1 /* 2 * Host code generation 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/units.h" 22 #include "qemu-common.h" 23 24 #define NO_CPU_IO_DEFS 25 #include "cpu.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/exec-all.h" 29 #include "tcg/tcg.h" 30 #if defined(CONFIG_USER_ONLY) 31 #include "qemu.h" 32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) 33 #include <sys/param.h> 34 #if __FreeBSD_version >= 700104 35 #define HAVE_KINFO_GETVMMAP 36 #define sigqueue sigqueue_freebsd /* avoid redefinition */ 37 #include <sys/proc.h> 38 #include <machine/profile.h> 39 #define _KERNEL 40 #include <sys/user.h> 41 #undef _KERNEL 42 #undef sigqueue 43 #include <libutil.h> 44 #endif 45 #endif 46 #else 47 #include "exec/ram_addr.h" 48 #endif 49 50 #include "exec/cputlb.h" 51 #include "exec/tb-hash.h" 52 #include "translate-all.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/error-report.h" 55 #include "qemu/qemu-print.h" 56 #include "qemu/timer.h" 57 #include "qemu/main-loop.h" 58 #include "exec/log.h" 59 #include "sysemu/cpus.h" 60 #include "sysemu/tcg.h" 61 62 /* #define DEBUG_TB_INVALIDATE */ 63 /* #define DEBUG_TB_FLUSH */ 64 /* make various TB consistency checks */ 65 /* #define DEBUG_TB_CHECK */ 66 67 #ifdef DEBUG_TB_INVALIDATE 68 #define DEBUG_TB_INVALIDATE_GATE 1 69 #else 70 #define DEBUG_TB_INVALIDATE_GATE 0 71 #endif 72 73 #ifdef DEBUG_TB_FLUSH 74 #define DEBUG_TB_FLUSH_GATE 1 75 #else 76 #define DEBUG_TB_FLUSH_GATE 0 77 #endif 78 79 #if !defined(CONFIG_USER_ONLY) 80 /* TB consistency checks only implemented for usermode emulation. */ 81 #undef DEBUG_TB_CHECK 82 #endif 83 84 #ifdef DEBUG_TB_CHECK 85 #define DEBUG_TB_CHECK_GATE 1 86 #else 87 #define DEBUG_TB_CHECK_GATE 0 88 #endif 89 90 /* Access to the various translations structures need to be serialised via locks 91 * for consistency. 92 * In user-mode emulation access to the memory related structures are protected 93 * with mmap_lock. 94 * In !user-mode we use per-page locks. 95 */ 96 #ifdef CONFIG_SOFTMMU 97 #define assert_memory_lock() 98 #else 99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock()) 100 #endif 101 102 #define SMC_BITMAP_USE_THRESHOLD 10 103 104 typedef struct PageDesc { 105 /* list of TBs intersecting this ram page */ 106 uintptr_t first_tb; 107 #ifdef CONFIG_SOFTMMU 108 /* in order to optimize self modifying code, we count the number 109 of lookups we do to a given page to use a bitmap */ 110 unsigned long *code_bitmap; 111 unsigned int code_write_count; 112 #else 113 unsigned long flags; 114 #endif 115 #ifndef CONFIG_USER_ONLY 116 QemuSpin lock; 117 #endif 118 } PageDesc; 119 120 /** 121 * struct page_entry - page descriptor entry 122 * @pd: pointer to the &struct PageDesc of the page this entry represents 123 * @index: page index of the page 124 * @locked: whether the page is locked 125 * 126 * This struct helps us keep track of the locked state of a page, without 127 * bloating &struct PageDesc. 128 * 129 * A page lock protects accesses to all fields of &struct PageDesc. 130 * 131 * See also: &struct page_collection. 132 */ 133 struct page_entry { 134 PageDesc *pd; 135 tb_page_addr_t index; 136 bool locked; 137 }; 138 139 /** 140 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's) 141 * @tree: Binary search tree (BST) of the pages, with key == page index 142 * @max: Pointer to the page in @tree with the highest page index 143 * 144 * To avoid deadlock we lock pages in ascending order of page index. 145 * When operating on a set of pages, we need to keep track of them so that 146 * we can lock them in order and also unlock them later. For this we collect 147 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the 148 * @tree implementation we use does not provide an O(1) operation to obtain the 149 * highest-ranked element, we use @max to keep track of the inserted page 150 * with the highest index. This is valuable because if a page is not in 151 * the tree and its index is higher than @max's, then we can lock it 152 * without breaking the locking order rule. 153 * 154 * Note on naming: 'struct page_set' would be shorter, but we already have a few 155 * page_set_*() helpers, so page_collection is used instead to avoid confusion. 156 * 157 * See also: page_collection_lock(). 158 */ 159 struct page_collection { 160 GTree *tree; 161 struct page_entry *max; 162 }; 163 164 /* list iterators for lists of tagged pointers in TranslationBlock */ 165 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \ 166 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \ 167 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \ 168 tb = (TranslationBlock *)((uintptr_t)tb & ~1)) 169 170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \ 171 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next) 172 173 #define TB_FOR_EACH_JMP(head_tb, tb, n) \ 174 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next) 175 176 /* In system mode we want L1_MAP to be based on ram offsets, 177 while in user mode we want it to be based on virtual addresses. */ 178 #if !defined(CONFIG_USER_ONLY) 179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS 180 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS 181 #else 182 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS 183 #endif 184 #else 185 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS 186 #endif 187 188 /* Size of the L2 (and L3, etc) page tables. */ 189 #define V_L2_BITS 10 190 #define V_L2_SIZE (1 << V_L2_BITS) 191 192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */ 193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS > 194 sizeof_field(TranslationBlock, trace_vcpu_dstate) 195 * BITS_PER_BYTE); 196 197 /* 198 * L1 Mapping properties 199 */ 200 static int v_l1_size; 201 static int v_l1_shift; 202 static int v_l2_levels; 203 204 /* The bottom level has pointers to PageDesc, and is indexed by 205 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size. 206 */ 207 #define V_L1_MIN_BITS 4 208 #define V_L1_MAX_BITS (V_L2_BITS + 3) 209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS) 210 211 static void *l1_map[V_L1_MAX_SIZE]; 212 213 /* code generation context */ 214 TCGContext tcg_init_ctx; 215 __thread TCGContext *tcg_ctx; 216 TBContext tb_ctx; 217 bool parallel_cpus; 218 219 static void page_table_config_init(void) 220 { 221 uint32_t v_l1_bits; 222 223 assert(TARGET_PAGE_BITS); 224 /* The bits remaining after N lower levels of page tables. */ 225 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS; 226 if (v_l1_bits < V_L1_MIN_BITS) { 227 v_l1_bits += V_L2_BITS; 228 } 229 230 v_l1_size = 1 << v_l1_bits; 231 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits; 232 v_l2_levels = v_l1_shift / V_L2_BITS - 1; 233 234 assert(v_l1_bits <= V_L1_MAX_BITS); 235 assert(v_l1_shift % V_L2_BITS == 0); 236 assert(v_l2_levels >= 0); 237 } 238 239 void cpu_gen_init(void) 240 { 241 tcg_context_init(&tcg_init_ctx); 242 } 243 244 /* Encode VAL as a signed leb128 sequence at P. 245 Return P incremented past the encoded value. */ 246 static uint8_t *encode_sleb128(uint8_t *p, target_long val) 247 { 248 int more, byte; 249 250 do { 251 byte = val & 0x7f; 252 val >>= 7; 253 more = !((val == 0 && (byte & 0x40) == 0) 254 || (val == -1 && (byte & 0x40) != 0)); 255 if (more) { 256 byte |= 0x80; 257 } 258 *p++ = byte; 259 } while (more); 260 261 return p; 262 } 263 264 /* Decode a signed leb128 sequence at *PP; increment *PP past the 265 decoded value. Return the decoded value. */ 266 static target_long decode_sleb128(uint8_t **pp) 267 { 268 uint8_t *p = *pp; 269 target_long val = 0; 270 int byte, shift = 0; 271 272 do { 273 byte = *p++; 274 val |= (target_ulong)(byte & 0x7f) << shift; 275 shift += 7; 276 } while (byte & 0x80); 277 if (shift < TARGET_LONG_BITS && (byte & 0x40)) { 278 val |= -(target_ulong)1 << shift; 279 } 280 281 *pp = p; 282 return val; 283 } 284 285 /* Encode the data collected about the instructions while compiling TB. 286 Place the data at BLOCK, and return the number of bytes consumed. 287 288 The logical table consists of TARGET_INSN_START_WORDS target_ulong's, 289 which come from the target's insn_start data, followed by a uintptr_t 290 which comes from the host pc of the end of the code implementing the insn. 291 292 Each line of the table is encoded as sleb128 deltas from the previous 293 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }. 294 That is, the first column is seeded with the guest pc, the last column 295 with the host pc, and the middle columns with zeros. */ 296 297 static int encode_search(TranslationBlock *tb, uint8_t *block) 298 { 299 uint8_t *highwater = tcg_ctx->code_gen_highwater; 300 uint8_t *p = block; 301 int i, j, n; 302 303 for (i = 0, n = tb->icount; i < n; ++i) { 304 target_ulong prev; 305 306 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 307 if (i == 0) { 308 prev = (j == 0 ? tb->pc : 0); 309 } else { 310 prev = tcg_ctx->gen_insn_data[i - 1][j]; 311 } 312 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev); 313 } 314 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]); 315 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev); 316 317 /* Test for (pending) buffer overflow. The assumption is that any 318 one row beginning below the high water mark cannot overrun 319 the buffer completely. Thus we can test for overflow after 320 encoding a row without having to check during encoding. */ 321 if (unlikely(p > highwater)) { 322 return -1; 323 } 324 } 325 326 return p - block; 327 } 328 329 /* The cpu state corresponding to 'searched_pc' is restored. 330 * When reset_icount is true, current TB will be interrupted and 331 * icount should be recalculated. 