xref: /openbmc/qemu/accel/tcg/translate-all.c (revision f7160f32)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23 
24 #define NO_CPU_IO_DEFS
25 #include "cpu.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #if defined(CONFIG_USER_ONLY)
31 #include "qemu.h"
32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
33 #include <sys/param.h>
34 #if __FreeBSD_version >= 700104
35 #define HAVE_KINFO_GETVMMAP
36 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
37 #include <sys/proc.h>
38 #include <machine/profile.h>
39 #define _KERNEL
40 #include <sys/user.h>
41 #undef _KERNEL
42 #undef sigqueue
43 #include <libutil.h>
44 #endif
45 #endif
46 #else
47 #include "exec/ram_addr.h"
48 #endif
49 
50 #include "exec/cputlb.h"
51 #include "exec/tb-hash.h"
52 #include "translate-all.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/error-report.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/timer.h"
57 #include "qemu/main-loop.h"
58 #include "exec/log.h"
59 #include "sysemu/cpus.h"
60 #include "sysemu/tcg.h"
61 
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
66 
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
72 
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
78 
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation.  */
81 #undef DEBUG_TB_CHECK
82 #endif
83 
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
89 
90 /* Access to the various translations structures need to be serialised via locks
91  * for consistency.
92  * In user-mode emulation access to the memory related structures are protected
93  * with mmap_lock.
94  * In !user-mode we use per-page locks.
95  */
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
101 
102 #define SMC_BITMAP_USE_THRESHOLD 10
103 
104 typedef struct PageDesc {
105     /* list of TBs intersecting this ram page */
106     uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108     /* in order to optimize self modifying code, we count the number
109        of lookups we do to a given page to use a bitmap */
110     unsigned long *code_bitmap;
111     unsigned int code_write_count;
112 #else
113     unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116     QemuSpin lock;
117 #endif
118 } PageDesc;
119 
120 /**
121  * struct page_entry - page descriptor entry
122  * @pd:     pointer to the &struct PageDesc of the page this entry represents
123  * @index:  page index of the page
124  * @locked: whether the page is locked
125  *
126  * This struct helps us keep track of the locked state of a page, without
127  * bloating &struct PageDesc.
128  *
129  * A page lock protects accesses to all fields of &struct PageDesc.
130  *
131  * See also: &struct page_collection.
132  */
133 struct page_entry {
134     PageDesc *pd;
135     tb_page_addr_t index;
136     bool locked;
137 };
138 
139 /**
140  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141  * @tree:   Binary search tree (BST) of the pages, with key == page index
142  * @max:    Pointer to the page in @tree with the highest page index
143  *
144  * To avoid deadlock we lock pages in ascending order of page index.
145  * When operating on a set of pages, we need to keep track of them so that
146  * we can lock them in order and also unlock them later. For this we collect
147  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148  * @tree implementation we use does not provide an O(1) operation to obtain the
149  * highest-ranked element, we use @max to keep track of the inserted page
150  * with the highest index. This is valuable because if a page is not in
151  * the tree and its index is higher than @max's, then we can lock it
152  * without breaking the locking order rule.
153  *
154  * Note on naming: 'struct page_set' would be shorter, but we already have a few
155  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
156  *
157  * See also: page_collection_lock().
158  */
159 struct page_collection {
160     GTree *tree;
161     struct page_entry *max;
162 };
163 
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
166     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
167          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
169 
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
171     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
172 
173 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
174     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
175 
176 /*
177  * In system mode we want L1_MAP to be based on ram offsets,
178  * while in user mode we want it to be based on virtual addresses.
179  *
180  * TODO: For user mode, see the caveat re host vs guest virtual
181  * address spaces near GUEST_ADDR_MAX.
182  */
183 #if !defined(CONFIG_USER_ONLY)
184 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
185 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
186 #else
187 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
188 #endif
189 #else
190 # define L1_MAP_ADDR_SPACE_BITS  MIN(HOST_LONG_BITS, TARGET_ABI_BITS)
191 #endif
192 
193 /* Size of the L2 (and L3, etc) page tables.  */
194 #define V_L2_BITS 10
195 #define V_L2_SIZE (1 << V_L2_BITS)
196 
197 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
198 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
199                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
200                   * BITS_PER_BYTE);
201 
202 /*
203  * L1 Mapping properties
204  */
205 static int v_l1_size;
206 static int v_l1_shift;
207 static int v_l2_levels;
208 
209 /* The bottom level has pointers to PageDesc, and is indexed by
210  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
211  */
212 #define V_L1_MIN_BITS 4
213 #define V_L1_MAX_BITS (V_L2_BITS + 3)
214 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
215 
216 static void *l1_map[V_L1_MAX_SIZE];
217 
218 /* code generation context */
219 TCGContext tcg_init_ctx;
220 __thread TCGContext *tcg_ctx;
221 TBContext tb_ctx;
222 bool parallel_cpus;
223 
224 static void page_table_config_init(void)
225 {
226     uint32_t v_l1_bits;
227 
228     assert(TARGET_PAGE_BITS);
229     /* The bits remaining after N lower levels of page tables.  */
230     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
231     if (v_l1_bits < V_L1_MIN_BITS) {
232         v_l1_bits += V_L2_BITS;
233     }
234 
235     v_l1_size = 1 << v_l1_bits;
236     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
237     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
238 
239     assert(v_l1_bits <= V_L1_MAX_BITS);
240     assert(v_l1_shift % V_L2_BITS == 0);
241     assert(v_l2_levels >= 0);
242 }
243 
244 void cpu_gen_init(void)
245 {
246     tcg_context_init(&tcg_init_ctx);
247 }
248 
249 /* Encode VAL as a signed leb128 sequence at P.
250    Return P incremented past the encoded value.  */
251 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
252 {
253     int more, byte;
254 
255     do {
256         byte = val & 0x7f;
257         val >>= 7;
258         more = !((val == 0 && (byte & 0x40) == 0)
259                  || (val == -1 && (byte & 0x40) != 0));
260         if (more) {
261             byte |= 0x80;
262         }
263         *p++ = byte;
264     } while (more);
265 
266     return p;
267 }
268 
269 /* Decode a signed leb128 sequence at *PP; increment *PP past the
270    decoded value.  Return the decoded value.  */
271 static target_long decode_sleb128(uint8_t **pp)
272 {
273     uint8_t *p = *pp;
274     target_long val = 0;
275     int byte, shift = 0;
276 
277     do {
278         byte = *p++;
279         val |= (target_ulong)(byte & 0x7f) << shift;
280         shift += 7;
281     } while (byte & 0x80);
282     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
283         val |= -(target_ulong)1 << shift;
284     }
285 
286     *pp = p;
287     return val;
288 }
289 
290 /* Encode the data collected about the instructions while compiling TB.
291    Place the data at BLOCK, and return the number of bytes consumed.
292 
293    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
294    which come from the target's insn_start data, followed by a uintptr_t
295    which comes from the host pc of the end of the code implementing the insn.
296 
297    Each line of the table is encoded as sleb128 deltas from the previous
298    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
299    That is, the first column is seeded with the guest pc, the last column
300    with the host pc, and the middle columns with zeros.  */
301 
302 static int encode_search(TranslationBlock *tb, uint8_t *block)
303 {
304     uint8_t *highwater = tcg_ctx->code_gen_highwater;
305     uint8_t *p = block;
306     int i, j, n;
307 
308     for (i = 0, n = tb->icount; i < n; ++i) {
309         target_ulong prev;
310 
311         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
312             if (i == 0) {
313                 prev = (j == 0 ? tb->pc : 0);
314             } else {
315                 prev = tcg_ctx->gen_insn_data[i - 1][j];
316             }
317             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
318         }
319         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
320         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
321 
322         /* Test for (pending) buffer overflow.  The assumption is that any
323            one row beginning below the high water mark cannot overrun
324            the buffer completely.  Thus we can test for overflow after
325            encoding a row without having to check during encoding.  */
326         if (unlikely(p > highwater)) {
327             return -1;
328         }
329     }
330 
331     return p - block;
332 }
333 
334 /* The cpu state corresponding to 'searched_pc' is restored.
335  * When reset_icount is true, current TB will be interrupted and
336  * icount should be recalculated.
337  */
338 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
339                                      uintptr_t searched_pc, bool reset_icount)
340 {
341     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
342     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
343     CPUArchState *env = cpu->env_ptr;
344     uint8_t *p = tb->tc.ptr + tb->tc.size;
345     int i, j, num_insns = tb->icount;
346 #ifdef CONFIG_PROFILER
347     TCGProfile *prof = &tcg_ctx->prof;
348     int64_t ti = profile_getclock();
349 #endif
350 
351     searched_pc -= GETPC_ADJ;
352 
353     if (searched_pc < host_pc) {
354         return -1;
355     }
356 
357     /* Reconstruct the stored insn data while looking for the point at
358        which the end of the insn exceeds the searched_pc.  */
359     for (i = 0; i < num_insns; ++i) {
360         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
361             data[j] += decode_sleb128(&p);
362         }
363         host_pc += decode_sleb128(&p);
364         if (host_pc > searched_pc) {
365             goto found;
366         }
367     }
368     return -1;
369 
370  found:
371     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
372         assert(use_icount);
373         /* Reset the cycle counter to the start of the block
374            and shift if to the number of actually executed instructions */
375         cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
376     }
377     restore_state_to_opc(env, tb, data);
378 
379 #ifdef CONFIG_PROFILER
380     atomic_set(&prof->restore_time,
381                 prof->restore_time + profile_getclock() - ti);
382     atomic_set(&prof->restore_count, prof->restore_count + 1);
383 #endif
384     return 0;
385 }
386 
387 void tb_destroy(TranslationBlock *tb)
388 {
389     qemu_spin_destroy(&tb->jmp_lock);
390 }
391 
392 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
393 {
394     TranslationBlock *tb;
395     bool r = false;
396     uintptr_t check_offset;
397 
398     /* The host_pc has to be in the region of current code buffer. If
399      * it is not we will not be able to resolve it here. The two cases
400      * where host_pc will not be correct are:
401      *
402      *  - fault during translation (instruction fetch)
403      *  - fault from helper (not using GETPC() macro)
404      *
405      * Either way we need return early as we can't resolve it here.
