1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 23 #define NO_CPU_IO_DEFS 24 #include "cpu.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg.h" 29 #if defined(CONFIG_USER_ONLY) 30 #include "qemu.h" 31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 32 #include <sys/param.h> 33 #if __FreeBSD_version >= 700104 34 #define HAVE_KINFO_GETVMMAP 35 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 36 #include <sys/proc.h> 37 #include <machine/profile.h> 38 #define _KERNEL 39 #include <sys/user.h> 40 #undef _KERNEL 41 #undef sigqueue 42 #include <libutil.h> 43 #endif 44 #endif 45 #else 46 #include "exec/ram_addr.h" 47 #endif 48 49 #include "exec/cputlb.h" 50 #include "exec/tb-hash.h" 51 #include "translate-all.h" 52 #include "qemu/bitmap.h" 53 #include "qemu/error-report.h" 54 #include "qemu/qemu-print.h" 55 #include "qemu/timer.h" 56 #include "qemu/main-loop.h" 57 #include "exec/log.h" 58 #include "sysemu/cpus.h" 59 #include "sysemu/tcg.h" 60 61 /* #define DEBUG_TB_INVALIDATE */ 62 /* #define DEBUG_TB_FLUSH */ 63 /* make various TB consistency checks */ 64 /* #define DEBUG_TB_CHECK */ 65 66 #ifdef DEBUG_TB_INVALIDATE 67 #define DEBUG_TB_INVALIDATE_GATE 1 68 #else 69 #define DEBUG_TB_INVALIDATE_GATE 0 70 #endif 71 72 #ifdef DEBUG_TB_FLUSH 73 #define DEBUG_TB_FLUSH_GATE 1 74 #else 75 #define DEBUG_TB_FLUSH_GATE 0 76 #endif 77 78 #if !defined(CONFIG_USER_ONLY) 79 /* TB consistency checks only implemented for usermode emulation. */ 80 #undef DEBUG_TB_CHECK 81 #endif 82 83 #ifdef DEBUG_TB_CHECK 84 #define DEBUG_TB_CHECK_GATE 1 85 #else 86 #define DEBUG_TB_CHECK_GATE 0 87 #endif 88 89 /* Access to the various translations structures need to be serialised via locks 90 * for consistency. 91 * In user-mode emulation access to the memory related structures are protected 92 * with mmap_lock. 93 * In !user-mode we use per-page locks. 94 */ 95 #ifdef CONFIG_SOFTMMU 96 #define assert_memory_lock() 97 #else 98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 99 #endif 100 101 #define SMC_BITMAP_USE_THRESHOLD 10 102 103 typedef struct PageDesc { 104 /* list of TBs intersecting this ram page */ 105 uintptr_t first_tb; 106 #ifdef CONFIG_SOFTMMU 107 /* in order to optimize self modifying code, we count the number 108 of lookups we do to a given page to use a bitmap */ 109 unsigned long *code_bitmap; 110 unsigned int code_write_count; 111 #else 112 unsigned long flags; 113 #endif 114 #ifndef CONFIG_USER_ONLY 115 QemuSpin lock; 116 #endif 117 } PageDesc; 118 119 /** 120 * struct page_entry - page descriptor entry 121 * @pd: pointer to the &struct PageDesc of the page this entry represents 122 * @index: page index of the page 123 * @locked: whether the page is locked 124 * 125 * This struct helps us keep track of the locked state of a page, without 126 * bloating &struct PageDesc. 127 * 128 * A page lock protects accesses to all fields of &struct PageDesc. 129 * 130 * See also: &struct page_collection. 131 */ 132 struct page_entry { 133 PageDesc *pd; 134 tb_page_addr_t index; 135 bool locked; 136 }; 137 138 /** 139 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 140 * @tree: Binary search tree (BST) of the pages, with key == page index 141 * @max: Pointer to the page in @tree with the highest page index 142 * 143 * To avoid deadlock we lock pages in ascending order of page index. 144 * When operating on a set of pages, we need to keep track of them so that 145 * we can lock them in order and also unlock them later. For this we collect 146 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 147 * @tree implementation we use does not provide an O(1) operation to obtain the 148 * highest-ranked element, we use @max to keep track of the inserted page 149 * with the highest index. This is valuable because if a page is not in 150 * the tree and its index is higher than @max's, then we can lock it 151 * without breaking the locking order rule. 152 * 153 * Note on naming: 'struct page_set' would be shorter, but we already have a few 154 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 155 * 156 * See also: page_collection_lock(). 157 */ 158 struct page_collection { 159 GTree *tree; 160 struct page_entry *max; 161 }; 162 163 /* list iterators for lists of tagged pointers in TranslationBlock */ 164 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 165 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 166 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 167 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 168 169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 170 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 171 172 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 173 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 174 175 /* In system mode we want L1_MAP to be based on ram offsets, 176 while in user mode we want it to be based on virtual addresses. */ 177 #if !defined(CONFIG_USER_ONLY) 178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 179 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 180 #else 181 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 182 #endif 183 #else 184 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS 185 #endif 186 187 /* Size of the L2 (and L3, etc) page tables. */ 188 #define V_L2_BITS 10 189 #define V_L2_SIZE (1 << V_L2_BITS) 190 191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 193 sizeof_field(TranslationBlock, trace_vcpu_dstate) 194 * BITS_PER_BYTE); 195 196 /* 197 * L1 Mapping properties 198 */ 199 static int v_l1_size; 200 static int v_l1_shift; 201 static int v_l2_levels; 202 203 /* The bottom level has pointers to PageDesc, and is indexed by 204 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 205 */ 206 #define V_L1_MIN_BITS 4 207 #define V_L1_MAX_BITS (V_L2_BITS + 3) 208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 209 210 static void *l1_map[V_L1_MAX_SIZE]; 211 212 /* code generation context */ 213 TCGContext tcg_init_ctx; 214 __thread TCGContext *tcg_ctx; 215 TBContext tb_ctx; 216 bool parallel_cpus; 217 218 static void page_table_config_init(void) 219 { 220 uint32_t v_l1_bits; 221 222 assert(TARGET_PAGE_BITS); 223 /* The bits remaining after N lower levels of page tables. */ 224 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 225 if (v_l1_bits < V_L1_MIN_BITS) { 226 v_l1_bits += V_L2_BITS; 227 } 228 229 v_l1_size = 1 << v_l1_bits; 230 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 231 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 232 233 assert(v_l1_bits <= V_L1_MAX_BITS); 234 assert(v_l1_shift % V_L2_BITS == 0); 235 assert(v_l2_levels >= 0); 236 } 237 238 void cpu_gen_init(void) 239 { 240 tcg_context_init(&tcg_init_ctx); 241 } 242 243 /* Encode VAL as a signed leb128 sequence at P. 244 Return P incremented past the encoded value. */ 245 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 246 { 247 int more, byte; 248 249 do { 250 byte = val & 0x7f; 251 val >>= 7; 252 more = !((val == 0 && (byte & 0x40) == 0) 253 || (val == -1 && (byte & 0x40) != 0)); 254 if (more) { 255 byte |= 0x80; 256 } 257 *p++ = byte; 258 } while (more); 259 260 return p; 261 } 262 263 /* Decode a signed leb128 sequence at *PP; increment *PP past the 264 decoded value. Return the decoded value. */ 265 static target_long decode_sleb128(uint8_t **pp) 266 { 267 uint8_t *p = *pp; 268 target_long val = 0; 269 int byte, shift = 0; 270 271 do { 272 byte = *p++; 273 val |= (target_ulong)(byte & 0x7f) << shift; 274 shift += 7; 275 } while (byte & 0x80); 276 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 277 val |= -(target_ulong)1 << shift; 278 } 279 280 *pp = p; 281 return val; 282 } 283 284 /* Encode the data collected about the instructions while compiling TB. 285 Place the data at BLOCK, and return the number of bytes consumed. 286 287 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 288 which come from the target's insn_start data, followed by a uintptr_t 289 which comes from the host pc of the end of the code implementing the insn. 290 291 Each line of the table is encoded as sleb128 deltas from the previous 292 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 293 That is, the first column is seeded with the guest pc, the last column 294 with the host pc, and the middle columns with zeros. */ 295 296 static int encode_search(TranslationBlock *tb, uint8_t *block) 297 { 298 uint8_t *highwater = tcg_ctx->code_gen_highwater; 299 uint8_t *p = block; 300 int i, j, n; 301 302 for (i = 0, n = tb->icount; i < n; ++i) { 303 target_ulong prev; 304 305 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 306 if (i == 0) { 307 prev = (j == 0 ? tb->pc : 0); 308 } else { 309 prev = tcg_ctx->gen_insn_data[i - 1][j]; 310 } 311 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 312 } 313 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 314 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 315 316 /* Test for (pending) buffer overflow. The assumption is that any 317 one row beginning below the high water mark cannot overrun 318 the buffer completely. Thus we can test for overflow after 319 encoding a row without having to check during encoding. */ 320 if (unlikely(p > highwater)) { 321 return -1; 322 } 323 } 324 325 return p - block; 326 } 327 328 /* The cpu state corresponding to 'searched_pc' is restored. 329 * When reset_icount is true, current TB will be interrupted and 330 * icount should be recalculated. 