1 /* 2 * User emulator execution 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "disas/disas.h" 22 #include "exec/exec-all.h" 23 #include "tcg.h" 24 #include "qemu/bitops.h" 25 #include "exec/cpu_ldst.h" 26 #include "translate-all.h" 27 #include "exec/helper-proto.h" 28 #include "qemu/atomic128.h" 29 30 #undef EAX 31 #undef ECX 32 #undef EDX 33 #undef EBX 34 #undef ESP 35 #undef EBP 36 #undef ESI 37 #undef EDI 38 #undef EIP 39 #ifdef __linux__ 40 #include <sys/ucontext.h> 41 #endif 42 43 __thread uintptr_t helper_retaddr; 44 45 //#define DEBUG_SIGNAL 46 47 /* exit the current TB from a signal handler. The host registers are 48 restored in a state compatible with the CPU emulator 49 */ 50 static void cpu_exit_tb_from_sighandler(CPUState *cpu, sigset_t *old_set) 51 { 52 /* XXX: use siglongjmp ? */ 53 sigprocmask(SIG_SETMASK, old_set, NULL); 54 cpu_loop_exit_noexc(cpu); 55 } 56 57 /* 'pc' is the host PC at which the exception was raised. 'address' is 58 the effective address of the memory exception. 'is_write' is 1 if a 59 write caused the exception and otherwise 0'. 'old_set' is the 60 signal set which should be restored */ 61 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info, 62 int is_write, sigset_t *old_set) 63 { 64 CPUState *cpu = current_cpu; 65 CPUClass *cc; 66 unsigned long address = (unsigned long)info->si_addr; 67 MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD; 68 69 switch (helper_retaddr) { 70 default: 71 /* 72 * Fault during host memory operation within a helper function. 73 * The helper's host return address, saved here, gives us a 74 * pointer into the generated code that will unwind to the 75 * correct guest pc. 76 */ 77 pc = helper_retaddr; 78 break; 79 80 case 0: 81 /* 82 * Fault during host memory operation within generated code. 83 * (Or, a unrelated bug within qemu, but we can't tell from here). 84 * 85 * We take the host pc from the signal frame. However, we cannot 86 * use that value directly. Within cpu_restore_state_from_tb, we 87 * assume PC comes from GETPC(), as used by the helper functions, 88 * so we adjust the address by -GETPC_ADJ to form an address that 89 * is within the call insn, so that the address does not accidentially 90 * match the beginning of the next guest insn. However, when the 91 * pc comes from the signal frame it points to the actual faulting 92 * host memory insn and not the return from a call insn. 93 * 94 * Therefore, adjust to compensate for what will be done later 95 * by cpu_restore_state_from_tb. 96 */ 97 pc += GETPC_ADJ; 98 break; 99 100 case 1: 101 /* 102 * Fault during host read for translation, or loosely, "execution". 103 * 104 * The guest pc is already pointing to the start of the TB for which 105 * code is being generated. If the guest translator manages the 106 * page crossings correctly, this is exactly the correct address 107 * (and if the translator doesn't handle page boundaries correctly 108 * there's little we can do about that here). Therefore, do not 109 * trigger the unwinder. 110 * 111 * Like tb_gen_code, release the memory lock before cpu_loop_exit. 112 */ 113 pc = 0; 114 access_type = MMU_INST_FETCH; 115 mmap_unlock(); 116 break; 117 } 118 119 /* For synchronous signals we expect to be coming from the vCPU 120 * thread (so current_cpu should be valid) and either from running 121 * code or during translation which can fault as we cross pages. 122 * 123 * If neither is true then something has gone wrong and we should 124 * abort rather than try and restart the vCPU execution. 