406      *
407      * We are using unsigned arithmetic so if host_pc <
408      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
409      * above the code_gen_buffer_size
410      */
411     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
412 
413     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
414         tb = tcg_tb_lookup(host_pc);
415         if (tb) {
416             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
417             if (tb_cflags(tb) & CF_NOCACHE) {
418                 /* one-shot translation, invalidate it immediately */
419                 tb_phys_invalidate(tb, -1);
420                 tcg_tb_remove(tb);
421                 tb_destroy(tb);
422             }
423             r = true;
424         }
425     }
426 
427     return r;
428 }
429 
430 static void page_init(void)
431 {
432     page_size_init();
433     page_table_config_init();
434 
435 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
436     {
437 #ifdef HAVE_KINFO_GETVMMAP
438         struct kinfo_vmentry *freep;
439         int i, cnt;
440 
441         freep = kinfo_getvmmap(getpid(), &cnt);
442         if (freep) {
443             mmap_lock();
444             for (i = 0; i < cnt; i++) {
445                 unsigned long startaddr, endaddr;
446 
447                 startaddr = freep[i].kve_start;
448                 endaddr = freep[i].kve_end;
449                 if (h2g_valid(startaddr)) {
450                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
451 
452                     if (h2g_valid(endaddr)) {
453                         endaddr = h2g(endaddr);
454                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
455                     } else {
456 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
457                         endaddr = ~0ul;
458                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
459 #endif
460                     }
461                 }
462             }
463             free(freep);
464             mmap_unlock();
465         }
466 #else
467         FILE *f;
468 
469         last_brk = (unsigned long)sbrk(0);
470 
471         f = fopen("/compat/linux/proc/self/maps", "r");
472         if (f) {
473             mmap_lock();
474 
475             do {
476                 unsigned long startaddr, endaddr;
477                 int n;
478 
479                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
480 
481                 if (n == 2 && h2g_valid(startaddr)) {
482                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
483 
484                     if (h2g_valid(endaddr)) {
485                         endaddr = h2g(endaddr);
486                     } else {
487                         endaddr = ~0ul;
488                     }
489                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
490                 }
491             } while (!feof(f));
492 
493             fclose(f);
494             mmap_unlock();
495         }
496 #endif
497     }
498 #endif
499 }
500 
501 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
502 {
503     PageDesc *pd;
504     void **lp;
505     int i;
506 
507     /* Level 1.  Always allocated.  */
508     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
509 
510     /* Level 2..N-1.  */
511     for (i = v_l2_levels; i > 0; i--) {
512         void **p = atomic_rcu_read(lp);
513 
514         if (p == NULL) {
515             void *existing;
516 
517             if (!alloc) {
518                 return NULL;
519             }
520             p = g_new0(void *, V_L2_SIZE);
521             existing = atomic_cmpxchg(lp, NULL, p);
522             if (unlikely(existing)) {
523                 g_free(p);
524                 p = existing;
525             }
526         }
527 
528         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
529     }
530 
531     pd = atomic_rcu_read(lp);
532     if (pd == NULL) {
533         void *existing;
534 
535         if (!alloc) {
536             return NULL;
537         }
538         pd = g_new0(PageDesc, V_L2_SIZE);
539 #ifndef CONFIG_USER_ONLY
540         {
541             int i;
542 
543             for (i = 0; i < V_L2_SIZE; i++) {
544                 qemu_spin_init(&pd[i].lock);
545             }
546         }
547 #endif
548         existing = atomic_cmpxchg(lp, NULL, pd);
549         if (unlikely(existing)) {
550 #ifndef CONFIG_USER_ONLY
551             {
552                 int i;
553 
554                 for (i = 0; i < V_L2_SIZE; i++) {
555                     qemu_spin_destroy(&pd[i].lock);
556                 }
557             }
558 #endif
559             g_free(pd);
560             pd = existing;
561         }
562     }
563 
564     return pd + (index & (V_L2_SIZE - 1));
565 }
566 
567 static inline PageDesc *page_find(tb_page_addr_t index)
568 {
569     return page_find_alloc(index, 0);
570 }
571 
572 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
573                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
574 
575 /* In user-mode page locks aren't used; mmap_lock is enough */
576 #ifdef CONFIG_USER_ONLY
577 
578 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
579 
580 static inline void page_lock(PageDesc *pd)
581 { }
582 
583 static inline void page_unlock(PageDesc *pd)
584 { }
585 
586 static inline void page_lock_tb(const TranslationBlock *tb)
587 { }
588 
589 static inline void page_unlock_tb(const TranslationBlock *tb)
590 { }
591 
592 struct page_collection *
593 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
594 {
595     return NULL;
596 }
597 
598 void page_collection_unlock(struct page_collection *set)
599 { }
600 #else /* !CONFIG_USER_ONLY */
601 
602 #ifdef CONFIG_DEBUG_TCG
603 
604 static __thread GHashTable *ht_pages_locked_debug;
605 
606 static void ht_pages_locked_debug_init(void)
607 {
608     if (ht_pages_locked_debug) {
609         return;
610     }
611     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
612 }
613 
614 static bool page_is_locked(const PageDesc *pd)
615 {
616     PageDesc *found;
617 
618     ht_pages_locked_debug_init();
619     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
620     return !!found;
621 }
622 
623 static void page_lock__debug(PageDesc *pd)
624 {
625     ht_pages_locked_debug_init();
626     g_assert(!page_is_locked(pd));
627     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
628 }
629 
630 static void page_unlock__debug(const PageDesc *pd)
631 {
632     bool removed;
633 
634     ht_pages_locked_debug_init();
635     g_assert(page_is_locked(pd));
636     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
637     g_assert(removed);
638 }
639 
640 static void
641 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
642 {
643     if (unlikely(!page_is_locked(pd))) {
644         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
645                      pd, file, line);
646         abort();
647     }
648 }
649 
650 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
651 
652 void assert_no_pages_locked(void)
653 {
654     ht_pages_locked_debug_init();
655     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
656 }
657 
658 #else /* !CONFIG_DEBUG_TCG */
659 
660 #define assert_page_locked(pd)
661 
662 static inline void page_lock__debug(const PageDesc *pd)
663 {
664 }
665 
666 static inline void page_unlock__debug(const PageDesc *pd)
667 {
668 }
669 
670 #endif /* CONFIG_DEBUG_TCG */
671 
672 static inline void page_lock(PageDesc *pd)
673 {
674     page_lock__debug(pd);
675     qemu_spin_lock(&pd->lock);
676 }
677 
678 static inline void page_unlock(PageDesc *pd)
679 {
680     qemu_spin_unlock(&pd->lock);
681     page_unlock__debug(pd);
682 }
683 
684 /* lock the page(s) of a TB in the correct acquisition order */
685 static inline void page_lock_tb(const TranslationBlock *tb)
686 {
687     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
688 }
689 
690 static inline void page_unlock_tb(const TranslationBlock *tb)
691 {
692     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
693 
694     page_unlock(p1);
695     if (unlikely(tb->page_addr[1] != -1)) {
696         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
697 
698         if (p2 != p1) {
699             page_unlock(p2);
700         }
701     }
702 }
703 
704 static inline struct page_entry *
705 page_entry_new(PageDesc *pd, tb_page_addr_t index)
706 {
707     struct page_entry *pe = g_malloc(sizeof(*pe));
708 
709     pe->index = index;
710     pe->pd = pd;
711     pe->locked = false;
712     return pe;
713 }
714 
715 static void page_entry_destroy(gpointer p)
716 {
717     struct page_entry *pe = p;
718 
719     g_assert(pe->locked);
720     page_unlock(pe->pd);
721     g_free(pe);
722 }
723 
724 /* returns false on success */
725 static bool page_entry_trylock(struct page_entry *pe)
726 {
727     bool busy;
728 
729     busy = qemu_spin_trylock(&pe->pd->lock);
730     if (!busy) {
731         g_assert(!pe->locked);
732         pe->locked = true;
733         page_lock__debug(pe->pd);
734     }
735     return busy;
736 }
737 
738 static void do_page_entry_lock(struct page_entry *pe)
739 {
740     page_lock(pe->pd);
741     g_assert(!pe->locked);
742     pe->locked = true;
743 }
744 
745 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
746 {
747     struct page_entry *pe = value;
748 
749     do_page_entry_lock(pe);
750     return FALSE;
751 }
752 
753 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
754 {
755     struct page_entry *pe = value;
756 
757     if (pe->locked) {
758         pe->locked = false;
759         page_unlock(pe->pd);
760     }
761     return FALSE;
762 }
763 
764 /*
765  * Trylock a page, and if successful, add the page to a collection.
766  * Returns true ("busy") if the page could not be locked; false otherwise.
767  */
768 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
769 {
770     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
771     struct page_entry *pe;
772     PageDesc *pd;
773 
774     pe = g_tree_lookup(set->tree, &index);
775     if (pe) {
776         return false;
777     }
778 
779     pd = page_find(index);
780     if (pd == NULL) {
781         return false;
782     }
783 
784     pe = page_entry_new(pd, index);
785     g_tree_insert(set->tree, &pe->index, pe);
786 
787     /*
788      * If this is either (1) the first insertion or (2) a page whose index
789      * is higher than any other so far, just lock the page and move on.
790      */
791     if (set->max == NULL || pe->index > set->max->index) {
792         set->max = pe;
793         do_page_entry_lock(pe);
794         return false;
795     }
796     /*
797      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
798      * locks in order.
