xref: /openbmc/qemu/accel/tcg/translate-all.c (revision fd990e86)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23 
24 #define NO_CPU_IO_DEFS
25 #include "cpu.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #if defined(CONFIG_USER_ONLY)
31 #include "qemu.h"
32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
33 #include <sys/param.h>
34 #if __FreeBSD_version >= 700104
35 #define HAVE_KINFO_GETVMMAP
36 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
37 #include <sys/proc.h>
38 #include <machine/profile.h>
39 #define _KERNEL
40 #include <sys/user.h>
41 #undef _KERNEL
42 #undef sigqueue
43 #include <libutil.h>
44 #endif
45 #endif
46 #else
47 #include "exec/ram_addr.h"
48 #endif
49 
50 #include "exec/cputlb.h"
51 #include "exec/tb-hash.h"
52 #include "translate-all.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/error-report.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/timer.h"
57 #include "qemu/main-loop.h"
58 #include "exec/log.h"
59 #include "sysemu/cpus.h"
60 #include "sysemu/tcg.h"
61 
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
66 
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
72 
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
78 
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation.  */
81 #undef DEBUG_TB_CHECK
82 #endif
83 
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
89 
90 /* Access to the various translations structures need to be serialised via locks
91  * for consistency.
92  * In user-mode emulation access to the memory related structures are protected
93  * with mmap_lock.
94  * In !user-mode we use per-page locks.
95  */
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
101 
102 #define SMC_BITMAP_USE_THRESHOLD 10
103 
104 typedef struct PageDesc {
105     /* list of TBs intersecting this ram page */
106     uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108     /* in order to optimize self modifying code, we count the number
109        of lookups we do to a given page to use a bitmap */
110     unsigned long *code_bitmap;
111     unsigned int code_write_count;
112 #else
113     unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116     QemuSpin lock;
117 #endif
118 } PageDesc;
119 
120 /**
121  * struct page_entry - page descriptor entry
122  * @pd:     pointer to the &struct PageDesc of the page this entry represents
123  * @index:  page index of the page
124  * @locked: whether the page is locked
125  *
126  * This struct helps us keep track of the locked state of a page, without
127  * bloating &struct PageDesc.
128  *
129  * A page lock protects accesses to all fields of &struct PageDesc.
130  *
131  * See also: &struct page_collection.
132  */
133 struct page_entry {
134     PageDesc *pd;
135     tb_page_addr_t index;
136     bool locked;
137 };
138 
139 /**
140  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141  * @tree:   Binary search tree (BST) of the pages, with key == page index
142  * @max:    Pointer to the page in @tree with the highest page index
143  *
144  * To avoid deadlock we lock pages in ascending order of page index.
145  * When operating on a set of pages, we need to keep track of them so that
146  * we can lock them in order and also unlock them later. For this we collect
147  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148  * @tree implementation we use does not provide an O(1) operation to obtain the
149  * highest-ranked element, we use @max to keep track of the inserted page
150  * with the highest index. This is valuable because if a page is not in
151  * the tree and its index is higher than @max's, then we can lock it
152  * without breaking the locking order rule.
153  *
154  * Note on naming: 'struct page_set' would be shorter, but we already have a few
155  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
156  *
157  * See also: page_collection_lock().
158  */
159 struct page_collection {
160     GTree *tree;
161     struct page_entry *max;
162 };
163 
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
166     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
167          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
169 
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
171     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
172 
173 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
174     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
175 
176 /* In system mode we want L1_MAP to be based on ram offsets,
177    while in user mode we want it to be based on virtual addresses.  */
178 #if !defined(CONFIG_USER_ONLY)
179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
180 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
183 #endif
184 #else
185 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
186 #endif
187 
188 /* Size of the L2 (and L3, etc) page tables.  */
189 #define V_L2_BITS 10
190 #define V_L2_SIZE (1 << V_L2_BITS)
191 
192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
194                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
195                   * BITS_PER_BYTE);
196 
197 /*
198  * L1 Mapping properties
199  */
200 static int v_l1_size;
201 static int v_l1_shift;
202 static int v_l2_levels;
203 
204 /* The bottom level has pointers to PageDesc, and is indexed by
205  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
206  */
207 #define V_L1_MIN_BITS 4
208 #define V_L1_MAX_BITS (V_L2_BITS + 3)
209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
210 
211 static void *l1_map[V_L1_MAX_SIZE];
212 
213 /* code generation context */
214 TCGContext tcg_init_ctx;
215 __thread TCGContext *tcg_ctx;
216 TBContext tb_ctx;
217 bool parallel_cpus;
218 
219 static void page_table_config_init(void)
220 {
221     uint32_t v_l1_bits;
222 
223     assert(TARGET_PAGE_BITS);
224     /* The bits remaining after N lower levels of page tables.  */
225     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
226     if (v_l1_bits < V_L1_MIN_BITS) {
227         v_l1_bits += V_L2_BITS;
228     }
229 
230     v_l1_size = 1 << v_l1_bits;
231     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
232     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
233 
234     assert(v_l1_bits <= V_L1_MAX_BITS);
235     assert(v_l1_shift % V_L2_BITS == 0);
236     assert(v_l2_levels >= 0);
237 }
238 
239 void cpu_gen_init(void)
240 {
241     tcg_context_init(&tcg_init_ctx);
242 }
243 
244 /* Encode VAL as a signed leb128 sequence at P.
245    Return P incremented past the encoded value.  */
246 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
247 {
248     int more, byte;
249 
250     do {
251         byte = val & 0x7f;
252         val >>= 7;
253         more = !((val == 0 && (byte & 0x40) == 0)
254                  || (val == -1 && (byte & 0x40) != 0));
255         if (more) {
256             byte |= 0x80;
257         }
258         *p++ = byte;
259     } while (more);
260 
261     return p;
262 }
263 
264 /* Decode a signed leb128 sequence at *PP; increment *PP past the
265    decoded value.  Return the decoded value.  */
266 static target_long decode_sleb128(uint8_t **pp)
267 {
268     uint8_t *p = *pp;
269     target_long val = 0;
270     int byte, shift = 0;
271 
272     do {
273         byte = *p++;
274         val |= (target_ulong)(byte & 0x7f) << shift;
275         shift += 7;
276     } while (byte & 0x80);
277     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
278         val |= -(target_ulong)1 << shift;
279     }
280 
281     *pp = p;
282     return val;
283 }
284 
285 /* Encode the data collected about the instructions while compiling TB.
286    Place the data at BLOCK, and return the number of bytes consumed.
287 
288    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
289    which come from the target's insn_start data, followed by a uintptr_t
290    which comes from the host pc of the end of the code implementing the insn.
291 
292    Each line of the table is encoded as sleb128 deltas from the previous
293    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
294    That is, the first column is seeded with the guest pc, the last column
295    with the host pc, and the middle columns with zeros.  */
296 
297 static int encode_search(TranslationBlock *tb, uint8_t *block)
298 {
299     uint8_t *highwater = tcg_ctx->code_gen_highwater;
300     uint8_t *p = block;
301     int i, j, n;
302 
303     for (i = 0, n = tb->icount; i < n; ++i) {
304         target_ulong prev;
305 
306         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
307             if (i == 0) {
308                 prev = (j == 0 ? tb->pc : 0);
309             } else {
310                 prev = tcg_ctx->gen_insn_data[i - 1][j];
311             }
312             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
313         }
314         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
315         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
316 
317         /* Test for (pending) buffer overflow.  The assumption is that any
318            one row beginning below the high water mark cannot overrun
319            the buffer completely.  Thus we can test for overflow after
320            encoding a row without having to check during encoding.  */
321         if (unlikely(p > highwater)) {
322             return -1;
323         }
324     }
325 
326     return p - block;
327 }
328 
329 /* The cpu state corresponding to 'searched_pc' is restored.
330  * When reset_icount is true, current TB will be interrupted and
331  * icount should be recalculated.
332  */
333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
334                                      uintptr_t searched_pc, bool reset_icount)
335 {
336     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
337     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
338     CPUArchState *env = cpu->env_ptr;
339     uint8_t *p = tb->tc.ptr + tb->tc.size;
340     int i, j, num_insns = tb->icount;
341 #ifdef CONFIG_PROFILER
342     TCGProfile *prof = &tcg_ctx->prof;
343     int64_t ti = profile_getclock();
344 #endif
345 
346     searched_pc -= GETPC_ADJ;
347 
348     if (searched_pc < host_pc) {
349         return -1;
350     }
351 
352     /* Reconstruct the stored insn data while looking for the point at
353        which the end of the insn exceeds the searched_pc.  */
354     for (i = 0; i < num_insns; ++i) {
355         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
356             data[j] += decode_sleb128(&p);
357         }
358         host_pc += decode_sleb128(&p);
359         if (host_pc > searched_pc) {
360             goto found;
361         }
362     }
363     return -1;
364 
365  found:
366     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
367         assert(use_icount);
368         /* Reset the cycle counter to the start of the block
369            and shift if to the number of actually executed instructions */
370         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
371     }
372     restore_state_to_opc(env, tb, data);
373 
374 #ifdef CONFIG_PROFILER
375     atomic_set(&prof->restore_time,
376                 prof->restore_time + profile_getclock() - ti);
377     atomic_set(&prof->restore_count, prof->restore_count + 1);
378 #endif
379     return 0;
380 }
381 
382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
383 {
384     TranslationBlock *tb;
385     bool r = false;
386     uintptr_t check_offset;
387 
388     /* The host_pc has to be in the region of current code buffer. If
389      * it is not we will not be able to resolve it here. The two cases
390      * where host_pc will not be correct are:
391      *
392      *  - fault during translation (instruction fetch)
393      *  - fault from helper (not using GETPC() macro)
394      *
395      * Either way we need return early as we can't resolve it here.