125 */ 126 if (!cpu || !cpu->running) { 127 printf("qemu:%s received signal outside vCPU context @ pc=0x%" 128 PRIxPTR "\n", __func__, pc); 129 abort(); 130 } 131 132 #if defined(DEBUG_SIGNAL) 133 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 134 pc, address, is_write, *(unsigned long *)old_set); 135 #endif 136 /* XXX: locking issue */ 137 /* Note that it is important that we don't call page_unprotect() unless 138 * this is really a "write to nonwriteable page" fault, because 139 * page_unprotect() assumes that if it is called for an access to 140 * a page that's writeable this means we had two threads racing and 141 * another thread got there first and already made the page writeable; 142 * so we will retry the access. If we were to call page_unprotect() 143 * for some other kind of fault that should really be passed to the 144 * guest, we'd end up in an infinite loop of retrying the faulting 145 * access. 146 */ 147 if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR && 148 h2g_valid(address)) { 149 switch (page_unprotect(h2g(address), pc)) { 150 case 0: 151 /* Fault not caused by a page marked unwritable to protect 152 * cached translations, must be the guest binary's problem. 153 */ 154 break; 155 case 1: 156 /* Fault caused by protection of cached translation; TBs 157 * invalidated, so resume execution. Retain helper_retaddr 158 * for a possible second fault. 159 */ 160 return 1; 161 case 2: 162 /* Fault caused by protection of cached translation, and the 163 * currently executing TB was modified and must be exited 164 * immediately. Clear helper_retaddr for next execution. 165 */ 166 clear_helper_retaddr(); 167 cpu_exit_tb_from_sighandler(cpu, old_set); 168 /* NORETURN */ 169 170 default: 171 g_assert_not_reached(); 172 } 173 } 174 175 /* Convert forcefully to guest address space, invalid addresses 176 are still valid segv ones */ 177 address = h2g_nocheck(address); 178 179 /* 180 * There is no way the target can handle this other than raising 181 * an exception. Undo signal and retaddr state prior to longjmp. 182 */ 183 sigprocmask(SIG_SETMASK, old_set, NULL); 184 clear_helper_retaddr(); 185 186 cc = CPU_GET_CLASS(cpu); 187 cc->tlb_fill(cpu, address, 0, access_type, MMU_USER_IDX, false, pc); 188 g_assert_not_reached(); 189 } 190 191 void *probe_access(CPUArchState *env, target_ulong addr, int size, 192 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 193 { 194 int flags; 195 196 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 197 198 switch (access_type) { 199 case MMU_DATA_STORE: 200 flags = PAGE_WRITE; 201 break; 202 case MMU_DATA_LOAD: 203 flags = PAGE_READ; 204 break; 205 case MMU_INST_FETCH: 206 flags = PAGE_EXEC; 207 break; 208 default: 209 g_assert_not_reached(); 210 } 211 212 if (!guest_addr_valid(addr) || page_check_range(addr, size, flags) < 0) { 213 CPUState *cpu = env_cpu(env); 214 CPUClass *cc = CPU_GET_CLASS(cpu); 215 cc->tlb_fill(cpu, addr, size, access_type, MMU_USER_IDX, false, 216 retaddr); 217 g_assert_not_reached(); 218 } 219 220 return size ? g2h(addr) : NULL; 221 } 222 223 #if defined(__i386__) 224 225 #if defined(__NetBSD__) 226 #include <ucontext.h> 227 228 #define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP]) 229 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) 230 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) 231 #define MASK_sig(context) ((context)->uc_sigmask) 232 #elif defined(__FreeBSD__) || defined(__DragonFly__) 233 #include <ucontext.h> 234 235 #define EIP_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_eip)) 236 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) 237 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err) 238 #define MASK_sig(context) ((context)->uc_sigmask) 239 #elif defined(__OpenBSD__) 240 #define EIP_sig(context) ((context)->sc_eip) 241 #define TRAP_sig(context) ((context)->sc_trapno) 242 #define ERROR_sig(context) ((context)->sc_err) 243 #define MASK_sig(context) ((context)->sc_mask) 244 #else 245 #define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) 246 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) 247 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) 