799      */
800     return page_entry_trylock(pe);
801 }
802 
803 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
804 {
805     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
806     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
807 
808     if (a == b) {
809         return 0;
810     } else if (a < b) {
811         return -1;
812     }
813     return 1;
814 }
815 
816 /*
817  * Lock a range of pages ([@start,@end[) as well as the pages of all
818  * intersecting TBs.
819  * Locking order: acquire locks in ascending order of page index.
820  */
821 struct page_collection *
822 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
823 {
824     struct page_collection *set = g_malloc(sizeof(*set));
825     tb_page_addr_t index;
826     PageDesc *pd;
827 
828     start >>= TARGET_PAGE_BITS;
829     end   >>= TARGET_PAGE_BITS;
830     g_assert(start <= end);
831 
832     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
833                                 page_entry_destroy);
834     set->max = NULL;
835     assert_no_pages_locked();
836 
837  retry:
838     g_tree_foreach(set->tree, page_entry_lock, NULL);
839 
840     for (index = start; index <= end; index++) {
841         TranslationBlock *tb;
842         int n;
843 
844         pd = page_find(index);
845         if (pd == NULL) {
846             continue;
847         }
848         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
849             g_tree_foreach(set->tree, page_entry_unlock, NULL);
850             goto retry;
851         }
852         assert_page_locked(pd);
853         PAGE_FOR_EACH_TB(pd, tb, n) {
854             if (page_trylock_add(set, tb->page_addr[0]) ||
855                 (tb->page_addr[1] != -1 &&
856                  page_trylock_add(set, tb->page_addr[1]))) {
857                 /* drop all locks, and reacquire in order */
858                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
859                 goto retry;
860             }
861         }
862     }
863     return set;
864 }
865 
866 void page_collection_unlock(struct page_collection *set)
867 {
868     /* entries are unlocked and freed via page_entry_destroy */
869     g_tree_destroy(set->tree);
870     g_free(set);
871 }
872 
873 #endif /* !CONFIG_USER_ONLY */
874 
875 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
876                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
877 {
878     PageDesc *p1, *p2;
879     tb_page_addr_t page1;
880     tb_page_addr_t page2;
881 
882     assert_memory_lock();
883     g_assert(phys1 != -1);
884 
885     page1 = phys1 >> TARGET_PAGE_BITS;
886     page2 = phys2 >> TARGET_PAGE_BITS;
887 
888     p1 = page_find_alloc(page1, alloc);
889     if (ret_p1) {
890         *ret_p1 = p1;
891     }
892     if (likely(phys2 == -1)) {
893         page_lock(p1);
894         return;
895     } else if (page1 == page2) {
896         page_lock(p1);
897         if (ret_p2) {
898             *ret_p2 = p1;
899         }
900         return;
901     }
902     p2 = page_find_alloc(page2, alloc);
903     if (ret_p2) {
904         *ret_p2 = p2;
905     }
906     if (page1 < page2) {
907         page_lock(p1);
908         page_lock(p2);
909     } else {
910         page_lock(p2);
911         page_lock(p1);
912     }
913 }
914 
915 /* Minimum size of the code gen buffer.  This number is randomly chosen,
916    but not so small that we can't have a fair number of TB's live.  */
917 #define MIN_CODE_GEN_BUFFER_SIZE     (1 * MiB)
918 
919 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
920    indicated, this is constrained by the range of direct branches on the
921    host cpu, as used by the TCG implementation of goto_tb.  */
922 #if defined(__x86_64__)
923 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
924 #elif defined(__sparc__)
925 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
926 #elif defined(__powerpc64__)
927 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
928 #elif defined(__powerpc__)
929 # define MAX_CODE_GEN_BUFFER_SIZE  (32 * MiB)
930 #elif defined(__aarch64__)
931 # define MAX_CODE_GEN_BUFFER_SIZE  (2 * GiB)
932 #elif defined(__s390x__)
933   /* We have a +- 4GB range on the branches; leave some slop.  */
934 # define MAX_CODE_GEN_BUFFER_SIZE  (3 * GiB)
935 #elif defined(__mips__)
936   /* We have a 256MB branch region, but leave room to make sure the
937      main executable is also within that region.  */
938 # define MAX_CODE_GEN_BUFFER_SIZE  (128 * MiB)
939 #else
940 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
941 #endif
942 
943 #if TCG_TARGET_REG_BITS == 32
944 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
945 #ifdef CONFIG_USER_ONLY
946 /*
947  * For user mode on smaller 32 bit systems we may run into trouble
948  * allocating big chunks of data in the right place. On these systems
949  * we utilise a static code generation buffer directly in the binary.
950  */
951 #define USE_STATIC_CODE_GEN_BUFFER
952 #endif
953 #else /* TCG_TARGET_REG_BITS == 64 */
954 #ifdef CONFIG_USER_ONLY
955 /*
956  * As user-mode emulation typically means running multiple instances
957  * of the translator don't go too nuts with our default code gen
958  * buffer lest we make things too hard for the OS.
959  */
960 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
961 #else
962 /*
963  * We expect most system emulation to run one or two guests per host.
964  * Users running large scale system emulation may want to tweak their
965  * runtime setup via the tb-size control on the command line.
966  */
967 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
968 #endif
969 #endif
970 
971 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
972   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
973    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
974 
975 static inline size_t size_code_gen_buffer(size_t tb_size)
976 {
977     /* Size the buffer.  */
978     if (tb_size == 0) {
979         size_t phys_mem = qemu_get_host_physmem();
980         if (phys_mem == 0) {
981             tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
982         } else {
983             tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, phys_mem / 8);
984         }
985     }
986     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
987         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
988     }
989     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
990         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
991     }
992     return tb_size;
993 }
994 
995 #ifdef __mips__
996 /* In order to use J and JAL within the code_gen_buffer, we require
997    that the buffer not cross a 256MB boundary.  */
998 static inline bool cross_256mb(void *addr, size_t size)
999 {
1000     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
1001 }
1002 
1003 /* We weren't able to allocate a buffer without crossing that boundary,
1004    so make do with the larger portion of the buffer that doesn't cross.
1005    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
1006 static inline void *split_cross_256mb(void *buf1, size_t size1)
1007 {
1008     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
1009     size_t size2 = buf1 + size1 - buf2;
1010 
1011     size1 = buf2 - buf1;
1012     if (size1 < size2) {
1013         size1 = size2;
1014         buf1 = buf2;
1015     }
1016 
1017     tcg_ctx->code_gen_buffer_size = size1;
1018     return buf1;
1019 }
1020 #endif
1021 
1022 #ifdef USE_STATIC_CODE_GEN_BUFFER
1023 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
1024     __attribute__((aligned(CODE_GEN_ALIGN)));
1025 
1026 static inline void *alloc_code_gen_buffer(void)
1027 {
1028     void *buf = static_code_gen_buffer;
1029     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1030     size_t size;
1031 
1032     /* page-align the beginning and end of the buffer */
1033     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1034     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1035 
1036     size = end - buf;
1037 
1038     /* Honor a command-line option limiting the size of the buffer.  */
1039     if (size > tcg_ctx->code_gen_buffer_size) {
1040         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1041                                qemu_real_host_page_size);
1042     }
1043     tcg_ctx->code_gen_buffer_size = size;
1044 
1045 #ifdef __mips__
1046     if (cross_256mb(buf, size)) {
1047         buf = split_cross_256mb(buf, size);
1048         size = tcg_ctx->code_gen_buffer_size;
1049     }
1050 #endif
1051 
1052     if (qemu_mprotect_rwx(buf, size)) {
1053         abort();
1054     }
1055     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1056 
1057     return buf;
1058 }
1059 #elif defined(_WIN32)
1060 static inline void *alloc_code_gen_buffer(void)
1061 {
1062     size_t size = tcg_ctx->code_gen_buffer_size;
1063     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1064                         PAGE_EXECUTE_READWRITE);
1065 }
1066 #else
1067 static inline void *alloc_code_gen_buffer(void)
1068 {
1069     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1070     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1071     size_t size = tcg_ctx->code_gen_buffer_size;
1072     void *buf;
1073 
1074     buf = mmap(NULL, size, prot, flags, -1, 0);
1075     if (buf == MAP_FAILED) {
1076         return NULL;
1077     }
1078 
1079 #ifdef __mips__
1080     if (cross_256mb(buf, size)) {
1081         /*
1082          * Try again, with the original still mapped, to avoid re-acquiring
1083          * the same 256mb crossing.