332 */ 333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, 334 uintptr_t searched_pc, bool reset_icount) 335 { 336 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc }; 337 uintptr_t host_pc = (uintptr_t)tb->tc.ptr; 338 CPUArchState *env = cpu->env_ptr; 339 uint8_t *p = tb->tc.ptr + tb->tc.size; 340 int i, j, num_insns = tb->icount; 341 #ifdef CONFIG_PROFILER 342 TCGProfile *prof = &tcg_ctx->prof; 343 int64_t ti = profile_getclock(); 344 #endif 345 346 searched_pc -= GETPC_ADJ; 347 348 if (searched_pc < host_pc) { 349 return -1; 350 } 351 352 /* Reconstruct the stored insn data while looking for the point at 353 which the end of the insn exceeds the searched_pc. */ 354 for (i = 0; i < num_insns; ++i) { 355 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) { 356 data[j] += decode_sleb128(&p); 357 } 358 host_pc += decode_sleb128(&p); 359 if (host_pc > searched_pc) { 360 goto found; 361 } 362 } 363 return -1; 364 365 found: 366 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) { 367 assert(use_icount); 368 /* Reset the cycle counter to the start of the block 369 and shift if to the number of actually executed instructions */ 370 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i; 371 } 372 restore_state_to_opc(env, tb, data); 373 374 #ifdef CONFIG_PROFILER 375 atomic_set(&prof->restore_time, 376 prof->restore_time + profile_getclock() - ti); 377 atomic_set(&prof->restore_count, prof->restore_count + 1); 378 #endif 379 return 0; 380 } 381 382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit) 383 { 384 TranslationBlock *tb; 385 bool r = false; 386 uintptr_t check_offset; 387 388 /* The host_pc has to be in the region of current code buffer. If 389 * it is not we will not be able to resolve it here. The two cases 390 * where host_pc will not be correct are: 391 * 392 * - fault during translation (instruction fetch) 393 * - fault from helper (not using GETPC() macro) 394 * 395 * Either way we need return early as we can't resolve it here. 396 * 397 * We are using unsigned arithmetic so if host_pc < 398 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way 399 * above the code_gen_buffer_size 400 */ 401 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer; 402 403 if (check_offset < tcg_init_ctx.code_gen_buffer_size) { 404 tb = tcg_tb_lookup(host_pc); 405 if (tb) { 406 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit); 407 if (tb_cflags(tb) & CF_NOCACHE) { 408 /* one-shot translation, invalidate it immediately */ 409 tb_phys_invalidate(tb, -1); 410 tcg_tb_remove(tb); 411 } 412 r = true; 413 } 414 } 415 416 return r; 417 } 418 419 static void page_init(void) 420 { 421 page_size_init(); 422 page_table_config_init(); 423 424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) 425 { 426 #ifdef HAVE_KINFO_GETVMMAP 427 struct kinfo_vmentry *freep; 428 int i, cnt; 429 430 freep = kinfo_getvmmap(getpid(), &cnt); 431 if (freep) { 432 mmap_lock(); 433 for (i = 0; i < cnt; i++) { 434 unsigned long startaddr, endaddr; 435 436 startaddr = freep[i].kve_start; 437 endaddr = freep[i].kve_end; 438 if (h2g_valid(startaddr)) { 439 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 440 441 if (h2g_valid(endaddr)) { 442 endaddr = h2g(endaddr); 443 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 444 } else { 445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS 446 endaddr = ~0ul; 447 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 448 #endif 449 } 450 } 451 } 452 free(freep); 453 mmap_unlock(); 454 } 455 #else 456 FILE *f; 457 458 last_brk = (unsigned long)sbrk(0); 459 460 f = fopen("/compat/linux/proc/self/maps", "r"); 461 if (f) { 462 mmap_lock(); 463 464 do { 465 unsigned long startaddr, endaddr; 466 int n; 467 468 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); 469 470 if (n == 2 && h2g_valid(startaddr)) { 471 startaddr = h2g(startaddr) & TARGET_PAGE_MASK; 472 473 if (h2g_valid(endaddr)) { 474 endaddr = h2g(endaddr); 475 } else { 476 endaddr = ~0ul; 477 } 478 page_set_flags(startaddr, endaddr, PAGE_RESERVED); 479 } 480 } while (!feof(f)); 481 482 fclose(f); 483 mmap_unlock(); 484 } 485 #endif 486 } 487 #endif 488 } 489 490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) 491 { 492 PageDesc *pd; 493 void **lp; 494 int i; 495 496 /* Level 1. Always allocated. */ 497 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1)); 498 499 /* Level 2..N-1. */ 500 for (i = v_l2_levels; i > 0; i--) { 501 void **p = atomic_rcu_read(lp); 502 503 if (p == NULL) { 504 void *existing; 505 506 if (!alloc) { 507 return NULL; 508 } 509 p = g_new0(void *, V_L2_SIZE); 510 existing = atomic_cmpxchg(lp, NULL, p); 511 if (unlikely(existing)) { 512 g_free(p); 513 p = existing; 514 } 515 } 516 517 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); 518 } 519 520 pd = atomic_rcu_read(lp); 521 if (pd == NULL) { 522 void *existing; 523 524 if (!alloc) { 525 return NULL; 526 } 527 pd = g_new0(PageDesc, V_L2_SIZE); 528 #ifndef CONFIG_USER_ONLY 529 { 530 int i; 531 532 for (i = 0; i < V_L2_SIZE; i++) { 533 qemu_spin_init(&pd[i].lock); 534 } 535 } 536 #endif 537 existing = atomic_cmpxchg(lp, NULL, pd); 538 if (unlikely(existing)) { 539 g_free(pd); 540 pd = existing; 541 } 542 } 543 544 return pd + (index & (V_L2_SIZE - 1)); 545 } 546 547 static inline PageDesc *page_find(tb_page_addr_t index) 548 { 549 return page_find_alloc(index, 0); 550 } 551 552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 553 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc); 554 555 /* In user-mode page locks aren't used; mmap_lock is enough */ 556 #ifdef CONFIG_USER_ONLY 557 558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock()) 559 560 static inline void page_lock(PageDesc *pd) 561 { } 562 563 static inline void page_unlock(PageDesc *pd) 564 { } 565 566 static inline void page_lock_tb(const TranslationBlock *tb) 567 { } 568 569 static inline void page_unlock_tb(const TranslationBlock *tb) 570 { } 571 572 struct page_collection * 573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 574 { 575 return NULL; 576 } 577 578 void page_collection_unlock(struct page_collection *set) 579 { } 580 #else /* !CONFIG_USER_ONLY */ 581 582 #ifdef CONFIG_DEBUG_TCG 583 584 static __thread GHashTable *ht_pages_locked_debug; 585 586 static void ht_pages_locked_debug_init(void) 587 { 588 if (ht_pages_locked_debug) { 589 return; 590 } 591 ht_pages_locked_debug = g_hash_table_new(NULL, NULL); 592 } 593 594 static bool page_is_locked(const PageDesc *pd) 595 { 596 PageDesc *found; 597 598 ht_pages_locked_debug_init(); 599 found = g_hash_table_lookup(ht_pages_locked_debug, pd); 600 return !!found; 601 } 602 603 static void page_lock__debug(PageDesc *pd) 604 { 605 ht_pages_locked_debug_init(); 606 g_assert(!page_is_locked(pd)); 607 g_hash_table_insert(ht_pages_locked_debug, pd, pd); 608 } 609 610 static void page_unlock__debug(const PageDesc *pd) 611 { 612 bool removed; 613 614 ht_pages_locked_debug_init(); 615 g_assert(page_is_locked(pd)); 616 removed = g_hash_table_remove(ht_pages_locked_debug, pd); 617 g_assert(removed); 618 } 619 620 static void 621 do_assert_page_locked(const PageDesc *pd, const char *file, int line) 622 { 623 if (unlikely(!page_is_locked(pd))) { 624 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d", 625 pd, file, line); 626 abort(); 627 } 628 } 629 630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__) 631 632 void assert_no_pages_locked(void) 633 { 634 ht_pages_locked_debug_init(); 635 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0); 636 } 637 638 #else /* !CONFIG_DEBUG_TCG */ 639 640 #define assert_page_locked(pd) 641 642 static inline void page_lock__debug(const PageDesc *pd) 643 { 644 } 645 646 static inline void page_unlock__debug(const PageDesc *pd) 647 { 648 } 649 650 #endif /* CONFIG_DEBUG_TCG */ 651 652 static inline void page_lock(PageDesc *pd) 653 { 654 page_lock__debug(pd); 655 qemu_spin_lock(&pd->lock); 656 } 657 658 static inline void page_unlock(PageDesc *pd) 659 { 660 qemu_spin_unlock(&pd->lock); 661 page_unlock__debug(pd); 662 } 663 664 /* lock the page(s) of a TB in the correct acquisition order */ 665 static inline void page_lock_tb(const TranslationBlock *tb) 666 { 667 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0); 668 } 669 670 static inline void page_unlock_tb(const TranslationBlock *tb) 671 { 672 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 673 674 page_unlock(p1); 675 if (unlikely(tb->page_addr[1] != -1)) { 676 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 677 678 if (p2 != p1) { 679 page_unlock(p2); 680 } 681 } 682 } 683 684 static inline struct page_entry * 685 page_entry_new(PageDesc *pd, tb_page_addr_t index) 686 { 687 struct page_entry *pe = g_malloc(sizeof(*pe)); 688 689 pe->index = index; 690 pe->pd = pd; 691 pe->locked = false; 692 return pe; 693 } 694 695 static void page_entry_destroy(gpointer p) 696 { 697 struct page_entry *pe = p; 698 699 g_assert(pe->locked); 700 page_unlock(pe->pd); 701 g_free(pe); 702 } 703 704 /* returns false on success */ 705 static bool page_entry_trylock(struct page_entry *pe) 706 { 707 bool busy; 708 709 busy = qemu_spin_trylock(&pe->pd->lock); 710 if (!busy) { 711 g_assert(!pe->locked); 712 pe->locked = true; 713 page_lock__debug(pe->pd); 714 } 715 return busy; 716 } 717 718 static void do_page_entry_lock(struct page_entry *pe) 719 { 720 page_lock(pe->pd); 721 g_assert(!pe->locked); 722 pe->locked = true; 723 } 724 725 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data) 726 { 727 struct page_entry *pe = value; 728 729 do_page_entry_lock(pe); 730 return FALSE; 731 } 732 733 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data) 734 { 735 struct page_entry *pe = value; 736 737 if (pe->locked) { 738 pe->locked = false; 739 page_unlock(pe->pd); 740 } 741 return FALSE; 742 } 743 744 /* 745 * Trylock a page, and if successful, add the page to a collection. 