396      *
397      * We are using unsigned arithmetic so if host_pc <
398      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
399      * above the code_gen_buffer_size
400      */
401     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
402 
403     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
404         tb = tcg_tb_lookup(host_pc);
405         if (tb) {
406             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
407             if (tb_cflags(tb) & CF_NOCACHE) {
408                 /* one-shot translation, invalidate it immediately */
409                 tb_phys_invalidate(tb, -1);
410                 tcg_tb_remove(tb);
411             }
412             r = true;
413         }
414     }
415 
416     return r;
417 }
418 
419 static void page_init(void)
420 {
421     page_size_init();
422     page_table_config_init();
423 
424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
425     {
426 #ifdef HAVE_KINFO_GETVMMAP
427         struct kinfo_vmentry *freep;
428         int i, cnt;
429 
430         freep = kinfo_getvmmap(getpid(), &cnt);
431         if (freep) {
432             mmap_lock();
433             for (i = 0; i < cnt; i++) {
434                 unsigned long startaddr, endaddr;
435 
436                 startaddr = freep[i].kve_start;
437                 endaddr = freep[i].kve_end;
438                 if (h2g_valid(startaddr)) {
439                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
440 
441                     if (h2g_valid(endaddr)) {
442                         endaddr = h2g(endaddr);
443                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444                     } else {
445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446                         endaddr = ~0ul;
447                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448 #endif
449                     }
450                 }
451             }
452             free(freep);
453             mmap_unlock();
454         }
455 #else
456         FILE *f;
457 
458         last_brk = (unsigned long)sbrk(0);
459 
460         f = fopen("/compat/linux/proc/self/maps", "r");
461         if (f) {
462             mmap_lock();
463 
464             do {
465                 unsigned long startaddr, endaddr;
466                 int n;
467 
468                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
469 
470                 if (n == 2 && h2g_valid(startaddr)) {
471                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
472 
473                     if (h2g_valid(endaddr)) {
474                         endaddr = h2g(endaddr);
475                     } else {
476                         endaddr = ~0ul;
477                     }
478                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
479                 }
480             } while (!feof(f));
481 
482             fclose(f);
483             mmap_unlock();
484         }
485 #endif
486     }
487 #endif
488 }
489 
490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
491 {
492     PageDesc *pd;
493     void **lp;
494     int i;
495 
496     /* Level 1.  Always allocated.  */
497     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
498 
499     /* Level 2..N-1.  */
500     for (i = v_l2_levels; i > 0; i--) {
501         void **p = atomic_rcu_read(lp);
502 
503         if (p == NULL) {
504             void *existing;
505 
506             if (!alloc) {
507                 return NULL;
508             }
509             p = g_new0(void *, V_L2_SIZE);
510             existing = atomic_cmpxchg(lp, NULL, p);
511             if (unlikely(existing)) {
512                 g_free(p);
513                 p = existing;
514             }
515         }
516 
517         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
518     }
519 
520     pd = atomic_rcu_read(lp);
521     if (pd == NULL) {
522         void *existing;
523 
524         if (!alloc) {
525             return NULL;
526         }
527         pd = g_new0(PageDesc, V_L2_SIZE);
528 #ifndef CONFIG_USER_ONLY
529         {
530             int i;
531 
532             for (i = 0; i < V_L2_SIZE; i++) {
533                 qemu_spin_init(&pd[i].lock);
534             }
535         }
536 #endif
537         existing = atomic_cmpxchg(lp, NULL, pd);
538         if (unlikely(existing)) {
539             g_free(pd);
540             pd = existing;
541         }
542     }
543 
544     return pd + (index & (V_L2_SIZE - 1));
545 }
546 
547 static inline PageDesc *page_find(tb_page_addr_t index)
548 {
549     return page_find_alloc(index, 0);
550 }
551 
552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
553                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
554 
555 /* In user-mode page locks aren't used; mmap_lock is enough */
556 #ifdef CONFIG_USER_ONLY
557 
558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
559 
560 static inline void page_lock(PageDesc *pd)
561 { }
562 
563 static inline void page_unlock(PageDesc *pd)
564 { }
565 
566 static inline void page_lock_tb(const TranslationBlock *tb)
567 { }
568 
569 static inline void page_unlock_tb(const TranslationBlock *tb)
570 { }
571 
572 struct page_collection *
573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
574 {
575     return NULL;
576 }
577 
578 void page_collection_unlock(struct page_collection *set)
579 { }
580 #else /* !CONFIG_USER_ONLY */
581 
582 #ifdef CONFIG_DEBUG_TCG
583 
584 static __thread GHashTable *ht_pages_locked_debug;
585 
586 static void ht_pages_locked_debug_init(void)
587 {
588     if (ht_pages_locked_debug) {
589         return;
590     }
591     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
592 }
593 
594 static bool page_is_locked(const PageDesc *pd)
595 {
596     PageDesc *found;
597 
598     ht_pages_locked_debug_init();
599     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
600     return !!found;
601 }
602 
603 static void page_lock__debug(PageDesc *pd)
604 {
605     ht_pages_locked_debug_init();
606     g_assert(!page_is_locked(pd));
607     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
608 }
609 
610 static void page_unlock__debug(const PageDesc *pd)
611 {
612     bool removed;
613 
614     ht_pages_locked_debug_init();
615     g_assert(page_is_locked(pd));
616     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
617     g_assert(removed);
618 }
619 
620 static void
621 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
622 {
623     if (unlikely(!page_is_locked(pd))) {
624         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
625                      pd, file, line);
626         abort();
627     }
628 }
629 
630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
631 
632 void assert_no_pages_locked(void)
633 {
634     ht_pages_locked_debug_init();
635     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
636 }
637 
638 #else /* !CONFIG_DEBUG_TCG */
639 
640 #define assert_page_locked(pd)
641 
642 static inline void page_lock__debug(const PageDesc *pd)
643 {
644 }
645 
646 static inline void page_unlock__debug(const PageDesc *pd)
647 {
648 }
649 
650 #endif /* CONFIG_DEBUG_TCG */
651 
652 static inline void page_lock(PageDesc *pd)
653 {
654     page_lock__debug(pd);
655     qemu_spin_lock(&pd->lock);
656 }
657 
658 static inline void page_unlock(PageDesc *pd)
659 {
660     qemu_spin_unlock(&pd->lock);
661     page_unlock__debug(pd);
662 }
663 
664 /* lock the page(s) of a TB in the correct acquisition order */
665 static inline void page_lock_tb(const TranslationBlock *tb)
666 {
667     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
668 }
669 
670 static inline void page_unlock_tb(const TranslationBlock *tb)
671 {
672     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
673 
674     page_unlock(p1);
675     if (unlikely(tb->page_addr[1] != -1)) {
676         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
677 
678         if (p2 != p1) {
679             page_unlock(p2);
680         }
681     }
682 }
683 
684 static inline struct page_entry *
685 page_entry_new(PageDesc *pd, tb_page_addr_t index)
686 {
687     struct page_entry *pe = g_malloc(sizeof(*pe));
688 
689     pe->index = index;
690     pe->pd = pd;
691     pe->locked = false;
692     return pe;
693 }
694 
695 static void page_entry_destroy(gpointer p)
696 {
697     struct page_entry *pe = p;
698 
699     g_assert(pe->locked);
700     page_unlock(pe->pd);
701     g_free(pe);
702 }
703 
704 /* returns false on success */
705 static bool page_entry_trylock(struct page_entry *pe)
706 {
707     bool busy;
708 
709     busy = qemu_spin_trylock(&pe->pd->lock);
710     if (!busy) {
711         g_assert(!pe->locked);
712         pe->locked = true;
713         page_lock__debug(pe->pd);
714     }
715     return busy;
716 }
717 
718 static void do_page_entry_lock(struct page_entry *pe)
719 {
720     page_lock(pe->pd);
721     g_assert(!pe->locked);
722     pe->locked = true;
723 }
724 
725 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
726 {
727     struct page_entry *pe = value;
728 
729     do_page_entry_lock(pe);
730     return FALSE;
731 }
732 
733 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
734 {
735     struct page_entry *pe = value;
736 
737     if (pe->locked) {
738         pe->locked = false;
739         page_unlock(pe->pd);
740     }
741     return FALSE;
742 }
743 
744 /*
745  * Trylock a page, and if successful, add the page to a collection.
746  * Returns true ("busy") if the page could not be locked; false otherwise.
747  */
748 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
749 {
750     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
751     struct page_entry *pe;
752     PageDesc *pd;
753 
754     pe = g_tree_lookup(set->tree, &index);
755     if (pe) {
756         return false;
757     }
758 
759     pd = page_find(index);
760     if (pd == NULL) {
761         return false;
762     }
763 
764     pe = page_entry_new(pd, index);
765     g_tree_insert(set->tree, &pe->index, pe);
766 
767     /*
768      * If this is either (1) the first insertion or (2) a page whose index
769      * is higher than any other so far, just lock the page and move on.
770      */
771     if (set->max == NULL || pe->index > set->max->index) {
772         set->max = pe;
773         do_page_entry_lock(pe);
774         return false;
775     }
776     /*
777      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
778      * locks in order.
779      */
780     return page_entry_trylock(pe);
781 }
782 
783 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
784 {
785     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
786     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
787 
788     if (a == b) {
789         return 0;
790     } else if (a < b) {
791         return -1;
792     }
793     return 1;
794 }
795 
796 /*
797  * Lock a range of pages ([@start,@end[) as well as the pages of all
798  * intersecting TBs.
799  * Locking order: acquire locks in ascending order of page index.