1084          */
1085         size_t size2;
1086         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1087         switch ((int)(buf2 != MAP_FAILED)) {
1088         case 1:
1089             if (!cross_256mb(buf2, size)) {
1090                 /* Success!  Use the new buffer.  */
1091                 munmap(buf, size);
1092                 break;
1093             }
1094             /* Failure.  Work with what we had.  */
1095             munmap(buf2, size);
1096             /* fallthru */
1097         default:
1098             /* Split the original buffer.  Free the smaller half.  */
1099             buf2 = split_cross_256mb(buf, size);
1100             size2 = tcg_ctx->code_gen_buffer_size;
1101             if (buf == buf2) {
1102                 munmap(buf + size2, size - size2);
1103             } else {
1104                 munmap(buf, size - size2);
1105             }
1106             size = size2;
1107             break;
1108         }
1109         buf = buf2;
1110     }
1111 #endif
1112 
1113     /* Request large pages for the buffer.  */
1114     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1115 
1116     return buf;
1117 }
1118 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1119 
1120 static inline void code_gen_alloc(size_t tb_size)
1121 {
1122     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1123     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1124     if (tcg_ctx->code_gen_buffer == NULL) {
1125         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1126         exit(1);
1127     }
1128 }
1129 
1130 static bool tb_cmp(const void *ap, const void *bp)
1131 {
1132     const TranslationBlock *a = ap;
1133     const TranslationBlock *b = bp;
1134 
1135     return a->pc == b->pc &&
1136         a->cs_base == b->cs_base &&
1137         a->flags == b->flags &&
1138         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1139         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1140         a->page_addr[0] == b->page_addr[0] &&
1141         a->page_addr[1] == b->page_addr[1];
1142 }
1143 
1144 static void tb_htable_init(void)
1145 {
1146     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1147 
1148     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1149 }
1150 
1151 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1152    (in bytes) allocated to the translation buffer. Zero means default
1153    size. */
1154 void tcg_exec_init(unsigned long tb_size)
1155 {
1156     tcg_allowed = true;
1157     cpu_gen_init();
1158     page_init();
1159     tb_htable_init();
1160     code_gen_alloc(tb_size);
1161 #if defined(CONFIG_SOFTMMU)
1162     /* There's no guest base to take into account, so go ahead and
1163        initialize the prologue now.  */
1164     tcg_prologue_init(tcg_ctx);
1165 #endif
1166 }
1167 
1168 /* call with @p->lock held */
1169 static inline void invalidate_page_bitmap(PageDesc *p)
1170 {
1171     assert_page_locked(p);
1172 #ifdef CONFIG_SOFTMMU
1173     g_free(p->code_bitmap);
1174     p->code_bitmap = NULL;
1175     p->code_write_count = 0;
1176 #endif
1177 }
1178 
1179 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1180 static void page_flush_tb_1(int level, void **lp)
1181 {
1182     int i;
1183 
1184     if (*lp == NULL) {
1185         return;
1186     }
1187     if (level == 0) {
1188         PageDesc *pd = *lp;
1189 
1190         for (i = 0; i < V_L2_SIZE; ++i) {
1191             page_lock(&pd[i]);
1192             pd[i].first_tb = (uintptr_t)NULL;
1193             invalidate_page_bitmap(pd + i);
1194             page_unlock(&pd[i]);
1195         }
1196     } else {
1197         void **pp = *lp;
1198 
1199         for (i = 0; i < V_L2_SIZE; ++i) {
1200             page_flush_tb_1(level - 1, pp + i);
1201         }
1202     }
1203 }
1204 
1205 static void page_flush_tb(void)
1206 {
1207     int i, l1_sz = v_l1_size;
1208 
1209     for (i = 0; i < l1_sz; i++) {
1210         page_flush_tb_1(v_l2_levels, l1_map + i);
1211     }
1212 }
1213 
1214 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1215 {
1216     const TranslationBlock *tb = value;
1217     size_t *size = data;
1218 
1219     *size += tb->tc.size;
1220     return false;
1221 }
1222 
1223 /* flush all the translation blocks */
1224 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1225 {
1226     bool did_flush = false;
1227 
1228     mmap_lock();
1229     /* If it is already been done on request of another CPU,
1230      * just retry.
1231      */
1232     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1233         goto done;
1234     }
1235     did_flush = true;
1236 
1237     if (DEBUG_TB_FLUSH_GATE) {
1238         size_t nb_tbs = tcg_nb_tbs();
1239         size_t host_size = 0;
1240 
1241         tcg_tb_foreach(tb_host_size_iter, &host_size);
1242         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1243                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1244     }
1245 
1246     CPU_FOREACH(cpu) {
1247         cpu_tb_jmp_cache_clear(cpu);
1248     }
1249 
1250     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1251     page_flush_tb();
1252 
1253     tcg_region_reset_all();
1254     /* XXX: flush processor icache at this point if cache flush is
1255        expensive */
1256     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1257 
1258 done:
1259     mmap_unlock();
1260     if (did_flush) {
1261         qemu_plugin_flush_cb();
1262     }
1263 }
1264 
1265 void tb_flush(CPUState *cpu)
1266 {
1267     if (tcg_enabled()) {
1268         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1269 
1270         if (cpu_in_exclusive_context(cpu)) {
1271             do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1272         } else {
1273             async_safe_run_on_cpu(cpu, do_tb_flush,
1274                                   RUN_ON_CPU_HOST_INT(tb_flush_count));
1275         }
1276     }
1277 }
1278 
1279 /*
1280  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1281  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1282  * and let the optimizer get rid of them by wrapping their user-only callers
1283  * with if (DEBUG_TB_CHECK_GATE).
1284  */
1285 #ifdef CONFIG_USER_ONLY
1286 
1287 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1288 {
1289     TranslationBlock *tb = p;
1290     target_ulong addr = *(target_ulong *)userp;
1291 
1292     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1293         printf("ERROR invalidate: address=" TARGET_FMT_lx
1294                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1295     }
1296 }
1297 
1298 /* verify that all the pages have correct rights for code
1299  *
1300  * Called with mmap_lock held.
1301  */
1302 static void tb_invalidate_check(target_ulong address)
1303 {
1304     address &= TARGET_PAGE_MASK;
1305     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1306 }
1307 
1308 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1309 {
1310     TranslationBlock *tb = p;
1311     int flags1, flags2;
1312 
1313     flags1 = page_get_flags(tb->pc);
1314     flags2 = page_get_flags(tb->pc + tb->size - 1);
1315     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1316         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1317                (long)tb->pc, tb->size, flags1, flags2);
1318     }
1319 }
1320 
1321 /* verify that all the pages have correct rights for code */
1322 static void tb_page_check(void)
1323 {
1324     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1325 }
1326 
1327 #endif /* CONFIG_USER_ONLY */
1328 
1329 /*
1330  * user-mode: call with mmap_lock held
1331  * !user-mode: call with @pd->lock held
1332  */
1333 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1334 {
1335     TranslationBlock *tb1;
1336     uintptr_t *pprev;
1337     unsigned int n1;
1338 
1339     assert_page_locked(pd);
1340     pprev = &pd->first_tb;
1341     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1342         if (tb1 == tb) {
1343             *pprev = tb1->page_next[n1];
1344             return;
1345         }
1346         pprev = &tb1->page_next[n1];
1347     }
1348     g_assert_not_reached();
1349 }
1350 
1351 /* remove @orig from its @n_orig-th jump list */
1352 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1353 {
1354     uintptr_t ptr, ptr_locked;
1355     TranslationBlock *dest;
1356     TranslationBlock *tb;
1357     uintptr_t *pprev;
1358     int n;
1359 
1360     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1361     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1362     dest = (TranslationBlock *)(ptr & ~1);
1363     if (dest == NULL) {
1364         return;
1365     }
1366 
1367     qemu_spin_lock(&dest->jmp_lock);
1368     /*
1369      * While acquiring the lock, the jump might have been removed if the
1370      * destination TB was invalidated; check again.
1371      */
1372     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1373     if (ptr_locked != ptr) {
1374         qemu_spin_unlock(&dest->jmp_lock);
1375         /*
1376          * The only possibility is that the jump was unlinked via
1377          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1378          * because we set the LSB above.
1379          */
1380         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1381         return;
1382     }
1383     /*
1384      * We first acquired the lock, and since the destination pointer matches,
1385      * we know for sure that @orig is in the jmp list.
1386      */
1387     pprev = &dest->jmp_list_head;
1388     TB_FOR_EACH_JMP(dest, tb, n) {
1389         if (tb == orig && n == n_orig) {
1390             *pprev = tb->jmp_list_next[n];
1391             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1392             qemu_spin_unlock(&dest->jmp_lock);
1393             return;
1394         }
1395         pprev = &tb->jmp_list_next[n];
1396     }
1397     g_assert_not_reached();
1398 }
1399 
1400 /* reset the jump entry 'n' of a TB so that it is not chained to
1401    another TB */
1402 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1403 {
1404     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1405     tb_set_jmp_target(tb, n, addr);
1406 }
1407 
1408 /* remove any jumps to the TB */
1409 static inline void tb_jmp_unlink(TranslationBlock *dest)
1410 {
1411     TranslationBlock *tb;
1412     int n;
1413 
1414     qemu_spin_lock(&dest->jmp_lock);
1415 
1416     TB_FOR_EACH_JMP(dest, tb, n) {
1417         tb_reset_jump(tb, n);
1418         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1419         /* No need to clear the list entry; setting the dest ptr is enough */
1420     }
1421     dest->jmp_list_head = (uintptr_t)NULL;
1422 
1423     qemu_spin_unlock(&dest->jmp_lock);
1424 }
1425 
1426 /*
1427  * In user-mode, call with mmap_lock held.
1428  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1429  * locks held.
1430  */
1431 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1432 {
1433     CPUState *cpu;
1434     PageDesc *p;
1435     uint32_t h;
1436     tb_page_addr_t phys_pc;
1437 
1438     assert_memory_lock();
1439 
1440     /* make sure no further incoming jumps will be chained to this TB */
1441     qemu_spin_lock(&tb->jmp_lock);
1442     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1443     qemu_spin_unlock(&tb->jmp_lock);
1444 
1445     /* remove the TB from the hash list */
1446     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1447     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1448                      tb->trace_vcpu_dstate);
1449     if (!(tb->cflags & CF_NOCACHE) &&
1450         !qht_remove(&tb_ctx.htable, tb, h)) {
1451         return;
1452     }
1453 
1454     /* remove the TB from the page list */
1455     if (rm_from_page_list) {
1456         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1457         tb_page_remove(p, tb);
1458         invalidate_page_bitmap(p);
1459         if (tb->page_addr[1] != -1) {
1460             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1461             tb_page_remove(p, tb);
1462             invalidate_page_bitmap(p);
1463         }
1464     }
1465 
1466     /* remove the TB from the hash list */
1467     h = tb_jmp_cache_hash_func(tb->pc);
1468     CPU_FOREACH(cpu) {
1469         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1470             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1471         }
1472     }
1473 
1474     /* suppress this TB from the two jump lists */
1475     tb_remove_from_jmp_list(tb, 0);
1476     tb_remove_from_jmp_list(tb, 1);
1477 
1478     /* suppress any remaining jumps to this TB */
1479     tb_jmp_unlink(tb);
1480 
1481     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1482                tcg_ctx->tb_phys_invalidate_count + 1);
1483 }
1484 
1485 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1486 {
1487     do_tb_phys_invalidate(tb, true);
1488 }
1489 
1490 /* invalidate one TB
1491  *
1492  * Called with mmap_lock held in user-mode.