331 */ 332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 333 uintptr_t searched_pc, bool reset_icount) 334 { 335 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 336 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 337 CPUArchState *env = cpu->env_ptr; 338 uint8_t *p = tb->tc.ptr + tb->tc.size; 339 int i, j, num_insns = tb->icount; 340 #ifdef CONFIG_PROFILER 341 TCGProfile *prof = &tcg_ctx->prof; 342 int64_t ti = profile_getclock(); 343 #endif 344 345 searched_pc -= GETPC_ADJ; 346 347 if (searched_pc < host_pc) { 348 return -1; 349 } 350 351 /* Reconstruct the stored insn data while looking for the point at 352 which the end of the insn exceeds the searched_pc. */ 353 for (i = 0; i < num_insns; ++i) { 354 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 355 data[j] += decode_sleb128(&p); 356 } 357 host_pc += decode_sleb128(&p); 358 if (host_pc > searched_pc) { 359 goto found; 360 } 361 } 362 return -1; 363 364 found: 365 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 366 assert(use_icount); 367 /* Reset the cycle counter to the start of the block 368 and shift if to the number of actually executed instructions */ 369 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 370 } 371 restore_state_to_opc(env, tb, data); 372 373 #ifdef CONFIG_PROFILER 374 atomic_set(&prof->restore_time, 375 prof->restore_time + profile_getclock() - ti); 376 atomic_set(&prof->restore_count, prof->restore_count + 1); 377 #endif 378 return 0; 379 } 380 381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 382 { 383 TranslationBlock *tb; 384 bool r = false; 385 uintptr_t check_offset; 386 387 /* The host_pc has to be in the region of current code buffer. If 388 * it is not we will not be able to resolve it here. The two cases 389 * where host_pc will not be correct are: 390 * 391 * - fault during translation (instruction fetch) 392 * - fault from helper (not using GETPC() macro) 393 * 394 * Either way we need return early as we can't resolve it here. 395 * 396 * We are using unsigned arithmetic so if host_pc < 397 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 398 * above the code_gen_buffer_size 399 */ 400 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 401 402 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 403 tb = tcg_tb_lookup(host_pc); 404 if (tb) { 405 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 406 if (tb_cflags(tb) & CF_NOCACHE) { 407 /* one-shot translation, invalidate it immediately */ 408 tb_phys_invalidate(tb, -1); 409 tcg_tb_remove(tb); 410 } 411 r = true; 412 } 413 } 414 415 return r; 416 } 417 418 static void page_init(void) 419 { 420 page_size_init(); 421 page_table_config_init(); 422 423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 424 { 425 #ifdef HAVE_KINFO_GETVMMAP 426 struct kinfo_vmentry *freep; 427 int i, cnt; 428 429 freep = kinfo_getvmmap(getpid(), &cnt); 430 if (freep) { 431 mmap_lock(); 432 for (i = 0; i < cnt; i++) { 433 unsigned long startaddr, endaddr; 434 435 startaddr = freep[i].kve_start; 436 endaddr = freep[i].kve_end; 437 if (h2g_valid(startaddr)) { 438 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 439 440 if (h2g_valid(endaddr)) { 441 endaddr = h2g(endaddr); 442 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 443 } else { 444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 445 endaddr = ~0ul; 446 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 447 #endif 448 } 449 } 450 } 451 free(freep); 452 mmap_unlock(); 453 } 454 #else 455 FILE *f; 456 457 last_brk = (unsigned long)sbrk(0); 458 459 f = fopen("/compat/linux/proc/self/maps", "r"); 460 if (f) { 461 mmap_lock(); 462 463 do { 464 unsigned long startaddr, endaddr; 465 int n; 466 467 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 468 469 if (n == 2 && h2g_valid(startaddr)) { 470 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 471 472 if (h2g_valid(endaddr)) { 473 endaddr = h2g(endaddr); 474 } else { 475 endaddr = ~0ul; 476 } 477 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 478 } 479 } while (!feof(f)); 480 481 fclose(f); 482 mmap_unlock(); 483 } 484 #endif 485 } 486 #endif 487 } 488 489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 490 { 491 PageDesc *pd; 492 void **lp; 493 int i; 494 495 /* Level 1. Always allocated. */ 496 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 497 498 /* Level 2..N-1. */ 499 for (i = v_l2_levels; i > 0; i--) { 500 void **p = atomic_rcu_read(lp); 501 502 if (p == NULL) { 503 void *existing; 504 505 if (!alloc) { 506 return NULL; 507 } 508 p = g_new0(void *, V_L2_SIZE); 509 existing = atomic_cmpxchg(lp, NULL, p); 510 if (unlikely(existing)) { 511 g_free(p); 512 p = existing; 513 } 514 } 515 516 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 517 } 518 519 pd = atomic_rcu_read(lp); 520 if (pd == NULL) { 521 void *existing; 522 523 if (!alloc) { 524 return NULL; 525 } 526 pd = g_new0(PageDesc, V_L2_SIZE); 527 #ifndef CONFIG_USER_ONLY 528 { 529 int i; 530 531 for (i = 0; i < V_L2_SIZE; i++) { 532 qemu_spin_init(&pd[i].lock); 533 } 534 } 535 #endif 536 existing = atomic_cmpxchg(lp, NULL, pd); 537 if (unlikely(existing)) { 538 g_free(pd); 539 pd = existing; 540 } 541 } 542 543 return pd + (index & (V_L2_SIZE - 1)); 544 } 545 546 static inline PageDesc *page_find(tb_page_addr_t index) 547 { 548 return page_find_alloc(index, 0); 549 } 550 551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 552 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 553 554 /* In user-mode page locks aren't used; mmap_lock is enough */ 555 #ifdef CONFIG_USER_ONLY 556 557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 558 559 static inline void page_lock(PageDesc *pd) 560 { } 561 562 static inline void page_unlock(PageDesc *pd) 563 { } 564 565 static inline void page_lock_tb(const TranslationBlock *tb) 566 { } 567 568 static inline void page_unlock_tb(const TranslationBlock *tb) 569 { } 570 571 struct page_collection * 572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 573 { 574 return NULL; 575 } 576 577 void page_collection_unlock(struct page_collection *set) 578 { } 579 #else /* !CONFIG_USER_ONLY */ 580 581 #ifdef CONFIG_DEBUG_TCG 582 583 static __thread GHashTable *ht_pages_locked_debug; 584 585 static void ht_pages_locked_debug_init(void) 586 { 587 if (ht_pages_locked_debug) { 588 return; 589 } 590 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 591 } 592 593 static bool page_is_locked(const PageDesc *pd) 594 { 595 PageDesc *found; 596 597 ht_pages_locked_debug_init(); 598 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 599 return !!found; 600 } 601 602 static void page_lock__debug(PageDesc *pd) 603 { 604 ht_pages_locked_debug_init(); 605 g_assert(!page_is_locked(pd)); 606 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 607 } 608 609 static void page_unlock__debug(const PageDesc *pd) 610 { 611 bool removed; 612 613 ht_pages_locked_debug_init(); 614 g_assert(page_is_locked(pd)); 615 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 616 g_assert(removed); 617 } 618 619 static void 620 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 621 { 622 if (unlikely(!page_is_locked(pd))) { 623 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 624 pd, file, line); 625 abort(); 626 } 627 } 628 629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 630 631 void assert_no_pages_locked(void) 632 { 633 ht_pages_locked_debug_init(); 634 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 635 } 636 637 #else /* !CONFIG_DEBUG_TCG */ 638 639 #define assert_page_locked(pd) 640 641 static inline void page_lock__debug(const PageDesc *pd) 642 { 643 } 644 645 static inline void page_unlock__debug(const PageDesc *pd) 646 { 647 } 648 649 #endif /* CONFIG_DEBUG_TCG */ 650 651 static inline void page_lock(PageDesc *pd) 652 { 653 page_lock__debug(pd); 654 qemu_spin_lock(&pd->lock); 655 } 656 657 static inline void page_unlock(PageDesc *pd) 658 { 659 qemu_spin_unlock(&pd->lock); 660 page_unlock__debug(pd); 661 } 662 663 /* lock the page(s) of a TB in the correct acquisition order */ 664 static inline void page_lock_tb(const TranslationBlock *tb) 665 { 666 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 667 } 668 669 static inline void page_unlock_tb(const TranslationBlock *tb) 670 { 671 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 672 673 page_unlock(p1); 674 if (unlikely(tb->page_addr[1] != -1)) { 675 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 676 677 if (p2 != p1) { 678 page_unlock(p2); 679 } 680 } 681 } 682 683 static inline struct page_entry * 684 page_entry_new(PageDesc *pd, tb_page_addr_t index) 685 { 686 struct page_entry *pe = g_malloc(sizeof(*pe)); 687 688 pe->index = index; 689 pe->pd = pd; 690 pe->locked = false; 691 return pe; 692 } 693 694 static void page_entry_destroy(gpointer p) 695 { 696 struct page_entry *pe = p; 697 698 g_assert(pe->locked); 699 page_unlock(pe->pd); 700 g_free(pe); 701 } 702 703 /* returns false on success */ 704 static bool page_entry_trylock(struct page_entry *pe) 705 { 706 bool busy; 707 708 busy = qemu_spin_trylock(&pe->pd->lock); 709 if (!busy) { 710 g_assert(!pe->locked); 711 pe->locked = true; 712 page_lock__debug(pe->pd); 713 } 714 return busy; 715 } 716 717 static void do_page_entry_lock(struct page_entry *pe) 718 { 719 page_lock(pe->pd); 720 g_assert(!pe->locked); 721 pe->locked = true; 722 } 723 724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 725 { 726 struct page_entry *pe = value; 727 728 do_page_entry_lock(pe); 729 return FALSE; 730 } 731 732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 733 { 734 struct page_entry *pe = value; 735 736 if (pe->locked) { 737 pe->locked = false; 738 page_unlock(pe->pd); 739 } 740 return FALSE; 741 } 742 743 /* 744 * Trylock a page, and if successful, add the page to a collection. 