800  */
801 struct page_collection *
802 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
803 {
804     struct page_collection *set = g_malloc(sizeof(*set));
805     tb_page_addr_t index;
806     PageDesc *pd;
807 
808     start >>= TARGET_PAGE_BITS;
809     end   >>= TARGET_PAGE_BITS;
810     g_assert(start <= end);
811 
812     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
813                                 page_entry_destroy);
814     set->max = NULL;
815     assert_no_pages_locked();
816 
817  retry:
818     g_tree_foreach(set->tree, page_entry_lock, NULL);
819 
820     for (index = start; index <= end; index++) {
821         TranslationBlock *tb;
822         int n;
823 
824         pd = page_find(index);
825         if (pd == NULL) {
826             continue;
827         }
828         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
829             g_tree_foreach(set->tree, page_entry_unlock, NULL);
830             goto retry;
831         }
832         assert_page_locked(pd);
833         PAGE_FOR_EACH_TB(pd, tb, n) {
834             if (page_trylock_add(set, tb->page_addr[0]) ||
835                 (tb->page_addr[1] != -1 &&
836                  page_trylock_add(set, tb->page_addr[1]))) {
837                 /* drop all locks, and reacquire in order */
838                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
839                 goto retry;
840             }
841         }
842     }
843     return set;
844 }
845 
846 void page_collection_unlock(struct page_collection *set)
847 {
848     /* entries are unlocked and freed via page_entry_destroy */
849     g_tree_destroy(set->tree);
850     g_free(set);
851 }
852 
853 #endif /* !CONFIG_USER_ONLY */
854 
855 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
856                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
857 {
858     PageDesc *p1, *p2;
859     tb_page_addr_t page1;
860     tb_page_addr_t page2;
861 
862     assert_memory_lock();
863     g_assert(phys1 != -1);
864 
865     page1 = phys1 >> TARGET_PAGE_BITS;
866     page2 = phys2 >> TARGET_PAGE_BITS;
867 
868     p1 = page_find_alloc(page1, alloc);
869     if (ret_p1) {
870         *ret_p1 = p1;
871     }
872     if (likely(phys2 == -1)) {
873         page_lock(p1);
874         return;
875     } else if (page1 == page2) {
876         page_lock(p1);
877         if (ret_p2) {
878             *ret_p2 = p1;
879         }
880         return;
881     }
882     p2 = page_find_alloc(page2, alloc);
883     if (ret_p2) {
884         *ret_p2 = p2;
885     }
886     if (page1 < page2) {
887         page_lock(p1);
888         page_lock(p2);
889     } else {
890         page_lock(p2);
891         page_lock(p1);
892     }
893 }
894 
895 /* Minimum size of the code gen buffer.  This number is randomly chosen,
896    but not so small that we can't have a fair number of TB's live.  */
897 #define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
898 
899 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
900    indicated, this is constrained by the range of direct branches on the
901    host cpu, as used by the TCG implementation of goto_tb.  */
902 #if defined(__x86_64__)
903 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
904 #elif defined(__sparc__)
905 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
906 #elif defined(__powerpc64__)
907 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
908 #elif defined(__powerpc__)
909 # define MAX_CODE_GEN_BUFFER_SIZE  (32 * MiB)
910 #elif defined(__aarch64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
912 #elif defined(__s390x__)
913   /* We have a +- 4GB range on the branches; leave some slop.  */
914 # define MAX_CODE_GEN_BUFFER_SIZE  (3 * GiB)
915 #elif defined(__mips__)
916   /* We have a 256MB branch region, but leave room to make sure the
917      main executable is also within that region.  */
918 # define MAX_CODE_GEN_BUFFER_SIZE  (128 * MiB)
919 #else
920 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
921 #endif
922 
923 #if TCG_TARGET_REG_BITS == 32
924 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
925 #ifdef CONFIG_USER_ONLY
926 /*
927  * For user mode on smaller 32 bit systems we may run into trouble
928  * allocating big chunks of data in the right place. On these systems
929  * we utilise a static code generation buffer directly in the binary.
930  */
931 #define USE_STATIC_CODE_GEN_BUFFER
932 #endif
933 #else /* TCG_TARGET_REG_BITS == 64 */
934 #ifdef CONFIG_USER_ONLY
935 /*
936  * As user-mode emulation typically means running multiple instances
937  * of the translator don't go too nuts with our default code gen
938  * buffer lest we make things too hard for the OS.
939  */
940 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
941 #else
942 /*
943  * We expect most system emulation to run one or two guests per host.
944  * Users running large scale system emulation may want to tweak their
945  * runtime setup via the tb-size control on the command line.
946  */
947 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
948 #endif
949 #endif
950 
951 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
952   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
953    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
954 
955 static inline size_t size_code_gen_buffer(size_t tb_size)
956 {
957     /* Size the buffer.  */
958     if (tb_size == 0) {
959         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
960     }
961     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
962         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
963     }
964     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
965         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
966     }
967     return tb_size;
968 }
969 
970 #ifdef __mips__
971 /* In order to use J and JAL within the code_gen_buffer, we require
972    that the buffer not cross a 256MB boundary.  */
973 static inline bool cross_256mb(void *addr, size_t size)
974 {
975     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
976 }
977 
978 /* We weren't able to allocate a buffer without crossing that boundary,
979    so make do with the larger portion of the buffer that doesn't cross.
980    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
981 static inline void *split_cross_256mb(void *buf1, size_t size1)
982 {
983     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
984     size_t size2 = buf1 + size1 - buf2;
985 
986     size1 = buf2 - buf1;
987     if (size1 < size2) {
988         size1 = size2;
989         buf1 = buf2;
990     }
991 
992     tcg_ctx->code_gen_buffer_size = size1;
993     return buf1;
994 }
995 #endif
996 
997 #ifdef USE_STATIC_CODE_GEN_BUFFER
998 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
999     __attribute__((aligned(CODE_GEN_ALIGN)));
1000 
1001 static inline void *alloc_code_gen_buffer(void)
1002 {
1003     void *buf = static_code_gen_buffer;
1004     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1005     size_t size;
1006 
1007     /* page-align the beginning and end of the buffer */
1008     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1009     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1010 
1011     size = end - buf;
1012 
1013     /* Honor a command-line option limiting the size of the buffer.  */
1014     if (size > tcg_ctx->code_gen_buffer_size) {
1015         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1016                                qemu_real_host_page_size);
1017     }
1018     tcg_ctx->code_gen_buffer_size = size;
1019 
1020 #ifdef __mips__
1021     if (cross_256mb(buf, size)) {
1022         buf = split_cross_256mb(buf, size);
1023         size = tcg_ctx->code_gen_buffer_size;
1024     }
1025 #endif
1026 
1027     if (qemu_mprotect_rwx(buf, size)) {
1028         abort();
1029     }
1030     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1031 
1032     return buf;
1033 }
1034 #elif defined(_WIN32)
1035 static inline void *alloc_code_gen_buffer(void)
1036 {
1037     size_t size = tcg_ctx->code_gen_buffer_size;
1038     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1039                         PAGE_EXECUTE_READWRITE);
1040 }
1041 #else
1042 static inline void *alloc_code_gen_buffer(void)
1043 {
1044     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1045     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1046     uintptr_t start = 0;
1047     size_t size = tcg_ctx->code_gen_buffer_size;
1048     void *buf;
1049 
1050     /* Constrain the position of the buffer based on the host cpu.
1051        Note that these addresses are chosen in concert with the
1052        addresses assigned in the relevant linker script file.  */
1053 # if defined(__PIE__) || defined(__PIC__)
1054     /* Don't bother setting a preferred location if we're building
1055        a position-independent executable.  We're more likely to get
1056        an address near the main executable if we let the kernel
1057        choose the address.  */
1058 # elif defined(__x86_64__) && defined(MAP_32BIT)
1059     /* Force the memory down into low memory with the executable.