1493  */
1494 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1495 {
1496     if (page_addr == -1 && tb->page_addr[0] != -1) {
1497         page_lock_tb(tb);
1498         do_tb_phys_invalidate(tb, true);
1499         page_unlock_tb(tb);
1500     } else {
1501         do_tb_phys_invalidate(tb, false);
1502     }
1503 }
1504 
1505 #ifdef CONFIG_SOFTMMU
1506 /* call with @p->lock held */
1507 static void build_page_bitmap(PageDesc *p)
1508 {
1509     int n, tb_start, tb_end;
1510     TranslationBlock *tb;
1511 
1512     assert_page_locked(p);
1513     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1514 
1515     PAGE_FOR_EACH_TB(p, tb, n) {
1516         /* NOTE: this is subtle as a TB may span two physical pages */
1517         if (n == 0) {
1518             /* NOTE: tb_end may be after the end of the page, but
1519                it is not a problem */
1520             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1521             tb_end = tb_start + tb->size;
1522             if (tb_end > TARGET_PAGE_SIZE) {
1523                 tb_end = TARGET_PAGE_SIZE;
1524              }
1525         } else {
1526             tb_start = 0;
1527             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1528         }
1529         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1530     }
1531 }
1532 #endif
1533 
1534 /* add the tb in the target page and protect it if necessary
1535  *
1536  * Called with mmap_lock held for user-mode emulation.
1537  * Called with @p->lock held in !user-mode.
1538  */
1539 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1540                                unsigned int n, tb_page_addr_t page_addr)
1541 {
1542 #ifndef CONFIG_USER_ONLY
1543     bool page_already_protected;
1544 #endif
1545 
1546     assert_page_locked(p);
1547 
1548     tb->page_addr[n] = page_addr;
1549     tb->page_next[n] = p->first_tb;
1550 #ifndef CONFIG_USER_ONLY
1551     page_already_protected = p->first_tb != (uintptr_t)NULL;
1552 #endif
1553     p->first_tb = (uintptr_t)tb | n;
1554     invalidate_page_bitmap(p);
1555 
1556 #if defined(CONFIG_USER_ONLY)
1557     if (p->flags & PAGE_WRITE) {
1558         target_ulong addr;
1559         PageDesc *p2;
1560         int prot;
1561 
1562         /* force the host page as non writable (writes will have a
1563            page fault + mprotect overhead) */
1564         page_addr &= qemu_host_page_mask;
1565         prot = 0;
1566         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1567             addr += TARGET_PAGE_SIZE) {
1568 
1569             p2 = page_find(addr >> TARGET_PAGE_BITS);
1570             if (!p2) {
1571                 continue;
1572             }
1573             prot |= p2->flags;
1574             p2->flags &= ~PAGE_WRITE;
1575           }
1576         mprotect(g2h(page_addr), qemu_host_page_size,
1577                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1578         if (DEBUG_TB_INVALIDATE_GATE) {
1579             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1580         }
1581     }
1582 #else
1583     /* if some code is already present, then the pages are already
1584        protected. So we handle the case where only the first TB is
1585        allocated in a physical page */
1586     if (!page_already_protected) {
1587         tlb_protect_code(page_addr);
1588     }
1589 #endif
1590 }
1591 
1592 /* add a new TB and link it to the physical page tables. phys_page2 is
1593  * (-1) to indicate that only one page contains the TB.
1594  *
1595  * Called with mmap_lock held for user-mode emulation.
1596  *
1597  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1598  * Note that in !user-mode, another thread might have already added a TB
1599  * for the same block of guest code that @tb corresponds to. In that case,
1600  * the caller should discard the original @tb, and use instead the returned TB.
1601  */
1602 static TranslationBlock *
1603 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1604              tb_page_addr_t phys_page2)
1605 {
1606     PageDesc *p;
1607     PageDesc *p2 = NULL;
1608 
1609     assert_memory_lock();
1610 
1611     if (phys_pc == -1) {
1612         /*
1613          * If the TB is not associated with a physical RAM page then
1614          * it must be a temporary one-insn TB, and we have nothing to do
1615          * except fill in the page_addr[] fields.
1616          */
1617         assert(tb->cflags & CF_NOCACHE);
1618         tb->page_addr[0] = tb->page_addr[1] = -1;
1619         return tb;
1620     }
1621 
1622     /*
1623      * Add the TB to the page list, acquiring first the pages's locks.
1624      * We keep the locks held until after inserting the TB in the hash table,
1625      * so that if the insertion fails we know for sure that the TBs are still
1626      * in the page descriptors.
1627      * Note that inserting into the hash table first isn't an option, since
1628      * we can only insert TBs that are fully initialized.
1629      */
1630     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1631     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1632     if (p2) {
1633         tb_page_add(p2, tb, 1, phys_page2);
1634     } else {
1635         tb->page_addr[1] = -1;
1636     }
1637 
1638     if (!(tb->cflags & CF_NOCACHE)) {
1639         void *existing_tb = NULL;
1640         uint32_t h;
1641 
1642         /* add in the hash table */
1643         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1644                          tb->trace_vcpu_dstate);
1645         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1646 
1647         /* remove TB from the page(s) if we couldn't insert it */
1648         if (unlikely(existing_tb)) {
1649             tb_page_remove(p, tb);
1650             invalidate_page_bitmap(p);
1651             if (p2) {
1652                 tb_page_remove(p2, tb);
1653                 invalidate_page_bitmap(p2);
1654             }
1655             tb = existing_tb;
1656         }
1657     }
1658 
1659     if (p2 && p2 != p) {
1660         page_unlock(p2);
1661     }
1662     page_unlock(p);
1663 
1664 #ifdef CONFIG_USER_ONLY
1665     if (DEBUG_TB_CHECK_GATE) {
1666         tb_page_check();
1667     }
1668 #endif
1669     return tb;
1670 }
1671 
1672 /* Called with mmap_lock held for user mode emulation.  */
1673 TranslationBlock *tb_gen_code(CPUState *cpu,
1674                               target_ulong pc, target_ulong cs_base,
1675                               uint32_t flags, int cflags)
1676 {
1677     CPUArchState *env = cpu->env_ptr;
1678     TranslationBlock *tb, *existing_tb;
1679     tb_page_addr_t phys_pc, phys_page2;
1680     target_ulong virt_page2;
1681     tcg_insn_unit *gen_code_buf;
1682     int gen_code_size, search_size, max_insns;
1683 #ifdef CONFIG_PROFILER
1684     TCGProfile *prof = &tcg_ctx->prof;
1685     int64_t ti;
1686 #endif
1687 
1688     assert_memory_lock();
1689 
1690     phys_pc = get_page_addr_code(env, pc);
1691 
1692     if (phys_pc == -1) {
1693         /* Generate a temporary TB with 1 insn in it */
1694         cflags &= ~CF_COUNT_MASK;
1695         cflags |= CF_NOCACHE | 1;
1696     }
1697 
1698     cflags &= ~CF_CLUSTER_MASK;
1699     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1700 
1701     max_insns = cflags & CF_COUNT_MASK;
1702     if (max_insns == 0) {
1703         max_insns = CF_COUNT_MASK;
1704     }
1705     if (max_insns > TCG_MAX_INSNS) {
1706         max_insns = TCG_MAX_INSNS;
1707     }
1708     if (cpu->singlestep_enabled || singlestep) {
1709         max_insns = 1;
1710     }
1711 
1712  buffer_overflow:
1713     tb = tcg_tb_alloc(tcg_ctx);
1714     if (unlikely(!tb)) {
1715         /* flush must be done */
1716         tb_flush(cpu);
1717         mmap_unlock();
1718         /* Make the execution loop process the flush as soon as possible.  */
1719         cpu->exception_index = EXCP_INTERRUPT;
1720         cpu_loop_exit(cpu);
1721     }
1722 
1723     gen_code_buf = tcg_ctx->code_gen_ptr;
1724     tb->tc.ptr = gen_code_buf;
1725     tb->pc = pc;
1726     tb->cs_base = cs_base;
1727     tb->flags = flags;
1728     tb->cflags = cflags;
1729     tb->orig_tb = NULL;
1730     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1731     tcg_ctx->tb_cflags = cflags;
1732  tb_overflow:
1733 
1734 #ifdef CONFIG_PROFILER
1735     /* includes aborted translations because of exceptions */
1736     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1737     ti = profile_getclock();
1738 #endif
1739 
1740     tcg_func_start(tcg_ctx);
1741 
1742     tcg_ctx->cpu = env_cpu(env);
1743     gen_intermediate_code(cpu, tb, max_insns);
1744     tcg_ctx->cpu = NULL;
1745 
1746     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1747 
1748     /* generate machine code */
1749     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1750     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1751     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1752     if (TCG_TARGET_HAS_direct_jump) {
1753         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1754         tcg_ctx->tb_jmp_target_addr = NULL;
1755     } else {
1756         tcg_ctx->tb_jmp_insn_offset = NULL;
1757         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1758     }
1759 
1760 #ifdef CONFIG_PROFILER
1761     atomic_set(&prof->tb_count, prof->tb_count + 1);
1762     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1763     ti = profile_getclock();
1764 #endif
1765 
1766     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1767     if (unlikely(gen_code_size < 0)) {
1768         switch (gen_code_size) {
1769         case -1:
1770             /*
1771              * Overflow of code_gen_buffer, or the current slice of it.