745 * Returns true ("busy") if the page could not be locked; false otherwise. 746 */ 747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 748 { 749 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 750 struct page_entry *pe; 751 PageDesc *pd; 752 753 pe = g_tree_lookup(set->tree, &index); 754 if (pe) { 755 return false; 756 } 757 758 pd = page_find(index); 759 if (pd == NULL) { 760 return false; 761 } 762 763 pe = page_entry_new(pd, index); 764 g_tree_insert(set->tree, &pe->index, pe); 765 766 /* 767 * If this is either (1) the first insertion or (2) a page whose index 768 * is higher than any other so far, just lock the page and move on. 769 */ 770 if (set->max == NULL || pe->index > set->max->index) { 771 set->max = pe; 772 do_page_entry_lock(pe); 773 return false; 774 } 775 /* 776 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 777 * locks in order. 778 */ 779 return page_entry_trylock(pe); 780 } 781 782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 783 { 784 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 785 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 786 787 if (a == b) { 788 return 0; 789 } else if (a < b) { 790 return -1; 791 } 792 return 1; 793 } 794 795 /* 796 * Lock a range of pages ([@start,@end[) as well as the pages of all 797 * intersecting TBs. 798 * Locking order: acquire locks in ascending order of page index. 799 */ 800 struct page_collection * 801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 802 { 803 struct page_collection *set = g_malloc(sizeof(*set)); 804 tb_page_addr_t index; 805 PageDesc *pd; 806 807 start >>= TARGET_PAGE_BITS; 808 end >>= TARGET_PAGE_BITS; 809 g_assert(start <= end); 810 811 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 812 page_entry_destroy); 813 set->max = NULL; 814 assert_no_pages_locked(); 815 816 retry: 817 g_tree_foreach(set->tree, page_entry_lock, NULL); 818 819 for (index = start; index <= end; index++) { 820 TranslationBlock *tb; 821 int n; 822 823 pd = page_find(index); 824 if (pd == NULL) { 825 continue; 826 } 827 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 828 g_tree_foreach(set->tree, page_entry_unlock, NULL); 829 goto retry; 830 } 831 assert_page_locked(pd); 832 PAGE_FOR_EACH_TB(pd, tb, n) { 833 if (page_trylock_add(set, tb->page_addr[0]) || 834 (tb->page_addr[1] != -1 && 835 page_trylock_add(set, tb->page_addr[1]))) { 836 /* drop all locks, and reacquire in order */ 837 g_tree_foreach(set->tree, page_entry_unlock, NULL); 838 goto retry; 839 } 840 } 841 } 842 return set; 843 } 844 845 void page_collection_unlock(struct page_collection *set) 846 { 847 /* entries are unlocked and freed via page_entry_destroy */ 848 g_tree_destroy(set->tree); 849 g_free(set); 850 } 851 852 #endif /* !CONFIG_USER_ONLY */ 853 854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 855 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 856 { 857 PageDesc *p1, *p2; 858 tb_page_addr_t page1; 859 tb_page_addr_t page2; 860 861 assert_memory_lock(); 862 g_assert(phys1 != -1); 863 864 page1 = phys1 >> TARGET_PAGE_BITS; 865 page2 = phys2 >> TARGET_PAGE_BITS; 866 867 p1 = page_find_alloc(page1, alloc); 868 if (ret_p1) { 869 *ret_p1 = p1; 870 } 871 if (likely(phys2 == -1)) { 872 page_lock(p1); 873 return; 874 } else if (page1 == page2) { 875 page_lock(p1); 876 if (ret_p2) { 877 *ret_p2 = p1; 878 } 879 return; 880 } 881 p2 = page_find_alloc(page2, alloc); 882 if (ret_p2) { 883 *ret_p2 = p2; 884 } 885 if (page1 < page2) { 886 page_lock(p1); 887 page_lock(p2); 888 } else { 889 page_lock(p2); 890 page_lock(p1); 891 } 892 } 893 894 #if defined(CONFIG_USER_ONLY) 895 /* Currently it is not recommended to allocate big chunks of data in 896 user mode. It will change when a dedicated libc will be used. */ 897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the 898 region in which the guest needs to run. Revisit this. */ 899 #define USE_STATIC_CODE_GEN_BUFFER 900 #endif 901 902 /* Minimum size of the code gen buffer. This number is randomly chosen, 903 but not so small that we can't have a fair number of TB's live. */ 904 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) 905 906 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 907 indicated, this is constrained by the range of direct branches on the 908 host cpu, as used by the TCG implementation of goto_tb. */ 909 #if defined(__x86_64__) 910 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 911 #elif defined(__sparc__) 912 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 913 #elif defined(__powerpc64__) 914 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 915 #elif defined(__powerpc__) 916 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024) 917 #elif defined(__aarch64__) 918 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) 919 #elif defined(__s390x__) 920 /* We have a +- 4GB range on the branches; leave some slop. */ 921 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) 922 #elif defined(__mips__) 923 /* We have a 256MB branch region, but leave room to make sure the 924 main executable is also within that region. */ 925 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) 926 #else 927 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 928 #endif 929 930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) 931 932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 933 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 934 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 935 936 static inline size_t size_code_gen_buffer(size_t tb_size) 937 { 938 /* Size the buffer. */ 939 if (tb_size == 0) { 940 #ifdef USE_STATIC_CODE_GEN_BUFFER 941 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 942 #else 943 /* ??? Needs adjustments. */ 944 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the 945 static buffer, we could size this on RESERVED_VA, on the text 946 segment size of the executable, or continue to use the default. */ 947 tb_size = (unsigned long)(ram_size / 4); 948 #endif 949 } 950 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 951 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 952 } 953 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 954 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 955 } 956 return tb_size; 957 } 958 959 #ifdef __mips__ 960 /* In order to use J and JAL within the code_gen_buffer, we require 961 that the buffer not cross a 256MB boundary. */ 962 static inline bool cross_256mb(void *addr, size_t size) 963 { 964 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 965 } 966 967 /* We weren't able to allocate a buffer without crossing that boundary, 968 so make do with the larger portion of the buffer that doesn't cross. 969 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 970 static inline void *split_cross_256mb(void *buf1, size_t size1) 971 { 972 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 973 size_t size2 = buf1 + size1 - buf2; 974 975 size1 = buf2 - buf1; 976 if (size1 < size2) { 977 size1 = size2; 978 buf1 = buf2; 979 } 980 981 tcg_ctx->code_gen_buffer_size = size1; 982 return buf1; 983 } 984 #endif 985 986 #ifdef USE_STATIC_CODE_GEN_BUFFER 987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 988 __attribute__((aligned(CODE_GEN_ALIGN))); 989 990 static inline void *alloc_code_gen_buffer(void) 991 { 992 void *buf = static_code_gen_buffer; 993 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 994 size_t size; 995 996 /* page-align the beginning and end of the buffer */ 997 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 998 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 999 1000 size = end - buf; 1001 1002 /* Honor a command-line option limiting the size of the buffer. */ 1003 if (size > tcg_ctx->code_gen_buffer_size) { 1004 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1005 qemu_real_host_page_size); 1006 } 1007 tcg_ctx->code_gen_buffer_size = size; 1008 1009 #ifdef __mips__ 1010 if (cross_256mb(buf, size)) { 1011 buf = split_cross_256mb(buf, size); 1012 size = tcg_ctx->code_gen_buffer_size; 1013 } 1014 #endif 1015 1016 if (qemu_mprotect_rwx(buf, size)) { 1017 abort(); 1018 } 1019 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1020 1021 return buf; 1022 } 1023 #elif defined(_WIN32) 1024 static inline void *alloc_code_gen_buffer(void) 1025 { 1026 size_t size = tcg_ctx->code_gen_buffer_size; 1027 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1028 PAGE_EXECUTE_READWRITE); 1029 } 1030 #else 1031 static inline void *alloc_code_gen_buffer(void) 1032 { 1033 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1034 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1035 uintptr_t start = 0; 1036 size_t size = tcg_ctx->code_gen_buffer_size; 1037 void *buf; 1038 1039 /* Constrain the position of the buffer based on the host cpu. 1040 Note that these addresses are chosen in concert with the 1041 addresses assigned in the relevant linker script file. */ 1042 # if defined(__PIE__) || defined(__PIC__) 1043 /* Don't bother setting a preferred location if we're building 1044 a position-independent executable. We're more likely to get 1045 an address near the main executable if we let the kernel 1046 choose the address. */ 1047 # elif defined(__x86_64__) && defined(MAP_32BIT) 1048 /* Force the memory down into low memory with the executable. 