1060        Leave the choice of exact location with the kernel.  */
1061     flags |= MAP_32BIT;
1062     /* Cannot expect to map more than 800MB in low memory.  */
1063     if (size > 800u * 1024 * 1024) {
1064         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1065     }
1066 # elif defined(__sparc__)
1067     start = 0x40000000ul;
1068 # elif defined(__s390x__)
1069     start = 0x90000000ul;
1070 # elif defined(__mips__)
1071 #  if _MIPS_SIM == _ABI64
1072     start = 0x128000000ul;
1073 #  else
1074     start = 0x08000000ul;
1075 #  endif
1076 # endif
1077 
1078     buf = mmap((void *)start, size, prot, flags, -1, 0);
1079     if (buf == MAP_FAILED) {
1080         return NULL;
1081     }
1082 
1083 #ifdef __mips__
1084     if (cross_256mb(buf, size)) {
1085         /* Try again, with the original still mapped, to avoid re-acquiring
1086            that 256mb crossing.  This time don't specify an address.  */
1087         size_t size2;
1088         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1089         switch ((int)(buf2 != MAP_FAILED)) {
1090         case 1:
1091             if (!cross_256mb(buf2, size)) {
1092                 /* Success!  Use the new buffer.  */
1093                 munmap(buf, size);
1094                 break;
1095             }
1096             /* Failure.  Work with what we had.  */
1097             munmap(buf2, size);
1098             /* fallthru */
1099         default:
1100             /* Split the original buffer.  Free the smaller half.  */
1101             buf2 = split_cross_256mb(buf, size);
1102             size2 = tcg_ctx->code_gen_buffer_size;
1103             if (buf == buf2) {
1104                 munmap(buf + size2, size - size2);
1105             } else {
1106                 munmap(buf, size - size2);
1107             }
1108             size = size2;
1109             break;
1110         }
1111         buf = buf2;
1112     }
1113 #endif
1114 
1115     /* Request large pages for the buffer.  */
1116     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1117 
1118     return buf;
1119 }
1120 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1121 
1122 static inline void code_gen_alloc(size_t tb_size)
1123 {
1124     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1125     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1126     if (tcg_ctx->code_gen_buffer == NULL) {
1127         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1128         exit(1);
1129     }
1130 }
1131 
1132 static bool tb_cmp(const void *ap, const void *bp)
1133 {
1134     const TranslationBlock *a = ap;
1135     const TranslationBlock *b = bp;
1136 
1137     return a->pc == b->pc &&
1138         a->cs_base == b->cs_base &&
1139         a->flags == b->flags &&
1140         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1141         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1142         a->page_addr[0] == b->page_addr[0] &&
1143         a->page_addr[1] == b->page_addr[1];
1144 }
1145 
1146 static void tb_htable_init(void)
1147 {
1148     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1149 
1150     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1151 }
1152 
1153 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1154    (in bytes) allocated to the translation buffer. Zero means default
1155    size. */
1156 void tcg_exec_init(unsigned long tb_size)
1157 {
1158     tcg_allowed = true;
1159     cpu_gen_init();
1160     page_init();
1161     tb_htable_init();
1162     code_gen_alloc(tb_size);
1163 #if defined(CONFIG_SOFTMMU)
1164     /* There's no guest base to take into account, so go ahead and
1165        initialize the prologue now.  */
1166     tcg_prologue_init(tcg_ctx);
1167 #endif
1168 }
1169 
1170 /* call with @p->lock held */
1171 static inline void invalidate_page_bitmap(PageDesc *p)
1172 {
1173     assert_page_locked(p);
1174 #ifdef CONFIG_SOFTMMU
1175     g_free(p->code_bitmap);
1176     p->code_bitmap = NULL;
1177     p->code_write_count = 0;
1178 #endif
1179 }
1180 
1181 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1182 static void page_flush_tb_1(int level, void **lp)
1183 {
1184     int i;
1185 
1186     if (*lp == NULL) {
1187         return;
1188     }
1189     if (level == 0) {
1190         PageDesc *pd = *lp;
1191 
1192         for (i = 0; i < V_L2_SIZE; ++i) {
1193             page_lock(&pd[i]);
1194             pd[i].first_tb = (uintptr_t)NULL;
1195             invalidate_page_bitmap(pd + i);
1196             page_unlock(&pd[i]);
1197         }
1198     } else {
1199         void **pp = *lp;
1200 
1201         for (i = 0; i < V_L2_SIZE; ++i) {
1202             page_flush_tb_1(level - 1, pp + i);
1203         }
1204     }
1205 }
1206 
1207 static void page_flush_tb(void)
1208 {
1209     int i, l1_sz = v_l1_size;
1210 
1211     for (i = 0; i < l1_sz; i++) {
1212         page_flush_tb_1(v_l2_levels, l1_map + i);
1213     }
1214 }
1215 
1216 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1217 {
1218     const TranslationBlock *tb = value;
1219     size_t *size = data;
1220 
1221     *size += tb->tc.size;
1222     return false;
1223 }
1224 
1225 /* flush all the translation blocks */
1226 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1227 {
1228     bool did_flush = false;
1229 
1230     mmap_lock();
1231     /* If it is already been done on request of another CPU,
1232      * just retry.
1233      */
1234     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1235         goto done;
1236     }
1237     did_flush = true;
1238 
1239     if (DEBUG_TB_FLUSH_GATE) {
1240         size_t nb_tbs = tcg_nb_tbs();
1241         size_t host_size = 0;
1242 
1243         tcg_tb_foreach(tb_host_size_iter, &host_size);
1244         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1245                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1246     }
1247 
1248     CPU_FOREACH(cpu) {
1249         cpu_tb_jmp_cache_clear(cpu);
1250     }
1251 
1252     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1253     page_flush_tb();
1254 
1255     tcg_region_reset_all();
1256     /* XXX: flush processor icache at this point if cache flush is
1257        expensive */
1258     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1259 
1260 done:
1261     mmap_unlock();
1262     if (did_flush) {
1263         qemu_plugin_flush_cb();
1264     }
1265 }
1266 
1267 void tb_flush(CPUState *cpu)
1268 {
1269     if (tcg_enabled()) {
1270         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1271 
1272         if (cpu_in_exclusive_context(cpu)) {
1273             do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1274         } else {
1275             async_safe_run_on_cpu(cpu, do_tb_flush,
1276                                   RUN_ON_CPU_HOST_INT(tb_flush_count));
1277         }
1278     }
1279 }
1280 
1281 /*
1282  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1283  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1284  * and let the optimizer get rid of them by wrapping their user-only callers
1285  * with if (DEBUG_TB_CHECK_GATE).
1286  */
1287 #ifdef CONFIG_USER_ONLY
1288 
1289 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1290 {
1291     TranslationBlock *tb = p;
1292     target_ulong addr = *(target_ulong *)userp;
1293 
1294     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1295         printf("ERROR invalidate: address=" TARGET_FMT_lx
1296                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1297     }
1298 }
1299 
1300 /* verify that all the pages have correct rights for code
1301  *
1302  * Called with mmap_lock held.
1303  */
1304 static void tb_invalidate_check(target_ulong address)
1305 {
1306     address &= TARGET_PAGE_MASK;
1307     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1308 }
1309 
1310 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1311 {
1312     TranslationBlock *tb = p;
1313     int flags1, flags2;
1314 
1315     flags1 = page_get_flags(tb->pc);
1316     flags2 = page_get_flags(tb->pc + tb->size - 1);
1317     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1318         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1319                (long)tb->pc, tb->size, flags1, flags2);
1320     }
1321 }
1322 
1323 /* verify that all the pages have correct rights for code */
1324 static void tb_page_check(void)
1325 {
1326     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1327 }
1328 
1329 #endif /* CONFIG_USER_ONLY */
1330 
1331 /*
1332  * user-mode: call with mmap_lock held
1333  * !user-mode: call with @pd->lock held
1334  */
1335 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1336 {
1337     TranslationBlock *tb1;
1338     uintptr_t *pprev;
1339     unsigned int n1;
1340 
1341     assert_page_locked(pd);
1342     pprev = &pd->first_tb;
1343     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1344         if (tb1 == tb) {
1345             *pprev = tb1->page_next[n1];
1346             return;
1347         }
1348         pprev = &tb1->page_next[n1];
1349     }
1350     g_assert_not_reached();
1351 }
1352 
1353 /* remove @orig from its @n_orig-th jump list */
1354 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1355 {
1356     uintptr_t ptr, ptr_locked;
1357     TranslationBlock *dest;
1358     TranslationBlock *tb;
1359     uintptr_t *pprev;
1360     int n;
1361 
1362     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1363     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1364     dest = (TranslationBlock *)(ptr & ~1);
1365     if (dest == NULL) {
1366         return;
1367     }
1368 
1369     qemu_spin_lock(&dest->jmp_lock);
1370     /*
1371      * While acquiring the lock, the jump might have been removed if the
1372      * destination TB was invalidated; check again.
1373      */
1374     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1375     if (ptr_locked != ptr) {
1376         qemu_spin_unlock(&dest->jmp_lock);
1377         /*
1378          * The only possibility is that the jump was unlinked via
1379          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1380          * because we set the LSB above.
1381          */
1382         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1383         return;
1384     }
1385     /*
1386      * We first acquired the lock, and since the destination pointer matches,
1387      * we know for sure that @orig is in the jmp list.
1388      */
1389     pprev = &dest->jmp_list_head;
1390     TB_FOR_EACH_JMP(dest, tb, n) {
1391         if (tb == orig && n == n_orig) {
1392             *pprev = tb->jmp_list_next[n];
1393             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1394             qemu_spin_unlock(&dest->jmp_lock);
1395             return;
1396         }
1397         pprev = &tb->jmp_list_next[n];
1398     }
1399     g_assert_not_reached();
1400 }
1401 
1402 /* reset the jump entry 'n' of a TB so that it is not chained to
1403    another TB */
1404 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1405 {
1406     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1407     tb_set_jmp_target(tb, n, addr);
1408 }
1409 
1410 /* remove any jumps to the TB */
1411 static inline void tb_jmp_unlink(TranslationBlock *dest)
1412 {
1413     TranslationBlock *tb;
1414     int n;
1415 
1416     qemu_spin_lock(&dest->jmp_lock);
1417 
1418     TB_FOR_EACH_JMP(dest, tb, n) {
1419         tb_reset_jump(tb, n);
1420         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1421         /* No need to clear the list entry; setting the dest ptr is enough */
1422     }
1423     dest->jmp_list_head = (uintptr_t)NULL;
1424 
1425     qemu_spin_unlock(&dest->jmp_lock);
1426 }
1427 
1428 /*
1429  * In user-mode, call with mmap_lock held.
1430  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1431  * locks held.