248 #define MASK_sig(context) ((context)->uc_sigmask) 249 #endif 250 251 int cpu_signal_handler(int host_signum, void *pinfo, 252 void *puc) 253 { 254 siginfo_t *info = pinfo; 255 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__) 256 ucontext_t *uc = puc; 257 #elif defined(__OpenBSD__) 258 struct sigcontext *uc = puc; 259 #else 260 ucontext_t *uc = puc; 261 #endif 262 unsigned long pc; 263 int trapno; 264 265 #ifndef REG_EIP 266 /* for glibc 2.1 */ 267 #define REG_EIP EIP 268 #define REG_ERR ERR 269 #define REG_TRAPNO TRAPNO 270 #endif 271 pc = EIP_sig(uc); 272 trapno = TRAP_sig(uc); 273 return handle_cpu_signal(pc, info, 274 trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0, 275 &MASK_sig(uc)); 276 } 277 278 #elif defined(__x86_64__) 279 280 #ifdef __NetBSD__ 281 #define PC_sig(context) _UC_MACHINE_PC(context) 282 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO]) 283 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR]) 284 #define MASK_sig(context) ((context)->uc_sigmask) 285 #elif defined(__OpenBSD__) 286 #define PC_sig(context) ((context)->sc_rip) 287 #define TRAP_sig(context) ((context)->sc_trapno) 288 #define ERROR_sig(context) ((context)->sc_err) 289 #define MASK_sig(context) ((context)->sc_mask) 290 #elif defined(__FreeBSD__) || defined(__DragonFly__) 291 #include <ucontext.h> 292 293 #define PC_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_rip)) 294 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno) 295 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err) 296 #define MASK_sig(context) ((context)->uc_sigmask) 297 #else 298 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP]) 299 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) 300 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) 301 #define MASK_sig(context) ((context)->uc_sigmask) 302 #endif 303 304 int cpu_signal_handler(int host_signum, void *pinfo, 305 void *puc) 306 { 307 siginfo_t *info = pinfo; 308 unsigned long pc; 309 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__) 310 ucontext_t *uc = puc; 311 #elif defined(__OpenBSD__) 312 struct sigcontext *uc = puc; 313 #else 314 ucontext_t *uc = puc; 315 #endif 316 317 pc = PC_sig(uc); 318 return handle_cpu_signal(pc, info, 319 TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0, 320 &MASK_sig(uc)); 321 } 322 323 #elif defined(_ARCH_PPC) 324 325 /*********************************************************************** 326 * signal context platform-specific definitions 327 * From Wine 328 */ 329 #ifdef linux 330 /* All Registers access - only for local access */ 331 #define REG_sig(reg_name, context) \ 332 ((context)->uc_mcontext.regs->reg_name) 333 /* Gpr Registers access */ 334 #define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) 335 /* Program counter */ 336 #define IAR_sig(context) REG_sig(nip, context) 337 /* Machine State Register (Supervisor) */ 338 #define MSR_sig(context) REG_sig(msr, context) 339 /* Count register */ 340 #define CTR_sig(context) REG_sig(ctr, context) 341 /* User's integer exception register */ 342 #define XER_sig(context) REG_sig(xer, context) 343 /* Link register */ 344 #define LR_sig(context) REG_sig(link, context) 345 /* Condition register */ 346 #define CR_sig(context) REG_sig(ccr, context) 347 348 /* Float Registers access */ 349 #define FLOAT_sig(reg_num, context) \ 350 (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num]) 351 #define FPSCR_sig(context) \ 352 (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4))) 353 /* Exception Registers access */ 354 #define DAR_sig(context) REG_sig(dar, context) 355 #define DSISR_sig(context) REG_sig(dsisr, context) 356 #define TRAP_sig(context) REG_sig(trap, context) 357 #endif /* linux */ 358 359 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 360 #include <ucontext.h> 361 #define