1049 Leave the choice of exact location with the kernel. */ 1050 flags |= MAP_32BIT; 1051 /* Cannot expect to map more than 800MB in low memory. */ 1052 if (size > 800u * 1024 * 1024) { 1053 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024; 1054 } 1055 # elif defined(__sparc__) 1056 start = 0x40000000ul; 1057 # elif defined(__s390x__) 1058 start = 0x90000000ul; 1059 # elif defined(__mips__) 1060 # if _MIPS_SIM == _ABI64 1061 start = 0x128000000ul; 1062 # else 1063 start = 0x08000000ul; 1064 # endif 1065 # endif 1066 1067 buf = mmap((void *)start, size, prot, flags, -1, 0); 1068 if (buf == MAP_FAILED) { 1069 return NULL; 1070 } 1071 1072 #ifdef __mips__ 1073 if (cross_256mb(buf, size)) { 1074 /* Try again, with the original still mapped, to avoid re-acquiring 1075 that 256mb crossing. This time don't specify an address. */ 1076 size_t size2; 1077 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1078 switch ((int)(buf2 != MAP_FAILED)) { 1079 case 1: 1080 if (!cross_256mb(buf2, size)) { 1081 /* Success! Use the new buffer. */ 1082 munmap(buf, size); 1083 break; 1084 } 1085 /* Failure. Work with what we had. */ 1086 munmap(buf2, size); 1087 /* fallthru */ 1088 default: 1089 /* Split the original buffer. Free the smaller half. */ 1090 buf2 = split_cross_256mb(buf, size); 1091 size2 = tcg_ctx->code_gen_buffer_size; 1092 if (buf == buf2) { 1093 munmap(buf + size2, size - size2); 1094 } else { 1095 munmap(buf, size - size2); 1096 } 1097 size = size2; 1098 break; 1099 } 1100 buf = buf2; 1101 } 1102 #endif 1103 1104 /* Request large pages for the buffer. */ 1105 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1106 1107 return buf; 1108 } 1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1110 1111 static inline void code_gen_alloc(size_t tb_size) 1112 { 1113 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1114 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1115 if (tcg_ctx->code_gen_buffer == NULL) { 1116 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1117 exit(1); 1118 } 1119 } 1120 1121 static bool tb_cmp(const void *ap, const void *bp) 1122 { 1123 const TranslationBlock *a = ap; 1124 const TranslationBlock *b = bp; 1125 1126 return a->pc == b->pc && 1127 a->cs_base == b->cs_base && 1128 a->flags == b->flags && 1129 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1130 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1131 a->page_addr[0] == b->page_addr[0] && 1132 a->page_addr[1] == b->page_addr[1]; 1133 } 1134 1135 static void tb_htable_init(void) 1136 { 1137 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1138 1139 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1140 } 1141 1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1143 (in bytes) allocated to the translation buffer. Zero means default 1144 size. */ 1145 void tcg_exec_init(unsigned long tb_size) 1146 { 1147 tcg_allowed = true; 1148 cpu_gen_init(); 1149 page_init(); 1150 tb_htable_init(); 1151 code_gen_alloc(tb_size); 1152 #if defined(CONFIG_SOFTMMU) 1153 /* There's no guest base to take into account, so go ahead and 1154 initialize the prologue now. */ 1155 tcg_prologue_init(tcg_ctx); 1156 #endif 1157 } 1158 1159 /* call with @p->lock held */ 1160 static inline void invalidate_page_bitmap(PageDesc *p) 1161 { 1162 assert_page_locked(p); 1163 #ifdef CONFIG_SOFTMMU 1164 g_free(p->code_bitmap); 1165 p->code_bitmap = NULL; 1166 p->code_write_count = 0; 1167 #endif 1168 } 1169 1170 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1171 static void page_flush_tb_1(int level, void **lp) 1172 { 1173 int i; 1174 1175 if (*lp == NULL) { 1176 return; 1177 } 1178 if (level == 0) { 1179 PageDesc *pd = *lp; 1180 1181 for (i = 0; i < V_L2_SIZE; ++i) { 1182 page_lock(&pd[i]); 1183 pd[i].first_tb = (uintptr_t)NULL; 1184 invalidate_page_bitmap(pd + i); 1185 page_unlock(&pd[i]); 1186 } 1187 } else { 1188 void **pp = *lp; 1189 1190 for (i = 0; i < V_L2_SIZE; ++i) { 1191 page_flush_tb_1(level - 1, pp + i); 1192 } 1193 } 1194 } 1195 1196 static void page_flush_tb(void) 1197 { 1198 int i, l1_sz = v_l1_size; 1199 1200 for (i = 0; i < l1_sz; i++) { 1201 page_flush_tb_1(v_l2_levels, l1_map + i); 1202 } 1203 } 1204 1205 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1206 { 1207 const TranslationBlock *tb = value; 1208 size_t *size = data; 1209 1210 *size += tb->tc.size; 1211 return false; 1212 } 1213 1214 /* flush all the translation blocks */ 1215 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1216 { 1217 mmap_lock(); 1218 /* If it is already been done on request of another CPU, 1219 * just retry. 1220 */ 1221 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1222 goto done; 1223 } 1224 1225 if (DEBUG_TB_FLUSH_GATE) { 1226 size_t nb_tbs = tcg_nb_tbs(); 1227 size_t host_size = 0; 1228 1229 tcg_tb_foreach(tb_host_size_iter, &host_size); 1230 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1231 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1232 } 1233 1234 CPU_FOREACH(cpu) { 1235 cpu_tb_jmp_cache_clear(cpu); 1236 } 1237 1238 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1239 page_flush_tb(); 1240 1241 tcg_region_reset_all(); 1242 /* XXX: flush processor icache at this point if cache flush is 1243 expensive */ 1244 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1245 1246 done: 1247 mmap_unlock(); 1248 } 1249 1250 void tb_flush(CPUState *cpu) 1251 { 1252 if (tcg_enabled()) { 1253 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); 1254 async_safe_run_on_cpu(cpu, do_tb_flush, 1255 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1256 } 1257 } 1258 1259 /* 1260 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1261 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1262 * and let the optimizer get rid of them by wrapping their user-only callers 1263 * with if (DEBUG_TB_CHECK_GATE). 1264 */ 1265 #ifdef CONFIG_USER_ONLY 1266 1267 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1268 { 1269 TranslationBlock *tb = p; 1270 target_ulong addr = *(target_ulong *)userp; 1271 1272 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1273 printf("ERROR invalidate: address=" TARGET_FMT_lx 1274 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1275 } 1276 } 1277 1278 /* verify that all the pages have correct rights for code 1279 * 1280 * Called with mmap_lock held. 1281 */ 1282 static void tb_invalidate_check(target_ulong address) 1283 { 1284 address &= TARGET_PAGE_MASK; 1285 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1286 } 1287 1288 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1289 { 1290 TranslationBlock *tb = p; 1291 int flags1, flags2; 1292 1293 flags1 = page_get_flags(tb->pc); 1294 flags2 = page_get_flags(tb->pc + tb->size - 1); 1295 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1296 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1297 (long)tb->pc, tb->size, flags1, flags2); 1298 } 1299 } 1300 1301 /* verify that all the pages have correct rights for code */ 1302 static void tb_page_check(void) 1303 { 1304 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1305 } 1306 1307 #endif /* CONFIG_USER_ONLY */ 1308 1309 /* 1310 * user-mode: call with mmap_lock held 1311 * !user-mode: call with @pd->lock held 1312 */ 1313 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1314 { 1315 TranslationBlock *tb1; 1316 uintptr_t *pprev; 1317 unsigned int n1; 1318 1319 assert_page_locked(pd); 1320 pprev = &pd->first_tb; 1321 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1322 if (tb1 == tb) { 1323 *pprev = tb1->page_next[n1]; 1324 return; 1325 } 1326 pprev = &tb1->page_next[n1]; 1327 } 1328 g_assert_not_reached(); 1329 } 1330 1331 /* remove @orig from its @n_orig-th jump list */ 1332 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1333 { 1334 uintptr_t ptr, ptr_locked; 1335 TranslationBlock *dest; 1336 TranslationBlock *tb; 1337 uintptr_t *pprev; 1338 int n; 1339 1340 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1341 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1342 dest = (TranslationBlock *)(ptr & ~1); 1343 if (dest == NULL) { 1344 return; 1345 } 1346 1347 qemu_spin_lock(&dest->jmp_lock); 1348 /* 1349 * While acquiring the lock, the jump might have been removed if the 1350 * destination TB was invalidated; check again. 1351 */ 1352 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); 1353 if (ptr_locked != ptr) { 1354 qemu_spin_unlock(&dest->jmp_lock); 1355 /* 1356 * The only possibility is that the jump was unlinked via 1357 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1358 * because we set the LSB above. 1359 */ 1360 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1361 return; 1362 } 1363 /* 1364 * We first acquired the lock, and since the destination pointer matches, 1365 * we know for sure that @orig is in the jmp list. 1366 */ 1367 pprev = &dest->jmp_list_head; 1368 TB_FOR_EACH_JMP(dest, tb, n) { 1369 if (tb == orig && n == n_orig) { 1370 *pprev = tb->jmp_list_next[n]; 1371 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1372 qemu_spin_unlock(&dest->jmp_lock); 1373 return; 1374 } 1375 pprev = &tb->jmp_list_next[n]; 1376 } 1377 g_assert_not_reached(); 1378 } 1379 1380 /* reset the jump entry 'n' of a TB so that it is not chained to 1381 another TB */ 1382 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1383 { 1384 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1385 tb_set_jmp_target(tb, n, addr); 1386 } 1387 1388 /* remove any jumps to the TB */ 1389 static inline void tb_jmp_unlink(TranslationBlock *dest) 1390 { 1391 TranslationBlock *tb; 1392 int n; 1393 1394 qemu_spin_lock(&dest->jmp_lock); 1395 1396 TB_FOR_EACH_JMP(dest, tb, n) { 1397 tb_reset_jump(tb, n); 1398 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1399 /* No need to clear the list entry; setting the dest ptr is enough */ 1400 } 1401 dest->jmp_list_head = (uintptr_t)NULL; 1402 1403 qemu_spin_unlock(&dest->jmp_lock); 1404 } 1405 1406 /* 1407 * In user-mode, call with mmap_lock held. 1408 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1409 * locks held. 1410 */ 1411 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1412 { 1413 CPUState *cpu; 1414 PageDesc *p; 1415 uint32_t h; 1416 tb_page_addr_t phys_pc; 1417 1418 assert_memory_lock(); 1419 1420 /* make sure no further incoming jumps will be chained to this TB */ 1421 qemu_spin_lock(&tb->jmp_lock); 1422 atomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1423 qemu_spin_unlock(&tb->jmp_lock); 1424 1425 /* remove the TB from the hash list */ 1426 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1427 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1428 tb->trace_vcpu_dstate); 1429 if (!