1432  */
1433 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1434 {
1435     CPUState *cpu;
1436     PageDesc *p;
1437     uint32_t h;
1438     tb_page_addr_t phys_pc;
1439 
1440     assert_memory_lock();
1441 
1442     /* make sure no further incoming jumps will be chained to this TB */
1443     qemu_spin_lock(&tb->jmp_lock);
1444     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1445     qemu_spin_unlock(&tb->jmp_lock);
1446 
1447     /* remove the TB from the hash list */
1448     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1449     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1450                      tb->trace_vcpu_dstate);
1451     if (!(tb->cflags & CF_NOCACHE) &&
1452         !qht_remove(&tb_ctx.htable, tb, h)) {
1453         return;
1454     }
1455 
1456     /* remove the TB from the page list */
1457     if (rm_from_page_list) {
1458         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1459         tb_page_remove(p, tb);
1460         invalidate_page_bitmap(p);
1461         if (tb->page_addr[1] != -1) {
1462             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1463             tb_page_remove(p, tb);
1464             invalidate_page_bitmap(p);
1465         }
1466     }
1467 
1468     /* remove the TB from the hash list */
1469     h = tb_jmp_cache_hash_func(tb->pc);
1470     CPU_FOREACH(cpu) {
1471         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1472             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1473         }
1474     }
1475 
1476     /* suppress this TB from the two jump lists */
1477     tb_remove_from_jmp_list(tb, 0);
1478     tb_remove_from_jmp_list(tb, 1);
1479 
1480     /* suppress any remaining jumps to this TB */
1481     tb_jmp_unlink(tb);
1482 
1483     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1484                tcg_ctx->tb_phys_invalidate_count + 1);
1485 }
1486 
1487 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1488 {
1489     do_tb_phys_invalidate(tb, true);
1490 }
1491 
1492 /* invalidate one TB
1493  *
1494  * Called with mmap_lock held in user-mode.
1495  */
1496 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1497 {
1498     if (page_addr == -1 && tb->page_addr[0] != -1) {
1499         page_lock_tb(tb);
1500         do_tb_phys_invalidate(tb, true);
1501         page_unlock_tb(tb);
1502     } else {
1503         do_tb_phys_invalidate(tb, false);
1504     }
1505 }
1506 
1507 #ifdef CONFIG_SOFTMMU
1508 /* call with @p->lock held */
1509 static void build_page_bitmap(PageDesc *p)
1510 {
1511     int n, tb_start, tb_end;
1512     TranslationBlock *tb;
1513 
1514     assert_page_locked(p);
1515     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1516 
1517     PAGE_FOR_EACH_TB(p, tb, n) {
1518         /* NOTE: this is subtle as a TB may span two physical pages */
1519         if (n == 0) {
1520             /* NOTE: tb_end may be after the end of the page, but
1521                it is not a problem */
1522             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1523             tb_end = tb_start + tb->size;
1524             if (tb_end > TARGET_PAGE_SIZE) {
1525                 tb_end = TARGET_PAGE_SIZE;
1526              }
1527         } else {
1528             tb_start = 0;
1529             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1530         }
1531         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1532     }
1533 }
1534 #endif
1535 
1536 /* add the tb in the target page and protect it if necessary
1537  *
1538  * Called with mmap_lock held for user-mode emulation.
1539  * Called with @p->lock held in !user-mode.
1540  */
1541 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1542                                unsigned int n, tb_page_addr_t page_addr)
1543 {
1544 #ifndef CONFIG_USER_ONLY
1545     bool page_already_protected;
1546 #endif
1547 
1548     assert_page_locked(p);
1549 
1550     tb->page_addr[n] = page_addr;
1551     tb->page_next[n] = p->first_tb;
1552 #ifndef CONFIG_USER_ONLY
1553     page_already_protected = p->first_tb != (uintptr_t)NULL;
1554 #endif
1555     p->first_tb = (uintptr_t)tb | n;
1556     invalidate_page_bitmap(p);
1557 
1558 #if defined(CONFIG_USER_ONLY)
1559     if (p->flags & PAGE_WRITE) {
1560         target_ulong addr;
1561         PageDesc *p2;
1562         int prot;
1563 
1564         /* force the host page as non writable (writes will have a
1565            page fault + mprotect overhead) */
1566         page_addr &= qemu_host_page_mask;
1567         prot = 0;
1568         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1569             addr += TARGET_PAGE_SIZE) {
1570 
1571             p2 = page_find(addr >> TARGET_PAGE_BITS);
1572             if (!p2) {
1573                 continue;
1574             }
1575             prot |= p2->flags;
1576             p2->flags &= ~PAGE_WRITE;
1577           }
1578         mprotect(g2h(page_addr), qemu_host_page_size,
1579                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1580         if (DEBUG_TB_INVALIDATE_GATE) {
1581             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1582         }
1583     }
1584 #else
1585     /* if some code is already present, then the pages are already
1586        protected. So we handle the case where only the first TB is
1587        allocated in a physical page */
1588     if (!page_already_protected) {
1589         tlb_protect_code(page_addr);
1590     }
1591 #endif
1592 }
1593 
1594 /* add a new TB and link it to the physical page tables. phys_page2 is
1595  * (-1) to indicate that only one page contains the TB.
1596  *
1597  * Called with mmap_lock held for user-mode emulation.
1598  *
1599  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1600  * Note that in !user-mode, another thread might have already added a TB
1601  * for the same block of guest code that @tb corresponds to. In that case,
1602  * the caller should discard the original @tb, and use instead the returned TB.
1603  */
1604 static TranslationBlock *
1605 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1606              tb_page_addr_t phys_page2)
1607 {
1608     PageDesc *p;
1609     PageDesc *p2 = NULL;
1610 
1611     assert_memory_lock();
1612 
1613     if (phys_pc == -1) {
1614         /*
1615          * If the TB is not associated with a physical RAM page then
1616          * it must be a temporary one-insn TB, and we have nothing to do
1617          * except fill in the page_addr[] fields.
1618          */
1619         assert(tb->cflags & CF_NOCACHE);
1620         tb->page_addr[0] = tb->page_addr[1] = -1;
1621         return tb;
1622     }
1623 
1624     /*
1625      * Add the TB to the page list, acquiring first the pages's locks.
1626      * We keep the locks held until after inserting the TB in the hash table,
1627      * so that if the insertion fails we know for sure that the TBs are still
1628      * in the page descriptors.
1629      * Note that inserting into the hash table first isn't an option, since
1630      * we can only insert TBs that are fully initialized.
1631      */
1632     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1633     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1634     if (p2) {
1635         tb_page_add(p2, tb, 1, phys_page2);
1636     } else {
1637         tb->page_addr[1] = -1;
1638     }
1639 
1640     if (!(tb->cflags & CF_NOCACHE)) {
1641         void *existing_tb = NULL;
1642         uint32_t h;
1643 
1644         /* add in the hash table */
1645         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1646                          tb->trace_vcpu_dstate);
1647         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1648 
1649         /* remove TB from the page(s) if we couldn't insert it */
1650         if (unlikely(existing_tb)) {
1651             tb_page_remove(p, tb);
1652             invalidate_page_bitmap(p);
1653             if (p2) {
1654                 tb_page_remove(p2, tb);
1655                 invalidate_page_bitmap(p2);
1656             }
1657             tb = existing_tb;
1658         }
1659     }
1660 
1661     if (p2 && p2 != p) {
1662         page_unlock(p2);
1663     }
1664     page_unlock(p);
1665 
1666 #ifdef CONFIG_USER_ONLY
1667     if (DEBUG_TB_CHECK_GATE) {
1668         tb_page_check();
1669     }
1670 #endif
1671     return tb;
1672 }
1673 
1674 /* Called with mmap_lock held for user mode emulation.  */
1675 TranslationBlock *tb_gen_code(CPUState *cpu,
1676                               target_ulong pc, target_ulong cs_base,
1677                               uint32_t flags, int cflags)
1678 {
1679     CPUArchState *env = cpu->env_ptr;
1680     TranslationBlock *tb, *existing_tb;
1681     tb_page_addr_t phys_pc, phys_page2;
1682     target_ulong virt_page2;
1683     tcg_insn_unit *gen_code_buf;
1684     int gen_code_size, search_size, max_insns;
1685 #ifdef CONFIG_PROFILER
1686     TCGProfile *prof = &tcg_ctx->prof;
1687     int64_t ti;
1688 #endif
1689 
1690     assert_memory_lock();
1691 
1692     phys_pc = get_page_addr_code(env, pc);
1693 
1694     if (phys_pc == -1) {
1695         /* Generate a temporary TB with 1 insn in it */
1696         cflags &= ~CF_COUNT_MASK;
1697         cflags |= CF_NOCACHE | 1;
1698     }
1699 
1700     cflags &= ~CF_CLUSTER_MASK;
1701     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1702 
1703     max_insns = cflags & CF_COUNT_MASK;
1704     if (max_insns == 0) {
1705         max_insns = CF_COUNT_MASK;
1706     }
1707     if (max_insns > TCG_MAX_INSNS) {
1708         max_insns = TCG_MAX_INSNS;
1709     }
1710     if (cpu->singlestep_enabled || singlestep) {
1711         max_insns = 1;
1712     }
1713 
1714  buffer_overflow:
1715     tb = tcg_tb_alloc(tcg_ctx);
1716     if (unlikely(!tb)) {
1717         /* flush must be done */
1718         tb_flush(cpu);
1719         mmap_unlock();
1720         /* Make the execution loop process the flush as soon as possible.  */
1721         cpu->exception_index = EXCP_INTERRUPT;
1722         cpu_loop_exit(cpu);
1723     }
1724 
1725     gen_code_buf = tcg_ctx->code_gen_ptr;
1726     tb->tc.ptr = gen_code_buf;
1727     tb->pc = pc;
1728     tb->cs_base = cs_base;
1729     tb->flags = flags;
1730     tb->cflags = cflags;
1731     tb->orig_tb = NULL;
1732     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1733     tcg_ctx->tb_cflags = cflags;
1734  tb_overflow:
1735 
1736 #ifdef CONFIG_PROFILER
1737     /* includes aborted translations because of exceptions */
1738     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1739     ti = profile_getclock();
1740 #endif
1741 
1742     tcg_func_start(tcg_ctx);
1743 
1744     tcg_ctx->cpu = env_cpu(env);
1745     gen_intermediate_code(cpu, tb, max_insns);
1746     tcg_ctx->cpu = NULL;
1747 
1748     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1749 
1750     /* generate machine code */
1751     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1752     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1753     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1754     if (TCG_TARGET_HAS_direct_jump) {
1755         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1756         tcg_ctx->tb_jmp_target_addr = NULL;
1757     } else {
1758         tcg_ctx->tb_jmp_insn_offset = NULL;
1759         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1760     }
1761 
1762 #ifdef CONFIG_PROFILER
1763     atomic_set(&prof->tb_count, prof->tb_count + 1);
1764     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1765     ti = profile_getclock();
1766 #endif
1767 
1768     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1769     if (unlikely(gen_code_size < 0)) {
1770         switch (gen_code_size) {
1771         case -1:
1772             /*
1773              * Overflow of code_gen_buffer, or the current slice of it.