1772              *
1773              * TODO: We don't need to re-do gen_intermediate_code, nor
1774              * should we re-do the tcg optimization currently hidden
1775              * inside tcg_gen_code.  All that should be required is to
1776              * flush the TBs, allocate a new TB, re-initialize it per
1777              * above, and re-do the actual code generation.
1778              */
1779             goto buffer_overflow;
1780 
1781         case -2:
1782             /*
1783              * The code generated for the TranslationBlock is too large.
1784              * The maximum size allowed by the unwind info is 64k.
1785              * There may be stricter constraints from relocations
1786              * in the tcg backend.
1787              *
1788              * Try again with half as many insns as we attempted this time.
1789              * If a single insn overflows, there's a bug somewhere...
1790              */
1791             max_insns = tb->icount;
1792             assert(max_insns > 1);
1793             max_insns /= 2;
1794             goto tb_overflow;
1795 
1796         default:
1797             g_assert_not_reached();
1798         }
1799     }
1800     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1801     if (unlikely(search_size < 0)) {
1802         goto buffer_overflow;
1803     }
1804     tb->tc.size = gen_code_size;
1805 
1806 #ifdef CONFIG_PROFILER
1807     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1808     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1809     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1810     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1811 #endif
1812 
1813 #ifdef DEBUG_DISAS
1814     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1815         qemu_log_in_addr_range(tb->pc)) {
1816         FILE *logfile = qemu_log_lock();
1817         int code_size, data_size = 0;
1818         g_autoptr(GString) note = g_string_new("[tb header & initial instruction]");
1819         size_t chunk_start = 0;
1820         int insn = 0;
1821         qemu_log("OUT: [size=%d]\n", gen_code_size);
1822         if (tcg_ctx->data_gen_ptr) {
1823             code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1824             data_size = gen_code_size - code_size;
1825         } else {
1826             code_size = gen_code_size;
1827         }
1828 
1829         /* Dump header and the first instruction */
1830         chunk_start = tcg_ctx->gen_insn_end_off[insn];
1831         log_disas(tb->tc.ptr, chunk_start, note->str);
1832 
1833         /*
1834          * Dump each instruction chunk, wrapping up empty chunks into
1835          * the next instruction. The whole array is offset so the
1836          * first entry is the beginning of the 2nd instruction.
1837          */
1838         while (insn <= tb->icount && chunk_start < code_size) {
1839             size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
1840             if (chunk_end > chunk_start) {
1841                 g_string_printf(note, "[guest addr: " TARGET_FMT_lx "]",
1842                                 tcg_ctx->gen_insn_data[insn][0]);
1843                 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start,
1844                           note->str);
1845                 chunk_start = chunk_end;
1846             }
1847             insn++;
1848         }
1849 
1850         /* Finally dump any data we may have after the block */
1851         if (data_size) {
1852             int i;
1853             qemu_log("  data: [size=%d]\n", data_size);
1854             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1855                 if (sizeof(tcg_target_ulong) == 8) {
1856                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1857                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1858                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1859                 } else {
1860                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1861                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1862                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1863                 }
1864             }
1865         }
1866         qemu_log("\n");
1867         qemu_log_flush();
1868         qemu_log_unlock(logfile);
1869     }
1870 #endif
1871 
1872     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1873         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1874                  CODE_GEN_ALIGN));
1875 
1876     /* init jump list */
1877     qemu_spin_init(&tb->jmp_lock);
1878     tb->jmp_list_head = (uintptr_t)NULL;
1879     tb->jmp_list_next[0] = (uintptr_t)NULL;
1880     tb->jmp_list_next[1] = (uintptr_t)NULL;
1881     tb->jmp_dest[0] = (uintptr_t)NULL;
1882     tb->jmp_dest[1] = (uintptr_t)NULL;
1883 
1884     /* init original jump addresses which have been set during tcg_gen_code() */
1885     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1886         tb_reset_jump(tb, 0);
1887     }
1888     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1889         tb_reset_jump(tb, 1);
1890     }
1891 
1892     /* check next page if needed */
1893     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1894     phys_page2 = -1;
1895     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1896         phys_page2 = get_page_addr_code(env, virt_page2);
1897     }
1898     /*
1899      * No explicit memory barrier is required -- tb_link_page() makes the
1900      * TB visible in a consistent state.
1901      */
1902     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1903     /* if the TB already exists, discard what we just translated */
1904     if (unlikely(existing_tb != tb)) {
1905         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1906 
1907         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1908         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1909         tb_destroy(tb);
1910         return existing_tb;
1911     }
1912     tcg_tb_insert(tb);
1913     return tb;
1914 }
1915 
1916 /*
1917  * @p must be non-NULL.
1918  * user-mode: call with mmap_lock held.
1919  * !user-mode: call with all @pages locked.
1920  */
1921 static void
1922 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1923                                       PageDesc *p, tb_page_addr_t start,
1924                                       tb_page_addr_t end,
1925                                       uintptr_t retaddr)
1926 {
1927     TranslationBlock *tb;
1928     tb_page_addr_t tb_start, tb_end;
1929     int n;
1930 #ifdef TARGET_HAS_PRECISE_SMC
1931     CPUState *cpu = current_cpu;
1932     CPUArchState *env = NULL;
1933     bool current_tb_not_found = retaddr != 0;
1934     bool current_tb_modified = false;
1935     TranslationBlock *current_tb = NULL;
1936     target_ulong current_pc = 0;
1937     target_ulong current_cs_base = 0;
1938     uint32_t current_flags = 0;
1939 #endif /* TARGET_HAS_PRECISE_SMC */
1940 
1941     assert_page_locked(p);
1942 
1943 #if defined(TARGET_HAS_PRECISE_SMC)
1944     if (cpu != NULL) {
1945         env = cpu->env_ptr;
1946     }
1947 #endif
1948 
1949     /* we remove all the TBs in the range [start, end[ */
1950     /* XXX: see if in some cases it could be faster to invalidate all
1951        the code */
1952     PAGE_FOR_EACH_TB(p, tb, n) {
1953         assert_page_locked(p);
1954         /* NOTE: this is subtle as a TB may span two physical pages */
1955         if (n == 0) {
1956             /* NOTE: tb_end may be after the end of the page, but
1957                it is not a problem */
1958             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1959             tb_end = tb_start + tb->size;
1960         } else {
1961             tb_start = tb->page_addr[1];
1962             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1963         }
1964         if (!(tb_end <= start || tb_start >= end)) {
1965 #ifdef TARGET_HAS_PRECISE_SMC
1966             if (current_tb_not_found) {
1967                 current_tb_not_found = false;
1968                 /* now we have a real cpu fault */
1969                 current_tb = tcg_tb_lookup(retaddr);
1970             }
1971             if (current_tb == tb &&
1972                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1973                 /*
1974                  * If we are modifying the current TB, we must stop
1975                  * its execution. We could be more precise by checking
1976                  * that the modification is after the current PC, but it
1977                  * would require a specialized function to partially
1978                  * restore the CPU state.
1979                  */
1980                 current_tb_modified = true;
1981                 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1982                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1983                                      &current_flags);
1984             }
1985 #endif /* TARGET_HAS_PRECISE_SMC */
1986             tb_phys_invalidate__locked(tb);
1987         }
1988     }
1989 #if !defined(CONFIG_USER_ONLY)
1990     /* if no code remaining, no need to continue to use slow writes */
1991     if (!p->first_tb) {
1992         invalidate_page_bitmap(p);
1993         tlb_unprotect_code(start);
1994     }
1995 #endif
1996 #ifdef TARGET_HAS_PRECISE_SMC
1997     if (current_tb_modified) {
1998         page_collection_unlock(pages);
1999         /* Force execution of one insn next time.  */
2000         cpu->cflags_next_tb = 1 | curr_cflags();
2001         mmap_unlock();
2002         cpu_loop_exit_noexc(cpu);
2003     }
2004 #endif
2005 }
2006 
2007 /*
2008  * Invalidate all TBs which intersect with the target physical address range
2009  * [start;end[. NOTE: start and end must refer to the *same* physical page.
2010  * 'is_cpu_write_access' should be true if called from a real cpu write
2011  * access: the virtual CPU will exit the current TB if code is modified inside
2012  * this TB.
2013  *
2014  * Called with mmap_lock held for user-mode emulation
2015  */
2016 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
2017 {
2018     struct page_collection *pages;
2019     PageDesc *p;
2020 
2021     assert_memory_lock();
2022 
2023     p = page_find(start >> TARGET_PAGE_BITS);
2024     if (p == NULL) {
2025         return;
2026     }
2027     pages = page_collection_lock(start, end);
2028     tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2029     page_collection_unlock(pages);
2030 }
2031 
2032 /*
2033  * Invalidate all TBs which intersect with the target physical address range
2034  * [start;end[. NOTE: start and end may refer to *different* physical pages.
2035  * 'is_cpu_write_access' should be true if called from a real cpu write
2036  * access: the virtual CPU will exit the current TB if code is modified inside
2037  * this TB.
2038  *
2039  * Called with mmap_lock held for user-mode emulation.
2040  */
2041 #ifdef CONFIG_SOFTMMU
2042 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2043 #else
2044 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2045 #endif
2046 {
2047     struct page_collection *pages;
2048     tb_page_addr_t next;
2049 
2050     assert_memory_lock();
2051 
2052     pages = page_collection_lock(start, end);
2053     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2054          start < end;
2055          start = next, next += TARGET_PAGE_SIZE) {
2056         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2057         tb_page_addr_t bound = MIN(next, end);
2058 
2059         if (pd == NULL) {
2060             continue;
2061         }
2062         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2063     }
2064     page_collection_unlock(pages);
2065 }
2066 
2067 #ifdef CONFIG_SOFTMMU
2068 /* len must be <= 8 and start must be a multiple of len.
2069  * Called via softmmu_template.h when code areas are written to with
2070  * iothread mutex not held.