(tb->cflags & CF_NOCACHE) && 1430 !qht_remove(&tb_ctx.htable, tb, h)) { 1431 return; 1432 } 1433 1434 /* remove the TB from the page list */ 1435 if (rm_from_page_list) { 1436 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1437 tb_page_remove(p, tb); 1438 invalidate_page_bitmap(p); 1439 if (tb->page_addr[1] != -1) { 1440 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1441 tb_page_remove(p, tb); 1442 invalidate_page_bitmap(p); 1443 } 1444 } 1445 1446 /* remove the TB from the hash list */ 1447 h = tb_jmp_cache_hash_func(tb->pc); 1448 CPU_FOREACH(cpu) { 1449 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1450 atomic_set(&cpu->tb_jmp_cache[h], NULL); 1451 } 1452 } 1453 1454 /* suppress this TB from the two jump lists */ 1455 tb_remove_from_jmp_list(tb, 0); 1456 tb_remove_from_jmp_list(tb, 1); 1457 1458 /* suppress any remaining jumps to this TB */ 1459 tb_jmp_unlink(tb); 1460 1461 atomic_set(&tcg_ctx->tb_phys_invalidate_count, 1462 tcg_ctx->tb_phys_invalidate_count + 1); 1463 } 1464 1465 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1466 { 1467 do_tb_phys_invalidate(tb, true); 1468 } 1469 1470 /* invalidate one TB 1471 * 1472 * Called with mmap_lock held in user-mode. 1473 */ 1474 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1475 { 1476 if (page_addr == -1 && tb->page_addr[0] != -1) { 1477 page_lock_tb(tb); 1478 do_tb_phys_invalidate(tb, true); 1479 page_unlock_tb(tb); 1480 } else { 1481 do_tb_phys_invalidate(tb, false); 1482 } 1483 } 1484 1485 #ifdef CONFIG_SOFTMMU 1486 /* call with @p->lock held */ 1487 static void build_page_bitmap(PageDesc *p) 1488 { 1489 int n, tb_start, tb_end; 1490 TranslationBlock *tb; 1491 1492 assert_page_locked(p); 1493 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1494 1495 PAGE_FOR_EACH_TB(p, tb, n) { 1496 /* NOTE: this is subtle as a TB may span two physical pages */ 1497 if (n == 0) { 1498 /* NOTE: tb_end may be after the end of the page, but 1499 it is not a problem */ 1500 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1501 tb_end = tb_start + tb->size; 1502 if (tb_end > TARGET_PAGE_SIZE) { 1503 tb_end = TARGET_PAGE_SIZE; 1504 } 1505 } else { 1506 tb_start = 0; 1507 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1508 } 1509 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1510 } 1511 } 1512 #endif 1513 1514 /* add the tb in the target page and protect it if necessary 1515 * 1516 * Called with mmap_lock held for user-mode emulation. 1517 * Called with @p->lock held in !user-mode. 1518 */ 1519 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1520 unsigned int n, tb_page_addr_t page_addr) 1521 { 1522 #ifndef CONFIG_USER_ONLY 1523 bool page_already_protected; 1524 #endif 1525 1526 assert_page_locked(p); 1527 1528 tb->page_addr[n] = page_addr; 1529 tb->page_next[n] = p->first_tb; 1530 #ifndef CONFIG_USER_ONLY 1531 page_already_protected = p->first_tb != (uintptr_t)NULL; 1532 #endif 1533 p->first_tb = (uintptr_t)tb | n; 1534 invalidate_page_bitmap(p); 1535 1536 #if defined(CONFIG_USER_ONLY) 1537 if (p->flags & PAGE_WRITE) { 1538 target_ulong addr; 1539 PageDesc *p2; 1540 int prot; 1541 1542 /* force the host page as non writable (writes will have a 1543 page fault + mprotect overhead) */ 1544 page_addr &= qemu_host_page_mask; 1545 prot = 0; 1546 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1547 addr += TARGET_PAGE_SIZE) { 1548 1549 p2 = page_find(addr >> TARGET_PAGE_BITS); 1550 if (!p2) { 1551 continue; 1552 } 1553 prot |= p2->flags; 1554 p2->flags &= ~PAGE_WRITE; 1555 } 1556 mprotect(g2h(page_addr), qemu_host_page_size, 1557 (prot & PAGE_BITS) & ~PAGE_WRITE); 1558 if (DEBUG_TB_INVALIDATE_GATE) { 1559 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1560 } 1561 } 1562 #else 1563 /* if some code is already present, then the pages are already 1564 protected. So we handle the case where only the first TB is 1565 allocated in a physical page */ 1566 if (!page_already_protected) { 1567 tlb_protect_code(page_addr); 1568 } 1569 #endif 1570 } 1571 1572 /* add a new TB and link it to the physical page tables. phys_page2 is 1573 * (-1) to indicate that only one page contains the TB. 1574 * 1575 * Called with mmap_lock held for user-mode emulation. 1576 * 1577 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1578 * Note that in !user-mode, another thread might have already added a TB 1579 * for the same block of guest code that @tb corresponds to. In that case, 1580 * the caller should discard the original @tb, and use instead the returned TB. 1581 */ 1582 static TranslationBlock * 1583 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1584 tb_page_addr_t phys_page2) 1585 { 1586 PageDesc *p; 1587 PageDesc *p2 = NULL; 1588 1589 assert_memory_lock(); 1590 1591 if (phys_pc == -1) { 1592 /* 1593 * If the TB is not associated with a physical RAM page then 1594 * it must be a temporary one-insn TB, and we have nothing to do 1595 * except fill in the page_addr[] fields. 1596 */ 1597 assert(tb->cflags & CF_NOCACHE); 1598 tb->page_addr[0] = tb->page_addr[1] = -1; 1599 return tb; 1600 } 1601 1602 /* 1603 * Add the TB to the page list, acquiring first the pages's locks. 1604 * We keep the locks held until after inserting the TB in the hash table, 1605 * so that if the insertion fails we know for sure that the TBs are still 1606 * in the page descriptors. 1607 * Note that inserting into the hash table first isn't an option, since 1608 * we can only insert TBs that are fully initialized. 1609 */ 1610 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1611 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1612 if (p2) { 1613 tb_page_add(p2, tb, 1, phys_page2); 1614 } else { 1615 tb->page_addr[1] = -1; 1616 } 1617 1618 if (!(tb->cflags & CF_NOCACHE)) { 1619 void *existing_tb = NULL; 1620 uint32_t h; 1621 1622 /* add in the hash table */ 1623 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1624 tb->trace_vcpu_dstate); 1625 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1626 1627 /* remove TB from the page(s) if we couldn't insert it */ 1628 if (unlikely(existing_tb)) { 1629 tb_page_remove(p, tb); 1630 invalidate_page_bitmap(p); 1631 if (p2) { 1632 tb_page_remove(p2, tb); 1633 invalidate_page_bitmap(p2); 1634 } 1635 tb = existing_tb; 1636 } 1637 } 1638 1639 if (p2 && p2 != p) { 1640 page_unlock(p2); 1641 } 1642 page_unlock(p); 1643 1644 #ifdef CONFIG_USER_ONLY 1645 if (DEBUG_TB_CHECK_GATE) { 1646 tb_page_check(); 1647 } 1648 #endif 1649 return tb; 1650 } 1651 1652 /* Called with mmap_lock held for user mode emulation. */ 1653 TranslationBlock *tb_gen_code(CPUState *cpu, 1654 target_ulong pc, target_ulong cs_base, 1655 uint32_t flags, int cflags) 1656 { 1657 CPUArchState *env = cpu->env_ptr; 1658 TranslationBlock *tb, *existing_tb; 1659 tb_page_addr_t phys_pc, phys_page2; 1660 target_ulong virt_page2; 1661 tcg_insn_unit *gen_code_buf; 1662 int gen_code_size, search_size, max_insns; 1663 #ifdef CONFIG_PROFILER 1664 TCGProfile *prof = &tcg_ctx->prof; 1665 int64_t ti; 1666 #endif 1667 1668 assert_memory_lock(); 1669 1670 phys_pc = get_page_addr_code(env, pc); 1671 1672 if (phys_pc == -1) { 1673 /* Generate a temporary TB with 1 insn in it */ 1674 cflags &= ~CF_COUNT_MASK; 1675 cflags |= CF_NOCACHE | 1; 1676 } 1677 1678 cflags &= ~CF_CLUSTER_MASK; 1679 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1680 1681 max_insns = cflags & CF_COUNT_MASK; 1682 if (max_insns == 0) { 1683 max_insns = CF_COUNT_MASK; 1684 } 1685 if (max_insns > TCG_MAX_INSNS) { 1686 max_insns = TCG_MAX_INSNS; 1687 } 1688 if (cpu->singlestep_enabled || singlestep) { 1689 max_insns = 1; 1690 } 1691 1692 buffer_overflow: 1693 tb = tcg_tb_alloc(tcg_ctx); 1694 if (unlikely(!tb)) { 1695 /* flush must be done */ 1696 tb_flush(cpu); 1697 mmap_unlock(); 1698 /* Make the execution loop process the flush as soon as possible. */ 1699 cpu->exception_index = EXCP_INTERRUPT; 1700 cpu_loop_exit(cpu); 1701 } 1702 1703 gen_code_buf = tcg_ctx->code_gen_ptr; 1704 tb->tc.ptr = gen_code_buf; 1705 tb->pc = pc; 1706 tb->cs_base = cs_base; 1707 tb->flags = flags; 1708 tb->cflags = cflags; 1709 tb->orig_tb = NULL; 1710 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1711 tcg_ctx->tb_cflags = cflags; 1712 tb_overflow: 1713 1714 #ifdef CONFIG_PROFILER 1715 /* includes aborted translations because of exceptions */ 1716 atomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1717 ti = profile_getclock(); 1718 #endif 1719 1720 tcg_func_start(tcg_ctx); 1721 1722 tcg_ctx->cpu = env_cpu(env); 1723 gen_intermediate_code(cpu, tb, max_insns); 1724 tcg_ctx->cpu = NULL; 1725 1726 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1727 1728 /* generate machine code */ 1729 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1730 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1731 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1732 if (TCG_TARGET_HAS_direct_jump) { 1733 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1734 tcg_ctx->tb_jmp_target_addr = NULL; 1735 } else { 1736 tcg_ctx->tb_jmp_insn_offset = NULL; 1737 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1738 } 1739 1740 #ifdef CONFIG_PROFILER 1741 atomic_set(&prof->tb_count, prof->tb_count + 1); 1742 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); 1743 ti = profile_getclock(); 1744 #endif 1745 1746 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1747 if (unlikely(gen_code_size < 0)) { 1748 switch (gen_code_size) { 1749 case -1: 1750 /* 1751 * Overflow of code_gen_buffer, or the current slice of it. 1752 * 1753 * TODO: We don't need to re-do gen_intermediate_code, nor 1754 * should we re-do the tcg optimization currently hidden 1755 * inside tcg_gen_code. All that should be required is to 1756 * flush the TBs, allocate a new TB, re-initialize it per 1757 * above, and re-do the actual code generation. 