1774              *
1775              * TODO: We don't need to re-do gen_intermediate_code, nor
1776              * should we re-do the tcg optimization currently hidden
1777              * inside tcg_gen_code.  All that should be required is to
1778              * flush the TBs, allocate a new TB, re-initialize it per
1779              * above, and re-do the actual code generation.
1780              */
1781             goto buffer_overflow;
1782 
1783         case -2:
1784             /*
1785              * The code generated for the TranslationBlock is too large.
1786              * The maximum size allowed by the unwind info is 64k.
1787              * There may be stricter constraints from relocations
1788              * in the tcg backend.
1789              *
1790              * Try again with half as many insns as we attempted this time.
1791              * If a single insn overflows, there's a bug somewhere...
1792              */
1793             max_insns = tb->icount;
1794             assert(max_insns > 1);
1795             max_insns /= 2;
1796             goto tb_overflow;
1797 
1798         default:
1799             g_assert_not_reached();
1800         }
1801     }
1802     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1803     if (unlikely(search_size < 0)) {
1804         goto buffer_overflow;
1805     }
1806     tb->tc.size = gen_code_size;
1807 
1808 #ifdef CONFIG_PROFILER
1809     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1810     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1811     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1812     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1813 #endif
1814 
1815 #ifdef DEBUG_DISAS
1816     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1817         qemu_log_in_addr_range(tb->pc)) {
1818         FILE *logfile = qemu_log_lock();
1819         qemu_log("OUT: [size=%d]\n", gen_code_size);
1820         if (tcg_ctx->data_gen_ptr) {
1821             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1822             size_t data_size = gen_code_size - code_size;
1823             size_t i;
1824 
1825             log_disas(tb->tc.ptr, code_size);
1826 
1827             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1828                 if (sizeof(tcg_target_ulong) == 8) {
1829                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1830                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1831                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1832                 } else {
1833                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1834                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1835                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1836                 }
1837             }
1838         } else {
1839             log_disas(tb->tc.ptr, gen_code_size);
1840         }
1841         qemu_log("\n");
1842         qemu_log_flush();
1843         qemu_log_unlock(logfile);
1844     }
1845 #endif
1846 
1847     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1848         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1849                  CODE_GEN_ALIGN));
1850 
1851     /* init jump list */
1852     qemu_spin_init(&tb->jmp_lock);
1853     tb->jmp_list_head = (uintptr_t)NULL;
1854     tb->jmp_list_next[0] = (uintptr_t)NULL;
1855     tb->jmp_list_next[1] = (uintptr_t)NULL;
1856     tb->jmp_dest[0] = (uintptr_t)NULL;
1857     tb->jmp_dest[1] = (uintptr_t)NULL;
1858 
1859     /* init original jump addresses which have been set during tcg_gen_code() */
1860     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1861         tb_reset_jump(tb, 0);
1862     }
1863     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1864         tb_reset_jump(tb, 1);
1865     }
1866 
1867     /* check next page if needed */
1868     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1869     phys_page2 = -1;
1870     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1871         phys_page2 = get_page_addr_code(env, virt_page2);
1872     }
1873     /*
1874      * No explicit memory barrier is required -- tb_link_page() makes the
1875      * TB visible in a consistent state.
1876      */
1877     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1878     /* if the TB already exists, discard what we just translated */
1879     if (unlikely(existing_tb != tb)) {
1880         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1881 
1882         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1883         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1884         return existing_tb;
1885     }
1886     tcg_tb_insert(tb);
1887     return tb;
1888 }
1889 
1890 /*
1891  * @p must be non-NULL.
1892  * user-mode: call with mmap_lock held.
1893  * !user-mode: call with all @pages locked.
1894  */
1895 static void
1896 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1897                                       PageDesc *p, tb_page_addr_t start,
1898                                       tb_page_addr_t end,
1899                                       uintptr_t retaddr)
1900 {
1901     TranslationBlock *tb;
1902     tb_page_addr_t tb_start, tb_end;
1903     int n;
1904 #ifdef TARGET_HAS_PRECISE_SMC
1905     CPUState *cpu = current_cpu;
1906     CPUArchState *env = NULL;
1907     bool current_tb_not_found = retaddr != 0;
1908     bool current_tb_modified = false;
1909     TranslationBlock *current_tb = NULL;
1910     target_ulong current_pc = 0;
1911     target_ulong current_cs_base = 0;
1912     uint32_t current_flags = 0;
1913 #endif /* TARGET_HAS_PRECISE_SMC */
1914 
1915     assert_page_locked(p);
1916 
1917 #if defined(TARGET_HAS_PRECISE_SMC)
1918     if (cpu != NULL) {
1919         env = cpu->env_ptr;
1920     }
1921 #endif
1922 
1923     /* we remove all the TBs in the range [start, end[ */
1924     /* XXX: see if in some cases it could be faster to invalidate all
1925        the code */
1926     PAGE_FOR_EACH_TB(p, tb, n) {
1927         assert_page_locked(p);
1928         /* NOTE: this is subtle as a TB may span two physical pages */
1929         if (n == 0) {
1930             /* NOTE: tb_end may be after the end of the page, but
1931                it is not a problem */
1932             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1933             tb_end = tb_start + tb->size;
1934         } else {
1935             tb_start = tb->page_addr[1];
1936             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1937         }
1938         if (!(tb_end <= start || tb_start >= end)) {
1939 #ifdef TARGET_HAS_PRECISE_SMC
1940             if (current_tb_not_found) {
1941                 current_tb_not_found = false;
1942                 /* now we have a real cpu fault */
1943                 current_tb = tcg_tb_lookup(retaddr);
1944             }
1945             if (current_tb == tb &&
1946                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1947                 /*
1948                  * If we are modifying the current TB, we must stop
1949                  * its execution. We could be more precise by checking
1950                  * that the modification is after the current PC, but it
1951                  * would require a specialized function to partially
1952                  * restore the CPU state.
1953                  */
1954                 current_tb_modified = true;
1955                 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1956                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1957                                      &current_flags);
1958             }
1959 #endif /* TARGET_HAS_PRECISE_SMC */
1960             tb_phys_invalidate__locked(tb);
1961         }
1962     }
1963 #if !defined(CONFIG_USER_ONLY)
1964     /* if no code remaining, no need to continue to use slow writes */
1965     if (!p->first_tb) {
1966         invalidate_page_bitmap(p);
1967         tlb_unprotect_code(start);
1968     }
1969 #endif
1970 #ifdef TARGET_HAS_PRECISE_SMC
1971     if (current_tb_modified) {
1972         page_collection_unlock(pages);
1973         /* Force execution of one insn next time.  */
1974         cpu->cflags_next_tb = 1 | curr_cflags();
1975         mmap_unlock();
1976         cpu_loop_exit_noexc(cpu);
1977     }
1978 #endif
1979 }
1980 
1981 /*
1982  * Invalidate all TBs which intersect with the target physical address range
1983  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1984  * 'is_cpu_write_access' should be true if called from a real cpu write
1985  * access: the virtual CPU will exit the current TB if code is modified inside
1986  * this TB.
1987  *
1988  * Called with mmap_lock held for user-mode emulation
1989  */
1990 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
1991 {
1992     struct page_collection *pages;
1993     PageDesc *p;
1994 
1995     assert_memory_lock();
1996 
1997     p = page_find(start >> TARGET_PAGE_BITS);
1998     if (p == NULL) {
1999         return;
2000     }
2001     pages = page_collection_lock(start, end);
2002     tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2003     page_collection_unlock(pages);
2004 }
2005 
2006 /*
2007  * Invalidate all TBs which intersect with the target physical address range
2008  * [start;end[. NOTE: start and end may refer to *different* physical pages.
2009  * 'is_cpu_write_access' should be true if called from a real cpu write
2010  * access: the virtual CPU will exit the current TB if code is modified inside
2011  * this TB.
2012  *
2013  * Called with mmap_lock held for user-mode emulation.
2014  */
2015 #ifdef CONFIG_SOFTMMU
2016 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2017 #else
2018 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2019 #endif
2020 {
2021     struct page_collection *pages;
2022     tb_page_addr_t next;
2023 
2024     assert_memory_lock();
2025 
2026     pages = page_collection_lock(start, end);
2027     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2028          start < end;
2029          start = next, next += TARGET_PAGE_SIZE) {
2030         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2031         tb_page_addr_t bound = MIN(next, end);
2032 
2033         if (pd == NULL) {
2034             continue;
2035         }
2036         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2037     }
2038     page_collection_unlock(pages);
2039 }
2040 
2041 #ifdef CONFIG_SOFTMMU
2042 /* len must be <= 8 and start must be a multiple of len.
2043  * Called via softmmu_template.h when code areas are written to with
2044  * iothread mutex not held.
2045  *
2046  * Call with all @pages in the range [@start, @start + len[ locked.