746 * Returns true ("busy") if the page could not be locked; false otherwise. 747 */ 748 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr) 749 { 750 tb_page_addr_t index = addr >> TARGET_PAGE_BITS; 751 struct page_entry *pe; 752 PageDesc *pd; 753 754 pe = g_tree_lookup(set->tree, &index); 755 if (pe) { 756 return false; 757 } 758 759 pd = page_find(index); 760 if (pd == NULL) { 761 return false; 762 } 763 764 pe = page_entry_new(pd, index); 765 g_tree_insert(set->tree, &pe->index, pe); 766 767 /* 768 * If this is either (1) the first insertion or (2) a page whose index 769 * is higher than any other so far, just lock the page and move on. 770 */ 771 if (set->max == NULL || pe->index > set->max->index) { 772 set->max = pe; 773 do_page_entry_lock(pe); 774 return false; 775 } 776 /* 777 * Try to acquire out-of-order lock; if busy, return busy so that we acquire 778 * locks in order. 779 */ 780 return page_entry_trylock(pe); 781 } 782 783 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata) 784 { 785 tb_page_addr_t a = *(const tb_page_addr_t *)ap; 786 tb_page_addr_t b = *(const tb_page_addr_t *)bp; 787 788 if (a == b) { 789 return 0; 790 } else if (a < b) { 791 return -1; 792 } 793 return 1; 794 } 795 796 /* 797 * Lock a range of pages ([@start,@end[) as well as the pages of all 798 * intersecting TBs. 799 * Locking order: acquire locks in ascending order of page index. 800 */ 801 struct page_collection * 802 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end) 803 { 804 struct page_collection *set = g_malloc(sizeof(*set)); 805 tb_page_addr_t index; 806 PageDesc *pd; 807 808 start >>= TARGET_PAGE_BITS; 809 end >>= TARGET_PAGE_BITS; 810 g_assert(start <= end); 811 812 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL, 813 page_entry_destroy); 814 set->max = NULL; 815 assert_no_pages_locked(); 816 817 retry: 818 g_tree_foreach(set->tree, page_entry_lock, NULL); 819 820 for (index = start; index <= end; index++) { 821 TranslationBlock *tb; 822 int n; 823 824 pd = page_find(index); 825 if (pd == NULL) { 826 continue; 827 } 828 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) { 829 g_tree_foreach(set->tree, page_entry_unlock, NULL); 830 goto retry; 831 } 832 assert_page_locked(pd); 833 PAGE_FOR_EACH_TB(pd, tb, n) { 834 if (page_trylock_add(set, tb->page_addr[0]) || 835 (tb->page_addr[1] != -1 && 836 page_trylock_add(set, tb->page_addr[1]))) { 837 /* drop all locks, and reacquire in order */ 838 g_tree_foreach(set->tree, page_entry_unlock, NULL); 839 goto retry; 840 } 841 } 842 } 843 return set; 844 } 845 846 void page_collection_unlock(struct page_collection *set) 847 { 848 /* entries are unlocked and freed via page_entry_destroy */ 849 g_tree_destroy(set->tree); 850 g_free(set); 851 } 852 853 #endif /* !CONFIG_USER_ONLY */ 854 855 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1, 856 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc) 857 { 858 PageDesc *p1, *p2; 859 tb_page_addr_t page1; 860 tb_page_addr_t page2; 861 862 assert_memory_lock(); 863 g_assert(phys1 != -1); 864 865 page1 = phys1 >> TARGET_PAGE_BITS; 866 page2 = phys2 >> TARGET_PAGE_BITS; 867 868 p1 = page_find_alloc(page1, alloc); 869 if (ret_p1) { 870 *ret_p1 = p1; 871 } 872 if (likely(phys2 == -1)) { 873 page_lock(p1); 874 return; 875 } else if (page1 == page2) { 876 page_lock(p1); 877 if (ret_p2) { 878 *ret_p2 = p1; 879 } 880 return; 881 } 882 p2 = page_find_alloc(page2, alloc); 883 if (ret_p2) { 884 *ret_p2 = p2; 885 } 886 if (page1 < page2) { 887 page_lock(p1); 888 page_lock(p2); 889 } else { 890 page_lock(p2); 891 page_lock(p1); 892 } 893 } 894 895 /* Minimum size of the code gen buffer. This number is randomly chosen, 896 but not so small that we can't have a fair number of TB's live. */ 897 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB) 898 899 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise 900 indicated, this is constrained by the range of direct branches on the 901 host cpu, as used by the TCG implementation of goto_tb. */ 902 #if defined(__x86_64__) 903 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 904 #elif defined(__sparc__) 905 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 906 #elif defined(__powerpc64__) 907 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 908 #elif defined(__powerpc__) 909 # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB) 910 #elif defined(__aarch64__) 911 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB) 912 #elif defined(__s390x__) 913 /* We have a +- 4GB range on the branches; leave some slop. */ 914 # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB) 915 #elif defined(__mips__) 916 /* We have a 256MB branch region, but leave room to make sure the 917 main executable is also within that region. */ 918 # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB) 919 #else 920 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) 921 #endif 922 923 #if TCG_TARGET_REG_BITS == 32 924 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB) 925 #ifdef CONFIG_USER_ONLY 926 /* 927 * For user mode on smaller 32 bit systems we may run into trouble 928 * allocating big chunks of data in the right place. On these systems 929 * we utilise a static code generation buffer directly in the binary. 930 */ 931 #define USE_STATIC_CODE_GEN_BUFFER 932 #endif 933 #else /* TCG_TARGET_REG_BITS == 64 */ 934 #ifdef CONFIG_USER_ONLY 935 /* 936 * As user-mode emulation typically means running multiple instances 937 * of the translator don't go too nuts with our default code gen 938 * buffer lest we make things too hard for the OS. 939 */ 940 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB) 941 #else 942 /* 943 * We expect most system emulation to run one or two guests per host. 944 * Users running large scale system emulation may want to tweak their 945 * runtime setup via the tb-size control on the command line. 946 */ 947 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB) 948 #endif 949 #endif 950 951 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 952 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 953 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 954 955 static inline size_t size_code_gen_buffer(size_t tb_size) 956 { 957 /* Size the buffer. */ 958 if (tb_size == 0) { 959 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 960 } 961 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 962 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 963 } 964 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 965 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 966 } 967 return tb_size; 968 } 969 970 #ifdef __mips__ 971 /* In order to use J and JAL within the code_gen_buffer, we require 972 that the buffer not cross a 256MB boundary. */ 973 static inline bool cross_256mb(void *addr, size_t size) 974 { 975 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 976 } 977 978 /* We weren't able to allocate a buffer without crossing that boundary, 979 so make do with the larger portion of the buffer that doesn't cross. 980 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ 981 static inline void *split_cross_256mb(void *buf1, size_t size1) 982 { 983 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 984 size_t size2 = buf1 + size1 - buf2; 985 986 size1 = buf2 - buf1; 987 if (size1 < size2) { 988 size1 = size2; 989 buf1 = buf2; 990 } 991 992 tcg_ctx->code_gen_buffer_size = size1; 993 return buf1; 994 } 995 #endif 996 997 #ifdef USE_STATIC_CODE_GEN_BUFFER 998 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 999 __attribute__((aligned(CODE_GEN_ALIGN))); 1000 1001 static inline void *alloc_code_gen_buffer(void) 1002 { 1003 void *buf = static_code_gen_buffer; 1004 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 1005 size_t size; 1006 1007 /* page-align the beginning and end of the buffer */ 1008 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 1009 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 1010 1011 size = end - buf; 1012 1013 /* Honor a command-line option limiting the size of the buffer. */ 1014 if (size > tcg_ctx->code_gen_buffer_size) { 1015 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size, 1016 qemu_real_host_page_size); 1017 } 1018 tcg_ctx->code_gen_buffer_size = size; 1019 1020 #ifdef __mips__ 1021 if (cross_256mb(buf, size)) { 1022 buf = split_cross_256mb(buf, size); 1023 size = tcg_ctx->code_gen_buffer_size; 1024 } 1025 #endif 1026 1027 if (qemu_mprotect_rwx(buf, size)) { 1028 abort(); 1029 } 1030 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1031 1032 return buf; 1033 } 1034 #elif defined(_WIN32) 1035 static inline void *alloc_code_gen_buffer(void) 1036 { 1037 size_t size = tcg_ctx->code_gen_buffer_size; 1038 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 1039 PAGE_EXECUTE_READWRITE); 1040 } 1041 #else 1042 static inline void *alloc_code_gen_buffer(void) 1043 { 1044 int prot = PROT_WRITE | PROT_READ | PROT_EXEC; 1045 int flags = MAP_PRIVATE | MAP_ANONYMOUS; 1046 uintptr_t start = 0; 1047 size_t size = tcg_ctx->code_gen_buffer_size; 1048 void *buf; 1049 1050 /* Constrain the position of the buffer based on the host cpu. 1051 Note that these addresses are chosen in concert with the 1052 addresses assigned in the relevant linker script file. */ 1053 # if defined(__PIE__) || defined(__PIC__) 1054 /* Don't bother setting a preferred location if we're building 1055 a position-independent executable. We're more likely to get 1056 an address near the main executable if we let the kernel 1057 choose the address. */ 1058 # elif defined(__x86_64__) && defined(MAP_32BIT) 1059 /* Force the memory down into low memory with the executable. 