IAR_sig(context) ((context)->uc_mcontext.mc_srr0) 362 #define MSR_sig(context) ((context)->uc_mcontext.mc_srr1) 363 #define CTR_sig(context) ((context)->uc_mcontext.mc_ctr) 364 #define XER_sig(context) ((context)->uc_mcontext.mc_xer) 365 #define LR_sig(context) ((context)->uc_mcontext.mc_lr) 366 #define CR_sig(context) ((context)->uc_mcontext.mc_cr) 367 /* Exception Registers access */ 368 #define DAR_sig(context) ((context)->uc_mcontext.mc_dar) 369 #define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr) 370 #define TRAP_sig(context) ((context)->uc_mcontext.mc_exc) 371 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */ 372 373 int cpu_signal_handler(int host_signum, void *pinfo, 374 void *puc) 375 { 376 siginfo_t *info = pinfo; 377 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 378 ucontext_t *uc = puc; 379 #else 380 ucontext_t *uc = puc; 381 #endif 382 unsigned long pc; 383 int is_write; 384 385 pc = IAR_sig(uc); 386 is_write = 0; 387 #if 0 388 /* ppc 4xx case */ 389 if (DSISR_sig(uc) & 0x00800000) { 390 is_write = 1; 391 } 392 #else 393 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) { 394 is_write = 1; 395 } 396 #endif 397 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 398 } 399 400 #elif defined(__alpha__) 401 402 int cpu_signal_handler(int host_signum, void *pinfo, 403 void *puc) 404 { 405 siginfo_t *info = pinfo; 406 ucontext_t *uc = puc; 407 uint32_t *pc = uc->uc_mcontext.sc_pc; 408 uint32_t insn = *pc; 409 int is_write = 0; 410 411 /* XXX: need kernel patch to get write flag faster */ 412 switch (insn >> 26) { 413 case 0x0d: /* stw */ 414 case 0x0e: /* stb */ 415 case 0x0f: /* stq_u */ 416 case 0x24: /* stf */ 417 case 0x25: /* stg */ 418 case 0x26: /* sts */ 419 case 0x27: /* stt */ 420 case 0x2c: /* stl */ 421 case 0x2d: /* stq */ 422 case 0x2e: /* stl_c */ 423 case 0x2f: /* stq_c */ 424 is_write = 1; 425 } 426 427 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 428 } 429 #elif defined(__sparc__) 430 431 int cpu_signal_handler(int host_signum, void *pinfo, 432 void *puc) 433 { 434 siginfo_t *info = pinfo; 435 int is_write; 436 uint32_t insn; 437 #if !defined(__arch64__) || defined(CONFIG_SOLARIS) 438 uint32_t *regs = (uint32_t *)(info + 1); 439 void *sigmask = (regs + 20); 440 /* XXX: is there a standard glibc define ? */ 441 unsigned long pc = regs[1]; 442 #else 443 #ifdef __linux__ 444 struct sigcontext *sc = puc; 445 unsigned long pc = sc->sigc_regs.tpc; 446 void *sigmask = (void *)sc->sigc_mask; 447 #elif defined(__OpenBSD__) 448 struct sigcontext *uc = puc; 449 unsigned long pc = uc->sc_pc; 450 void *sigmask = (void *)(long)uc->sc_mask; 451 #elif defined(__NetBSD__) 452 ucontext_t *uc = puc; 453 unsigned long pc = _UC_MACHINE_PC(uc); 454 void *sigmask = (void *)&uc->uc_sigmask; 455 #endif 456 #endif 457 458 /* XXX: need kernel patch to get write flag faster */ 459 is_write = 0; 460 insn = *(uint32_t *)pc; 461 if ((insn >> 30) == 3) { 462 switch ((insn >> 19) & 0x3f) { 463 case 0x05: /* stb */ 464 case 0x15: /* stba */ 465 case 0x06: /* sth */ 466 case 0x16: /* stha */ 467 case 0x04: /* st */ 468 case 0x14: /* sta */ 469 case 0x07: /* std */ 470 case 0x17: /* stda */ 471 case 0x0e: /* stx */ 472 case 0x1e: /* stxa */ 473 case 0x24: /* stf */ 474 case 0x34: /* stfa */ 475 case 0x27: /* stdf */ 476 case 0x37: /* stdfa */ 477 case 0x26: /* stqf */ 478 case 0x36: /* stqfa */ 479 case 0x25: /* stfsr */ 480 case 0x3c: /* casa */ 481 case 0x3e: /* casxa */ 482 is_write = 1; 483 break; 484 } 485 } 486 return handle_cpu_signal(pc, info, is_write, sigmask); 487 } 488 489 #elif defined(__arm__) 490 491 #if defined(__NetBSD__) 492 #include <ucontext.h> 493 #endif 494 495 int cpu_signal_handler(int host_signum, void *pinfo, 496 void *puc) 497 { 498 siginfo_t *info = pinfo; 499 #if defined(__NetBSD__) 500 ucontext_t *uc = puc; 501 #else 502 ucontext_t *uc = puc; 503 #endif 504 unsigned long pc; 505 int is_write; 506 507 #if defined(__NetBSD__) 508 pc = uc->uc_mcontext.