2047  */
2048 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2049                                   tb_page_addr_t start, int len,
2050                                   uintptr_t retaddr)
2051 {
2052     PageDesc *p;
2053 
2054     assert_memory_lock();
2055 
2056     p = page_find(start >> TARGET_PAGE_BITS);
2057     if (!p) {
2058         return;
2059     }
2060 
2061     assert_page_locked(p);
2062     if (!p->code_bitmap &&
2063         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2064         build_page_bitmap(p);
2065     }
2066     if (p->code_bitmap) {
2067         unsigned int nr;
2068         unsigned long b;
2069 
2070         nr = start & ~TARGET_PAGE_MASK;
2071         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2072         if (b & ((1 << len) - 1)) {
2073             goto do_invalidate;
2074         }
2075     } else {
2076     do_invalidate:
2077         tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2078                                               retaddr);
2079     }
2080 }
2081 #else
2082 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2083  * host PC of the faulting store instruction that caused this invalidate.
2084  * Returns true if the caller needs to abort execution of the current
2085  * TB (because it was modified by this store and the guest CPU has
2086  * precise-SMC semantics).
2087  */
2088 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2089 {
2090     TranslationBlock *tb;
2091     PageDesc *p;
2092     int n;
2093 #ifdef TARGET_HAS_PRECISE_SMC
2094     TranslationBlock *current_tb = NULL;
2095     CPUState *cpu = current_cpu;
2096     CPUArchState *env = NULL;
2097     int current_tb_modified = 0;
2098     target_ulong current_pc = 0;
2099     target_ulong current_cs_base = 0;
2100     uint32_t current_flags = 0;
2101 #endif
2102 
2103     assert_memory_lock();
2104 
2105     addr &= TARGET_PAGE_MASK;
2106     p = page_find(addr >> TARGET_PAGE_BITS);
2107     if (!p) {
2108         return false;
2109     }
2110 
2111 #ifdef TARGET_HAS_PRECISE_SMC
2112     if (p->first_tb && pc != 0) {
2113         current_tb = tcg_tb_lookup(pc);
2114     }
2115     if (cpu != NULL) {
2116         env = cpu->env_ptr;
2117     }
2118 #endif
2119     assert_page_locked(p);
2120     PAGE_FOR_EACH_TB(p, tb, n) {
2121 #ifdef TARGET_HAS_PRECISE_SMC
2122         if (current_tb == tb &&
2123             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2124                 /* If we are modifying the current TB, we must stop
2125                    its execution. We could be more precise by checking
2126                    that the modification is after the current PC, but it
2127                    would require a specialized function to partially
2128                    restore the CPU state */
2129 
2130             current_tb_modified = 1;
2131             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2132             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2133                                  &current_flags);
2134         }
2135 #endif /* TARGET_HAS_PRECISE_SMC */
2136         tb_phys_invalidate(tb, addr);
2137     }
2138     p->first_tb = (uintptr_t)NULL;
2139 #ifdef TARGET_HAS_PRECISE_SMC
2140     if (current_tb_modified) {
2141         /* Force execution of one insn next time.  */
2142         cpu->cflags_next_tb = 1 | curr_cflags();
2143         return true;
2144     }
2145 #endif
2146 
2147     return false;
2148 }
2149 #endif
2150 
2151 /* user-mode: call with mmap_lock held */
2152 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2153 {
2154     TranslationBlock *tb;
2155 
2156     assert_memory_lock();
2157 
2158     tb = tcg_tb_lookup(retaddr);
2159     if (tb) {
2160         /* We can use retranslation to find the PC.  */
2161         cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2162         tb_phys_invalidate(tb, -1);
2163     } else {
2164         /* The exception probably happened in a helper.  The CPU state should
2165            have been saved before calling it. Fetch the PC from there.  */
2166         CPUArchState *env = cpu->env_ptr;
2167         target_ulong pc, cs_base;
2168         tb_page_addr_t addr;
2169         uint32_t flags;
2170 
2171         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2172         addr = get_page_addr_code(env, pc);
2173         if (addr != -1) {
2174             tb_invalidate_phys_range(addr, addr + 1);
2175         }
2176     }
2177 }
2178 
2179 #ifndef CONFIG_USER_ONLY
2180 /* in deterministic execution mode, instructions doing device I/Os
2181  * must be at the end of the TB.
2182  *
2183  * Called by softmmu_template.h, with iothread mutex not held.
2184  */
2185 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2186 {
2187 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2188     CPUArchState *env = cpu->env_ptr;
2189 #endif
2190     TranslationBlock *tb;
2191     uint32_t n;
2192 
2193     tb = tcg_tb_lookup(retaddr);
2194     if (!tb) {
2195         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2196                   (void *)retaddr);
2197     }
2198     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2199 
2200     /* On MIPS and SH, delay slot instructions can only be restarted if
2201        they were already the first instruction in the TB.  If this is not
2202        the first instruction in a TB then re-execute the preceding
2203        branch.  */
2204     n = 1;
2205 #if defined(TARGET_MIPS)
2206     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2207         && env->active_tc.PC != tb->pc) {
2208         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2209         cpu_neg(cpu)->icount_decr.u16.low++;
2210         env->hflags &= ~MIPS_HFLAG_BMASK;
2211         n = 2;
2212     }
2213 #elif defined(TARGET_SH4)
2214     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2215         && env->pc != tb->pc) {
2216         env->pc -= 2;
2217         cpu_neg(cpu)->icount_decr.u16.low++;
2218         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2219         n = 2;
2220     }
2221 #endif
2222 
2223     /* Generate a new TB executing the I/O insn.  */
2224     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2225 
2226     if (tb_cflags(tb) & CF_NOCACHE) {
2227         if (tb->orig_tb) {
2228             /* Invalidate original TB if this TB was generated in
2229              * cpu_exec_nocache() */
2230             tb_phys_invalidate(tb->orig_tb, -1);
2231         }
2232         tcg_tb_remove(tb);
2233     }
2234 
2235     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2236      * the first in the TB) then we end up generating a whole new TB and
2237      *  repeating the fault, which is horribly inefficient.
2238      *  Better would be to execute just this insn uncached, or generate a
2239      *  second new TB.
2240      */
2241     cpu_loop_exit_noexc(cpu);
2242 }
2243 
2244 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2245 {
2246     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2247 
2248     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2249         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2250     }
2251 }
2252 
2253 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2254 {
2255     /* Discard jump cache entries for any tb which might potentially
2256        overlap the flushed page.  */
2257     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2258     tb_jmp_cache_clear_page(cpu, addr);
2259 }
2260 
2261 static void print_qht_statistics(struct qht_stats hst)
2262 {
2263     uint32_t hgram_opts;
2264     size_t hgram_bins;
2265     char *hgram;
2266 
2267     if (!hst.head_buckets) {
2268         return;
2269     }
2270     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2271                 hst.used_head_buckets, hst.head_buckets,
2272                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2273 
2274     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2275     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2276     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2277         hgram_opts |= QDIST_PR_NODECIMAL;
2278     }
2279     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2280     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2281                 qdist_avg(&hst.occupancy) * 100, hgram);
2282     g_free(hgram);
2283 
2284     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2285     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2286     if (hgram_bins > 10) {
2287         hgram_bins = 10;
2288     } else {
2289         hgram_bins = 0;
2290         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2291     }
2292     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2293     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2294                 qdist_avg(&hst.chain), hgram);
2295     g_free(hgram);
2296 }
2297 
2298 struct tb_tree_stats {
2299     size_t nb_tbs;
2300     size_t host_size;
2301     size_t target_size;
2302     size_t max_target_size;
2303     size_t direct_jmp_count;
2304     size_t direct_jmp2_count;
2305     size_t cross_page;
2306 };
2307 
2308 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2309 {
2310     const TranslationBlock *tb = value;
2311     struct tb_tree_stats *tst = data;
2312 
2313     tst->nb_tbs++;
2314     tst->host_size += tb->tc.size;
2315     tst->target_size += tb->size;
2316     if (tb->size > tst->max_target_size) {
2317         tst->max_target_size = tb->size;
2318     }
2319     if (tb->page_addr[1] != -1) {
2320         tst->cross_page++;
2321     }
2322     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2323         tst->direct_jmp_count++;
2324         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2325             tst->direct_jmp2_count++;
2326         }
2327     }
2328     return false;
2329 }
2330 
2331 void dump_exec_info(void)
2332 {
2333     struct tb_tree_stats tst = {};
2334     struct qht_stats hst;
2335     size_t nb_tbs, flush_full, flush_part, flush_elide;
2336 
2337     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2338     nb_tbs = tst.nb_tbs;
2339     /* XXX: avoid using doubles ? */
2340     qemu_printf("Translation buffer state:\n");
2341     /*
2342      * Report total code size including the padding and TB structs;
2343      * otherwise users might think "-tb-size" is not honoured.
2344      * For avg host size we use the precise numbers from tb_tree_stats though.
2345      */
2346     qemu_printf("gen code size       %zu/%zu\n",
2347                 tcg_code_size(), tcg_code_capacity());
2348     qemu_printf("TB count            %zu\n", nb_tbs);
2349     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2350                 nb_tbs ? tst.target_size / nb_tbs : 0,
2351                 tst.max_target_size);
2352     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2353                 nb_tbs ? tst.host_size / nb_tbs : 0,
2354                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2355     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2356                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2357     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2358                 tst.direct_jmp_count,
2359                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2360                 tst.direct_jmp2_count,
2361                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2362 
2363     qht_statistics_init(&tb_ctx.htable, &hst);
2364     print_qht_statistics(hst);
2365     qht_statistics_destroy(&hst);
2366 
2367     qemu_printf("\nStatistics:\n");
2368     qemu_printf("TB flush count      %u\n",
2369                 atomic_read(&tb_ctx.tb_flush_count));
2370     qemu_printf("TB invalidate count %zu\n",
2371                 tcg_tb_phys_invalidate_count());
2372 
2373     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2374     qemu_printf("TLB full flushes    %zu\n", flush_full);
2375     qemu_printf("TLB partial flushes %zu\n", flush_part);
2376     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2377     tcg_dump_info();
2378 }
2379 
2380 void dump_opcount_info(void)
2381 {
2382     tcg_dump_op_count();
2383 }
2384 
2385 #else /* CONFIG_USER_ONLY */
2386 
2387 void cpu_interrupt(CPUState *cpu, int mask)
2388 {
2389     g_assert(qemu_mutex_iothread_locked());
2390     cpu->interrupt_request |= mask;
2391     atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2392 }
2393 
2394 /*
2395  * Walks guest process memory "regions" one by one
2396  * and calls callback function 'fn' for each region.