1060 Leave the choice of exact location with the kernel. */ 1061 flags |= MAP_32BIT; 1062 /* Cannot expect to map more than 800MB in low memory. */ 1063 if (size > 800u * 1024 * 1024) { 1064 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024; 1065 } 1066 # elif defined(__sparc__) 1067 start = 0x40000000ul; 1068 # elif defined(__s390x__) 1069 start = 0x90000000ul; 1070 # elif defined(__mips__) 1071 # if _MIPS_SIM == _ABI64 1072 start = 0x128000000ul; 1073 # else 1074 start = 0x08000000ul; 1075 # endif 1076 # endif 1077 1078 buf = mmap((void *)start, size, prot, flags, -1, 0); 1079 if (buf == MAP_FAILED) { 1080 return NULL; 1081 } 1082 1083 #ifdef __mips__ 1084 if (cross_256mb(buf, size)) { 1085 /* Try again, with the original still mapped, to avoid re-acquiring 1086 that 256mb crossing. This time don't specify an address. */ 1087 size_t size2; 1088 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 1089 switch ((int)(buf2 != MAP_FAILED)) { 1090 case 1: 1091 if (!cross_256mb(buf2, size)) { 1092 /* Success! Use the new buffer. */ 1093 munmap(buf, size); 1094 break; 1095 } 1096 /* Failure. Work with what we had. */ 1097 munmap(buf2, size); 1098 /* fallthru */ 1099 default: 1100 /* Split the original buffer. Free the smaller half. */ 1101 buf2 = split_cross_256mb(buf, size); 1102 size2 = tcg_ctx->code_gen_buffer_size; 1103 if (buf == buf2) { 1104 munmap(buf + size2, size - size2); 1105 } else { 1106 munmap(buf, size - size2); 1107 } 1108 size = size2; 1109 break; 1110 } 1111 buf = buf2; 1112 } 1113 #endif 1114 1115 /* Request large pages for the buffer. */ 1116 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE); 1117 1118 return buf; 1119 } 1120 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 1121 1122 static inline void code_gen_alloc(size_t tb_size) 1123 { 1124 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size); 1125 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer(); 1126 if (tcg_ctx->code_gen_buffer == NULL) { 1127 fprintf(stderr, "Could not allocate dynamic translator buffer\n"); 1128 exit(1); 1129 } 1130 } 1131 1132 static bool tb_cmp(const void *ap, const void *bp) 1133 { 1134 const TranslationBlock *a = ap; 1135 const TranslationBlock *b = bp; 1136 1137 return a->pc == b->pc && 1138 a->cs_base == b->cs_base && 1139 a->flags == b->flags && 1140 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) && 1141 a->trace_vcpu_dstate == b->trace_vcpu_dstate && 1142 a->page_addr[0] == b->page_addr[0] && 1143 a->page_addr[1] == b->page_addr[1]; 1144 } 1145 1146 static void tb_htable_init(void) 1147 { 1148 unsigned int mode = QHT_MODE_AUTO_RESIZE; 1149 1150 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode); 1151 } 1152 1153 /* Must be called before using the QEMU cpus. 'tb_size' is the size 1154 (in bytes) allocated to the translation buffer. Zero means default 1155 size. */ 1156 void tcg_exec_init(unsigned long tb_size) 1157 { 1158 tcg_allowed = true; 1159 cpu_gen_init(); 1160 page_init(); 1161 tb_htable_init(); 1162 code_gen_alloc(tb_size); 1163 #if defined(CONFIG_SOFTMMU) 1164 /* There's no guest base to take into account, so go ahead and 1165 initialize the prologue now. */ 1166 tcg_prologue_init(tcg_ctx); 1167 #endif 1168 } 1169 1170 /* call with @p->lock held */ 1171 static inline void invalidate_page_bitmap(PageDesc *p) 1172 { 1173 assert_page_locked(p); 1174 #ifdef CONFIG_SOFTMMU 1175 g_free(p->code_bitmap); 1176 p->code_bitmap = NULL; 1177 p->code_write_count = 0; 1178 #endif 1179 } 1180 1181 /* Set to NULL all the 'first_tb' fields in all PageDescs. */ 1182 static void page_flush_tb_1(int level, void **lp) 1183 { 1184 int i; 1185 1186 if (*lp == NULL) { 1187 return; 1188 } 1189 if (level == 0) { 1190 PageDesc *pd = *lp; 1191 1192 for (i = 0; i < V_L2_SIZE; ++i) { 1193 page_lock(&pd[i]); 1194 pd[i].first_tb = (uintptr_t)NULL; 1195 invalidate_page_bitmap(pd + i); 1196 page_unlock(&pd[i]); 1197 } 1198 } else { 1199 void **pp = *lp; 1200 1201 for (i = 0; i < V_L2_SIZE; ++i) { 1202 page_flush_tb_1(level - 1, pp + i); 1203 } 1204 } 1205 } 1206 1207 static void page_flush_tb(void) 1208 { 1209 int i, l1_sz = v_l1_size; 1210 1211 for (i = 0; i < l1_sz; i++) { 1212 page_flush_tb_1(v_l2_levels, l1_map + i); 1213 } 1214 } 1215 1216 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data) 1217 { 1218 const TranslationBlock *tb = value; 1219 size_t *size = data; 1220 1221 *size += tb->tc.size; 1222 return false; 1223 } 1224 1225 /* flush all the translation blocks */ 1226 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count) 1227 { 1228 bool did_flush = false; 1229 1230 mmap_lock(); 1231 /* If it is already been done on request of another CPU, 1232 * just retry. 1233 */ 1234 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) { 1235 goto done; 1236 } 1237 did_flush = true; 1238 1239 if (DEBUG_TB_FLUSH_GATE) { 1240 size_t nb_tbs = tcg_nb_tbs(); 1241 size_t host_size = 0; 1242 1243 tcg_tb_foreach(tb_host_size_iter, &host_size); 1244 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n", 1245 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0); 1246 } 1247 1248 CPU_FOREACH(cpu) { 1249 cpu_tb_jmp_cache_clear(cpu); 1250 } 1251 1252 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE); 1253 page_flush_tb(); 1254 1255 tcg_region_reset_all(); 1256 /* XXX: flush processor icache at this point if cache flush is 1257 expensive */ 1258 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1); 1259 1260 done: 1261 mmap_unlock(); 1262 if (did_flush) { 1263 qemu_plugin_flush_cb(); 1264 } 1265 } 1266 1267 void tb_flush(CPUState *cpu) 1268 { 1269 if (tcg_enabled()) { 1270 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count); 1271 1272 if (cpu_in_exclusive_context(cpu)) { 1273 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count)); 1274 } else { 1275 async_safe_run_on_cpu(cpu, do_tb_flush, 1276 RUN_ON_CPU_HOST_INT(tb_flush_count)); 1277 } 1278 } 1279 } 1280 1281 /* 1282 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only, 1283 * so in order to prevent bit rot we compile them unconditionally in user-mode, 1284 * and let the optimizer get rid of them by wrapping their user-only callers 1285 * with if (DEBUG_TB_CHECK_GATE). 1286 */ 1287 #ifdef CONFIG_USER_ONLY 1288 1289 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp) 1290 { 1291 TranslationBlock *tb = p; 1292 target_ulong addr = *(target_ulong *)userp; 1293 1294 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) { 1295 printf("ERROR invalidate: address=" TARGET_FMT_lx 1296 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size); 1297 } 1298 } 1299 1300 /* verify that all the pages have correct rights for code 1301 * 1302 * Called with mmap_lock held. 1303 */ 1304 static void tb_invalidate_check(target_ulong address) 1305 { 1306 address &= TARGET_PAGE_MASK; 1307 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address); 1308 } 1309 1310 static void do_tb_page_check(void *p, uint32_t hash, void *userp) 1311 { 1312 TranslationBlock *tb = p; 1313 int flags1, flags2; 1314 1315 flags1 = page_get_flags(tb->pc); 1316 flags2 = page_get_flags(tb->pc + tb->size - 1); 1317 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { 1318 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", 1319 (long)tb->pc, tb->size, flags1, flags2); 1320 } 1321 } 1322 1323 /* verify that all the pages have correct rights for code */ 1324 static void tb_page_check(void) 1325 { 1326 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL); 1327 } 1328 1329 #endif /* CONFIG_USER_ONLY */ 1330 1331 /* 1332 * user-mode: call with mmap_lock held 1333 * !user-mode: call with @pd->lock held 1334 */ 1335 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb) 1336 { 1337 TranslationBlock *tb1; 1338 uintptr_t *pprev; 1339 unsigned int n1; 1340 1341 assert_page_locked(pd); 1342 pprev = &pd->first_tb; 1343 PAGE_FOR_EACH_TB(pd, tb1, n1) { 1344 if (tb1 == tb) { 1345 *pprev = tb1->page_next[n1]; 1346 return; 1347 } 1348 pprev = &tb1->page_next[n1]; 1349 } 1350 g_assert_not_reached(); 1351 } 1352 1353 /* remove @orig from its @n_orig-th jump list */ 1354 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig) 1355 { 1356 uintptr_t ptr, ptr_locked; 1357 TranslationBlock *dest; 1358 TranslationBlock *tb; 1359 uintptr_t *pprev; 1360 int n; 1361 1362 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */ 1363 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1); 1364 dest = (TranslationBlock *)(ptr & ~1); 1365 if (dest == NULL) { 1366 return; 1367 } 1368 1369 qemu_spin_lock(&dest->jmp_lock); 1370 /* 1371 * While acquiring the lock, the jump might have been removed if the 1372 * destination TB was invalidated; check again. 1373 */ 1374 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]); 1375 if (ptr_locked != ptr) { 1376 qemu_spin_unlock(&dest->jmp_lock); 1377 /* 1378 * The only possibility is that the jump was unlinked via 1379 * tb_jump_unlink(dest). Seeing here another destination would be a bug, 1380 * because we set the LSB above. 