__gregs[_REG_R15]; 509 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) 510 pc = uc->uc_mcontext.gregs[R15]; 511 #else 512 pc = uc->uc_mcontext.arm_pc; 513 #endif 514 515 /* error_code is the FSR value, in which bit 11 is WnR (assuming a v6 or 516 * later processor; on v5 we will always report this as a read). 517 */ 518 is_write = extract32(uc->uc_mcontext.error_code, 11, 1); 519 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 520 } 521 522 #elif defined(__aarch64__) 523 524 #ifndef ESR_MAGIC 525 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */ 526 #define ESR_MAGIC 0x45535201 527 struct esr_context { 528 struct _aarch64_ctx head; 529 uint64_t esr; 530 }; 531 #endif 532 533 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc) 534 { 535 return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved; 536 } 537 538 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr) 539 { 540 return (struct _aarch64_ctx *)((char *)hdr + hdr->size); 541 } 542 543 int cpu_signal_handler(int host_signum, void *pinfo, void *puc) 544 { 545 siginfo_t *info = pinfo; 546 ucontext_t *uc = puc; 547 uintptr_t pc = uc->uc_mcontext.pc; 548 bool is_write; 549 struct _aarch64_ctx *hdr; 550 struct esr_context const *esrctx = NULL; 551 552 /* Find the esr_context, which has the WnR bit in it */ 553 for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) { 554 if (hdr->magic == ESR_MAGIC) { 555 esrctx = (struct esr_context const *)hdr; 556 break; 557 } 558 } 559 560 if (esrctx) { 561 /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */ 562 uint64_t esr = esrctx->esr; 563 is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1; 564 } else { 565 /* 566 * Fall back to parsing instructions; will only be needed 567 * for really ancient (pre-3.16) kernels. 568 */ 569 uint32_t insn = *(uint32_t *)pc; 570 571 is_write = ((insn & 0xbfff0000) == 0x0c000000 /* C3.3.1 */ 572 || (insn & 0xbfe00000) == 0x0c800000 /* C3.3.2 */ 573 || (insn & 0xbfdf0000) == 0x0d000000 /* C3.3.3 */ 574 || (insn & 0xbfc00000) == 0x0d800000 /* C3.3.4 */ 575 || (insn & 0x3f400000) == 0x08000000 /* C3.3.6 */ 576 || (insn & 0x3bc00000) == 0x39000000 /* C3.3.13 */ 577 || (insn & 0x3fc00000) == 0x3d800000 /* ... 128bit */ 578 /* Ignore bits 10, 11 & 21, controlling indexing. */ 579 || (insn & 0x3bc00000) == 0x38000000 /* C3.3.8-12 */ 580 || (insn & 0x3fe00000) == 0x3c800000 /* ... 128bit */ 581 /* Ignore bits 23 & 24, controlling indexing. */ 582 || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */ 583 } 584 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 585 } 586 587 #elif defined(__s390__) 588 589 int cpu_signal_handler(int host_signum, void *pinfo, 590 void *puc) 591 { 592 siginfo_t *info = pinfo; 593 ucontext_t *uc = puc; 594 unsigned long pc; 595 uint16_t *pinsn; 596 int is_write = 0; 597 598 pc = uc->uc_mcontext.psw.addr; 599 600 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead 601 of the normal 2 arguments. The 3rd argument contains the "int_code" 602 from the hardware which does in fact contain the is_write value. 603 The rt signal handler, as far as I can tell, does not give this value 604 at all. Not that we could get to it from here even if it were. */ 605 /* ??? This is not even close to complete, since it ignores all 606 of the read-modify-write instructions. */ 607 pinsn = (uint16_t *)pc; 608 switch (pinsn[0] >> 8) { 609 case 0x50: /* ST */ 610 case 0x42: /* STC */ 611 case 0x40: /* STH */ 612 is_write = 1; 613 break; 614 case 0xc4: /* RIL format insns */ 615 switch (pinsn[0] & 0xf) { 616 case 0xf: /* STRL */ 617 case 0xb: /* STGRL */ 618 case 0x7: /* STHRL */ 619 is_write = 1; 620 } 621 break; 622 case 0xe3: /* RXY format insns */ 623 switch (pinsn[2] & 0xff) { 624 