2397  */
2398 struct walk_memory_regions_data {
2399     walk_memory_regions_fn fn;
2400     void *priv;
2401     target_ulong start;
2402     int prot;
2403 };
2404 
2405 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2406                                    target_ulong end, int new_prot)
2407 {
2408     if (data->start != -1u) {
2409         int rc = data->fn(data->priv, data->start, end, data->prot);
2410         if (rc != 0) {
2411             return rc;
2412         }
2413     }
2414 
2415     data->start = (new_prot ? end : -1u);
2416     data->prot = new_prot;
2417 
2418     return 0;
2419 }
2420 
2421 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2422                                  target_ulong base, int level, void **lp)
2423 {
2424     target_ulong pa;
2425     int i, rc;
2426 
2427     if (*lp == NULL) {
2428         return walk_memory_regions_end(data, base, 0);
2429     }
2430 
2431     if (level == 0) {
2432         PageDesc *pd = *lp;
2433 
2434         for (i = 0; i < V_L2_SIZE; ++i) {
2435             int prot = pd[i].flags;
2436 
2437             pa = base | (i << TARGET_PAGE_BITS);
2438             if (prot != data->prot) {
2439                 rc = walk_memory_regions_end(data, pa, prot);
2440                 if (rc != 0) {
2441                     return rc;
2442                 }
2443             }
2444         }
2445     } else {
2446         void **pp = *lp;
2447 
2448         for (i = 0; i < V_L2_SIZE; ++i) {
2449             pa = base | ((target_ulong)i <<
2450                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2451             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2452             if (rc != 0) {
2453                 return rc;
2454             }
2455         }
2456     }
2457 
2458     return 0;
2459 }
2460 
2461 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2462 {
2463     struct walk_memory_regions_data data;
2464     uintptr_t i, l1_sz = v_l1_size;
2465 
2466     data.fn = fn;
2467     data.priv = priv;
2468     data.start = -1u;
2469     data.prot = 0;
2470 
2471     for (i = 0; i < l1_sz; i++) {
2472         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2473         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2474         if (rc != 0) {
2475             return rc;
2476         }
2477     }
2478 
2479     return walk_memory_regions_end(&data, 0, 0);
2480 }
2481 
2482 static int dump_region(void *priv, target_ulong start,
2483     target_ulong end, unsigned long prot)
2484 {
2485     FILE *f = (FILE *)priv;
2486 
2487     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2488         " "TARGET_FMT_lx" %c%c%c\n",
2489         start, end, end - start,
2490         ((prot & PAGE_READ) ? 'r' : '-'),
2491         ((prot & PAGE_WRITE) ? 'w' : '-'),
2492         ((prot & PAGE_EXEC) ? 'x' : '-'));
2493 
2494     return 0;
2495 }
2496 
2497 /* dump memory mappings */
2498 void page_dump(FILE *f)
2499 {
2500     const int length = sizeof(target_ulong) * 2;
2501     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2502             length, "start", length, "end", length, "size", "prot");
2503     walk_memory_regions(f, dump_region);
2504 }
2505 
2506 int page_get_flags(target_ulong address)
2507 {
2508     PageDesc *p;
2509 
2510     p = page_find(address >> TARGET_PAGE_BITS);
2511     if (!p) {
2512         return 0;
2513     }
2514     return p->flags;
2515 }
2516 
2517 /* Modify the flags of a page and invalidate the code if necessary.
2518    The flag PAGE_WRITE_ORG is positioned automatically depending
2519    on PAGE_WRITE.  The mmap_lock should already be held.  */
2520 void page_set_flags(target_ulong start, target_ulong end, int flags)
2521 {
2522     target_ulong addr, len;
2523 
2524     /* This function should never be called with addresses outside the
2525        guest address space.  If this assert fires, it probably indicates
2526        a missing call to h2g_valid.  */
2527 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2528     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2529 #endif
2530     assert(start < end);
2531     assert_memory_lock();
2532 
2533     start = start & TARGET_PAGE_MASK;
2534     end = TARGET_PAGE_ALIGN(end);
2535 
2536     if (flags & PAGE_WRITE) {
2537         flags |= PAGE_WRITE_ORG;
2538     }
2539 
2540     for (addr = start, len = end - start;
2541          len != 0;
2542          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2543         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2544 
2545         /* If the write protection bit is set, then we invalidate
2546            the code inside.  */
2547         if (!(p->flags & PAGE_WRITE) &&
2548             (flags & PAGE_WRITE) &&
2549             p->first_tb) {
2550             tb_invalidate_phys_page(addr, 0);
2551         }
2552         p->flags = flags;
2553     }
2554 }
2555 
2556 int page_check_range(target_ulong start, target_ulong len, int flags)
2557 {
2558     PageDesc *p;
2559     target_ulong end;
2560     target_ulong addr;
2561 
2562     /* This function should never be called with addresses outside the
2563        guest address space.  If this assert fires, it probably indicates
2564        a missing call to h2g_valid.  */
2565 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2566     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2567 #endif
2568 
2569     if (len == 0) {
2570         return 0;
2571     }
2572     if (start + len - 1 < start) {
2573         /* We've wrapped around.  */
2574         return -1;
2575     }
2576 
2577     /* must do before we loose bits in the next step */
2578     end = TARGET_PAGE_ALIGN(start + len);
2579     start = start & TARGET_PAGE_MASK;
2580 
2581     for (addr = start, len = end - start;
2582          len != 0;
2583          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2584         p = page_find(addr >> TARGET_PAGE_BITS);
2585         if (!p) {
2586             return -1;
2587         }
2588         if (!(p->flags & PAGE_VALID)) {
2589             return -1;
2590         }
2591 
2592         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2593             return -1;
2594         }
2595         if (flags & PAGE_WRITE) {
2596             if (!(p->flags & PAGE_WRITE_ORG)) {
2597                 return -1;
2598             }
2599             /* unprotect the page if it was put read-only because it
2600                contains translated code */
2601             if (!(p->flags & PAGE_WRITE)) {
2602                 if (!page_unprotect(addr, 0)) {
2603                     return -1;
2604                 }
2605             }
2606         }
2607     }
2608     return 0;
2609 }
2610 
2611 /* called from signal handler: invalidate the code and unprotect the
2612  * page. Return 0 if the fault was not handled, 1 if it was handled,
2613  * and 2 if it was handled but the caller must cause the TB to be
2614  * immediately exited. (We can only return 2 if the 'pc' argument is
2615  * non-zero.)
2616  */
2617 int page_unprotect(target_ulong address, uintptr_t pc)
2618 {
2619     unsigned int prot;
2620     bool current_tb_invalidated;
2621     PageDesc *p;
2622     target_ulong host_start, host_end, addr;
2623 
2624     /* Technically this isn't safe inside a signal handler.  However we
2625        know this only ever happens in a synchronous SEGV handler, so in
2626        practice it seems to be ok.  */
2627     mmap_lock();
2628 
2629     p = page_find(address >> TARGET_PAGE_BITS);
2630     if (!p) {
2631         mmap_unlock();
2632         return 0;
2633     }
2634 
2635     /* if the page was really writable, then we change its
2636        protection back to writable */
2637     if (p->flags & PAGE_WRITE_ORG) {
2638         current_tb_invalidated = false;
2639         if (p->flags & PAGE_WRITE) {
2640             /* If the page is actually marked WRITE then assume this is because
2641              * this thread raced with another one which got here first and
2642              * set the page to PAGE_WRITE and did the TB invalidate for us.
2643              */
2644 #ifdef TARGET_HAS_PRECISE_SMC
2645             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2646             if (current_tb) {
2647                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2648             }
2649 #endif
2650         } else {
2651             host_start = address & qemu_host_page_mask;
2652             host_end = host_start + qemu_host_page_size;
2653 
2654             prot = 0;
2655             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2656                 p = page_find(addr >> TARGET_PAGE_BITS);
2657                 p->flags |= PAGE_WRITE;
2658                 prot |= p->flags;
2659 
2660                 /* and since the content will be modified, we must invalidate
2661                    the corresponding translated code. */
2662                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2663 #ifdef CONFIG_USER_ONLY
2664                 if (DEBUG_TB_CHECK_GATE) {
2665                     tb_invalidate_check(addr);
2666                 }
2667 #endif
2668             }
2669             mprotect((void *)g2h(host_start), qemu_host_page_size,
2670                      prot & PAGE_BITS);
2671         }
2672         mmap_unlock();
2673         /* If current TB was invalidated return to main loop */
2674         return current_tb_invalidated ? 2 : 1;
2675     }
2676     mmap_unlock();
2677     return 0;
2678 }
2679 #endif /* CONFIG_USER_ONLY */
2680 
2681 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2682 void tcg_flush_softmmu_tlb(CPUState *cs)
2683 {
2684 #ifdef CONFIG_SOFTMMU
2685     tlb_flush(cs);
2686 #endif
2687 }
2688