1381 */ 1382 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID); 1383 return; 1384 } 1385 /* 1386 * We first acquired the lock, and since the destination pointer matches, 1387 * we know for sure that @orig is in the jmp list. 1388 */ 1389 pprev = &dest->jmp_list_head; 1390 TB_FOR_EACH_JMP(dest, tb, n) { 1391 if (tb == orig && n == n_orig) { 1392 *pprev = tb->jmp_list_next[n]; 1393 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */ 1394 qemu_spin_unlock(&dest->jmp_lock); 1395 return; 1396 } 1397 pprev = &tb->jmp_list_next[n]; 1398 } 1399 g_assert_not_reached(); 1400 } 1401 1402 /* reset the jump entry 'n' of a TB so that it is not chained to 1403 another TB */ 1404 static inline void tb_reset_jump(TranslationBlock *tb, int n) 1405 { 1406 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]); 1407 tb_set_jmp_target(tb, n, addr); 1408 } 1409 1410 /* remove any jumps to the TB */ 1411 static inline void tb_jmp_unlink(TranslationBlock *dest) 1412 { 1413 TranslationBlock *tb; 1414 int n; 1415 1416 qemu_spin_lock(&dest->jmp_lock); 1417 1418 TB_FOR_EACH_JMP(dest, tb, n) { 1419 tb_reset_jump(tb, n); 1420 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1); 1421 /* No need to clear the list entry; setting the dest ptr is enough */ 1422 } 1423 dest->jmp_list_head = (uintptr_t)NULL; 1424 1425 qemu_spin_unlock(&dest->jmp_lock); 1426 } 1427 1428 /* 1429 * In user-mode, call with mmap_lock held. 1430 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages' 1431 * locks held. 1432 */ 1433 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list) 1434 { 1435 CPUState *cpu; 1436 PageDesc *p; 1437 uint32_t h; 1438 tb_page_addr_t phys_pc; 1439 1440 assert_memory_lock(); 1441 1442 /* make sure no further incoming jumps will be chained to this TB */ 1443 qemu_spin_lock(&tb->jmp_lock); 1444 atomic_set(&tb->cflags, tb->cflags | CF_INVALID); 1445 qemu_spin_unlock(&tb->jmp_lock); 1446 1447 /* remove the TB from the hash list */ 1448 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1449 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK, 1450 tb->trace_vcpu_dstate); 1451 if (!(tb->cflags & CF_NOCACHE) && 1452 !qht_remove(&tb_ctx.htable, tb, h)) { 1453 return; 1454 } 1455 1456 /* remove the TB from the page list */ 1457 if (rm_from_page_list) { 1458 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); 1459 tb_page_remove(p, tb); 1460 invalidate_page_bitmap(p); 1461 if (tb->page_addr[1] != -1) { 1462 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); 1463 tb_page_remove(p, tb); 1464 invalidate_page_bitmap(p); 1465 } 1466 } 1467 1468 /* remove the TB from the hash list */ 1469 h = tb_jmp_cache_hash_func(tb->pc); 1470 CPU_FOREACH(cpu) { 1471 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) { 1472 atomic_set(&cpu->tb_jmp_cache[h], NULL); 1473 } 1474 } 1475 1476 /* suppress this TB from the two jump lists */ 1477 tb_remove_from_jmp_list(tb, 0); 1478 tb_remove_from_jmp_list(tb, 1); 1479 1480 /* suppress any remaining jumps to this TB */ 1481 tb_jmp_unlink(tb); 1482 1483 atomic_set(&tcg_ctx->tb_phys_invalidate_count, 1484 tcg_ctx->tb_phys_invalidate_count + 1); 1485 } 1486 1487 static void tb_phys_invalidate__locked(TranslationBlock *tb) 1488 { 1489 do_tb_phys_invalidate(tb, true); 1490 } 1491 1492 /* invalidate one TB 1493 * 1494 * Called with mmap_lock held in user-mode. 1495 */ 1496 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) 1497 { 1498 if (page_addr == -1 && tb->page_addr[0] != -1) { 1499 page_lock_tb(tb); 1500 do_tb_phys_invalidate(tb, true); 1501 page_unlock_tb(tb); 1502 } else { 1503 do_tb_phys_invalidate(tb, false); 1504 } 1505 } 1506 1507 #ifdef CONFIG_SOFTMMU 1508 /* call with @p->lock held */ 1509 static void build_page_bitmap(PageDesc *p) 1510 { 1511 int n, tb_start, tb_end; 1512 TranslationBlock *tb; 1513 1514 assert_page_locked(p); 1515 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE); 1516 1517 PAGE_FOR_EACH_TB(p, tb, n) { 1518 /* NOTE: this is subtle as a TB may span two physical pages */ 1519 if (n == 0) { 1520 /* NOTE: tb_end may be after the end of the page, but 1521 it is not a problem */ 1522 tb_start = tb->pc & ~TARGET_PAGE_MASK; 1523 tb_end = tb_start + tb->size; 1524 if (tb_end > TARGET_PAGE_SIZE) { 1525 tb_end = TARGET_PAGE_SIZE; 1526 } 1527 } else { 1528 tb_start = 0; 1529 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1530 } 1531 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start); 1532 } 1533 } 1534 #endif 1535 1536 /* add the tb in the target page and protect it if necessary 1537 * 1538 * Called with mmap_lock held for user-mode emulation. 1539 * Called with @p->lock held in !user-mode. 1540 */ 1541 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb, 1542 unsigned int n, tb_page_addr_t page_addr) 1543 { 1544 #ifndef CONFIG_USER_ONLY 1545 bool page_already_protected; 1546 #endif 1547 1548 assert_page_locked(p); 1549 1550 tb->page_addr[n] = page_addr; 1551 tb->page_next[n] = p->first_tb; 1552 #ifndef CONFIG_USER_ONLY 1553 page_already_protected = p->first_tb != (uintptr_t)NULL; 1554 #endif 1555 p->first_tb = (uintptr_t)tb | n; 1556 invalidate_page_bitmap(p); 1557 1558 #if defined(CONFIG_USER_ONLY) 1559 if (p->flags & PAGE_WRITE) { 1560 target_ulong addr; 1561 PageDesc *p2; 1562 int prot; 1563 1564 /* force the host page as non writable (writes will have a 1565 page fault + mprotect overhead) */ 1566 page_addr &= qemu_host_page_mask; 1567 prot = 0; 1568 for (addr = page_addr; addr < page_addr + qemu_host_page_size; 1569 addr += TARGET_PAGE_SIZE) { 1570 1571 p2 = page_find(addr >> TARGET_PAGE_BITS); 1572 if (!p2) { 1573 continue; 1574 } 1575 prot |= p2->flags; 1576 p2->flags &= ~PAGE_WRITE; 1577 } 1578 mprotect(g2h(page_addr), qemu_host_page_size, 1579 (prot & PAGE_BITS) & ~PAGE_WRITE); 1580 if (DEBUG_TB_INVALIDATE_GATE) { 1581 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr); 1582 } 1583 } 1584 #else 1585 /* if some code is already present, then the pages are already 1586 protected. So we handle the case where only the first TB is 1587 allocated in a physical page */ 1588 if (!page_already_protected) { 1589 tlb_protect_code(page_addr); 1590 } 1591 #endif 1592 } 1593 1594 /* add a new TB and link it to the physical page tables. phys_page2 is 1595 * (-1) to indicate that only one page contains the TB. 1596 * 1597 * Called with mmap_lock held for user-mode emulation. 1598 * 1599 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb. 1600 * Note that in !user-mode, another thread might have already added a TB 1601 * for the same block of guest code that @tb corresponds to. In that case, 1602 * the caller should discard the original @tb, and use instead the returned TB. 1603 */ 1604 static TranslationBlock * 1605 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, 1606 tb_page_addr_t phys_page2) 1607 { 1608 PageDesc *p; 1609 PageDesc *p2 = NULL; 1610 1611 assert_memory_lock(); 1612 1613 if (phys_pc == -1) { 1614 /* 1615 * If the TB is not associated with a physical RAM page then 1616 * it must be a temporary one-insn TB, and we have nothing to do 1617 * except fill in the page_addr[] fields. 1618 */ 1619 assert(tb->cflags & CF_NOCACHE); 1620 tb->page_addr[0] = tb->page_addr[1] = -1; 1621 return tb; 1622 } 1623 1624 /* 1625 * Add the TB to the page list, acquiring first the pages's locks. 1626 * We keep the locks held until after inserting the TB in the hash table, 1627 * so that if the insertion fails we know for sure that the TBs are still 1628 * in the page descriptors. 1629 * Note that inserting into the hash table first isn't an option, since 1630 * we can only insert TBs that are fully initialized. 1631 */ 1632 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1); 1633 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK); 1634 if (p2) { 1635 tb_page_add(p2, tb, 1, phys_page2); 1636 } else { 1637 tb->page_addr[1] = -1; 1638 } 1639 1640 if (!(tb->cflags & CF_NOCACHE)) { 1641 void *existing_tb = NULL; 1642 uint32_t h; 1643 1644 /* add in the hash table */ 1645 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK, 1646 tb->trace_vcpu_dstate); 1647 qht_insert(&tb_ctx.htable, tb, h, &existing_tb); 1648 1649 /* remove TB from the page(s) if we couldn't insert it */ 1650 if (unlikely(existing_tb)) { 1651 tb_page_remove(p, tb); 1652 invalidate_page_bitmap(p); 1653 if (p2) { 1654 tb_page_remove(p2, tb); 1655 invalidate_page_bitmap(p2); 1656 } 1657 tb = existing_tb; 1658 } 1659 } 1660 1661 if (p2 && p2 != p) { 1662 page_unlock(p2); 1663 } 1664 page_unlock(p); 1665 1666 #ifdef CONFIG_USER_ONLY 1667 if (DEBUG_TB_CHECK_GATE) { 1668 tb_page_check(); 1669 } 1670 #endif 1671 return tb; 1672 } 1673 1674 /* Called with mmap_lock held for user mode emulation. */ 1675 TranslationBlock *tb_gen_code(CPUState *cpu, 1676 target_ulong pc, target_ulong cs_base, 1677 uint32_t flags, int cflags) 1678 { 1679 CPUArchState *env = cpu->env_ptr; 1680 TranslationBlock *tb, *existing_tb; 1681 tb_page_addr_t phys_pc, phys_page2; 1682 target_ulong virt_page2; 1683 tcg_insn_unit *gen_code_buf; 1684 int gen_code_size, search_size, max_insns; 1685 #ifdef CONFIG_PROFILER 1686 TCGProfile *prof = &tcg_ctx->prof; 1687 int64_t ti; 1688 #endif 1689 1690 assert_memory_lock(); 1691 1692 phys_pc = get_page_addr_code(env, pc); 1693 1694 if (phys_pc == -1) { 1695 /* Generate a temporary TB with 1 insn in it */ 1696 cflags &= ~CF_COUNT_MASK; 1697 cflags |= CF_NOCACHE | 1; 1698 } 1699 1700 cflags &= ~CF_CLUSTER_MASK; 1701 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT; 1702 1703 max_insns = cflags & CF_COUNT_MASK; 1704 if (max_insns == 0) { 1705 max_insns = CF_COUNT_MASK; 1706 } 1707 if (max_insns > TCG_MAX_INSNS) { 1708 max_insns = TCG_MAX_INSNS; 1709 } 1710 if (cpu->singlestep_enabled || singlestep) { 1711 max_insns = 1; 1712 } 1713 1714 buffer_overflow: 1715 tb = tcg_tb_alloc(tcg_ctx); 1716 if (unlikely(!tb)) { 1717 /* flush must be done */ 1718 tb_flush(cpu); 1719 mmap_unlock(); 1720 /* Make the execution loop process the flush as soon as possible. */ 1721 cpu->exception_index = EXCP_INTERRUPT; 1722 cpu_loop_exit(cpu); 1723 } 1724 1725 gen_code_buf = tcg_ctx->code_gen_ptr; 1726 tb->tc.ptr = gen_code_buf; 1727 tb->pc = pc; 1728 tb->cs_base = cs_base; 1729 tb->flags = flags; 1730 tb->cflags = cflags; 1731 tb->orig_tb = NULL; 1732 tb->trace_vcpu_dstate = *cpu->trace_dstate; 1733 tcg_ctx->tb_cflags = cflags; 1734 tb_overflow: 1735 1736 #ifdef CONFIG_PROFILER 1737 /* includes aborted translations because of exceptions */ 1738 atomic_set(&prof->tb_count1, prof->tb_count1 + 1); 1739 ti = profile_getclock(); 1740 #endif 1741 1742 tcg_func_start(tcg_ctx); 1743 1744 tcg_ctx->cpu = env_cpu(env); 1745 gen_intermediate_code(cpu, tb, max_insns); 1746 tcg_ctx->cpu = NULL; 1747 1748 trace_translate_block(tb, tb->pc, tb->tc.ptr); 1749 1750 /* generate machine code */ 1751 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID; 1752 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID; 1753 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset; 1754 if (TCG_TARGET_HAS_direct_jump) { 1755 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg; 1756 tcg_ctx->tb_jmp_target_addr = NULL; 1757 } else { 1758 tcg_ctx->tb_jmp_insn_offset = NULL; 1759 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg; 1760 } 1761 1762 #ifdef CONFIG_PROFILER 1763 atomic_set(&prof->tb_count, prof->tb_count + 1); 1764 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti); 1765 ti = profile_getclock(); 1766 #endif 1767 1768 gen_code_size = tcg_gen_code(tcg_ctx, tb); 1769 if (unlikely(gen_code_size < 0)) { 1770 switch (gen_code_size) { 1771 case -1: 1772 /* 1773 * Overflow of code_gen_buffer, or the current slice of it. 1774 * 1775 * TODO: We don't need to re-do gen_intermediate_code, nor 1776 * should we re-do the tcg optimization currently hidden 1777 * inside tcg_gen_code. All that should be required is to 1778 * flush the TBs, allocate a new TB, re-initialize it per 1779 * above, and re-do the actual code generation. 