case 0x50: /* STY */ 625 case 0x24: /* STG */ 626 case 0x72: /* STCY */ 627 case 0x70: /* STHY */ 628 case 0x8e: /* STPQ */ 629 case 0x3f: /* STRVH */ 630 case 0x3e: /* STRV */ 631 case 0x2f: /* STRVG */ 632 is_write = 1; 633 } 634 break; 635 } 636 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 637 } 638 639 #elif defined(__mips__) 640 641 int cpu_signal_handler(int host_signum, void *pinfo, 642 void *puc) 643 { 644 siginfo_t *info = pinfo; 645 ucontext_t *uc = puc; 646 greg_t pc = uc->uc_mcontext.pc; 647 int is_write; 648 649 /* XXX: compute is_write */ 650 is_write = 0; 651 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 652 } 653 654 #elif defined(__riscv) 655 656 int cpu_signal_handler(int host_signum, void *pinfo, 657 void *puc) 658 { 659 siginfo_t *info = pinfo; 660 ucontext_t *uc = puc; 661 greg_t pc = uc->uc_mcontext.__gregs[REG_PC]; 662 uint32_t insn = *(uint32_t *)pc; 663 int is_write = 0; 664 665 /* Detect store by reading the instruction at the program 666 counter. Note: we currently only generate 32-bit 667 instructions so we thus only detect 32-bit stores */ 668 switch (((insn >> 0) & 0b11)) { 669 case 3: 670 switch (((insn >> 2) & 0b11111)) { 671 case 8: 672 switch (((insn >> 12) & 0b111)) { 673 case 0: /* sb */ 674 case 1: /* sh */ 675 case 2: /* sw */ 676 case 3: /* sd */ 677 case 4: /* sq */ 678 is_write = 1; 679 break; 680 default: 681 break; 682 } 683 break; 684 case 9: 685 switch (((insn >> 12) & 0b111)) { 686 case 2: /* fsw */ 687 case 3: /* fsd */ 688 case 4: /* fsq */ 689 is_write = 1; 690 break; 691 default: 692 break; 693 } 694 break; 695 default: 696 break; 697 } 698 } 699 700 /* Check for compressed instructions */ 701 switch (((insn >> 13) & 0b111)) { 702 case 7: 703 switch (insn & 0b11) { 704 case 0: /*c.sd */ 705 case 2: /* c.sdsp */ 706 is_write = 1; 707 break; 708 default: 709 break; 710 } 711 break; 712 case 6: 713 switch (insn & 0b11) { 714 case 0: /* c.sw */ 715 case 3: /* c.swsp */ 716 is_write = 1; 717 break; 718 default: 719 break; 720 } 721 break; 722 default: 723 break; 724 } 725 726 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask); 727 } 728 729 #else 730 731 #error host CPU specific signal handler needed 732 733 #endif 734 735 /* The softmmu versions of these helpers are in cputlb.c. */ 736 737 /* Do not allow unaligned operations to proceed. Return the host address. */ 738 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 739 int size, uintptr_t retaddr) 740 { 741 /* Enforce qemu required alignment. */ 742 if (unlikely(addr & (size - 1))) { 743 cpu_loop_exit_atomic(env_cpu(env), retaddr); 744 } 745 void *ret = g2h(addr); 746 set_helper_retaddr(retaddr); 747 return ret; 748 } 749 750 /* Macro to call the above, with local variables from the use context. */ 751 #define ATOMIC_MMU_DECLS do {} while (0) 752 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC()) 753 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0) 754 755 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) 756 #define EXTRA_ARGS 757 758 #define DATA_SIZE 1 759 #include "atomic_template.h" 760 761 #define DATA_SIZE 2 762 #include "atomic_template.h" 763 764 #define DATA_SIZE 4 765 #include "atomic_template.h" 766 767 #ifdef CONFIG_ATOMIC64 768 #define DATA_SIZE 8 769 #include "atomic_template.h" 770 #endif 771 772 /* The following is only callable from other helpers, and matches up 773 with the softmmu version. */ 774 775 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128 776 777 #undef EXTRA_ARGS 778 #undef ATOMIC_NAME 779 #undef ATOMIC_MMU_LOOKUP 780 781 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr 782 #define ATOMIC_NAME(X) \ 783 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) 784 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr) 785 786 #define DATA_SIZE 16 787 #include "atomic_template.h" 788 #endif 789