1758 */ 1759 goto buffer_overflow; 1760 1761 case -2: 1762 /* 1763 * The code generated for the TranslationBlock is too large. 1764 * The maximum size allowed by the unwind info is 64k. 1765 * There may be stricter constraints from relocations 1766 * in the tcg backend. 1767 * 1768 * Try again with half as many insns as we attempted this time. 1769 * If a single insn overflows, there's a bug somewhere... 1770 */ 1771 max_insns = tb->icount; 1772 assert(max_insns > 1); 1773 max_insns /= 2; 1774 goto tb_overflow; 1775 1776 default: 1777 g_assert_not_reached(); 1778 } 1779 } 1780 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1781 if (unlikely(search_size < 0)) { 1782 goto buffer_overflow; 1783 } 1784 tb->tc.size = gen_code_size; 1785 1786 #ifdef CONFIG_PROFILER 1787 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1788 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1789 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1790 atomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1791 #endif 1792 1793 #ifdef DEBUG_DISAS 1794 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1795 qemu_log_in_addr_range(tb->pc)) { 1796 qemu_log_lock(); 1797 qemu_log("OUT: [size=%d]\n", gen_code_size); 1798 if (tcg_ctx->data_gen_ptr) { 1799 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1800 size_t data_size = gen_code_size - code_size; 1801 size_t i; 1802 1803 log_disas(tb->tc.ptr, code_size); 1804 1805 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1806 if (sizeof(tcg_target_ulong) == 8) { 1807 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1808 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1809 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1810 } else { 1811 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1812 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1813 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1814 } 1815 } 1816 } else { 1817 log_disas(tb->tc.ptr, gen_code_size); 1818 } 1819 qemu_log("\n"); 1820 qemu_log_flush(); 1821 qemu_log_unlock(); 1822 } 1823 #endif 1824 1825 atomic_set(&tcg_ctx->code_gen_ptr, (void *) 1826 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1827 CODE_GEN_ALIGN)); 1828 1829 /* init jump list */ 1830 qemu_spin_init(&tb->jmp_lock); 1831 tb->jmp_list_head = (uintptr_t)NULL; 1832 tb->jmp_list_next[0] = (uintptr_t)NULL; 1833 tb->jmp_list_next[1] = (uintptr_t)NULL; 1834 tb->jmp_dest[0] = (uintptr_t)NULL; 1835 tb->jmp_dest[1] = (uintptr_t)NULL; 1836 1837 /* init original jump addresses which have been set during tcg_gen_code() */ 1838 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1839 tb_reset_jump(tb, 0); 1840 } 1841 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1842 tb_reset_jump(tb, 1); 1843 } 1844 1845 /* check next page if needed */ 1846 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1847 phys_page2 = -1; 1848 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1849 phys_page2 = get_page_addr_code(env, virt_page2); 1850 } 1851 /* 1852 * No explicit memory barrier is required -- tb_link_page() makes the 1853 * TB visible in a consistent state. 1854 */ 1855 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1856 /* if the TB already exists, discard what we just translated */ 1857 if (unlikely(existing_tb != tb)) { 1858 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1859 1860 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1861 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1862 return existing_tb; 1863 } 1864 tcg_tb_insert(tb); 1865 return tb; 1866 } 1867 1868 /* 1869 * @p must be non-NULL. 1870 * user-mode: call with mmap_lock held. 1871 * !user-mode: call with all @pages locked. 1872 */ 1873 static void 1874 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1875 PageDesc *p, tb_page_addr_t start, 1876 tb_page_addr_t end, 1877 uintptr_t retaddr) 1878 { 1879 TranslationBlock *tb; 1880 tb_page_addr_t tb_start, tb_end; 1881 int n; 1882 #ifdef TARGET_HAS_PRECISE_SMC 1883 CPUState *cpu = current_cpu; 1884 CPUArchState *env = NULL; 1885 bool current_tb_not_found = retaddr != 0; 1886 bool current_tb_modified = false; 1887 TranslationBlock *current_tb = NULL; 1888 target_ulong current_pc = 0; 1889 target_ulong current_cs_base = 0; 1890 uint32_t current_flags = 0; 1891 #endif /* TARGET_HAS_PRECISE_SMC */ 1892 1893 assert_page_locked(p); 1894 1895 #if defined(TARGET_HAS_PRECISE_SMC) 1896 if (cpu != NULL) { 1897 env = cpu->env_ptr; 1898 } 1899 #endif 1900 1901 /* we remove all the TBs in the range [start, end[ */ 1902 /* XXX: see if in some cases it could be faster to invalidate all 1903 the code */ 1904 PAGE_FOR_EACH_TB(p, tb, n) { 1905 assert_page_locked(p); 1906 /* NOTE: this is subtle as a TB may span two physical pages */ 1907 if (n == 0) { 1908 /* NOTE: tb_end may be after the end of the page, but 1909 it is not a problem */ 1910 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1911 tb_end = tb_start + tb->size; 1912 } else { 1913 tb_start = tb->page_addr[1]; 1914 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1915 } 1916 if (!(tb_end <= start || tb_start >= end)) { 1917 #ifdef TARGET_HAS_PRECISE_SMC 1918 if (current_tb_not_found) { 1919 current_tb_not_found = false; 1920 /* now we have a real cpu fault */ 1921 current_tb = tcg_tb_lookup(retaddr); 1922 } 1923 if (current_tb == tb && 1924 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1925 /* 1926 * If we are modifying the current TB, we must stop 1927 * its execution. We could be more precise by checking 1928 * that the modification is after the current PC, but it 1929 * would require a specialized function to partially 1930 * restore the CPU state. 1931 */ 1932 current_tb_modified = true; 1933 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); 1934 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1935 ¤t_flags); 1936 } 1937 #endif /* TARGET_HAS_PRECISE_SMC */ 1938 tb_phys_invalidate__locked(tb); 1939 } 1940 } 1941 #if !defined(CONFIG_USER_ONLY) 1942 /* if no code remaining, no need to continue to use slow writes */ 1943 if (!p->first_tb) { 1944 invalidate_page_bitmap(p); 1945 tlb_unprotect_code(start); 1946 } 1947 #endif 1948 #ifdef TARGET_HAS_PRECISE_SMC 1949 if (current_tb_modified) { 1950 page_collection_unlock(pages); 1951 /* Force execution of one insn next time. */ 1952 cpu->cflags_next_tb = 1 | curr_cflags(); 1953 mmap_unlock(); 1954 cpu_loop_exit_noexc(cpu); 1955 } 1956 #endif 1957 } 1958 1959 /* 1960 * Invalidate all TBs which intersect with the target physical address range 1961 * [start;end[. NOTE: start and end must refer to the *same* physical page. 1962 * 'is_cpu_write_access' should be true if called from a real cpu write 1963 * access: the virtual CPU will exit the current TB if code is modified inside 1964 * this TB. 1965 * 1966 * Called with mmap_lock held for user-mode emulation 1967 */ 1968 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) 1969 { 1970 struct page_collection *pages; 1971 PageDesc *p; 1972 1973 assert_memory_lock(); 1974 1975 p = page_find(start >> TARGET_PAGE_BITS); 1976 if (p == NULL) { 1977 return; 1978 } 1979 pages = page_collection_lock(start, end); 1980 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); 1981 page_collection_unlock(pages); 1982 } 1983 1984 /* 1985 * Invalidate all TBs which intersect with the target physical address range 1986 * [start;end[. NOTE: start and end may refer to *different* physical pages. 1987 * 'is_cpu_write_access' should be true if called from a real cpu write 1988 * access: the virtual CPU will exit the current TB if code is modified inside 1989 * this TB. 1990 * 1991 * Called with mmap_lock held for user-mode emulation. 1992 */ 1993 #ifdef CONFIG_SOFTMMU 1994 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 1995 #else 1996 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 1997 #endif 1998 { 1999 struct page_collection *pages; 2000 tb_page_addr_t next; 2001 2002 assert_memory_lock(); 2003 2004 pages = page_collection_lock(start, end); 2005 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2006 start < end; 2007 start = next, next += TARGET_PAGE_SIZE) { 2008 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2009 tb_page_addr_t bound = MIN(next, end); 2010 2011 if (pd == NULL) { 2012 continue; 2013 } 2014 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2015 } 2016 page_collection_unlock(pages); 2017 } 2018 2019 #ifdef CONFIG_SOFTMMU 2020 /* len must be <= 8 and start must be a multiple of len. 2021 * Called via softmmu_template.h when code areas are written to with 2022 * iothread mutex not held. 2023 * 2024 * Call with all @pages in the range [@start, @start + len[ locked. 