1780 */ 1781 goto buffer_overflow; 1782 1783 case -2: 1784 /* 1785 * The code generated for the TranslationBlock is too large. 1786 * The maximum size allowed by the unwind info is 64k. 1787 * There may be stricter constraints from relocations 1788 * in the tcg backend. 1789 * 1790 * Try again with half as many insns as we attempted this time. 1791 * If a single insn overflows, there's a bug somewhere... 1792 */ 1793 max_insns = tb->icount; 1794 assert(max_insns > 1); 1795 max_insns /= 2; 1796 goto tb_overflow; 1797 1798 default: 1799 g_assert_not_reached(); 1800 } 1801 } 1802 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size); 1803 if (unlikely(search_size < 0)) { 1804 goto buffer_overflow; 1805 } 1806 tb->tc.size = gen_code_size; 1807 1808 #ifdef CONFIG_PROFILER 1809 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti); 1810 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size); 1811 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size); 1812 atomic_set(&prof->search_out_len, prof->search_out_len + search_size); 1813 #endif 1814 1815 #ifdef DEBUG_DISAS 1816 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) && 1817 qemu_log_in_addr_range(tb->pc)) { 1818 FILE *logfile = qemu_log_lock(); 1819 qemu_log("OUT: [size=%d]\n", gen_code_size); 1820 if (tcg_ctx->data_gen_ptr) { 1821 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr; 1822 size_t data_size = gen_code_size - code_size; 1823 size_t i; 1824 1825 log_disas(tb->tc.ptr, code_size); 1826 1827 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1828 if (sizeof(tcg_target_ulong) == 8) { 1829 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1830 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1831 *(uint64_t *)(tcg_ctx->data_gen_ptr + i)); 1832 } else { 1833 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1834 (uintptr_t)tcg_ctx->data_gen_ptr + i, 1835 *(uint32_t *)(tcg_ctx->data_gen_ptr + i)); 1836 } 1837 } 1838 } else { 1839 log_disas(tb->tc.ptr, gen_code_size); 1840 } 1841 qemu_log("\n"); 1842 qemu_log_flush(); 1843 qemu_log_unlock(logfile); 1844 } 1845 #endif 1846 1847 atomic_set(&tcg_ctx->code_gen_ptr, (void *) 1848 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size, 1849 CODE_GEN_ALIGN)); 1850 1851 /* init jump list */ 1852 qemu_spin_init(&tb->jmp_lock); 1853 tb->jmp_list_head = (uintptr_t)NULL; 1854 tb->jmp_list_next[0] = (uintptr_t)NULL; 1855 tb->jmp_list_next[1] = (uintptr_t)NULL; 1856 tb->jmp_dest[0] = (uintptr_t)NULL; 1857 tb->jmp_dest[1] = (uintptr_t)NULL; 1858 1859 /* init original jump addresses which have been set during tcg_gen_code() */ 1860 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 1861 tb_reset_jump(tb, 0); 1862 } 1863 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 1864 tb_reset_jump(tb, 1); 1865 } 1866 1867 /* check next page if needed */ 1868 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; 1869 phys_page2 = -1; 1870 if ((pc & TARGET_PAGE_MASK) != virt_page2) { 1871 phys_page2 = get_page_addr_code(env, virt_page2); 1872 } 1873 /* 1874 * No explicit memory barrier is required -- tb_link_page() makes the 1875 * TB visible in a consistent state. 1876 */ 1877 existing_tb = tb_link_page(tb, phys_pc, phys_page2); 1878 /* if the TB already exists, discard what we just translated */ 1879 if (unlikely(existing_tb != tb)) { 1880 uintptr_t orig_aligned = (uintptr_t)gen_code_buf; 1881 1882 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize); 1883 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned); 1884 return existing_tb; 1885 } 1886 tcg_tb_insert(tb); 1887 return tb; 1888 } 1889 1890 /* 1891 * @p must be non-NULL. 1892 * user-mode: call with mmap_lock held. 1893 * !user-mode: call with all @pages locked. 1894 */ 1895 static void 1896 tb_invalidate_phys_page_range__locked(struct page_collection *pages, 1897 PageDesc *p, tb_page_addr_t start, 1898 tb_page_addr_t end, 1899 uintptr_t retaddr) 1900 { 1901 TranslationBlock *tb; 1902 tb_page_addr_t tb_start, tb_end; 1903 int n; 1904 #ifdef TARGET_HAS_PRECISE_SMC 1905 CPUState *cpu = current_cpu; 1906 CPUArchState *env = NULL; 1907 bool current_tb_not_found = retaddr != 0; 1908 bool current_tb_modified = false; 1909 TranslationBlock *current_tb = NULL; 1910 target_ulong current_pc = 0; 1911 target_ulong current_cs_base = 0; 1912 uint32_t current_flags = 0; 1913 #endif /* TARGET_HAS_PRECISE_SMC */ 1914 1915 assert_page_locked(p); 1916 1917 #if defined(TARGET_HAS_PRECISE_SMC) 1918 if (cpu != NULL) { 1919 env = cpu->env_ptr; 1920 } 1921 #endif 1922 1923 /* we remove all the TBs in the range [start, end[ */ 1924 /* XXX: see if in some cases it could be faster to invalidate all 1925 the code */ 1926 PAGE_FOR_EACH_TB(p, tb, n) { 1927 assert_page_locked(p); 1928 /* NOTE: this is subtle as a TB may span two physical pages */ 1929 if (n == 0) { 1930 /* NOTE: tb_end may be after the end of the page, but 1931 it is not a problem */ 1932 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); 1933 tb_end = tb_start + tb->size; 1934 } else { 1935 tb_start = tb->page_addr[1]; 1936 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); 1937 } 1938 if (!(tb_end <= start || tb_start >= end)) { 1939 #ifdef TARGET_HAS_PRECISE_SMC 1940 if (current_tb_not_found) { 1941 current_tb_not_found = false; 1942 /* now we have a real cpu fault */ 1943 current_tb = tcg_tb_lookup(retaddr); 1944 } 1945 if (current_tb == tb && 1946 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 1947 /* 1948 * If we are modifying the current TB, we must stop 1949 * its execution. We could be more precise by checking 1950 * that the modification is after the current PC, but it 1951 * would require a specialized function to partially 1952 * restore the CPU state. 1953 */ 1954 current_tb_modified = true; 1955 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true); 1956 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 1957 ¤t_flags); 1958 } 1959 #endif /* TARGET_HAS_PRECISE_SMC */ 1960 tb_phys_invalidate__locked(tb); 1961 } 1962 } 1963 #if !defined(CONFIG_USER_ONLY) 1964 /* if no code remaining, no need to continue to use slow writes */ 1965 if (!p->first_tb) { 1966 invalidate_page_bitmap(p); 1967 tlb_unprotect_code(start); 1968 } 1969 #endif 1970 #ifdef TARGET_HAS_PRECISE_SMC 1971 if (current_tb_modified) { 1972 page_collection_unlock(pages); 1973 /* Force execution of one insn next time. */ 1974 cpu->cflags_next_tb = 1 | curr_cflags(); 1975 mmap_unlock(); 1976 cpu_loop_exit_noexc(cpu); 1977 } 1978 #endif 1979 } 1980 1981 /* 1982 * Invalidate all TBs which intersect with the target physical address range 1983 * [start;end[. NOTE: start and end must refer to the *same* physical page. 1984 * 'is_cpu_write_access' should be true if called from a real cpu write 1985 * access: the virtual CPU will exit the current TB if code is modified inside 1986 * this TB. 1987 * 1988 * Called with mmap_lock held for user-mode emulation 1989 */ 1990 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end) 1991 { 1992 struct page_collection *pages; 1993 PageDesc *p; 1994 1995 assert_memory_lock(); 1996 1997 p = page_find(start >> TARGET_PAGE_BITS); 1998 if (p == NULL) { 1999 return; 2000 } 2001 pages = page_collection_lock(start, end); 2002 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0); 2003 page_collection_unlock(pages); 2004 } 2005 2006 /* 2007 * Invalidate all TBs which intersect with the target physical address range 2008 * [start;end[. NOTE: start and end may refer to *different* physical pages. 2009 * 'is_cpu_write_access' should be true if called from a real cpu write 2010 * access: the virtual CPU will exit the current TB if code is modified inside 2011 * this TB. 2012 * 2013 * Called with mmap_lock held for user-mode emulation. 2014 */ 2015 #ifdef CONFIG_SOFTMMU 2016 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end) 2017 #else 2018 void tb_invalidate_phys_range(target_ulong start, target_ulong end) 2019 #endif 2020 { 2021 struct page_collection *pages; 2022 tb_page_addr_t next; 2023 2024 assert_memory_lock(); 2025 2026 pages = page_collection_lock(start, end); 2027 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 2028 start < end; 2029 start = next, next += TARGET_PAGE_SIZE) { 2030 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS); 2031 tb_page_addr_t bound = MIN(next, end); 2032 2033 if (pd == NULL) { 2034 continue; 2035 } 2036 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0); 2037 } 2038 page_collection_unlock(pages); 2039 } 2040 2041 #ifdef CONFIG_SOFTMMU 2042 /* len must be <= 8 and start must be a multiple of len. 2043 * Called via softmmu_template.h when code areas are written to with 2044 * iothread mutex not held. 2045 * 2046 * Call with all @pages in the range [@start, @start + len[ locked. 