2071  *
2072  * Call with all @pages in the range [@start, @start + len[ locked.
2073  */
2074 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2075                                   tb_page_addr_t start, int len,
2076                                   uintptr_t retaddr)
2077 {
2078     PageDesc *p;
2079 
2080     assert_memory_lock();
2081 
2082     p = page_find(start >> TARGET_PAGE_BITS);
2083     if (!p) {
2084         return;
2085     }
2086 
2087     assert_page_locked(p);
2088     if (!p->code_bitmap &&
2089         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2090         build_page_bitmap(p);
2091     }
2092     if (p->code_bitmap) {
2093         unsigned int nr;
2094         unsigned long b;
2095 
2096         nr = start & ~TARGET_PAGE_MASK;
2097         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2098         if (b & ((1 << len) - 1)) {
2099             goto do_invalidate;
2100         }
2101     } else {
2102     do_invalidate:
2103         tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2104                                               retaddr);
2105     }
2106 }
2107 #else
2108 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2109  * host PC of the faulting store instruction that caused this invalidate.
2110  * Returns true if the caller needs to abort execution of the current
2111  * TB (because it was modified by this store and the guest CPU has
2112  * precise-SMC semantics).
2113  */
2114 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2115 {
2116     TranslationBlock *tb;
2117     PageDesc *p;
2118     int n;
2119 #ifdef TARGET_HAS_PRECISE_SMC
2120     TranslationBlock *current_tb = NULL;
2121     CPUState *cpu = current_cpu;
2122     CPUArchState *env = NULL;
2123     int current_tb_modified = 0;
2124     target_ulong current_pc = 0;
2125     target_ulong current_cs_base = 0;
2126     uint32_t current_flags = 0;
2127 #endif
2128 
2129     assert_memory_lock();
2130 
2131     addr &= TARGET_PAGE_MASK;
2132     p = page_find(addr >> TARGET_PAGE_BITS);
2133     if (!p) {
2134         return false;
2135     }
2136 
2137 #ifdef TARGET_HAS_PRECISE_SMC
2138     if (p->first_tb && pc != 0) {
2139         current_tb = tcg_tb_lookup(pc);
2140     }
2141     if (cpu != NULL) {
2142         env = cpu->env_ptr;
2143     }
2144 #endif
2145     assert_page_locked(p);
2146     PAGE_FOR_EACH_TB(p, tb, n) {
2147 #ifdef TARGET_HAS_PRECISE_SMC
2148         if (current_tb == tb &&
2149             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2150                 /* If we are modifying the current TB, we must stop
2151                    its execution. We could be more precise by checking
2152                    that the modification is after the current PC, but it
2153                    would require a specialized function to partially
2154                    restore the CPU state */
2155 
2156             current_tb_modified = 1;
2157             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2158             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2159                                  &current_flags);
2160         }
2161 #endif /* TARGET_HAS_PRECISE_SMC */
2162         tb_phys_invalidate(tb, addr);
2163     }
2164     p->first_tb = (uintptr_t)NULL;
2165 #ifdef TARGET_HAS_PRECISE_SMC
2166     if (current_tb_modified) {
2167         /* Force execution of one insn next time.  */
2168         cpu->cflags_next_tb = 1 | curr_cflags();
2169         return true;
2170     }
2171 #endif
2172 
2173     return false;
2174 }
2175 #endif
2176 
2177 /* user-mode: call with mmap_lock held */
2178 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2179 {
2180     TranslationBlock *tb;
2181 
2182     assert_memory_lock();
2183 
2184     tb = tcg_tb_lookup(retaddr);
2185     if (tb) {
2186         /* We can use retranslation to find the PC.  */
2187         cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2188         tb_phys_invalidate(tb, -1);
2189     } else {
2190         /* The exception probably happened in a helper.  The CPU state should
2191            have been saved before calling it. Fetch the PC from there.  */
2192         CPUArchState *env = cpu->env_ptr;
2193         target_ulong pc, cs_base;
2194         tb_page_addr_t addr;
2195         uint32_t flags;
2196 
2197         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2198         addr = get_page_addr_code(env, pc);
2199         if (addr != -1) {
2200             tb_invalidate_phys_range(addr, addr + 1);
2201         }
2202     }
2203 }
2204 
2205 #ifndef CONFIG_USER_ONLY
2206 /* in deterministic execution mode, instructions doing device I/Os
2207  * must be at the end of the TB.
2208  *
2209  * Called by softmmu_template.h, with iothread mutex not held.
2210  */
2211 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2212 {
2213 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2214     CPUArchState *env = cpu->env_ptr;
2215 #endif
2216     TranslationBlock *tb;
2217     uint32_t n;
2218 
2219     tb = tcg_tb_lookup(retaddr);
2220     if (!tb) {
2221         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2222                   (void *)retaddr);
2223     }
2224     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2225 
2226     /* On MIPS and SH, delay slot instructions can only be restarted if
2227        they were already the first instruction in the TB.  If this is not
2228        the first instruction in a TB then re-execute the preceding
2229        branch.  */
2230     n = 1;
2231 #if defined(TARGET_MIPS)
2232     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2233         && env->active_tc.PC != tb->pc) {
2234         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2235         cpu_neg(cpu)->icount_decr.u16.low++;
2236         env->hflags &= ~MIPS_HFLAG_BMASK;
2237         n = 2;
2238     }
2239 #elif defined(TARGET_SH4)
2240     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2241         && env->pc != tb->pc) {
2242         env->pc -= 2;
2243         cpu_neg(cpu)->icount_decr.u16.low++;
2244         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2245         n = 2;
2246     }
2247 #endif
2248 
2249     /* Generate a new TB executing the I/O insn.  */
2250     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2251 
2252     if (tb_cflags(tb) & CF_NOCACHE) {
2253         if (tb->orig_tb) {
2254             /* Invalidate original TB if this TB was generated in
2255              * cpu_exec_nocache() */
2256             tb_phys_invalidate(tb->orig_tb, -1);
2257         }
2258         tcg_tb_remove(tb);
2259         tb_destroy(tb);
2260     }
2261 
2262     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2263      * the first in the TB) then we end up generating a whole new TB and
2264      *  repeating the fault, which is horribly inefficient.
2265      *  Better would be to execute just this insn uncached, or generate a
2266      *  second new TB.
2267      */
2268     cpu_loop_exit_noexc(cpu);
2269 }
2270 
2271 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2272 {
2273     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2274 
2275     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2276         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2277     }
2278 }
2279 
2280 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2281 {
2282     /* Discard jump cache entries for any tb which might potentially
2283        overlap the flushed page.  */
2284     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2285     tb_jmp_cache_clear_page(cpu, addr);
2286 }
2287 
2288 static void print_qht_statistics(struct qht_stats hst)
2289 {
2290     uint32_t hgram_opts;
2291     size_t hgram_bins;
2292     char *hgram;
2293 
2294     if (!hst.head_buckets) {
2295         return;
2296     }
2297     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2298                 hst.used_head_buckets, hst.head_buckets,
2299                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2300 
2301     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2302     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2303     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2304         hgram_opts |= QDIST_PR_NODECIMAL;
2305     }
2306     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2307     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2308                 qdist_avg(&hst.occupancy) * 100, hgram);
2309     g_free(hgram);
2310 
2311     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2312     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2313     if (hgram_bins > 10) {
2314         hgram_bins = 10;
2315     } else {
2316         hgram_bins = 0;
2317         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2318     }
2319     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2320     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2321                 qdist_avg(&hst.chain), hgram);
2322     g_free(hgram);
2323 }
2324 
2325 struct tb_tree_stats {
2326     size_t nb_tbs;
2327     size_t host_size;
2328     size_t target_size;
2329     size_t max_target_size;
2330     size_t direct_jmp_count;
2331     size_t direct_jmp2_count;
2332     size_t cross_page;
2333 };
2334 
2335 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2336 {
2337     const TranslationBlock *tb = value;
2338     struct tb_tree_stats *tst = data;
2339 
2340     tst->nb_tbs++;
2341     tst->host_size += tb->tc.size;
2342     tst->target_size += tb->size;
2343     if (tb->size > tst->max_target_size) {
2344         tst->max_target_size = tb->size;
2345     }
2346     if (tb->page_addr[1] != -1) {
2347         tst->cross_page++;
2348     }
2349     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2350         tst->direct_jmp_count++;
2351         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2352             tst->direct_jmp2_count++;
2353         }
2354     }
2355     return false;
2356 }
2357 
2358 void dump_exec_info(void)
2359 {
2360     struct tb_tree_stats tst = {};
2361     struct qht_stats hst;
2362     size_t nb_tbs, flush_full, flush_part, flush_elide;
2363 
2364     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2365     nb_tbs = tst.nb_tbs;
2366     /* XXX: avoid using doubles ? */
2367     qemu_printf("Translation buffer state:\n");
2368     /*
2369      * Report total code size including the padding and TB structs;
2370      * otherwise users might think "-tb-size" is not honoured.
2371      * For avg host size we use the precise numbers from tb_tree_stats though.