2025 */ 2026 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2027 tb_page_addr_t start, int len, 2028 uintptr_t retaddr) 2029 { 2030 PageDesc *p; 2031 2032 assert_memory_lock(); 2033 2034 p = page_find(start >> TARGET_PAGE_BITS); 2035 if (!p) { 2036 return; 2037 } 2038 2039 assert_page_locked(p); 2040 if (!p->code_bitmap && 2041 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2042 build_page_bitmap(p); 2043 } 2044 if (p->code_bitmap) { 2045 unsigned int nr; 2046 unsigned long b; 2047 2048 nr = start & ~TARGET_PAGE_MASK; 2049 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2050 if (b & ((1 << len) - 1)) { 2051 goto do_invalidate; 2052 } 2053 } else { 2054 do_invalidate: 2055 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 2056 retaddr); 2057 } 2058 } 2059 #else 2060 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2061 * host PC of the faulting store instruction that caused this invalidate. 2062 * Returns true if the caller needs to abort execution of the current 2063 * TB (because it was modified by this store and the guest CPU has 2064 * precise-SMC semantics). 2065 */ 2066 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2067 { 2068 TranslationBlock *tb; 2069 PageDesc *p; 2070 int n; 2071 #ifdef TARGET_HAS_PRECISE_SMC 2072 TranslationBlock *current_tb = NULL; 2073 CPUState *cpu = current_cpu; 2074 CPUArchState *env = NULL; 2075 int current_tb_modified = 0; 2076 target_ulong current_pc = 0; 2077 target_ulong current_cs_base = 0; 2078 uint32_t current_flags = 0; 2079 #endif 2080 2081 assert_memory_lock(); 2082 2083 addr &= TARGET_PAGE_MASK; 2084 p = page_find(addr >> TARGET_PAGE_BITS); 2085 if (!p) { 2086 return false; 2087 } 2088 2089 #ifdef TARGET_HAS_PRECISE_SMC 2090 if (p->first_tb && pc != 0) { 2091 current_tb = tcg_tb_lookup(pc); 2092 } 2093 if (cpu != NULL) { 2094 env = cpu->env_ptr; 2095 } 2096 #endif 2097 assert_page_locked(p); 2098 PAGE_FOR_EACH_TB(p, tb, n) { 2099 #ifdef TARGET_HAS_PRECISE_SMC 2100 if (current_tb == tb && 2101 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2102 /* If we are modifying the current TB, we must stop 2103 its execution. We could be more precise by checking 2104 that the modification is after the current PC, but it 2105 would require a specialized function to partially 2106 restore the CPU state */ 2107 2108 current_tb_modified = 1; 2109 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2110 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2111 ¤t_flags); 2112 } 2113 #endif /* TARGET_HAS_PRECISE_SMC */ 2114 tb_phys_invalidate(tb, addr); 2115 } 2116 p->first_tb = (uintptr_t)NULL; 2117 #ifdef TARGET_HAS_PRECISE_SMC 2118 if (current_tb_modified) { 2119 /* Force execution of one insn next time. */ 2120 cpu->cflags_next_tb = 1 | curr_cflags(); 2121 return true; 2122 } 2123 #endif 2124 2125 return false; 2126 } 2127 #endif 2128 2129 /* user-mode: call with mmap_lock held */ 2130 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 2131 { 2132 TranslationBlock *tb; 2133 2134 assert_memory_lock(); 2135 2136 tb = tcg_tb_lookup(retaddr); 2137 if (tb) { 2138 /* We can use retranslation to find the PC. */ 2139 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2140 tb_phys_invalidate(tb, -1); 2141 } else { 2142 /* The exception probably happened in a helper. The CPU state should 2143 have been saved before calling it. Fetch the PC from there. */ 2144 CPUArchState *env = cpu->env_ptr; 2145 target_ulong pc, cs_base; 2146 tb_page_addr_t addr; 2147 uint32_t flags; 2148 2149 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2150 addr = get_page_addr_code(env, pc); 2151 if (addr != -1) { 2152 tb_invalidate_phys_range(addr, addr + 1); 2153 } 2154 } 2155 } 2156 2157 #ifndef CONFIG_USER_ONLY 2158 /* in deterministic execution mode, instructions doing device I/Os 2159 * must be at the end of the TB. 2160 * 2161 * Called by softmmu_template.h, with iothread mutex not held. 2162 */ 2163 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2164 { 2165 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2166 CPUArchState *env = cpu->env_ptr; 2167 #endif 2168 TranslationBlock *tb; 2169 uint32_t n; 2170 2171 tb = tcg_tb_lookup(retaddr); 2172 if (!tb) { 2173 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2174 (void *)retaddr); 2175 } 2176 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2177 2178 /* On MIPS and SH, delay slot instructions can only be restarted if 2179 they were already the first instruction in the TB. If this is not 2180 the first instruction in a TB then re-execute the preceding 2181 branch. */ 2182 n = 1; 2183 #if defined(TARGET_MIPS) 2184 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2185 && env->active_tc.PC != tb->pc) { 2186 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2187 cpu_neg(cpu)->icount_decr.u16.low++; 2188 env->hflags &= ~MIPS_HFLAG_BMASK; 2189 n = 2; 2190 } 2191 #elif defined(TARGET_SH4) 2192 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2193 && env->pc != tb->pc) { 2194 env->pc -= 2; 2195 cpu_neg(cpu)->icount_decr.u16.low++; 2196 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2197 n = 2; 2198 } 2199 #endif 2200 2201 /* Generate a new TB executing the I/O insn. */ 2202 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2203 2204 if (tb_cflags(tb) & CF_NOCACHE) { 2205 if (tb->orig_tb) { 2206 /* Invalidate original TB if this TB was generated in 2207 * cpu_exec_nocache() */ 2208 tb_phys_invalidate(tb->orig_tb, -1); 2209 } 2210 tcg_tb_remove(tb); 2211 } 2212 2213 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2214 * the first in the TB) then we end up generating a whole new TB and 2215 * repeating the fault, which is horribly inefficient. 2216 * Better would be to execute just this insn uncached, or generate a 2217 * second new TB. 2218 */ 2219 cpu_loop_exit_noexc(cpu); 2220 } 2221 2222 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2223 { 2224 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2225 2226 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2227 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2228 } 2229 } 2230 2231 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2232 { 2233 /* Discard jump cache entries for any tb which might potentially 2234 overlap the flushed page. */ 2235 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2236 tb_jmp_cache_clear_page(cpu, addr); 2237 } 2238 2239 static void print_qht_statistics(struct qht_stats hst) 2240 { 2241 uint32_t hgram_opts; 2242 size_t hgram_bins; 2243 char *hgram; 2244 2245 if (!hst.head_buckets) { 2246 return; 2247 } 2248 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2249 hst.used_head_buckets, hst.head_buckets, 2250 (double)hst.used_head_buckets / hst.head_buckets * 100); 2251 2252 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2253 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2254 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2255 hgram_opts |= QDIST_PR_NODECIMAL; 2256 } 2257 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2258 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2259 qdist_avg(&hst.occupancy) * 100, hgram); 2260 g_free(hgram); 2261 2262 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2263 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2264 if (hgram_bins > 10) { 2265 hgram_bins = 10; 2266 } else { 2267 hgram_bins = 0; 2268 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2269 } 2270 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2271 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2272 qdist_avg(&hst.chain), hgram); 2273 g_free(hgram); 2274 } 2275 2276 struct tb_tree_stats { 2277 size_t nb_tbs; 2278 size_t host_size; 2279 size_t target_size; 2280 size_t max_target_size; 2281 size_t direct_jmp_count; 2282 size_t direct_jmp2_count; 2283 size_t cross_page; 2284 }; 2285 2286 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2287 { 2288 const TranslationBlock *tb = value; 2289 struct tb_tree_stats *tst = data; 2290 2291 tst->nb_tbs++; 2292 tst->host_size += tb->tc.size; 2293 tst->target_size += tb->size; 2294 if (tb->size > tst->max_target_size) { 2295 tst->max_target_size = tb->size; 2296 } 2297 if (tb->page_addr[1] != -1) { 2298 tst->cross_page++; 2299 } 2300 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2301 tst->direct_jmp_count++; 2302 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2303 tst->direct_jmp2_count++; 2304 } 2305 } 2306 return false; 2307 } 2308 2309 void dump_exec_info(void) 2310 { 2311 struct tb_tree_stats tst = {}; 2312 struct qht_stats hst; 2313 size_t nb_tbs, flush_full, flush_part, flush_elide; 2314 2315 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2316 nb_tbs = tst.nb_tbs; 2317 /* XXX: avoid using doubles ? */ 2318 qemu_printf("Translation buffer state:\n"); 2319 /* 2320 * Report total code size including the padding and TB structs; 2321 * otherwise users might think "-tb-size" is not honoured. 2322 * For avg host size we use the precise numbers from tb_tree_stats though. 