2047 */ 2048 void tb_invalidate_phys_page_fast(struct page_collection *pages, 2049 tb_page_addr_t start, int len, 2050 uintptr_t retaddr) 2051 { 2052 PageDesc *p; 2053 2054 assert_memory_lock(); 2055 2056 p = page_find(start >> TARGET_PAGE_BITS); 2057 if (!p) { 2058 return; 2059 } 2060 2061 assert_page_locked(p); 2062 if (!p->code_bitmap && 2063 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) { 2064 build_page_bitmap(p); 2065 } 2066 if (p->code_bitmap) { 2067 unsigned int nr; 2068 unsigned long b; 2069 2070 nr = start & ~TARGET_PAGE_MASK; 2071 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1)); 2072 if (b & ((1 << len) - 1)) { 2073 goto do_invalidate; 2074 } 2075 } else { 2076 do_invalidate: 2077 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 2078 retaddr); 2079 } 2080 } 2081 #else 2082 /* Called with mmap_lock held. If pc is not 0 then it indicates the 2083 * host PC of the faulting store instruction that caused this invalidate. 2084 * Returns true if the caller needs to abort execution of the current 2085 * TB (because it was modified by this store and the guest CPU has 2086 * precise-SMC semantics). 2087 */ 2088 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) 2089 { 2090 TranslationBlock *tb; 2091 PageDesc *p; 2092 int n; 2093 #ifdef TARGET_HAS_PRECISE_SMC 2094 TranslationBlock *current_tb = NULL; 2095 CPUState *cpu = current_cpu; 2096 CPUArchState *env = NULL; 2097 int current_tb_modified = 0; 2098 target_ulong current_pc = 0; 2099 target_ulong current_cs_base = 0; 2100 uint32_t current_flags = 0; 2101 #endif 2102 2103 assert_memory_lock(); 2104 2105 addr &= TARGET_PAGE_MASK; 2106 p = page_find(addr >> TARGET_PAGE_BITS); 2107 if (!p) { 2108 return false; 2109 } 2110 2111 #ifdef TARGET_HAS_PRECISE_SMC 2112 if (p->first_tb && pc != 0) { 2113 current_tb = tcg_tb_lookup(pc); 2114 } 2115 if (cpu != NULL) { 2116 env = cpu->env_ptr; 2117 } 2118 #endif 2119 assert_page_locked(p); 2120 PAGE_FOR_EACH_TB(p, tb, n) { 2121 #ifdef TARGET_HAS_PRECISE_SMC 2122 if (current_tb == tb && 2123 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) { 2124 /* If we are modifying the current TB, we must stop 2125 its execution. We could be more precise by checking 2126 that the modification is after the current PC, but it 2127 would require a specialized function to partially 2128 restore the CPU state */ 2129 2130 current_tb_modified = 1; 2131 cpu_restore_state_from_tb(cpu, current_tb, pc, true); 2132 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, 2133 ¤t_flags); 2134 } 2135 #endif /* TARGET_HAS_PRECISE_SMC */ 2136 tb_phys_invalidate(tb, addr); 2137 } 2138 p->first_tb = (uintptr_t)NULL; 2139 #ifdef TARGET_HAS_PRECISE_SMC 2140 if (current_tb_modified) { 2141 /* Force execution of one insn next time. */ 2142 cpu->cflags_next_tb = 1 | curr_cflags(); 2143 return true; 2144 } 2145 #endif 2146 2147 return false; 2148 } 2149 #endif 2150 2151 /* user-mode: call with mmap_lock held */ 2152 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr) 2153 { 2154 TranslationBlock *tb; 2155 2156 assert_memory_lock(); 2157 2158 tb = tcg_tb_lookup(retaddr); 2159 if (tb) { 2160 /* We can use retranslation to find the PC. */ 2161 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2162 tb_phys_invalidate(tb, -1); 2163 } else { 2164 /* The exception probably happened in a helper. The CPU state should 2165 have been saved before calling it. Fetch the PC from there. */ 2166 CPUArchState *env = cpu->env_ptr; 2167 target_ulong pc, cs_base; 2168 tb_page_addr_t addr; 2169 uint32_t flags; 2170 2171 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 2172 addr = get_page_addr_code(env, pc); 2173 if (addr != -1) { 2174 tb_invalidate_phys_range(addr, addr + 1); 2175 } 2176 } 2177 } 2178 2179 #ifndef CONFIG_USER_ONLY 2180 /* in deterministic execution mode, instructions doing device I/Os 2181 * must be at the end of the TB. 2182 * 2183 * Called by softmmu_template.h, with iothread mutex not held. 2184 */ 2185 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) 2186 { 2187 #if defined(TARGET_MIPS) || defined(TARGET_SH4) 2188 CPUArchState *env = cpu->env_ptr; 2189 #endif 2190 TranslationBlock *tb; 2191 uint32_t n; 2192 2193 tb = tcg_tb_lookup(retaddr); 2194 if (!tb) { 2195 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", 2196 (void *)retaddr); 2197 } 2198 cpu_restore_state_from_tb(cpu, tb, retaddr, true); 2199 2200 /* On MIPS and SH, delay slot instructions can only be restarted if 2201 they were already the first instruction in the TB. If this is not 2202 the first instruction in a TB then re-execute the preceding 2203 branch. */ 2204 n = 1; 2205 #if defined(TARGET_MIPS) 2206 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 2207 && env->active_tc.PC != tb->pc) { 2208 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); 2209 cpu_neg(cpu)->icount_decr.u16.low++; 2210 env->hflags &= ~MIPS_HFLAG_BMASK; 2211 n = 2; 2212 } 2213 #elif defined(TARGET_SH4) 2214 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 2215 && env->pc != tb->pc) { 2216 env->pc -= 2; 2217 cpu_neg(cpu)->icount_decr.u16.low++; 2218 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); 2219 n = 2; 2220 } 2221 #endif 2222 2223 /* Generate a new TB executing the I/O insn. */ 2224 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n; 2225 2226 if (tb_cflags(tb) & CF_NOCACHE) { 2227 if (tb->orig_tb) { 2228 /* Invalidate original TB if this TB was generated in 2229 * cpu_exec_nocache() */ 2230 tb_phys_invalidate(tb->orig_tb, -1); 2231 } 2232 tcg_tb_remove(tb); 2233 } 2234 2235 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not 2236 * the first in the TB) then we end up generating a whole new TB and 2237 * repeating the fault, which is horribly inefficient. 2238 * Better would be to execute just this insn uncached, or generate a 2239 * second new TB. 2240 */ 2241 cpu_loop_exit_noexc(cpu); 2242 } 2243 2244 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 2245 { 2246 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 2247 2248 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 2249 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 2250 } 2251 } 2252 2253 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 2254 { 2255 /* Discard jump cache entries for any tb which might potentially 2256 overlap the flushed page. */ 2257 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 2258 tb_jmp_cache_clear_page(cpu, addr); 2259 } 2260 2261 static void print_qht_statistics(struct qht_stats hst) 2262 { 2263 uint32_t hgram_opts; 2264 size_t hgram_bins; 2265 char *hgram; 2266 2267 if (!hst.head_buckets) { 2268 return; 2269 } 2270 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n", 2271 hst.used_head_buckets, hst.head_buckets, 2272 (double)hst.used_head_buckets / hst.head_buckets * 100); 2273 2274 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2275 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT; 2276 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) { 2277 hgram_opts |= QDIST_PR_NODECIMAL; 2278 } 2279 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts); 2280 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n", 2281 qdist_avg(&hst.occupancy) * 100, hgram); 2282 g_free(hgram); 2283 2284 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS; 2285 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain); 2286 if (hgram_bins > 10) { 2287 hgram_bins = 10; 2288 } else { 2289 hgram_bins = 0; 2290 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE; 2291 } 2292 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts); 2293 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n", 2294 qdist_avg(&hst.chain), hgram); 2295 g_free(hgram); 2296 } 2297 2298 struct tb_tree_stats { 2299 size_t nb_tbs; 2300 size_t host_size; 2301 size_t target_size; 2302 size_t max_target_size; 2303 size_t direct_jmp_count; 2304 size_t direct_jmp2_count; 2305 size_t cross_page; 2306 }; 2307 2308 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data) 2309 { 2310 const TranslationBlock *tb = value; 2311 struct tb_tree_stats *tst = data; 2312 2313 tst->nb_tbs++; 2314 tst->host_size += tb->tc.size; 2315 tst->target_size += tb->size; 2316 if (tb->size > tst->max_target_size) { 2317 tst->max_target_size = tb->size; 2318 } 2319 if (tb->page_addr[1] != -1) { 2320 tst->cross_page++; 2321 } 2322 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) { 2323 tst->direct_jmp_count++; 2324 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) { 2325 tst->direct_jmp2_count++; 2326 } 2327 } 2328 return false; 2329 } 2330 2331 void dump_exec_info(void) 2332 { 2333 struct tb_tree_stats tst = {}; 2334 struct qht_stats hst; 2335 size_t nb_tbs, flush_full, flush_part, flush_elide; 2336 2337 tcg_tb_foreach(tb_tree_stats_iter, &tst); 2338 nb_tbs = tst.nb_tbs; 2339 /* XXX: avoid using doubles ? */ 2340 qemu_printf("Translation buffer state:\n"); 2341 /* 2342 * Report total code size including the padding and TB structs; 2343 * otherwise users might think "-tb-size" is not honoured. 2344 * For avg host size we use the precise numbers from tb_tree_stats though. 