2372      */
2373     qemu_printf("gen code size       %zu/%zu\n",
2374                 tcg_code_size(), tcg_code_capacity());
2375     qemu_printf("TB count            %zu\n", nb_tbs);
2376     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2377                 nb_tbs ? tst.target_size / nb_tbs : 0,
2378                 tst.max_target_size);
2379     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2380                 nb_tbs ? tst.host_size / nb_tbs : 0,
2381                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2382     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2383                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2384     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2385                 tst.direct_jmp_count,
2386                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2387                 tst.direct_jmp2_count,
2388                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2389 
2390     qht_statistics_init(&tb_ctx.htable, &hst);
2391     print_qht_statistics(hst);
2392     qht_statistics_destroy(&hst);
2393 
2394     qemu_printf("\nStatistics:\n");
2395     qemu_printf("TB flush count      %u\n",
2396                 atomic_read(&tb_ctx.tb_flush_count));
2397     qemu_printf("TB invalidate count %zu\n",
2398                 tcg_tb_phys_invalidate_count());
2399 
2400     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2401     qemu_printf("TLB full flushes    %zu\n", flush_full);
2402     qemu_printf("TLB partial flushes %zu\n", flush_part);
2403     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2404     tcg_dump_info();
2405 }
2406 
2407 void dump_opcount_info(void)
2408 {
2409     tcg_dump_op_count();
2410 }
2411 
2412 #else /* CONFIG_USER_ONLY */
2413 
2414 void cpu_interrupt(CPUState *cpu, int mask)
2415 {
2416     g_assert(qemu_mutex_iothread_locked());
2417     cpu->interrupt_request |= mask;
2418     atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2419 }
2420 
2421 /*
2422  * Walks guest process memory "regions" one by one
2423  * and calls callback function 'fn' for each region.
2424  */
2425 struct walk_memory_regions_data {
2426     walk_memory_regions_fn fn;
2427     void *priv;
2428     target_ulong start;
2429     int prot;
2430 };
2431 
2432 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2433                                    target_ulong end, int new_prot)
2434 {
2435     if (data->start != -1u) {
2436         int rc = data->fn(data->priv, data->start, end, data->prot);
2437         if (rc != 0) {
2438             return rc;
2439         }
2440     }
2441 
2442     data->start = (new_prot ? end : -1u);
2443     data->prot = new_prot;
2444 
2445     return 0;
2446 }
2447 
2448 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2449                                  target_ulong base, int level, void **lp)
2450 {
2451     target_ulong pa;
2452     int i, rc;
2453 
2454     if (*lp == NULL) {
2455         return walk_memory_regions_end(data, base, 0);
2456     }
2457 
2458     if (level == 0) {
2459         PageDesc *pd = *lp;
2460 
2461         for (i = 0; i < V_L2_SIZE; ++i) {
2462             int prot = pd[i].flags;
2463 
2464             pa = base | (i << TARGET_PAGE_BITS);
2465             if (prot != data->prot) {
2466                 rc = walk_memory_regions_end(data, pa, prot);
2467                 if (rc != 0) {
2468                     return rc;
2469                 }
2470             }
2471         }
2472     } else {
2473         void **pp = *lp;
2474 
2475         for (i = 0; i < V_L2_SIZE; ++i) {
2476             pa = base | ((target_ulong)i <<
2477                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2478             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2479             if (rc != 0) {
2480                 return rc;
2481             }
2482         }
2483     }
2484 
2485     return 0;
2486 }
2487 
2488 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2489 {
2490     struct walk_memory_regions_data data;
2491     uintptr_t i, l1_sz = v_l1_size;
2492 
2493     data.fn = fn;
2494     data.priv = priv;
2495     data.start = -1u;
2496     data.prot = 0;
2497 
2498     for (i = 0; i < l1_sz; i++) {
2499         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2500         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2501         if (rc != 0) {
2502             return rc;
2503         }
2504     }
2505 
2506     return walk_memory_regions_end(&data, 0, 0);
2507 }
2508 
2509 static int dump_region(void *priv, target_ulong start,
2510     target_ulong end, unsigned long prot)
2511 {
2512     FILE *f = (FILE *)priv;
2513 
2514     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2515         " "TARGET_FMT_lx" %c%c%c\n",
2516         start, end, end - start,
2517         ((prot & PAGE_READ) ? 'r' : '-'),
2518         ((prot & PAGE_WRITE) ? 'w' : '-'),
2519         ((prot & PAGE_EXEC) ? 'x' : '-'));
2520 
2521     return 0;
2522 }
2523 
2524 /* dump memory mappings */
2525 void page_dump(FILE *f)
2526 {
2527     const int length = sizeof(target_ulong) * 2;
2528     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2529             length, "start", length, "end", length, "size", "prot");
2530     walk_memory_regions(f, dump_region);
2531 }
2532 
2533 int page_get_flags(target_ulong address)
2534 {
2535     PageDesc *p;
2536 
2537     p = page_find(address >> TARGET_PAGE_BITS);
2538     if (!p) {
2539         return 0;
2540     }
2541     return p->flags;
2542 }
2543 
2544 /* Modify the flags of a page and invalidate the code if necessary.
2545    The flag PAGE_WRITE_ORG is positioned automatically depending
2546    on PAGE_WRITE.  The mmap_lock should already be held.  */
2547 void page_set_flags(target_ulong start, target_ulong end, int flags)
2548 {
2549     target_ulong addr, len;
2550 
2551     /* This function should never be called with addresses outside the
2552        guest address space.  If this assert fires, it probably indicates
2553        a missing call to h2g_valid.  */
2554     assert(end - 1 <= GUEST_ADDR_MAX);
2555     assert(start < end);
2556     assert_memory_lock();
2557 
2558     start = start & TARGET_PAGE_MASK;
2559     end = TARGET_PAGE_ALIGN(end);
2560 
2561     if (flags & PAGE_WRITE) {
2562         flags |= PAGE_WRITE_ORG;
2563     }
2564 
2565     for (addr = start, len = end - start;
2566          len != 0;
2567          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2568         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2569 
2570         /* If the write protection bit is set, then we invalidate
2571            the code inside.  */
2572         if (!(p->flags & PAGE_WRITE) &&
2573             (flags & PAGE_WRITE) &&
2574             p->first_tb) {
2575             tb_invalidate_phys_page(addr, 0);
2576         }
2577         p->flags = flags;
2578     }
2579 }
2580 
2581 int page_check_range(target_ulong start, target_ulong len, int flags)
2582 {
2583     PageDesc *p;
2584     target_ulong end;
2585     target_ulong addr;
2586 
2587     /* This function should never be called with addresses outside the
2588        guest address space.  If this assert fires, it probably indicates
2589        a missing call to h2g_valid.  */
2590     if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) {
2591         assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2592     }
2593 
2594     if (len == 0) {
2595         return 0;
2596     }
2597     if (start + len - 1 < start) {
2598         /* We've wrapped around.  */
2599         return -1;
2600     }
2601 
2602     /* must do before we loose bits in the next step */
2603     end = TARGET_PAGE_ALIGN(start + len);
2604     start = start & TARGET_PAGE_MASK;
2605 
2606     for (addr = start, len = end - start;
2607          len != 0;
2608          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2609         p = page_find(addr >> TARGET_PAGE_BITS);
2610         if (!p) {
2611             return -1;
2612         }
2613         if (!(p->flags & PAGE_VALID)) {
2614             return -1;
2615         }
2616 
2617         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2618             return -1;
2619         }
2620         if (flags & PAGE_WRITE) {
2621             if (!(p->flags & PAGE_WRITE_ORG)) {
2622                 return -1;
2623             }
2624             /* unprotect the page if it was put read-only because it
2625                contains translated code */
2626             if (!(p->flags & PAGE_WRITE)) {
2627                 if (!page_unprotect(addr, 0)) {
2628                     return -1;
2629                 }
2630             }
2631         }
2632     }
2633     return 0;
2634 }
2635 
2636 /* called from signal handler: invalidate the code and unprotect the
2637  * page. Return 0 if the fault was not handled, 1 if it was handled,
2638  * and 2 if it was handled but the caller must cause the TB to be
2639  * immediately exited. (We can only return 2 if the 'pc' argument is
2640  * non-zero.)
2641  */
2642 int page_unprotect(target_ulong address, uintptr_t pc)
2643 {
2644     unsigned int prot;
2645     bool current_tb_invalidated;
2646     PageDesc *p;
2647     target_ulong host_start, host_end, addr;
2648 
2649     /* Technically this isn't safe inside a signal handler.  However we
2650        know this only ever happens in a synchronous SEGV handler, so in
2651        practice it seems to be ok.  */
2652     mmap_lock();
2653 
2654     p = page_find(address >> TARGET_PAGE_BITS);
2655     if (!p) {
2656         mmap_unlock();
2657         return 0;
2658     }
2659 
2660     /* if the page was really writable, then we change its
2661        protection back to writable */
2662     if (p->flags & PAGE_WRITE_ORG) {
2663         current_tb_invalidated = false;
2664         if (p->flags & PAGE_WRITE) {
2665             /* If the page is actually marked WRITE then assume this is because
2666              * this thread raced with another one which got here first and
2667              * set the page to PAGE_WRITE and did the TB invalidate for us.
2668              */
2669 #ifdef TARGET_HAS_PRECISE_SMC
2670             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2671             if (current_tb) {
2672                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2673             }
2674 #endif
2675         } else {
2676             host_start = address & qemu_host_page_mask;
2677             host_end = host_start + qemu_host_page_size;
2678 
2679             prot = 0;
2680             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2681                 p = page_find(addr >> TARGET_PAGE_BITS);
2682                 p->flags |= PAGE_WRITE;
2683                 prot |= p->flags;
2684 
2685                 /* and since the content will be modified, we must invalidate
2686                    the corresponding translated code. */
2687                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2688 #ifdef CONFIG_USER_ONLY
2689                 if (DEBUG_TB_CHECK_GATE) {
2690                     tb_invalidate_check(addr);
2691                 }
2692 #endif
2693             }
2694             mprotect((void *)g2h(host_start), qemu_host_page_size,
2695                      prot & PAGE_BITS);
2696         }
2697         mmap_unlock();
2698         /* If current TB was invalidated return to main loop */
2699         return current_tb_invalidated ? 2 : 1;
2700     }
2701     mmap_unlock();
2702     return 0;
2703 }
2704 #endif /* CONFIG_USER_ONLY */
2705 
2706 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2707 void tcg_flush_softmmu_tlb(CPUState *cs)
2708 {
2709 #ifdef CONFIG_SOFTMMU
2710     tlb_flush(cs);
2711 #endif
2712 }
2713