2323 */ 2324 qemu_printf("gen code size %zu/%zu\n", 2325 tcg_code_size(), tcg_code_capacity()); 2326 qemu_printf("TB count %zu\n", nb_tbs); 2327 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2328 nb_tbs ? tst.target_size / nb_tbs : 0, 2329 tst.max_target_size); 2330 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2331 nb_tbs ? tst.host_size / nb_tbs : 0, 2332 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2333 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2334 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2335 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2336 tst.direct_jmp_count, 2337 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2338 tst.direct_jmp2_count, 2339 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2340 2341 qht_statistics_init(&tb_ctx.htable, &hst); 2342 print_qht_statistics(hst); 2343 qht_statistics_destroy(&hst); 2344 2345 qemu_printf("\nStatistics:\n"); 2346 qemu_printf("TB flush count %u\n", 2347 atomic_read(&tb_ctx.tb_flush_count)); 2348 qemu_printf("TB invalidate count %zu\n", 2349 tcg_tb_phys_invalidate_count()); 2350 2351 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2352 qemu_printf("TLB full flushes %zu\n", flush_full); 2353 qemu_printf("TLB partial flushes %zu\n", flush_part); 2354 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2355 tcg_dump_info(); 2356 } 2357 2358 void dump_opcount_info(void) 2359 { 2360 tcg_dump_op_count(); 2361 } 2362 2363 #else /* CONFIG_USER_ONLY */ 2364 2365 void cpu_interrupt(CPUState *cpu, int mask) 2366 { 2367 g_assert(qemu_mutex_iothread_locked()); 2368 cpu->interrupt_request |= mask; 2369 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2370 } 2371 2372 /* 2373 * Walks guest process memory "regions" one by one 2374 * and calls callback function 'fn' for each region. 2375 */ 2376 struct walk_memory_regions_data { 2377 walk_memory_regions_fn fn; 2378 void *priv; 2379 target_ulong start; 2380 int prot; 2381 }; 2382 2383 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2384 target_ulong end, int new_prot) 2385 { 2386 if (data->start != -1u) { 2387 int rc = data->fn(data->priv, data->start, end, data->prot); 2388 if (rc != 0) { 2389 return rc; 2390 } 2391 } 2392 2393 data->start = (new_prot ? end : -1u); 2394 data->prot = new_prot; 2395 2396 return 0; 2397 } 2398 2399 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2400 target_ulong base, int level, void **lp) 2401 { 2402 target_ulong pa; 2403 int i, rc; 2404 2405 if (*lp == NULL) { 2406 return walk_memory_regions_end(data, base, 0); 2407 } 2408 2409 if (level == 0) { 2410 PageDesc *pd = *lp; 2411 2412 for (i = 0; i < V_L2_SIZE; ++i) { 2413 int prot = pd[i].flags; 2414 2415 pa = base | (i << TARGET_PAGE_BITS); 2416 if (prot != data->prot) { 2417 rc = walk_memory_regions_end(data, pa, prot); 2418 if (rc != 0) { 2419 return rc; 2420 } 2421 } 2422 } 2423 } else { 2424 void **pp = *lp; 2425 2426 for (i = 0; i < V_L2_SIZE; ++i) { 2427 pa = base | ((target_ulong)i << 2428 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2429 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2430 if (rc != 0) { 2431 return rc; 2432 } 2433 } 2434 } 2435 2436 return 0; 2437 } 2438 2439 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2440 { 2441 struct walk_memory_regions_data data; 2442 uintptr_t i, l1_sz = v_l1_size; 2443 2444 data.fn = fn; 2445 data.priv = priv; 2446 data.start = -1u; 2447 data.prot = 0; 2448 2449 for (i = 0; i < l1_sz; i++) { 2450 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2451 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2452 if (rc != 0) { 2453 return rc; 2454 } 2455 } 2456 2457 return walk_memory_regions_end(&data, 0, 0); 2458 } 2459 2460 static int dump_region(void *priv, target_ulong start, 2461 target_ulong end, unsigned long prot) 2462 { 2463 FILE *f = (FILE *)priv; 2464 2465 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2466 " "TARGET_FMT_lx" %c%c%c\n", 2467 start, end, end - start, 2468 ((prot & PAGE_READ) ? 'r' : '-'), 2469 ((prot & PAGE_WRITE) ? 'w' : '-'), 2470 ((prot & PAGE_EXEC) ? 'x' : '-')); 2471 2472 return 0; 2473 } 2474 2475 /* dump memory mappings */ 2476 void page_dump(FILE *f) 2477 { 2478 const int length = sizeof(target_ulong) * 2; 2479 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2480 length, "start", length, "end", length, "size", "prot"); 2481 walk_memory_regions(f, dump_region); 2482 } 2483 2484 int page_get_flags(target_ulong address) 2485 { 2486 PageDesc *p; 2487 2488 p = page_find(address >> TARGET_PAGE_BITS); 2489 if (!p) { 2490 return 0; 2491 } 2492 return p->flags; 2493 } 2494 2495 /* Modify the flags of a page and invalidate the code if necessary. 2496 The flag PAGE_WRITE_ORG is positioned automatically depending 2497 on PAGE_WRITE. The mmap_lock should already be held. */ 2498 void page_set_flags(target_ulong start, target_ulong end, int flags) 2499 { 2500 target_ulong addr, len; 2501 2502 /* This function should never be called with addresses outside the 2503 guest address space. If this assert fires, it probably indicates 2504 a missing call to h2g_valid. */ 2505 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2506 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2507 #endif 2508 assert(start < end); 2509 assert_memory_lock(); 2510 2511 start = start & TARGET_PAGE_MASK; 2512 end = TARGET_PAGE_ALIGN(end); 2513 2514 if (flags & PAGE_WRITE) { 2515 flags |= PAGE_WRITE_ORG; 2516 } 2517 2518 for (addr = start, len = end - start; 2519 len != 0; 2520 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2521 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2522 2523 /* If the write protection bit is set, then we invalidate 2524 the code inside. */ 2525 if (!(p->flags & PAGE_WRITE) && 2526 (flags & PAGE_WRITE) && 2527 p->first_tb) { 2528 tb_invalidate_phys_page(addr, 0); 2529 } 2530 p->flags = flags; 2531 } 2532 } 2533 2534 int page_check_range(target_ulong start, target_ulong len, int flags) 2535 { 2536 PageDesc *p; 2537 target_ulong end; 2538 target_ulong addr; 2539 2540 /* This function should never be called with addresses outside the 2541 guest address space. If this assert fires, it probably indicates 2542 a missing call to h2g_valid. */ 2543 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2544 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2545 #endif 2546 2547 if (len == 0) { 2548 return 0; 2549 } 2550 if (start + len - 1 < start) { 2551 /* We've wrapped around. */ 2552 return -1; 2553 } 2554 2555 /* must do before we loose bits in the next step */ 2556 end = TARGET_PAGE_ALIGN(start + len); 2557 start = start & TARGET_PAGE_MASK; 2558 2559 for (addr = start, len = end - start; 2560 len != 0; 2561 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2562 p = page_find(addr >> TARGET_PAGE_BITS); 2563 if (!p) { 2564 return -1; 2565 } 2566 if (!(p->flags & PAGE_VALID)) { 2567 return -1; 2568 } 2569 2570 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2571 return -1; 2572 } 2573 if (flags & PAGE_WRITE) { 2574 if (!(p->flags & PAGE_WRITE_ORG)) { 2575 return -1; 2576 } 2577 /* unprotect the page if it was put read-only because it 2578 contains translated code */ 2579 if (!(p->flags & PAGE_WRITE)) { 2580 if (!page_unprotect(addr, 0)) { 2581 return -1; 2582 } 2583 } 2584 } 2585 } 2586 return 0; 2587 } 2588 2589 /* called from signal handler: invalidate the code and unprotect the 2590 * page. Return 0 if the fault was not handled, 1 if it was handled, 2591 * and 2 if it was handled but the caller must cause the TB to be 2592 * immediately exited. (We can only return 2 if the 'pc' argument is 2593 * non-zero.) 2594 */ 2595 int page_unprotect(target_ulong address, uintptr_t pc) 2596 { 2597 unsigned int prot; 2598 bool current_tb_invalidated; 2599 PageDesc *p; 2600 target_ulong host_start, host_end, addr; 2601 2602 /* Technically this isn't safe inside a signal handler. However we 2603 know this only ever happens in a synchronous SEGV handler, so in 2604 practice it seems to be ok. */ 2605 mmap_lock(); 2606 2607 p = page_find(address >> TARGET_PAGE_BITS); 2608 if (!p) { 2609 mmap_unlock(); 2610 return 0; 2611 } 2612 2613 /* if the page was really writable, then we change its 2614 protection back to writable */ 2615 if (p->flags & PAGE_WRITE_ORG) { 2616 current_tb_invalidated = false; 2617 if (p->flags & PAGE_WRITE) { 2618 /* If the page is actually marked WRITE then assume this is because 2619 * this thread raced with another one which got here first and 2620 * set the page to PAGE_WRITE and did the TB invalidate for us. 2621 */ 2622 #ifdef TARGET_HAS_PRECISE_SMC 2623 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2624 if (current_tb) { 2625 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2626 } 2627 #endif 2628 } else { 2629 host_start = address & qemu_host_page_mask; 2630 host_end = host_start + qemu_host_page_size; 2631 2632 prot = 0; 2633 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2634 p = page_find(addr >> TARGET_PAGE_BITS); 2635 p->flags |= PAGE_WRITE; 2636 prot |= p->flags; 2637 2638 /* and since the content will be modified, we must invalidate 2639 the corresponding translated code. */ 2640 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2641 #ifdef CONFIG_USER_ONLY 2642 if (DEBUG_TB_CHECK_GATE) { 2643 tb_invalidate_check(addr); 2644 } 2645 #endif 2646 } 2647 mprotect((void *)g2h(host_start), qemu_host_page_size, 2648 prot & PAGE_BITS); 2649 } 2650 mmap_unlock(); 2651 /* If current TB was invalidated return to main loop */ 2652 return current_tb_invalidated ? 2 : 1; 2653 } 2654 mmap_unlock(); 2655 return 0; 2656 } 2657 #endif /* CONFIG_USER_ONLY */ 2658 2659 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2660 void tcg_flush_softmmu_tlb(CPUState *cs) 2661 { 2662 #ifdef CONFIG_SOFTMMU 2663 tlb_flush(cs); 2664 #endif 2665 } 2666