2345 */ 2346 qemu_printf("gen code size %zu/%zu\n", 2347 tcg_code_size(), tcg_code_capacity()); 2348 qemu_printf("TB count %zu\n", nb_tbs); 2349 qemu_printf("TB avg target size %zu max=%zu bytes\n", 2350 nb_tbs ? tst.target_size / nb_tbs : 0, 2351 tst.max_target_size); 2352 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n", 2353 nb_tbs ? tst.host_size / nb_tbs : 0, 2354 tst.target_size ? (double)tst.host_size / tst.target_size : 0); 2355 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page, 2356 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0); 2357 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n", 2358 tst.direct_jmp_count, 2359 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0, 2360 tst.direct_jmp2_count, 2361 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0); 2362 2363 qht_statistics_init(&tb_ctx.htable, &hst); 2364 print_qht_statistics(hst); 2365 qht_statistics_destroy(&hst); 2366 2367 qemu_printf("\nStatistics:\n"); 2368 qemu_printf("TB flush count %u\n", 2369 atomic_read(&tb_ctx.tb_flush_count)); 2370 qemu_printf("TB invalidate count %zu\n", 2371 tcg_tb_phys_invalidate_count()); 2372 2373 tlb_flush_counts(&flush_full, &flush_part, &flush_elide); 2374 qemu_printf("TLB full flushes %zu\n", flush_full); 2375 qemu_printf("TLB partial flushes %zu\n", flush_part); 2376 qemu_printf("TLB elided flushes %zu\n", flush_elide); 2377 tcg_dump_info(); 2378 } 2379 2380 void dump_opcount_info(void) 2381 { 2382 tcg_dump_op_count(); 2383 } 2384 2385 #else /* CONFIG_USER_ONLY */ 2386 2387 void cpu_interrupt(CPUState *cpu, int mask) 2388 { 2389 g_assert(qemu_mutex_iothread_locked()); 2390 cpu->interrupt_request |= mask; 2391 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1); 2392 } 2393 2394 /* 2395 * Walks guest process memory "regions" one by one 2396 * and calls callback function 'fn' for each region. 2397 */ 2398 struct walk_memory_regions_data { 2399 walk_memory_regions_fn fn; 2400 void *priv; 2401 target_ulong start; 2402 int prot; 2403 }; 2404 2405 static int walk_memory_regions_end(struct walk_memory_regions_data *data, 2406 target_ulong end, int new_prot) 2407 { 2408 if (data->start != -1u) { 2409 int rc = data->fn(data->priv, data->start, end, data->prot); 2410 if (rc != 0) { 2411 return rc; 2412 } 2413 } 2414 2415 data->start = (new_prot ? end : -1u); 2416 data->prot = new_prot; 2417 2418 return 0; 2419 } 2420 2421 static int walk_memory_regions_1(struct walk_memory_regions_data *data, 2422 target_ulong base, int level, void **lp) 2423 { 2424 target_ulong pa; 2425 int i, rc; 2426 2427 if (*lp == NULL) { 2428 return walk_memory_regions_end(data, base, 0); 2429 } 2430 2431 if (level == 0) { 2432 PageDesc *pd = *lp; 2433 2434 for (i = 0; i < V_L2_SIZE; ++i) { 2435 int prot = pd[i].flags; 2436 2437 pa = base | (i << TARGET_PAGE_BITS); 2438 if (prot != data->prot) { 2439 rc = walk_memory_regions_end(data, pa, prot); 2440 if (rc != 0) { 2441 return rc; 2442 } 2443 } 2444 } 2445 } else { 2446 void **pp = *lp; 2447 2448 for (i = 0; i < V_L2_SIZE; ++i) { 2449 pa = base | ((target_ulong)i << 2450 (TARGET_PAGE_BITS + V_L2_BITS * level)); 2451 rc = walk_memory_regions_1(data, pa, level - 1, pp + i); 2452 if (rc != 0) { 2453 return rc; 2454 } 2455 } 2456 } 2457 2458 return 0; 2459 } 2460 2461 int walk_memory_regions(void *priv, walk_memory_regions_fn fn) 2462 { 2463 struct walk_memory_regions_data data; 2464 uintptr_t i, l1_sz = v_l1_size; 2465 2466 data.fn = fn; 2467 data.priv = priv; 2468 data.start = -1u; 2469 data.prot = 0; 2470 2471 for (i = 0; i < l1_sz; i++) { 2472 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS); 2473 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i); 2474 if (rc != 0) { 2475 return rc; 2476 } 2477 } 2478 2479 return walk_memory_regions_end(&data, 0, 0); 2480 } 2481 2482 static int dump_region(void *priv, target_ulong start, 2483 target_ulong end, unsigned long prot) 2484 { 2485 FILE *f = (FILE *)priv; 2486 2487 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx 2488 " "TARGET_FMT_lx" %c%c%c\n", 2489 start, end, end - start, 2490 ((prot & PAGE_READ) ? 'r' : '-'), 2491 ((prot & PAGE_WRITE) ? 'w' : '-'), 2492 ((prot & PAGE_EXEC) ? 'x' : '-')); 2493 2494 return 0; 2495 } 2496 2497 /* dump memory mappings */ 2498 void page_dump(FILE *f) 2499 { 2500 const int length = sizeof(target_ulong) * 2; 2501 (void) fprintf(f, "%-*s %-*s %-*s %s\n", 2502 length, "start", length, "end", length, "size", "prot"); 2503 walk_memory_regions(f, dump_region); 2504 } 2505 2506 int page_get_flags(target_ulong address) 2507 { 2508 PageDesc *p; 2509 2510 p = page_find(address >> TARGET_PAGE_BITS); 2511 if (!p) { 2512 return 0; 2513 } 2514 return p->flags; 2515 } 2516 2517 /* Modify the flags of a page and invalidate the code if necessary. 2518 The flag PAGE_WRITE_ORG is positioned automatically depending 2519 on PAGE_WRITE. The mmap_lock should already be held. */ 2520 void page_set_flags(target_ulong start, target_ulong end, int flags) 2521 { 2522 target_ulong addr, len; 2523 2524 /* This function should never be called with addresses outside the 2525 guest address space. If this assert fires, it probably indicates 2526 a missing call to h2g_valid. */ 2527 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2528 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2529 #endif 2530 assert(start < end); 2531 assert_memory_lock(); 2532 2533 start = start & TARGET_PAGE_MASK; 2534 end = TARGET_PAGE_ALIGN(end); 2535 2536 if (flags & PAGE_WRITE) { 2537 flags |= PAGE_WRITE_ORG; 2538 } 2539 2540 for (addr = start, len = end - start; 2541 len != 0; 2542 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2543 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); 2544 2545 /* If the write protection bit is set, then we invalidate 2546 the code inside. */ 2547 if (!(p->flags & PAGE_WRITE) && 2548 (flags & PAGE_WRITE) && 2549 p->first_tb) { 2550 tb_invalidate_phys_page(addr, 0); 2551 } 2552 p->flags = flags; 2553 } 2554 } 2555 2556 int page_check_range(target_ulong start, target_ulong len, int flags) 2557 { 2558 PageDesc *p; 2559 target_ulong end; 2560 target_ulong addr; 2561 2562 /* This function should never be called with addresses outside the 2563 guest address space. If this assert fires, it probably indicates 2564 a missing call to h2g_valid. */ 2565 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS 2566 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); 2567 #endif 2568 2569 if (len == 0) { 2570 return 0; 2571 } 2572 if (start + len - 1 < start) { 2573 /* We've wrapped around. */ 2574 return -1; 2575 } 2576 2577 /* must do before we loose bits in the next step */ 2578 end = TARGET_PAGE_ALIGN(start + len); 2579 start = start & TARGET_PAGE_MASK; 2580 2581 for (addr = start, len = end - start; 2582 len != 0; 2583 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { 2584 p = page_find(addr >> TARGET_PAGE_BITS); 2585 if (!p) { 2586 return -1; 2587 } 2588 if (!(p->flags & PAGE_VALID)) { 2589 return -1; 2590 } 2591 2592 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { 2593 return -1; 2594 } 2595 if (flags & PAGE_WRITE) { 2596 if (!(p->flags & PAGE_WRITE_ORG)) { 2597 return -1; 2598 } 2599 /* unprotect the page if it was put read-only because it 2600 contains translated code */ 2601 if (!(p->flags & PAGE_WRITE)) { 2602 if (!page_unprotect(addr, 0)) { 2603 return -1; 2604 } 2605 } 2606 } 2607 } 2608 return 0; 2609 } 2610 2611 /* called from signal handler: invalidate the code and unprotect the 2612 * page. Return 0 if the fault was not handled, 1 if it was handled, 2613 * and 2 if it was handled but the caller must cause the TB to be 2614 * immediately exited. (We can only return 2 if the 'pc' argument is 2615 * non-zero.) 2616 */ 2617 int page_unprotect(target_ulong address, uintptr_t pc) 2618 { 2619 unsigned int prot; 2620 bool current_tb_invalidated; 2621 PageDesc *p; 2622 target_ulong host_start, host_end, addr; 2623 2624 /* Technically this isn't safe inside a signal handler. However we 2625 know this only ever happens in a synchronous SEGV handler, so in 2626 practice it seems to be ok. */ 2627 mmap_lock(); 2628 2629 p = page_find(address >> TARGET_PAGE_BITS); 2630 if (!p) { 2631 mmap_unlock(); 2632 return 0; 2633 } 2634 2635 /* if the page was really writable, then we change its 2636 protection back to writable */ 2637 if (p->flags & PAGE_WRITE_ORG) { 2638 current_tb_invalidated = false; 2639 if (p->flags & PAGE_WRITE) { 2640 /* If the page is actually marked WRITE then assume this is because 2641 * this thread raced with another one which got here first and 2642 * set the page to PAGE_WRITE and did the TB invalidate for us. 2643 */ 2644 #ifdef TARGET_HAS_PRECISE_SMC 2645 TranslationBlock *current_tb = tcg_tb_lookup(pc); 2646 if (current_tb) { 2647 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; 2648 } 2649 #endif 2650 } else { 2651 host_start = address & qemu_host_page_mask; 2652 host_end = host_start + qemu_host_page_size; 2653 2654 prot = 0; 2655 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) { 2656 p = page_find(addr >> TARGET_PAGE_BITS); 2657 p->flags |= PAGE_WRITE; 2658 prot |= p->flags; 2659 2660 /* and since the content will be modified, we must invalidate 2661 the corresponding translated code. */ 2662 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc); 2663 #ifdef CONFIG_USER_ONLY 2664 if (DEBUG_TB_CHECK_GATE) { 2665 tb_invalidate_check(addr); 2666 } 2667 #endif 2668 } 2669 mprotect((void *)g2h(host_start), qemu_host_page_size, 2670 prot & PAGE_BITS); 2671 } 2672 mmap_unlock(); 2673 /* If current TB was invalidated return to main loop */ 2674 return current_tb_invalidated ? 2 : 1; 2675 } 2676 mmap_unlock(); 2677 return 0; 2678 } 2679 #endif /* CONFIG_USER_ONLY */ 2680 2681 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */ 2682 void tcg_flush_softmmu_tlb(CPUState *cs) 2683 { 2684 #ifdef CONFIG_SOFTMMU 2685 tlb_flush(cs); 2686 #endif 2687 } 2688