
970 
971     set_helper_retaddr(retaddr);
972     ret = cpu_lduw_be_data(env, ptr);
973     clear_helper_retaddr();
974     return ret;
975 }
976 
977 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
978 {
979     int ret;
980 
981     set_helper_retaddr(retaddr);
982     ret = cpu_ldsw_be_data(env, ptr);
983     clear_helper_retaddr();
984     return ret;
985 }
986 
987 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
988 {
989     uint32_t ret;
990 
991     set_helper_retaddr(retaddr);
992     ret = cpu_ldl_be_data(env, ptr);
993     clear_helper_retaddr();
994     return ret;
995 }
996 
997 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
998 {
999     uint64_t ret;
1000 
1001     set_helper_retaddr(retaddr);
1002     ret = cpu_ldq_be_data(env, ptr);
1003     clear_helper_retaddr();
1004     return ret;
1005 }
1006 
1007 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1008 {
1009     uint32_t ret;
1010 
1011     set_helper_retaddr(retaddr);
1012     ret = cpu_lduw_le_data(env, ptr);
1013     clear_helper_retaddr();
1014     return ret;
1015 }
1016 
1017 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1018 {
1019     int ret;
1020 
1021     set_helper_retaddr(retaddr);
1022     ret = cpu_ldsw_le_data(env, ptr);
1023     clear_helper_retaddr();
1024     return ret;
1025 }
1026 
1027 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1028 {
1029     uint32_t ret;
1030 
1031     set_helper_retaddr(retaddr);
1032     ret = cpu_ldl_le_data(env, ptr);
1033     clear_helper_retaddr();
1034     return ret;
1035 }
1036 
1037 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1038 {
1039     uint64_t ret;
1040 
1041     set_helper_retaddr(retaddr);
1042     ret = cpu_ldq_le_data(env, ptr);
1043     clear_helper_retaddr();
1044     return ret;
1045 }
1046 
1047 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1048 {
1049     uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true);
1050 
1051     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1052     stb_p(g2h(ptr), val);
1053     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1054 }
1055 
1056 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1057 {
1058     uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true);
1059 
1060     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1061     stw_be_p(g2h(ptr), val);
1062     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1063 }
1064 
1065 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1066 {
1067     uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true);
1068 
1069     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1070     stl_be_p(g2h(ptr), val);
1071     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1072 }
1073 
1074 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1075 {
1076     uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true);
1077 
1078     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1079     stq_be_p(g2h(ptr), val);
1080     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1081 }
1082 
1083 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1084 {
1085     uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true);
1086 
1087     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1088     stw_le_p(g2h(ptr), val);
1089     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1090 }
1091 
1092 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1093 {
1094     uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true);
1095 
1096     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1097     stl_le_p(g2h(ptr), val);
1098     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1099 }
1100 
1101 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1102 {
1103     uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true);
1104 
1105     trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1106     stq_le_p(g2h(ptr), val);
1107     qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1108 }
1109 
1110 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
1111                      uint32_t val, uintptr_t retaddr)
1112 {
1113     set_helper_retaddr(retaddr);
1114     cpu_stb_data(env, ptr, val);
1115     clear_helper_retaddr();
1116 }
1117 
1118 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
1119                         uint32_t val, uintptr_t retaddr)
1120 {
1121     set_helper_retaddr(retaddr);
1122     cpu_stw_be_data(env, ptr, val);
1123     clear_helper_retaddr();
1124 }
1125 
1126 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
1127                         uint32_t val, uintptr_t retaddr)
1128 {
1129     set_helper_retaddr(retaddr);
1130     cpu_stl_be_data(env, ptr, val);
1131     clear_helper_retaddr();
1132 }
1133 
1134 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
1135                         uint64_t val, uintptr_t retaddr)
1136 {
1137     set_helper_retaddr(retaddr);
1138     cpu_stq_be_data(env, ptr, val);
1139     clear_helper_retaddr();
1140 }
1141 
1142 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
1143                         uint32_t val, uintptr_t retaddr)
1144 {
1145     set_helper_retaddr(retaddr);
1146     cpu_stw_le_data(env, ptr, val);
1147     clear_helper_retaddr();
1148 }
1149 
1150 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
1151                         uint32_t val, uintptr_t retaddr)
1152 {
1153     set_helper_retaddr(retaddr);
1154     cpu_stl_le_data(env, ptr, val);
1155     clear_helper_retaddr();
1156 }
1157 
1158 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
1159                         uint64_t val, uintptr_t retaddr)
1160 {
1161     set_helper_retaddr(retaddr);
1162     cpu_stq_le_data(env, ptr, val);
1163     clear_helper_retaddr();
1164 }
1165 
1166 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1167 {
1168     uint32_t ret;
1169 
1170     set_helper_retaddr(1);
1171     ret = ldub_p(g2h(ptr));
1172     clear_helper_retaddr();
1173     return ret;
1174 }
1175 
1176 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1177 {
1178     uint32_t ret;
1179 
1180     set_helper_retaddr(1);
1181     ret = lduw_p(g2h(ptr));
1182     clear_helper_retaddr();
1183     return ret;
1184 }
1185 
1186 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1187 {
1188     uint32_t ret;
1189 
1190     set_helper_retaddr(1);
1191     ret = ldl_p(g2h(ptr));
1192     clear_helper_retaddr();
1193     return ret;
1194 }
1195 
1196 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1197 {
1198     uint64_t ret;
1199 
1200     set_helper_retaddr(1);
1201     ret = ldq_p(g2h(ptr));
1202     clear_helper_retaddr();
1203     return ret;
1204 }
1205 
1206 /* Do not allow unaligned operations to proceed.  Return the host address.  */
1207 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1208                                int size, uintptr_t retaddr)
1209 {
1210     /* Enforce qemu required alignment.  */
1211     if (unlikely(addr & (size - 1))) {
1212         cpu_loop_exit_atomic(env_cpu(env), retaddr);
1213     }
1214     void *ret = g2h(addr);
1215     set_helper_retaddr(retaddr);
1216     return ret;
1217 }
1218 
1219 /* Macro to call the above, with local variables from the use context.  */
1220 #define ATOMIC_MMU_DECLS do {} while (0)
1221 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC())
1222 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1223 #define ATOMIC_MMU_IDX MMU_USER_IDX
1224 
1225 #define ATOMIC_NAME(X)   HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1226 #define EXTRA_ARGS
1227 
1228 #include "atomic_common.c.inc"
1229 
1230 #define DATA_SIZE 1
1231 #include "atomic_template.h"
1232 
1233 #define DATA_SIZE 2
1234 #include "atomic_template.h"
1235 
1236 #define DATA_SIZE 4
1237 #include "atomic_template.h"
1238 
1239 #ifdef CONFIG_ATOMIC64
1240 #define DATA_SIZE 8
1241 #include "atomic_template.h"
1242 #endif
1243 
1244 /* The following is only callable from other helpers, and matches up
1245    with the softmmu version.  */
1246 
1247 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
1248 
1249 #undef EXTRA_ARGS
1250 #undef ATOMIC_NAME
1251 #undef ATOMIC_MMU_LOOKUP
1252 
1253 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
1254 #define ATOMIC_NAME(X) \
1255     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1256 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr)
1257 
1258 #define DATA_SIZE 16
1259 #include "atomic_template.h"
1260 #endif
1261